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Abstract This study aims to establish whether or not bicycle commuting and cycling for

other purposes (e.g. shopping, visiting friends) are related over time. Using previously

gathered panel data (the Dutch mobility panel) these relationships are revealed by (1) a

series of conditional change models and (2) a latent transition model. The conditional

change models indicate that, with a lag of 1 year and controlling for a range of background

characteristics, bicycle commuting and non-work cycling (in number of weekly trips) have

a positive reciprocal influence on each other. The models show that work-related factors,

such as the distance to work or whether a person receives a travel allowance, affect not

only bicycle commuting but also non-work cycling. The latent transition model indicates

that people can be clustered into four groups: non-cyclists, non-work cyclists, all-around

cyclists and commuter cyclists. This model shows that people with a consistent propensity

to not cycle at all (non-cyclists) or to cycle for both work and non-work purposes (all-

around cyclists) are most stable in their travel behavior. Non-work cyclists and commuter

cyclists are less stable in travel behavior. The model also shows that all-around cyclists are

not (significantly) affected by a change in the distance to work. The article concludes with

several directions for future research.
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Introduction

Cycling is a cheap, quiet, emission-free, congestion-reducing, and health-promoting form

of transportation. Because of these benefits, cities around the world are increasingly

committing resources to stimulating cycling (Pucher and Buehler 2012). Efforts include

infrastructure and service improvements as well as promotional programs (Pucher et al.

2010). Of growing popularity are ‘‘ciclovias,’’ events where streets are temporarily closed

to motor traffic, usually on weekends (Sarmiento et al. 2010). One of the goals of such

events is to get people who never or rarely cycle to give it a try, in the hope that the

experience will lead to more regular cycling. Evidence suggests that participating in cic-

lovias is associated with cycling for transport (Gomez et al. 2005), though it is not clear

whether participation causes an increase in cycling. This possibility points to an important

but understudied question more generally: does cycling for one purpose lead to an increase

in cycling for other purposes?

In this paper we focus on the relationship between bicycle commuting and cycling for

other purposes (leisure, shopping, social visits, etc.). In several previous studies researchers

have posited the idea that non-work cycling may have a positive effect on commuter

cycling (Gardner 1998; Lee et al. 2012; Park et al. 2011; Stinson and Bhat 2004; Xing et al.

2010). To some extent this idea is supported by empirical evidence. For example, among a

sample of British cyclists Gardner (1998) found that many people who currently cycle for

utility purposes claim that leisure cycling encouraged them to cycle to work. Among a

sample of Korean cyclists, Park et al. (2011) found that 57 % of commuter-cyclists began

as leisure-cyclists. In a general sample of Americans, Stinson and Bhat (2004) found a

positive relationship between cycling for other purposes and the propensity to commute by

bicycle. Finally, in a study of cycling in small U.S. cities, Xing et al. (2010) found that

while over one-quarter of cyclists only cycled for recreation, only 10 % cycled only for

transportation and the majority cycled for a mix of recreational and transportation pur-

poses, suggesting a significant connection between the two.

While this evidence suggests that non-work cycling positively influences bicycle

commuting, the direction of causation remains uncertain. It is possible, for example, that

bicycle commuting influences non-work cycling instead of the other way around. Alter-

natively, there may be factors omitted from prior studies that influence both outcomes.

Establishing the direction of causation and assessing the strengths of the effects in either

direction (from bicycle commuting to non-work cycling and vice versa) is important to

answering the question of whether (government) policy should focus on stimulating work

cycling, non-work cycling, or both.

In this study we aim to address the issue of causality by testing the reciprocal rela-

tionships between cycling for non-work purposes (leisure, shopping, social visits, etc.) and

bicycle commuting. To this end, previously gathered panel data (the Dutch mobility panel)

are analyzed. Two different statistical models are applied to these data, namely a (series of)

conditional change model(s) and a latent class transition model. Each model is associated

with a different conceptual framework, thus providing different substantive insights on the

relationship between non-work cycling and bicycle commuting.

Additionally, whereas previous studies considered utility-versus-leisure cycling

(Gardner 1998) or commuter-versus-leisure cycling (Park et al. 2011), we focus on non-

work cycling versus bicycle commuting1 (similar to Stinson and Bhat (2004)). This choice

1 Bicycle trips for employers’ business which represent a very small portion of all bicycle trips in the
Netherlands (0.3 % in our sample), were not considered in the analysis.
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is principally motivated by the fact that leisure cycling was not measured as a separate

category in the survey (it fell under the ‘other purpose’ category instead). The use of these

categories also provides the opportunity, however, to test the idea that certain work-related

factors, namely distance to work and whether a person receives a travel allowance, may

indirectly impact non-work cycling through its effect on bicycling commuting. Should this

be the case, non-work as well as commute cycling may be stimulated by such factors, an

interesting possibility to explore.

Theoretical background and research focus

The present study focuses on the (reciprocal) effects over time between bicycle commuting

and cycling for other purposes. Various theoretical notions can be identified that support

these reciprocal relationships. Stinson and Bhat (2004), for example, note that people who

cycle for non-work purposes are more experienced and may therefore enjoy more comfort

in their bicycle commute. In particular, they may be more comfortable riding with

motorized traffic or carrying cargo (Stinson and Bhat 2004).

Since experience makes cycling more comfortable, it may also make cycling more fun.

This notion is indirectly supported by empirical evidence showing that active modes like

walking and cycling are considered most relaxing and exciting compared to other modes

like the car and public transport (Gatersleben and Uzzell 2007). In this context, Paez and

Whalen (2010) also show that active travellers have less desire to reduce their commute

time in comparison to car and public transport users. If cycling frequency indeed increases

satisfaction with cycling, bicycle commuting and non-work cycling may be expected to

reinforce each other for this reason.

The concept of habit provides a third explanation. Verplanken and Aarts (1999, p. 104)

have defined habits as ‘learned sequences of acts that have become automatic responses to

specific cues, and are functional in obtaining certain goals or end states’. Hence, although

the regularity of past behavior is considered an important feature of habits, Verplanken and

Aarts (1999) emphasize that habits arise when a specific cue (e.g. I need to go to work) is

satisfactorily paired with the execution of a behavioral act (e.g. I will use the car). If a

mode is successfully used for a certain cue (e.g. work), it is plausible to assume that it will

also (unconsciously) be considered for other purposes (e.g. shopping).

These notions suggest positive effects between bicycle commuting and non-work

cycling in either or both directions. Hence, if a person commutes by bicycle, he or she can

be expected to cycle more for non-work purposes and vice versa. It should be noted,

however, that the marginal utility of cycling might also decline with increased levels of

cycling. For example, those who already cycle for their commute might derive less sat-

isfaction from non-work (e.g. recreational) cycling compared to those who do not cycle to

work. This would imply a negative relationship between bicycle commuting and non-work

cycling. Hence, while most theoretical notions suggest a positive link between bicycle

commuting and non-work cycling, a negative relationship is also theoretically plausible.

In addition to testing the reciprocal relationship between bicycle commuting and non-

work cycling, the present analysis will focus on the effects of two work-related factors,

namely distance to work and whether a person receives a travel allowance (offered via

employer). Heinen et al. (2012) note that few studies have examined such work-related

factors. Their study showed that they are nevertheless quite relevant in the prediction of

commute cycling. Among other factors they found that distance to work and financial

support for other modes of transport (the provision of a company car or public transport pass)
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significantly decreased the probability of being a bicycle commuter, whereas financial

support for the bicycle (in the form of an employer contribution) increased this probability.

The present study adds to this research in three ways. First, as mentioned in the

introduction, we will investigate the possible (indirect) effects of the two work-related

factors on cycling for non-work purposes. Second, the analyses, given their longitudinal

nature, can show the effects, if any, of changes in the two work-related factors on both

bicycle commuting and non-work cycling over time. And third, we will test the possibility

that the effect of a change in commuting distance on future commute cycling frequency is

dependent on past cycling frequencies. Specifically, we expect that for people who cycle

more frequently (for work or non-work purposes) the effect of an increase in commuting

distance on the bicycle commuting frequency is less strong than for those who cycle

infrequently. These interactions are suggested by the notion that people who cycle more

frequently have a stronger propensity to cycle and that their behavior is therefore more

‘robust’ in response to a change in distance to work.

Model conceptualizations

Panel data can be modeled in various ways. In this paper we will apply and contrast two

models, namely the conditional change model and the latent class transition model, for two

points in time. The structure of these models, as depicted in Figs. 1 and 2, respectively,

suggest different conceptualizations of the relationships between the variables.

Within a conditional change model the dependent variable is regressed on itself and the

independent variable under investigation, both measured at a previous point in time. After

accounting for the lagged version of the dependent variable (reflecting the variable’s

stability), the remaining variance in the dependent variable is due to changes in the period

between the measurement occasions. The role of the lagged independent variable is to

explain this variance while accounting for the initial overlap between the independent and

dependent variable at the first measurement occasion. When the effect of the lagged

independent variable is significant, it predicts the direction of change in the dependent

variable from the first point in time to the second. In contrast to cross-sectional analyses,

the conditional change model is therefore able to satisfy the criterion of time-precedence

empirically (Finkel 1995). It thus provides a stronger basis for making causal inferences.

In our case, the conceptual model (Fig. 1) includes two conditional change regressions,

one in which bicycle commuting is the dependent variable and non-work cycling the

independent variable and one in which non-work cycling is the dependent variable and

bicycle commuting the independent variable.

Since the estimated lagged effects may be spurious if common omitted variables

influence the variables of interest at both points in time, it is important to include relevant

control variables in the model. In the present model seven constant background variables

are included: sex, age, education level, income, driver license ownership, household size

and number of cars in the household. These are ‘constant’ in that they are assumed to vary

little or not all across the two time points.

The two work-related factors are also included as exogenous control variables. In

contrast to the background variables, the effects of changes in these factors are explicitly

modeled by including the differences between the first and second point in time (i.e. time

2–time 1). Additionally, the difference in commuting distance is interacted with both

bicycle commuting and non-work cycling at time 1 in predicting bicycle commuting at

time 2, leading to two possible interaction effects. These effects reflect the expectation
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(formulated in the previous section) that people who cycle frequently are less affected by

an increase in the distance to work.

Finally, two events are included as well, namely moving house and changing jobs.

Because these events may affect changes in distance to work and the travel allowance, as

well as cycling frequencies, they too constitute relevant control variables. For example, a

house move likely affects the distance to work but may simultaneously pick up changes in

neighborhood characteristics (e.g. development density) that, in turn, may affect the (work

or non-work) cycling frequency. In contrast to the background and work-related variables,

which may affect bicycle commuting and non-work cycling at both points in time, the

difference variables and events are assumed to only affect bicycle commuting and non-

work cycling at the second point in time.

A second and alternative way of conceptualizing the relationship between bicycle

commuting and non-work cycling rests on the idea that both are affected by an underlying

categorical factor. This is the main tenet of a latent class model (Magidson and Vermunt

2004; McCutcheon 1987). Within this model, a latent class (i.e. categorical) variable is

assumed to explain the association(s) between the included indicators. Hence, in the

context of the present study, a set of (latent) behavioral clusters, each related to a different

combination of levels of bicycle commuting and non-work cycling, is assumed to account

for the association between bicycle commuting and non-work cycling.

If the same model structure holds for a second point in time, the probability of

belonging to a particular class at the second point in time can be conditioned on latent class

Bicycle
commuting

Non-work
cycling

Bicycle
commuting

Non-work
cycling

7*4 1*2

Time 2Time 1

Background
characteristics

Work-related
factors

(distanceto work
and travel 
allowance)

Delta
distanceto 

work

Delta
travel 

allowance

House move 
and job 
change

2*21*22*4

Fig. 1 Conditional change models of bicycle commuting and non-work cycling. Note: The multiplications
indicate the number of relationships that are estimated (e.g. 7 * 4 indicates that 28 relationships are
estimated between the 7 background variables and 4 endogenous variables)
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membership at the first point in time. In effect, transitions can be modeled between the

behavioral clusters over time (Collins and Lanza 2009; Nylund 2007). Hence, in contrast to

modeling direct effects between bicycle commuting and non-work cycling (Fig. 1), any

effects are assumed to be mediated by the latent class variables.

The exogenous control variables can also be added to this model. Again, the background

and work-related variables are assumed to influence cluster membership at both points in

time, while the difference variables and events are only assumed to affect latent class

membership at the second point in time. Finally, an interaction is included between the

difference in distance to work and the behavioral clusters at the first point in time. This

means that the effect of a change in commuting distance on cluster membership at the

second point in time is conditional on cluster membership at the first point in time. Again,

we expect that cluster(s) with a high use of the bicycle will be less affected by an increase

in the commuting distance than clusters with lower average usage.

Data and methods

The Dutch mobility panel

To estimate the models data were drawn from the Dutch mobility panel. This panel covers

a period of 5 years (from 1984 to 1989) and consists of 10 waves (surveys were
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Time 1 Time 2

7*1 7*1 2*1
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change

2*12*1

Fig. 2 A latent class transition model. Note: The multiplications indicate the number of relationships that
are estimated
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administered in March and September of each year). The first wave of this panel (March

1984) included 3,863 individuals who were selected using a stratified design based on

different community types and life cycle/income groups. In consecutive waves the panel

was continuously refreshed using information on the composition of the panel drop-outs.

The survey is extensively described in Golob et al. (1985) and Meurs and Van Wissen

(1987).

The lag between time points in the models (Figs. 1, 2) should ideally reflect the time it

takes for the causal processes to evolve. In the absence of prior research showing how long

that is, we therefore (arbitrary) selected the period of 1 year. The behavioral changes that

may be expected to occur in this period should be sufficient to test the models. In addition,

a 1-year interval excludes the presence of seasonal effects and (in this case) minimizes the

amount of panel attrition, given that levels of non-response increase with each successive

wave of the panel. The models in the present study were therefore based only on the six

March waves of the survey.

We did not model all waves separately but instead pooled the available wave-pairs. In

other words, all of the first-wave responses were pooled, regardless of the year in which the

wave was conducted, as were all of the second-wave responses. Golob and Van Wissen

(1989) previously applied this strategy to minimize the effects of panel attrition bias and to

increase the sample size (to study the effects of rare events). Since latent transition analysis

generally requires large samples (to sufficiently fill the cells in the transition matrix), this

latter benefit is also relevant to our study.

Most respondents participated in more than two waves. For these respondents multiple

wave-pairs were therefore available. In these cases, we randomly selected one wave-pair in

order to ensure that observations remained independent of each other. In addition, only

wave-pairs in which the respondent was employed on both occasions were selected. This

strategy led to a sample of 1,969 wave-pairs/respondents in total.

In each wave respondents completed a seven-day travel diary in which they registered

their trips and the related characteristics (mode, distance, travel time and purpose). For the

present analysis only the frequency of bicycle trips was considered. Two categories were

identified: cycling to work (as the primary mode only) and cycling for non-work purposes.

The latter included: ‘shopping,’ ‘visiting friends/relatives,’ ‘bringing or picking up chil-

dren,’ and ‘other’.

Table 1 presents the descriptive statistics for the variables included in the analyses,

while Fig. 3 presents the response distributions of the dependent variables in the first wave.

As shown, these distributions are highly skewed with many zeros: 61.2 % reported zero

bicycle commuting trips and 58.9 % reported zero bicycle trips for non-work purposes. For

cycling for non-work purposes the frequencies of responses decrease from zero trips

onwards, while for commuting trips a second peak can be observed at 5 trips, owing to the

fact that people who work full time (5 days per week) and always use the bicycle will

report 5 cycling trips to work.

Statistical models and evaluation procedure

Several different statistical models can be used for estimating the relationships in the

conceptual model in Fig. 1. Since the endogenous variables, i.e. the bicycle trip fre-

quencies, represent (highly skewed) count outcomes, a linear model is inappropriate,

however, because it assumes that the errors are normally distributed and because it would

predict negative and non-integer outcomes. A Poisson model can effectively address these

problems and has been successfully applied in the transport literature to various count
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outcomes, such as accident frequencies, activity frequencies, and, similar to the present

analysis, trip frequencies.

A Poisson model, however, has no residual term. As a result, this model is unable to

account for any correlations between the residual variances of bicycle commuting and non-

work cycling at the first and second point in time. Such correlations are typically included

in cross-lagged models based on linear equations. However, since a model based on linear

equations is inappropriate (for the reasons stated above), we decided to estimate four

separate models (one for each dependent variable in the model) instead of simultaneously

estimating a single model (in a structural equation framework). A drawback of this

Table 1 Descriptive statistics (N = 1,969)

Endogenous variables

Bicycle commuting trips (wave 1) Mean (SD) 1.8 (2.7)

Bicycle trips with other purpose (wave 1) Mean (SD) 1.4 (2.6)

Bicycle commuting trips (wave 2) Mean (SD) 1.7 (2.7)

Bicycle trips with other purpose (wave 2) Mean (SD) 1.4 (2.5)

Constant exogenous variables (wave 1)

Sex (%) Male (0) 66.4

Female (1) 33.6

Age Mean (SD) 37.0 (10.3)

Education (%) Secondary education (1) 29.1

Vocational degree (2) 41.9

Higher education (3) 29.1

Personal net income (%) 0–17,000 guilders (1) 35.2

17,000–27,000 guilders (2) 33.9

[27,000 guilders (3) 30.9

Owns driver’s license (%) No (0) 14.4

Yes (1) 85.6

Household size Mean (SD) 3.3 (1.3)

Number of cars in the household (%) 0 13.0

1 70.5

2 14.4

3 or more 2.2

Distance to work (km) Mean (SD) 12.5 (16.4)

Travel allowance (payment that can be used for any mode) (%) No (0) 66.1

Yes (1) 33.9

Non-constant exogenous variables (wave 2–wave 1)

Delta distance to work (km) Mean (SD) 0.6 (12.4)

Delta travel allowance (%) Lost travel allowance (-1) 4.1

No change (0) 89.7

Gained travel allowance
(1)

6.1

Moved house (%) No (0) 95.2

Yes (1) 4.8

Changed jobs (%) No (0) 91.7

Yes (1) 8.3
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approach is that it remains unknown to what extent the residual variances in bicycle

commuting and non-work cycling are in fact correlated at the first and second point in time.

A second drawback of the Poisson model lies in its restrictive assumption that the

conditional mean is equal to the conditional variance. Often the latter is greater than the

former, indicating so-called over-dispersion. Generally there are two causes of over-dis-

persion, with related methods to address it (Long 1997). The first cause is that explanatory

variables have been omitted from the model, the solution to which is the use of a negative

binomial (NB) model. Over-dispersion can also be caused by an excess of zeros. In this

case it can be assumed that the observed count is the result of a dual-state process: a person

can either be located in a perfect state (zero) or in an imperfect state (governed by a

Poisson process). As noted by Lord et al. (2005) it is plausible that such a dual-state

process underlies trip frequency data. For example, in the case of cycling frequency, it can

be argued that for some people the perfect state (zero) applies. They may be committed to

other modes of transport or simply not own a bicycle and therefore never use a bicycle. For

other people the imperfect state (zero and non-zero) applies. Within a particular time-

interval they may use the bicycle to various extents (non-zero) or not use it (zero) for any

non-structural reason (e.g. because they have a cold). As a result of this dual-state process,

the total count of observed zeros in the data can result in an excess of zeros not explained

by a Poisson or negative binomial process. The solution to this form of over-dispersion is

to estimate a zero-inflated Poisson (ZIP) model, in which both processes are modeled

separately (within a single model): a logit model for the probability of the perfect state and

a Poisson model for the mean (k) of the imperfect state. Explanatory variables can be

added to both models (and need not necessarily be the same for both models). Finally, both

forms of over-dispersion may be present, in which case a zero-inflated negative binomial

(ZINB) would provide the best fit to the data. In the present analysis the above-described

models (Poisson, NB, ZIP and ZINB) will be tested against the data. The package Stata 11

is used to estimate the models.

Estimation of the latent transition model (Fig. 2) is more straightforward. Because the

distributions of the dependent variables (Fig. 3) can be assumed to be generated by several

distinct Poisson distributions, we estimated different Poisson means for the two indicator

variables for each (latent) behavioral cluster. We used multinomial logit models to estimate

the effects of the behavioral clusters in the first wave on cluster membership in the second

wave as well as the effects of the explanatory variables on cluster membership across both

Fig. 3 Distributions of commuting trips (left) and trips with other purpose (right) by bicycle in the first
wave of the selected wave-pairs (N = 1,969)
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waves. To decide what number of latent classes is appropriate, consecutive models with

one through seven classes were estimated and compared. These models were estimated

without covariates in order to assess only the measurement part of the model. Next, the

complete latent transition model (with covariates) is estimated. Mplus 6 was used to

estimate the models. We used the parameterization described by Muthén and Asparouhov

(2011).

Results

Conditional change models

For the conditional change models (Fig. 1), comparison of the various models (Poisson,

NB, ZIP and ZINB) showed that the ZINB-model provided the best fit to the data for non-

work cycling and bicycle commuting in the first wave and non-work cycling in the second

wave. For bicycle commuting in the second wave the ZIP-model fitted best.

Table 2 presents the parameter estimates of the best-fitting models for the four

endogenous variables. In the first wave the frequency of bicycle commuting and non-work

cycling is explained by the seven background variables and the two work-related factors.

The regressions in the second wave additionally include the two lagged dependent vari-

ables, the two change variables, and the two event variables. Finally, two interactions are

included in the regression of bicycle commuting in the second wave, between the change in

distance to work and bicycle commuting and non-work cycling in the first wave.

The estimates show that the probability of a ‘certain zero’ for commute trips in the first

wave increases with income, the number of cars in the household and the distance to work

and also for those who receive a travel allowance; it decreases with education and

household size. The frequency of bicycle commuting is positively influenced by income

and household size and negatively by distance to work. The different effects of the

explanatory variables in the regressions are notable. For example, the number of cars in the

household and getting a travel allowance influence only the probability of making no

bicycle commute trips and not the frequency of bicycle commuting. Personal income

decreases the probability of commuting by bicycle, but when people with higher incomes

do cycle to work they travel more frequently than those with lower incomes.

For non-work cycling in the first wave, many of the estimates are similar, with notable

exceptions. For example, in contrast to commuting trips, the effect of income on non-work

trip frequency is negative. Second, in contrast to commuting trips, the number of cars in the

household negatively affects the frequency of non-work trips. Similar to the results for

commuting trips, however, distance to work positively affects the probability of not

cycling and negatively affects the frequency of non-work cycling trips. This apparent direct

effect of distance to work on non-work cycling trips may, in fact, be indicative of an

indirect effect via previous levels of bicycle commuting. Only age has no significant effect

on bicycle commuting trips or non-work cycling trips. This is probably due to the fact that

only people with a job are included in the sample, resulting in a limited range for age.

The results of the second wave show that bicycle commuting in the first wave strongly

affects both whether a person cycles to work in the second wave and how often. Con-

trolling for the initial overlap between bicycle commuting and non-work cycling, non-work

cycling also positively affects bicycle commuting. However, it does so only by decreasing

the probability of not bicycle commuting and not by increasing the frequency of bicycle

commuting.
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Other exogenous variables also influence bicycle commuting in the second wave.

Again, number of cars in the household and the distance to work are most influential. The

difference in distance to work is also significant, indicating that people are more likely to

not cycle at all or will cycle less if the distance to work increases. Finally, the interaction

between change in distance to work and commuting trips in the first wave positively

influences bicycle commuting in the second wave, indicating that the effect of a change in

distance to work is smaller for those who previously cycled more frequently to work.

Similar to bicycle commuting, non-work cycling in the second wave is strongly affected

by non-work cycling in the first wave, suggesting substantial stability in behavior. In

contrast to the effect of non-work cycling on bicycle commuting, however, the effect of

bicycle commuting on non-work cycling operates via the probability of not cycling as well

as via trip frequency. Hence, controlling for the initial association, frequent bicycle

commuting will both decrease the probability of not cycling for non-work purposes and

increase the frequency of non-work cycling. Overall, the effects of bicycle commuting on

non-work cycling are slightly greater than vice versa.

Other explanatory variables are significant for the second wave as they were for the first

(suggesting that these can also explain changes in the period between the two points in

time). An interesting result is the effect of the change in distance to work, which has a

small but significant negative effect on the frequency of non-work trips. Two mechanisms

may explain this direct effect. First, the increased distance may mean that people have less

time to travel for non-work purposes, as suggested by the notion of fixed travel time

budgets (Mokhtarian and Chen 2004). Second, a change in bicycle commuting (after the

first wave) may act as a mediator, in which case the change in distance to work affects the

frequency of bicycle commuting, in turn affecting the frequency of non-work cycling. This

would imply that a synchronous effect between bicycle commuting and non-work cycling

exists (possibly for reasons discussed in ‘‘Theoretical background and research focus’’

section). A limitation of the present model is that a direct effect between bicycle com-

muting and non-work cycling (or the other way around) at the same point in time cannot be

estimated because the inclusion of such effects (in addition to the lagged effects) would

lead to multicollinearity problems given that bicycle commuting and non-work cycling in

the first wave are strongly correlated with their respective counterparts in the second wave.

Overall, the results indicate that bicycle commuting and non-work cycling reciprocally

influence each other over time. The finding that distance to work, as a work-related factor,

also influences non-work cycling is consistent with this conclusion. Furthermore, the

findings indicate that the effect of bicycle commuting on non-work cycling is greater than

the other way around. Finally, an increase in distance to work decreases bicycle com-

muting, but less strongly for people who frequently cycle to work.

Latent transition model

Based on several criteria the four-class model was found to provide the optimal solution in

terms of fit and parsimony in each of the two waves. The latent transition model was

therefore estimated with four classes at each point in time.

To assess whether the parameters related to the measurement model in each of the

waves were equal a likelihood-ratio test was conducted. This test indicated that a restricted

model (with the parameters related to the measurement model constrained to be equal in

both waves) did not fit significantly worse than an unrestricted model (with freely esti-

mated parameters). Hence, in the final model the parameters relating the latent clusters to
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the indicators in both waves were constrained to be equal. This, in turn, means that the

clusters have the same interpretation in both waves.

Table 3 presents the estimates of the latent transition model. The four clusters can be

identified as non-cyclists (51 %), non-work cyclists (11 %), all-around cyclists (12 %) and

commuter cyclists (26 %). Through exponentiation of the parameters associated with the

indicator variables (bicycle commuting trips and non-work cycling trips) the Poisson

means can be derived for each cluster. Non-cyclists cycle very little at all. Non-work

cyclists have a mean cycling frequency of 2.8 for non-work purposes and 0.1 for com-

muting trips. All-around cyclists cycle on average 4.7 times for their commute and 6.5

times for non-work purposes. And commuter cyclists, the reference group in the model,

have a mean cycling frequency of 4.5 for commuting trips and 1.0 for non-work trips.

With the exception of age, the exogenous variables all significantly influence latent

class membership in the first wave. Men have a higher probability of belonging to the

commuter cyclist cluster compared to the other three clusters. Education increases the

probability of belonging to the all-around cyclist cluster, while income decreases this

probability. Having a driver’s license increases the probability of being a non-cyclist,

whereas household size decreases this probability. The effect of the number of cars in the

household is especially strong, negatively influencing the probability of being an all-

around cyclist compared to being a non-cyclist. It should be noted, however, that car

ownership among all-around cyclists is still relatively high (63 % has one or more cars in

the household). The two work-related factors (distance to work and travel allowance)

positively influence the probability of the first two clusters, whose members do not cycle to

work (the non-work cyclist and non-cyclist), at the expense of the clusters whose members

do cycle to work (the all-around cyclist and commuter cyclist).

Latent class membership in the second wave is strongly influenced by latent class

membership in the first wave. In other words, people largely tend to stay in the same

behavioral cluster. The all-around cyclist category has an especially large effect on itself,

suggesting strong stability in behavior. After controlling for cluster membership in the first

wave, several exogenous variables explain changes in cluster membership over time.

Again, number of cars in the household, and distance to work are most influential. Whether

a person gains or loses a travel allowance also strongly affects the probability of transi-

tioning to the non-work cyclist cluster, probably because a travel allowance encourages the

use of more expensive modes like the car and public transport.

Finally, the interaction between the change in distance to work and cluster membership

in the first wave also yields several interesting results. For non-work cyclists, non-cyclists,

and commuter cyclists, an increase in distance to work increases the probability of tran-

sitioning to (or staying in) the non-work cyclist and non-cyclist categories. For commuter

cyclists this means that some give up cycling entirely, while others will start to cycle (or

increase cycling) for non-work purposes. This latter group may be compensating for the

lost opportunity to cycle to work and its role as a means of getting exercising or saving

money or saving the environment. This finding indicates that the relationship between non-

work cycling and bicycle commuting may not always be positive as was suggested by the

conditional change models: a decrease in bicycle commuting may in fact lead to an

increase in non-work cycling. Another interesting finding is that the effect of a change in

distance to work is not significant for the all-around cyclists. In line with expectations, this

behavioral cluster is thus more robust in response to such a change than the other clusters.

It should also be noted that the interaction effect is much stronger in this model than in the

conditional change models. This difference may arise from the specific combinations of
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Table 3 Parameter estimates of the latent transition model

Non-cyclist Non-work
cyclist

All-around
cyclist

Commuter
cyclist (ref.)

Est. t Est. t Est. t Est. t

Cluster indicators (estimates
equal across waves)

Bicycle commuting trips -3.703 16.14 -2.129 -5.79 1.553 33.39 1.495 60.01

Bicycle trips with other purpose -2.303 14.52 1.020 12.19 1.868 35.58 0.013 0.17

Exp(bicycle commuting trips) 0.0 0.1 4.7 4.5

Exp(bicycle trips with other
purpose)

0.1 2.8 6.5 1.0

Wave 1

Class size 0.51 0.11 0.12 0.26

Prediction of cluster membership
in wave 1

Sex (female) 0.326 2.01 0.888 3.92 0.796 3.34 0

Age 0.012 1.83 -0.007 -0.68 -0.008 -0.74 0

Education = medium
(ref. = low)

0.105 0.70 0.287 1.19 0.900 3.44 0

Education = high (ref. = low) -0.600 -3.35 0.195 0.69 1.324 4.96 0

Personal net income = medium
(ref. = low)

0.191 1.11 -0.311 -1.27 -0.686 -2.81 0

Personal net income = high
(ref. = low)

0.350 1.82 -0.556 -1.87 -0.683 -2.32 0

Owns driver’s license 0.483 2.48 0.134 0.49 -0.062 -0.24 0

Household size -0.238 -4.69 0.085 1.10 0.234 3.21 0

Number of cars in the household 0.939 7.90 0.063 0.31 -1.194 -5.33 0

Distance to work 0.116 6.53 0.116 6.46 0.012 0.42 0

Travel allowance 0.453 2.80 0.800 3.66 0.072 0.25 0

Intercept -2.192 -4.77 -3.564 -5.39 -1.934 -2.78 0

Wave 2

Class size 0.53 0.11 0.11 0.25

Prediction of cluster membership
in wave 2

Non-cyclist wave 1
(ref. = commuter cyclist)

3.611 16.21 1.703 4.56 0.461 0.64 0

Non-work cyclist wave 1
(ref. = commuter cyclist)

2.160 5.21 3.785 8.46 2.720 3.84 0

All-around cyclist wave 1
(ref. = commuter cyclist)

1.006 1.77 1.625 2.65 5.123 7.81 0

Sex (female) -0.150 -0.64 0.720 2.38 0.331 0.79 0

Age -0.001 -0.09 0.010 0.73 0.016 0.82 0

Education = medium
(ref. = low)

-0.131 -0.62 -0.665 -2.18 0.450 0.90 0

Education = high (ref. = low) -0.131 -0.52 -0.195 -0.55 0.945 1.93 0

Personal net income = medium
(ref. = low)

0.089 0.36 -0.485 -1.50 -0.184 -0.39 0
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non-work and work cycling identified in the latent class model in contrast to the past

frequencies of each type of behavior separately included in the conditional change models.

Based on the parameter estimates, the transition matrix can be computed (Table 4) (for

this purpose the model was re-estimated keeping only the significant parameters). This

table is computed by summing over each person the probability that (s)he transitions (or

stays in the same class), given his/her cluster membership in the first wave and his/her

values for the covariates. Thus, this matrix shows the predicted movement of people

between the behavioral clusters over time. The diagonal elements in the matrix indicate the

relative stability of each behavioral cluster. For example, all-around cyclists have a

probability of 77.6 % of staying in the same behavioral cluster. Commuter cyclists are also

relatively stable with a probability of 69.5 %. Non-work cyclists are most instable with a

Table 4 Matrix of transition
probabilities

Wave 1 Wave 2

NC NWC AC CC

Non-cyclist (NC) 0.872 0.049 0.005 0.074

Non-work cyclist (NWC) 0.259 0.563 0.071 0.107

All-around cyclist (AC) 0.067 0.058 0.776 0.099

Commuter cyclist (CC) 0.190 0.079 0.036 0.695

Table 3 continued

Non-cyclist Non-work
cyclist

All-around
cyclist

Commuter
cyclist (ref.)

Est. t Est. t Est. t Est. t

Personal net income = high
(ref. = low)

-0.304 -1.19 -0.740 -1.82 0.009 0.01 0

Owns driver’s license -0.202 -0.74 0.054 0.15 0.595 1.17 0

Household size -0.027 -0.36 0.107 0.96 -0.046 -0.33 0

Number of cars in the household 0.325 1.84 -0.228 -0.98 -1.341 -3.61 0

Distance to work 0.097 4.07 0.097 3.98 0.052 1.39 0

Travel allowance 0.236 0.96 0.745 2.38 -0.706 -1.39 0

Delta travel allowance = lost
(ref. = no change)

-0.746 -1.79 -1.426 -2.22 0.210 0.19 0

Delta travel allowance = gained
(ref. = no change)

0.550 1.29 0.794 1.45 -0.469 -0.60 0

Moved house -0.078 -0.20 -1.046 -1.34 -0.255 -0.43 0

Changed jobs 0.242 0.57 -0.288 -0.56 0.488 0.61 0

Intercept -1.930 -2.96 -4.076 -4.73 -4.012 -3.15 0

Interaction with delta distance to
work

Non-cyclist (wave 1) 0.099 4.36 0.096 3.86 0.076 1.81 0

Non-work cyclist (wave 1) 0.153 4.27 0.152 4.54 0.064 1.43 0

All-around cyclist (wave 1) 0.021 0.58 -0.008 -0.23 -0.021 -0.64 0

Commuter cyclist (wave 1) 0.281 3.94 0.291 4.05 -0.019 -0.36 0

Estimates in bold are significant at p \ 0.05
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probability of 56.3 % of staying in the same cluster. Finally, non-cyclists are even more

stable than all-around cyclists with a probability of 87.2 % of staying in the same cluster.

The off-diagonal elements are also informative from a practical perspective. For

example, very few people (0.5 %) transition from the non-cycling cluster to the all-around

cycling cluster in the course of 1 year. Thus, non-work cycling and bicycle commuting

seem to operate as necessary intermediate clusters to transition from the non-cycling to the

all-around cycling profile. The path via bicycle commuting seems more effective, as non-

work cyclists have a relatively high probability of transitioning back to the non-cyclist

profile (25.9 %).

The matrix of transition probabilities can also be computed at different values of the

covariates. Table 5 presents the matrix if the change in distance to work equals ?3 km

(holding the other covariates at their mean values). Here the interaction between the change

in distance to work and cluster membership in the first wave becomes quite apparent.

Whereas bicycle commuters are strongly drawn to the non-cycling profile (40.4 %), all-

around cyclists are much less affected and tend to stay in their original profile (69.0 %).

Overall, the latent transition model shows that bicycle commuting and non-work

cycling are interrelated, but in a more complex way than the one suggested by the con-

ditional change models. The results indicate that (of the cycling clusters) all-around

cyclists are most effective in maintaining their behavior, (in effect) all-around cyclists are

also least affected by a change in distance to work. Finally, non-work cycling and bicycle

commuting seem to operate as necessary intermediate clusters to transition from the non-

cycling to the all-around cycling profile; in other words, people tend to start with one or the

other rather than immediately taking up both.

Model comparison

As mentioned in the introduction the conditional change model and latent transition model

reflect different conceptual frameworks and therefore provide different substantive insights

on the relation between bicycle commuting and non-work cycling. The conditional change

models assume that bicycle commuting and non-work cycling should be viewed as

interrelated but separate categories. Within this conceptualization the results show that the

two types of behavior indeed reciprocally influence each other. The models do not,

however, provide insight about the theoretical mechanisms that possibly underlie these

effects (i.e. whether they arise from experience, satisfaction, habit, or a combination of

these, or other mechanisms).

The latent transition model assumes that bicycle commuting and non-work cycling

should be viewed as instances of a single nominal factor, a set of underlying behavioral

clusters. The data also support this conceptualization, indicating that a limited set of

Table 5 Matrix of transition probabilities for an increase of 3 km in distance to work

Wave 1 Wave 2

NC NWC AC CC

Non-cyclist (NC) 0.903 0.049 0.004 0.044

Non-work cyclist (NWC) 0.315 0.586 0.043 0.056

All-around cyclist (AC) 0.126 0.079 0.690 0.106

Commuter cyclist (CC) 0.404 0.153 0.017 0.426
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behavioral clusters can effectively explain the association between bicycle commuting and

non-work cycling. It can be argued that this conceptualization is strongly related to the

notion of habit. In fact, it closely resembles the response-frequency measure developed by

Verplanken et al. (1994) as a measure of habit strength. Their method presents respondents

with ten short statements about hypothetical journeys (e.g., ‘‘Suppose you go to the beach

with some friends’’) and uses the frequency of opting for a certain mode from a set of six

options (i.e., bus, bicycle, cab, car, train, or walking) as a measure of habit strength for that

particular mode.

The present operationalization differs in the sense that actual behavior is measured and

that only two contexts (work and non-work cycling) are considered. Nevertheless, it can be

argued that a consistent choice (or non-choice) for a particular mode (irrespective of the

context) reflects an intrinsic habitual (or non) preference for that mode. This idea is

consistent with the varying stabilities of the cycling clusters, with all-around cyclists and

non-cyclists being most stable compared to non-work cyclists and commuter cyclists, in

other words, the ‘‘all or nothing’’ states are more stable than the in-between states. It also

provides an explanation why all-around cyclists are most robust in response to a change in

the distance to work. Hence, by ‘measuring’ the latent classes more is revealed than what

can be inferred from the measurements of bicycle commuting and non-work cycling

separately. This is consistent with the idea that latent variables contain ‘surplus’ meaning,

which is not captured by the individual items (Jarvis et al. 2003).

Another difference between the conditional change models and the latent transition

model is that the latter can reveal more complex substitution and complementary patterns.

Whereas the conditional change models indicate that bicycle commuting and non-work

cycling are strictly complementary (i.e. they positively influence each other), the latent

transition model shows that bicycle commuters may in fact switch to the non-work cycling

profile when the distance to work increases, indicating mode substitution. Thus, in this

model non-work cycling and bicycle commuting may act as substitutes as well as com-

plements of each other (an example of a complementary pattern is when commuter cyclists

and non-work cyclists function as intermediate clusters in the transition from the non-

cycling to the all-around cycling profile). In this sense, the latent transition model provides

a more comprehensive picture of the relationship between non-work cycling and bicycle

commuting.

Conclusion

The results of our analysis indicate that, while the effect of bicycle commuting on non-

work cycling is somewhat greater than vice versa, both types of cycling positively influ-

ence each other over time. Because of this bidirectional relationship, work-related factors,

such as the distance to work or whether a person receives a travel allowance, not only

affect bicycle commuting but also non-work cycling. Both bicycle commuting and non-

work cycling may thus be increased by enhancing work-related cycling conditions. In

general, the results imply that any efforts to stimulate cycling in a particular domain may

be expected to spill-over to other domains. This ‘‘multiplier effect’’ is important to con-

sider in cycling policy evaluation.

The latent transition model indicates that people can be clustered into four groups: non-

cyclists, non-work cyclists, all-around cyclists and commuter cyclists. This model shows

that people with a consistent pattern of not cycling at all (non-cyclists) or of cycling for

both work and non-work purposes (all-around cyclists) are most stable in their behavior.
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Non-work cyclists and commuter cyclists are less stable, and tend to move either toward

the non-cyclist or the all-around cyclist category. The model also shows that all-around

cyclists are not (significantly) affected by a change in the distance to work, though those in

other categories, who may be less dedicated to cycling, are. Stimulating all-around cycling

therefore seems worthwhile as it will lead to the most stable cycling patterns.

Given that effect of bicycle commuting on non-work cycling is greater than vice versa

and that commuter cyclists are more stable than non-work cyclists, the findings of the

present study support policies focused on bicycle commuting. This conclusion should be

viewed as tentative, however, given the study’s limitations. The two most important

limitations are the age of the data (on average *25 years) and the fact that they come from

just one country and in particular from one with an especially high level of cycling. Newer

data and data from different countries are needed to address these limitations and establish

the generalizability of these results.

Newer data will be available in the future from a panel survey recently launched in the

Netherlands. This panel includes roughly 2,000 households and will cover a four-year period

(2013–2016) (Van Beek et al. 2011). These data can be used to establish whether the effects

identified in this study still hold true for a contemporary population. The new panel survey

will also include data on attitudinal and lifestyle measures, thereby providing the opportunity

to assess the association of these factors with different cycling patterns and examine their

evolution over time. It has been suggested in this respect that affective factors are more

important in decisions regarding leisure travel than commuting (Anable and Gatersleben

2005). Panel data are also needed in other countries to assess whether the relationships found

in this study also hold for other countries with lower levels of cycling than are found in the

Netherlands for both work and non-work purposes. Unfortunately, in the transportation

domain, panel data are not often gathered (see Ortuzar et al. (2011) for an overview).

This paper provides an important starting point for future studies by developing and

testing the conceptual frameworks and statistical methods for two different approaches to

the analysis of panel data. Future analyses of panel data should improve on our work by

discriminating between pure recreational cycling and cycling for non-work purposes (such

as shopping), as promotional programs like ciclovias are based on the assumption that

getting people try cycling for fun will lead not only to an increase in recreational cycling

but also an increase in cycling for transport, whether for work or non-work purposes. In

addition, future studies should account for factors that may moderate these relationships in

important ways, including attitudes and preferences as well as characteristics of the built

environment, as suggested by previous cross-sectional studies. Such studies would improve

our understanding of the relationship between cycling for different purposes over time and

thus would provide a stronger basis for both designing and evaluating promotional pro-

grams and other efforts to promote cycling.
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