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Introduction 

The degree of human response to aircraft noise is not only 
a function of acoustic variables but also of certain non-
acoustic variables. Insight in these variables is important 
in order to predict noise annoyance reactions better[1] and 
also to deal with the problem of aircraft noise more  
effectively.[2,3] Although demographic characteristics 
significantly affect human reaction to noise,[4] research 
has shown that the most influential variables are social-
psychological in nature, compromising attitudes towards the 
source, future expectations and feelings of control.[5,6] Yet 
evidence in support of these subjective (social-psychological) 
factors is largely based on cross-sectional survey data.[7] Since 
the independent and dependent variables are measured at the 
same time, the criterion of time precedence (i.e., X precedes 
Y in time) cannot be empirically investigated. In turn, this 
means that the direction of causation remains uncertain. In 
other words, the question remains whether the investigated 
social-psychological factors cause aircraft noise annoyance 
or vice versa.

The criterion of time precedence can be controlled under 
experimental conditions. Experiments allow the researcher 
to control which subjects are exposed to which treatment. 
For example, Glaser and Singer[8] have shown via several 

experiments that an individual’s level of perceived control 
over the degree of noise exposure influences a person’s noise 
reaction. In similar fashion, Maris et al.[9,10] have shown that 
the fairness of the procedures preceding the actual exposure 
to noise influences the degree of reported noise annoyance. 
Although these studies can firmly establish causality for 
the sample under investigation, the results cannot easily be 
generalized towards a population living around an airport. 
Specific sample characteristics, as well as the artificial 
laboratory settings, may hamper such generalizations.

A way to achieve both high external validity (can the results 
be generalized to other populations, times and places?) 
and high internal validity (does the cause X indeed lead to 
the effect Y?) is to combine the field survey with a certain 
experimental manipulation, resulting in what can be called 
a natural experiment. In such a situation, the manipulation is 
not directly under control by the researcher, but the occasion 
and the participants are chosen such that respondents can 
be categorized into a control group and a treatment group. 
The study by Hatfield et al.[11] is illustrative. Their study 
was conducted at Sydney airport, where, due to a runway 
configuration, aircraft noise levels in nearby areas were 
expected to increase, decrease or remain the same. In a 
survey before the actual change, Hatfield et al. found that 
expectations regarding future noise levels influenced 
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people’s psychological and physiological reactions to the 
noise. Given the methodological design, this result is both 
internally and externally valid. Of course, suitable occasions 
have to present themselves to assess the influence of possible 
other psychological determinants. 

In this paper, we also aim to address the issue of causality. 
Specifically, we aim to establish the direction of causality 
between 12 (subjective) social-psychological factors, which 
are identified based on previous research[6] and noise reaction 
(i.e., noise annoyance). However, we take a somewhat 
different approach than the approaches described in the 
previous paragraphs. In contrast to these methods, we did not 
apply any manipulation. Instead, we estimated a structural 
equation model (SEM) based on panel data gathered from the 
field (i.e., data resulting from repeated measurements from the 
same individuals). A panel model can provide empirical tests 
for the time precedence criterion and hence address the issue 
of temporal order.[12-14] Via this methodological approach, we 
hope to retain both the advantage of a field study in terms of 
high external validity and the advantage of an experiment in 
terms of high internal validity.

Materials and Methods

A SEM panel model
Association, isolation (the exclusion of ‘third variables’) and 
direction of influence (temporal order) are generally viewed 
as the 3 requirements to establish a causal relationship.[15] 
An experiment in which the independent variable can be 
manipulated is a great aid in satisfying these requirements. 
However, it does not support a one-to-one generalization 
towards the field. On the other hand, cross-sectional field 
studies are only able to satisfy the criterion of association 
and to some extent of isolation (by statistical control of 
possible ‘third variables’). The issue of temporal order can 
only theoretically be addressed. For example, if, in a cross-
sectional study, a covariation is observed between age and 
the degree of noise annoyance, it is evident that the structural 
variable age causes noise annoyance and not the other way 
around. However, if the relation between a certain attitude 
and noise annoyance is examined, which are both subjective 
in nature, it becomes difficult to theoretically distinguish 
cause and effect. 

To address the issue of temporal order within the field 
context and with subjective factors as independent and 
dependent variables, panel data can be used. Panel data 
contain measures of the same variables from numerous units 
observed repeatedly through time. The basic idea behind the 
specification of a model based on panel data is to estimate 
the effect of an independent variable XT1 (read ‘X measured 
at time T1’) on a second variable YT2, while controlling for 
Y’s prior values (YT1). If XT1 is able to explain variation in 
YT2 over and above the variation explained by Y itself at a 

previous point in time (YT1), it can be concluded that XT1 
accounts for some change in YT2 and hence that X is indeed a 
causal predictor of Y. A panel design is therefore effective in 
determining the temporal order between variables.

In sum, whereas models based on cross-sectional data can 
only satisfy the criteria of association (covariation) and 
nonspuriousness, a panel model can also empirically test the 
condition of time precedence. As such, it allows the researcher 
to investigate the 3 necessary conditions to establish a causal 
relationship. It needs to be noted, however, that although 
panel data offer ways to strengthen the causal inference 
process, they are not a cure-all for all the problems of causal 
inference in nonexperimental research.[13] Panel models still 
depend on (untestable) assumptions that have to be justified 
given the specific situations.

If the researcher has no prior conceptions about the temporal 
order between variables, the most appropriate model to test 
is a cross-lagged panel model. In this model, the dependent 
variables at time 2 are predicted by their previous values as 
well as the time 1 values of the other variable of interest. An 
example of a 2-wave cross-lagged panel model is depicted 
in Figure 1. The term ‘cross-lagged’ refers to the 2 lagged 
effects which cross each other in the middle.

In this model, parameters P1 and P2 represent the stability 
coefficients. These values can be interpreted as test-retest 
correlations, with values closer to 1 indicating higher relative 
stabilities. The remaining unexplained variation in X and 
Y at time point T2 can be regarded as variance resulting 
from individual changes which have occurred in the period 
between the two measurements. Assuming that the model is 
corrected for measurement errors in the observed variables.

Correlations C1 and C2 account for unmeasured variables 
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Figure 1: Specification of a two-wave cross-lagged panel model
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and/ or unmodeled effects. Correlation C1 controls for the 
initial overlap between the exogenous variables XT1 and YT1, 
correcting for (1) previous causal influences between both 
variables and/ or (2) the effects of possible third variables. 
The error terms E1 and E2 indicate the variability in the 
endogenous variables XT2 and YT2, which is associated with 
unknown (unmodeled) factors. As a result, the correlation C2 
accounts for (1) possible third variables that have influenced 
both X and Y within the period between the two measurements 
and (2) possible synchronous effects between X and Y. A 
synchronous effect should be understood as a change in Y 
at the second occasion (T2) resulting from a change in X at 
some time after the first occasion (T1).

While controlling for the initial overlap (C1) as well as for 
the influences of third variables and synchronous causal 
influences during the period between the two surveys (C2), 
the cross-lagged parameters P3 and P4 attempt to explain 
variance in XT2 and YT2 which is not already explained by their 
respective stability coefficients (P1 and P2). The significance 

and strength of the parameters P3 and P4 inform us which of 
the two variables, X or Y, is the strongest temporal predictor. 

Model specification and comparison
In addition to the reaction variable, aircraft noise annoyance, 
13 social-psychological factors are taken into account (see 
also section 2.4, ‘measures’). These factors are identified 
based on a previous literature study and a related empirical 
analysis.[6] Twelve of these are subjective in nature; while 
1, the level of aircraft noise exposure, is objective. The 14 
variables are combined into a 2-wave cross-lagged panel 
design as specified in Figure 2. 

To investigate the different explanations for the observed 
covariance structure, 5 nested models are tested. First, we 
estimate a baseline model. This model consists of the 14 
stability parameters, one for each of the included factors; 
and 91 correlations between the exogenous factors at time 
1 [{N*(N-1)}/2 with N=14] (depicted on the left side in  
Figure 2).

Kroesen, et al.: Causality between psychological factors and aircraft noise annoyance

Figure 2: Model specification
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In the second model, we also include the 91 correlations 
between the error terms of endogenous variables at time 
2 (depicted on the right side in Figure 2). This model can 
provide insight into the extent to which the changes in the 
variables are correlated. These correlations are necessary to 
control for the influences of third variables and the presence 
of synchronous causal relationships between the model 
variables during the period between the two surveys.

In the third model, we estimate the 13 lagged effects of the level 
of aircraft noise exposure (Lden) on the endogenous variables, 
i.e., aircraft noise annoyance and the 12 psychological factors. 
(To keep the model clear, the arrows are taken together.) The 
reason for the inclusion of the aircraft noise exposure level 
is that it is a plausible ‘third variable’ which can underlie 
changes in the subjective variables (aircraft noise annoyance 
and the psychological factors). For example, a change in both 
‘aircraft noise annoyance’ and ‘attitude towards the noise 
source’ might be due to a change in aircraft noise exposure. 
Inclusion of aircraft noise exposure is necessary to correct the 
lagged effects between these two variables for its influence. 
Hence the 13 lagged effects of aircraft noise exposure on the 
endogenous variables correct the estimations of the lagged 
effects between the 12 psychological factors and aircraft 
noise annoyance. 

In the fourth and fifth model, we estimate the 12 paths from 
the psychological factors to aircraft noise annoyance and the 
12 paths from aircraft noise annoyance to the psychological 
factors, respectively. Examination of the significance and 
strengths of these parameters can inform us whether the 
psychological factors or aircraft noise annoyance is/ are 
the predominant causal predictor(s), or whether perhaps 
reciprocal relationships exist. Our prime hypothesis is that 
the identified psychological factors influence aircraft noise 
annoyance. However, since there is little theory to support 
the hypothesis that the causal direction indeed flows from 
the identified factors to aircraft noise annoyance, the reverse 
hypothesis, i.e., aircraft noise annoyance influences the 
identified psychological variables, is also tested.

In line with the recommendations of Hu and Bentler,[16] 
the following fit indices are used to evaluate the models: 
the root mean square error of approximation (RMSEA),[17] 
which measures the discrepancy between the model implied 
and observed covariance matrix per degree of freedom; 
the standardized root mean residual (SRMR),[18] which 
measures the mean of the squared residuals (the differences 
between the sample and model-implied covariance matrices) 
divided by the standard deviations of the respective manifest 
variables; and the comparative fit index (CFI),[19] which 
provides a comparison between the specified model and a 
baseline model with zero constraints. A well-fitting model 
is defined as having values below 0.06 and 0.08 for RSMEA 
and SRMR, respectively, and a CFI value greater than  
0.95.[16] In addition, to support model comparisons, we rely 

on chi-square difference tests, which can be performed for 
nested models.

Data-gathering procedures
The data were gathered in two surveys conducted in the 
periods April 2006 (time 1) and April 2008 (time 2). The 
details of the first survey (April 2006) are described in 
the study by Kroesen et al.[6] The main characteristics are 
reiterated here. 

In all, 7000 residents living within the 45 Lden contour around 
Amsterdam Airport Schiphol were randomly sampled from 
the total population within this contour (approximately 1.5 
million people aged 18 or above). Those sampled were invited 
via a letter to fill in an online questionnaire. With 646 useable 
responses, the response ratio was 9.2%. The mean sample age 
of 49.8 years deviated slightly from the mean population age 
of 46.7 years. Furthermore, residents with better education 
and a higher income were overrepresented. Such deviations 
can bias the results but also typical for postal or telephone 
surveys.[20] Hence they are generally difficult to avoid. At the 
end of the questionnaire, respondents could indicate whether 
they would be willing to participate in a second survey. In all, 
505 people were willing and provided their e-mail address. 
These people were again approached 2 years later, in April 
2008. A total of 269 people responded positively and filled 
in the exactly same questionnaire. Fifteen respondents were 
excluded from the analysis because their sex and age did not 
match between the two surveys. Twenty-three respondents 
indicated that they had moved in the period between the two 
surveys; however, 19 of them had moved to a location still 
within the 45 Lden contour around the airport. Three of the 
other 4 indicated that their reason to move was aircraft noise. 
The final response group consisted of 250 (= 269 − 15 − 4) 
useable responses. Hence the response rate for the second 
survey was 50.3%. 

The panel data provided us with the opportunity to empirically 
assess the degree of nonresponse bias. In our particular case, 
it is plausible that people who are exposed to higher levels 
of aircraft noise or who are more annoyed by the noise are 
also more inclined to participate in a survey about the airport. 
The results indicated this was not the case. The mean Lden of 
nonrespondents in the second survey (n=236), 50.0 dB(A), 
did not differ significantly from the mean Lden of 50.1 dB(A) 
for those who did participate in the second survey (n=250). 
For the annoyance response, only the results of the first 
survey could be compared. The mean annoyance score in 
the first survey of those who were approached for the second 
survey but did not respond (n=236) was 4.2 [on a scale from 0 
(‘not at all annoyed’) to 10 (‘very much annoyed’)], again not 
significantly different from the mean annoyance score of 4.1 
for those who participated in the second survey also (n=250). 
Hence in April 2006, nonrespondents for the survey of April 
2008 were equally annoyed by aircraft noise as respondents 
who participated in both surveys. 

Kroesen, et al.: Causality between psychological factors and aircraft noise annoyance



21 Noise & Health, January-March 2010, Volume 12

Ideally the time lag between measurements should be chosen 
such that it reflects the time it takes for the causal effect to 
evolve.[21] However, in most cases one can only guess how 
long that is. Given that in the present study we measured 
several attitudinal constructs, which are generally relatively 
stable through time, we assumed that a period of 2 years was 
long enough for changes in individual scores to occur, but not 
too long for too much nonresponse. Moreover, with a time 
lag of 2 whole years, the design controlled for the seasonal 
fluctuation in annoyance response, i.e., the empirical trend 
that in the summer noise reaction is slightly greater than in 
the winter.[22]

Measures
The main dependent variable, aircraft noise annoyance, and 
the 12 psychological factors were measured via multiple items 
to increase their reliability. The constructs are calculated 
through summation of the individual items. An overview of 
the construct labels, the number of items per construct, the 
construct means and standard deviations, and the construct 
reliabilities at both time points is provided in Table 1. Details 
on the individual items used can be found in the study by 
Kroesen et al.[6] 

With one exception, the constructs showed acceptable 
construct reliability (Cronbach’s alpha >0.70). Each construct 
was included in the structural model as a latent variable 
with a single observed indicator, which is represented by 
the summated scale. The reliability of each latent variable 
is taken into account by fixing the measurement error of 
the indicator variable at a value of {(1−Cronbach’s alpha) 
multiplied by the variance of the respective summated  
scale}.[23] In this way, the parameters associated with the 
structural paths in the model are corrected for measurement 
errors, leading to less biased estimations.

In addition to the subjective constructs, the degree of aircraft 
noise exposure is included in the model and represented by 
the noise exposure metric Lden dB(A). For every respondent 
in the sample, the level of noise exposure (a year’s mean 
level based on the 12-month period preceding the surveys) 
was calculated by the National Aerospace Laboratory (NLR), 
the Netherlands. This was done by transforming the 4-digit 
2-letter postal code of each respondent’s residence, which 
includes on an average an area of 50 m2 (approximately 15 
households) into XY-coordinates, which are subsequently 
used to determine the level of noise exposure at the particular 
location.

Results

Four construct means differed significantly between the 
two measurements [Table 1]. The means of the variables 
‘negative expectation towards noise development,’ ‘fear of 
the noise source,’ ‘positive social evaluation of the noise 
source’ and ‘belief that noise can be prevented’ decreased 

significantly. The mean of the variable ‘perceived control 
and coping capacity’ increased significantly. Overall, the 
deviations were minor, even the significant ones. 

Five models were estimated using the standard maximum 
likelihood procedure. The software package AMOS 7 was 
used for this purpose. In Table 2, the fit indices of the models 
are presented. 

The fit of the baseline model (M1) was found to be poor. The 
values of the RMSEA and CFI were outside the respective 
acceptable cut-off values (RMSEA >0.06 and CFI <0.95). 
Only the value of the SRMR lay within the acceptable range 
(SRMR <0.08).

Addition of the correlations between the error terms of the 
endogenous variables (the time 2 variables) was found to 
drastically improve the model fit. The three fit indices then 
showed an acceptable model fit, and the chi-square difference 
test showed that the improvement in model fit between model 
1 and model 2 was indeed significant (M2 vs. M1: Δχ=477.36; 
Δd.f., 91; P<.000). The large improvement in model fit can be 
taken as evidence for either the influence of unmeasured third 
variables or the presence of synchronous effects between 
the variables in the model. However, we cannot empirically 
assess which of the two explanations is (more) valid. 

Addition of the paths from Lden at time 1 to the 13 endogenous 
variables at time 2, i.e., aircraft noise annoyance and the 12 
psychological factors, also shows a significant improvement 
in model fit (M3 vs. M2: Δχ=36.92; Δd.f. 13; P<.000). 
Looking at the (standardized) parameter estimates, the 
following paths are significant: Lden → concern about the 
negative health effects of noise (β=0.138; P=.000); and 
Lden →  annoyance related to non-noise effects (β=0.128; 
P= .004). Hence changes that have occurred in these variables 
in the period between the two surveys can be explained by the 
level of aircraft noise exposure at time 1. 

Model 4 introduces the lagged effects of the psychological 
factors on aircraft noise annoyance. With this addition, no 
improvement in model fit occurred. Hence we can conclude 
that variance in the psychological factors at T1 is unable to 
explain variance in aircraft noise annoyance at T2, controlling 
for the influence of aircraft noise annoyance at T1. In other 
words, the psychological factors at T1 contain no information 
through which we can determine how people’s annoyance 
response had changed within the period between the two 
measurements. 

The reverse hypothesis, i.e., aircraft noise annoyance 
influences the psychological factors, is supported by the data. 
The difference in the chi-square values of models 5 and 3, 
Δ36.92 (Δd.f. 12), was statistically significant (P= .000), 
again indicating an improvement in model fit. Hence aircraft 
noise annoyance at T1 can predict changes in the identified 
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factors at T2, while controlling for the factors’ previous 
values. Examination of the parameter estimates shows that 2 
paths are significant: (1) aircraft noise annoyance → concern 
about the negative health effects of noise (β=0.181; P= .002) 
and (2) aircraft noise annoyance → belief that noise can be 
prevented (β=0.298; P= .000). Changes in these variables are 
predicted by aircraft noise annoyance at T1.

Given the objective of the present paper, the results are 
contrary to expectations. We were not able to reveal any 
significant effects from the psychological factors to aircraft 
noise annoyance. Moreover, only 2 effects were significant 
the other way around. Yet we can offer two explanations for 
the present results, which are intrinsically relevant in light 
of our aim. The empirical evidence for these explanations 

is provided in Table 3, which presents the 91 correlations 
between the time 1 exogenous variables and the 14 stability 
coefficients (on the diagonal).

The first explanation relates to the correlations between 
the time 1 exogenous variables. It can be observed that the 
intercorrelations between the constructs are generally high. 
The strong overlap between the exogenous variables has a 
suppressive effect on the estimated cross-lagged relationships. 
Hence, given that several ‘time 1’ variables are (empirically) 
indistinctive, they have no explanatory force over and above 
the autoregressive effects (i.e., the stability coefficients).

The second explanation relates to the stability coefficients. 
These coefficients are generally high, ranging from 0.58 (for 

Kroesen, et al.: Causality between psychological factors and aircraft noise annoyance

Table 1: An overview of the constructs
n=250  Mean Standard 

deviation
Cronbach’s  

alpha
Δ T1-T2

# items T1 T2 T1 T2 T1 T2 Mean Sign.

Main dependent variable (summated scale)

Aircraft noise annoyance (past 12 months) 2 6.2 6.0 3.5 3.5 0.92 0.91 -0.2 0.27

Determinant (summated scale)

Perceived disturbance 5 12.7 12.8 4.9 4.8 0.88 0.89 0.1 0.63

Negative expectations towards noise development 2 10.1 9.7 2.6 2.6 0.83 0.82 -0.4 0.01

Noise sensitivity 8 26.6 25.9 8.1 8.3 0.86 0.87 -0.7 0.09

Fear of noise source 2 4.3 3.9 2.6 2.4 0.76 0.74 -0.4 0.00

Positive social evaluation of noise source 3 17.7 16.2 3.2 3.6 0.79 0.81 -1.5 0.00

Negative attitude towards noise source authorities 8 32.8 33.5 11.4 11.8 0.91 0.94 0.7 0.18

Concern about the negative health effects of noise 
and pollution

4 13.8 14.3 7.2 6.9 0.92 0.93 0.5 0.22

Annoyance related to non-noise effects 3 7.3 7.4 4.7 4.6 0.85 0.86 0.1 0.62

Personal dependency on the noise source 3 5.6 5.8 4.3 4.1 0.69 0.70 0.2 0.49

Perceived control and coping capacity 3 13.3 13.8 4.6 4.5 0.78 0.77 0.5 0.01

Belief that noise can be prevented 1 4.6 4.4 1.4 1.5 0.83 0.83 -0.2 0.03

Concern about property devaluation 1 1.9 2.1 2.0 2.0 0.83 0.83 0.2 0.27

Aircraft noise exposure

Lden dB(A) - 50.1 50.1 2.3 2.5 - - 0.0 1.00

Table 2: Model evaluation and comparison
Model Specification RMSEA SRMR CFI χ df P Model 

comparison
Δχ Δdf P

M1 91 correlations between exogenous 
variables (T1) and 14 stability 
coefficients (baseline model)

0.084 0.060 0.91 751.60 273 0.000

M2 M1 + 91 correlations between error terms 
of endogenous variables (T2)

0.045 0.045 0.98 274.24 182 0.000 M2 vs. M1 477.36 91 0.000

M3 M2 + 13 paths from Lden (T1) to 
endogenous variables (T2)

0.041 0.040 0.99 237.32 169 0.000 M3 vs. M2 36.92 13 0.000

M4 M3 +12 paths from psychological factors 
(T1) to aircraft noise annoyance (T2)

0.042 0.040 0.99 225.07 157 0.000 M4 vs. M3 12.25 12 0.426

M5 M3 +12 paths from aircraft noise 
annoyance (T1) to psychological factors 
(T2)

0.034 0.027 0.99 201.02 157 0.006 M5 vs. M3 36.30 12 0.000

RMSEA: root mean square error of approximation, SRMR: standardized root mean residual, CFI: comparative fit index
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‘belief that noise can be prevented’) to 0.92 (for ‘personal 
dependency on the noise source’), indicating that the 
psychological variables are very stable. In other words, little 
individual changes had occurred in the period between the two 
surveys. Given that the unexplained proportions of variance 
in the endogenous variables were small, there remained little 
variance to be predicted by the time 1 exogenous variables, 
which, in turn, decreased the probability of any cross-lagged 
effect to become significant. 

Hence due to the consistency of variable scores at one moment 
in time, as well as the consistency of variable scores over time, 
any lagged effect has to be very strong to overcome these 
two ‘suppressors.’ Model 5 showed that only 2 lagged effects 
were indeed strong enough to become significant. Although 
the presence of lagged effects can be largely excluded, the 
substantial increase in model fit between models 1 and 2 
(with the addition of correlations between the error terms of 
the endogenous variables) indicates that changes in the model 
variables are correlated. Table 4 presents the correlations 
between the error terms of the endogenous variables. Here, a 
significant correlation between 2 residual terms indicates that 
the changes in the 2 respective variables are correlated. From 
this table, it can be deduced that change in aircraft noise 
annoyance is significantly associated with changes in the 
other variables. These parallel changes cannot be explained 
by the cross-lagged relationships.

Discussion

Although the presence of lagged effects can be (largely) 
excluded, the substantial correlations between the error 
terms of the endogenous variables [Table 4] indicate that 
the model variables did change in the same directions. Two 
explanations can account for this empirical trend. One is 
that unmeasured third variables had influenced the model 
variables during the period between the two surveys; the 
other is that (unidirectional or reciprocal) synchronous effects 
between the variables exist. 

Related to the first explanation (‘third variable’ influence), we 
can speculate that (1) a psychological explanation, (2) a social 
explanation and/ or (3) an acoustical explanation can account 
for the correlated changes. Related to the psychological 
explanation, it might be that a personal factor like ‘negative 
affectivity,’ a general tendency to have a negative view of 
oneself and the environment,[24] is responsible for the changes 
in pairs of variables. The permanent exposure to noise may 
eventually bring people into a negative affective state.[25]

Alternatively, it might be that some sort of socialization 
process underlies the correlated changes. Bröer[26] and 
Kroesen and Bröer [27] recently showed the relevance of 
this explanation. These authors assumed that policy actors’ 
conceptualization of the noise problem would resonate among 
the general public and would shape the necessary evaluative 

frames to feel annoyed. Since these frames were defined as 
sets of interrelated positions, this explanation fits nicely with 
the observed correlational pattern in Table 4, which shows 
that many changes among the variables are correlated. In 
other words, the interrelated changes are congruent with the 
idea of a frame, which, if a shift occurs, would result in a 
change in a whole set of different variables. 

An acoustical explanation can also not wholly be ruled out. 
In the model, all effects between exogenous and endogenous 
variables are controlled for the level of aircraft noise exposure 
in Lden at time 1 (model 3). In addition, given that this variable 
has a stability coefficient of 0.98 [Table 3], very few changes 
occurred in this variable between the two surveys. Yet, 
although Lden cannot be responsible, it might be that changes 
occurred in the structure of the noise load. In this respect, 
Guski[28] mentions the empirical trend that the average noise 
load of single events generally decreases, but that the number 
of events increases. Such a change would be concealed by an 
annual energy-equivalent noise metric like Lden and can also 
provide a plausible ‘third-variable’ explanation. 

Finally, it should be noted that the psychological, social and 
acoustical explanations do not cancel each other out and may 
be empirically interwoven in many ways.

The second explanation for the correlated error terms is that 
synchronous effects between the variables exist, which would 
imply that changes in the variables after the first measurement 
at time 1 led to the changes in the endogenous variables at 
the second measurement.[12] In our model, such synchronous 
effects would also be captured by the correlations between 
the error terms of the endogenous variables. 

Again, however, we cannot empirically assess the validity 
of these competing explanations (i.e., the influence of ‘third 
variables’ versus that of synchronous effects). The only 
conclusion we can draw that is relevant in light of our aim is 
that the values of many variables in the model had changed 
in similar directions. 

In all, we can conclude that establishing the direction of 
causality between aircraft noise annoyance and psychological 
variables in the field remains a difficult project. As the present 
study has illustrated, this conclusion holds even when panel 
data are available. Although providing direct (internally and 
externally valid) evidence remains difficult, it should be noted 
that the lack of explanatory power of acoustic variables in 
relation to individual subjective noise reactions can be taken 
as indirect evidence that these social-psychological variables 
do indeed matter. 

Conclusion

In this paper, we aimed to establish the direction of causality 
between several psychological factors and aircraft noise 

Kroesen, et al.: Causality between psychological factors and aircraft noise annoyance



Noise & Health, January-March 2010, Volume 12 24

Kroesen, et al.: Causality between psychological factors and aircraft noise annoyance

Table 3: Correlations between exogenous variables (in the lower left triangle) and stability coefficients (on the diagonal)
Construct NA PD NE NS FN PS AS CH NN DS CC BP DV Lden

Noise annoyance (NA) .80

Perceived disturbance (PD) .92 .86

Negative expectations towards noise 
development (NE) .68 .66 .62

Noise sensitivity (NS) .52 .52 .42 .91

Fear of noise source (FN) .61 .60 .52 .44 .82

Positive social evaluation of noise 
source (PS) -.53 -.48 -.57 -.45 -.54 .82

Negative attitude towards noise source 
authorities (AS) .65 .59 .74 .50 .54 -.84 .84

Concern about the negative health 
effects of noise and pollution (CH) .80 .79 .70 .57 .67 -.63 .74 .87

Annoyance related to non-noise effects 
(NN) .64 .62 .49 .43 .62 -.56 .59 .78 .90

Personal dependency on the noise 
source (DS) -.18 -.21 -.38 -.13 -.12 .27 -.39 -.26 -.08 .92

Perceived control and coping capacity 
(CC) -.78 -.73 -.71 -.57 -.54 .55 -.74 -.83 -.61 .28 .91

Belief that noise can be prevented (BP) .52 .50 .59 .32 .46 -.61 .68 .59 .45 -.23 -.59 .58

Concern about property devaluation 
(DV) .46 .44 .43 .27 .39 -.29 .45 .48 .41 -.09 -.42 .40 .80

Aircraft noise exposure (Lden) .17 .19 .13 .17 .06 -.15 .26 .17 .24 -.07 -.16 .09 .17 .98

Underlined: significant at P< .05

Table 4: Correlations between the error terms of the endogenous variables
Construct NA PD NE NS FN PS AS CH NN DS CC BP DV

Noise annoyance (NA)

Perceived disturbance (PD) .95

Negative expectations towards noise 
development (NE) .45 .46

Noise sensitivity (NS) .31 .16 .22

Fear of noise source (FN) .25 .24 .22 .21

Positive social evaluation of noise source (PS) -.07 -.14 -.05 -.07 -.11

Negative attitude towards noise source 
authorities (AS) .28 .22 .53 .11 .01 -.49

Concern about the negative health effects of 
noise and pollution (CH) .53 .54 .34 .48 .17 -.30 .37

Annoyance related to non-noise effects (NN) .21 .27 .21 .66 .35 -.09 .18 .29

Personal dependency on the noise source (DS) -.07 .05 -.12 -.29 -.02 .30 -.18 -.17 -.14

Perceived control and coping capacity (CC) -.77 -.77 -.48 -.38 -.10 .63 -.65 -.72 -.32 -.05

Belief that noise can be prevented (BP) .24 .22 .35 .29 .28 -.34 .44 .19 .35 -.32 -.19

Concern about property devaluation (DV) .23 .22 .36 .07 .30 -.51 .29 .47 .44 -.19 -.44 .19

Aircraft noise exposure (Lden) -.08 -.11 -.02 -.02 .02 .16 -.09 .07 .06 .07 .24 -.05 -.08

Underlined: significant at P< .05

annoyance. For this purpose, a panel model was estimated 
within a structural equation modeling approach. Data were 
gathered at two moments in time from the population 
living within the 45 Lden contour around Schiphol airport. 
Preliminary analysis of the data showed that there was no 
nonresponse bias with respect to aircraft noise exposure and 

aircraft noise annoyance. The results of the main analysis 
indicate that none of the paths from the psychological factors 
to aircraft noise annoyance are significant. Yet 2 effects were 
found to be significant the other way around: (1) from ‘aircraft 
noise annoyance’ to ‘concern about the negative health 
effects of noise’ and (2) from ‘aircraft noise annoyance’ to 
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‘belief that noise can be prevented.’ Hence aircraft noise 
annoyance measured at time 1 contained information that 
can effectively explain changes in these 2 variables at time 
2, while controlling for their previous values. In sum, our 
main hypothesis, i.e., the identified psychological factors 
influence aircraft noise annoyance, could not be confirmed. 
Secondary results show that (1) aircraft noise annoyance is 
very stable through time (stability coefficient of 0.83) and (2) 
that changes in aircraft noise annoyance and the identified 
psychological factors are correlated.

Establishing the direction of causality between aircraft 
noise annoyance and possible social-psychological factors 
is important for noise policy. Policies specifically aimed at 
these factors can only be effective if the causality indeed 
‘flows’ from these factors to aircraft noise annoyance. A 
second and related issue, which is also relevant for policy, 
is whether individual differences can be attributed to social 
or psychological variables and processes. If, for instance, 
personality traits appear to be dominant in the explanation 
of individual differences, more individually ‘tailored’ noise 
policies would be preferable. If, on the other hand, social 
representations are dominant in structuring noise perception 
and evaluation, a closer examination of the collective noise 
policy and the message it brings across would be more 
appropriate.
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