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Abstract

This report is devoted to Bankruptcy prediction using Classification and Regression
Trees (CART). Bankruptcy prediction has become increasingly important over the last
few decades. The number of corporate bankruptcies has been growing ever since the
economical depression of 1930. This situation brings forth many concerns for com-
pany shareholders, creditors, employees, customers and even national economies.

In this thesis a relatively new technique for bankruptcy prediction, CART, con-
structs an accurate classification model for bankruptcy prediction. This model is
benchmarked with the Z-score model introduced by Altman (1968),the most common
used classification model for this problem, which is based on discriminant analysis.

The data set used for this report consists of 122 Dutch companies. All of them were or
still are listed on the Amsterdam Stock Exchange (AEX). 61 companies went bankrupt
somewhere in between the period 1945-1999. The other 61 companies are “matched”
companies, from the same industry group, same size and same period of listing on the
AEX.

Keywords: Bankruptcy prediction, Classification and Regression Trees (CART), Dis-
criminant Analysis, Artificial Intelligence
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Chapter 1

Introduction

This Chapter gives an introduction to this report and explains the motivation for choos-
ing “Bankruptcy Prediction using Classification and Regression Trees” as the subject
of this thesis. In section 1.1, the motivation and origin for the topic of this report is
discussed. After formulating the motivation, the goal of this report will be described
in section 1.2. In section 1.3, the methodologies used in this report will be described
shortly. Finally, section 1.4 gives an overview of this report. In this overview, every
chapter will be discussed briefly.

1.1 Motivation

Since the depression in 1930 corporate bankruptcy reached numbers never seen before.
Corporate bankruptcy is an event which has a big impact on management, sharehold-
ers, employees, creditors, customers and other stakeholders. It will cause financial
losses to most of the aforementioned parties. These events also have a negative influ-
ence, both socially and economically, on a nation1. For this reason it would be very
helpful if we could say something about the probability by which these events hap-
pen. Therefore, accurate prediction of bankruptcy has become an important issue in
the financial world. A major focus of the Basel II regulations to minimize credit risk
is another reason why timely identification of corporate bankruptcy is desirable.

There are various factors that are related to corporate bankruptcy. High interest
rates and heavy debt burden are factors which definitely have negative influence on
the financial situation of a firm. Industry-specific characteristics and government reg-
ulations can also contribute to financial distress within any firm. Besides the factors
described before, studies2 pointed out that small and young private companies are
relatively more vulnerable to financial distress than large and well-established public
companies.

In the past few decades extensive research has been done on bankruptcy events and
especially on bankruptcy prediction. Several bankruptcy prediction models have been
introduced. It is essential to discover how to identify potential bankrupt corporations.
Beaver (1966) introduced one of the classical works about ratio analysis for bankruptcy
prediction. His model which was based on univariate analysis, formed a starting point

1Altman (1968)
2Dun and Bradstreet (1980)
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for many other researchers. Multiple discriminant analysis (MDA) used by Altman
(1968) are still being used as a standard tool for bankruptcy prediction, despite its
limitations. Models based on newer techniques, such as recursive partitioning, artificial
neural networks and genetic algorithms are more sophisticated. In general, most of
these techniques outperform MDA. All of these techniques assume normal economic
conditions.

1.2 Goal

The objective of this report is: “Constructing an accurate bankruptcy prediction model.”
The technique used for the construction of this prediction model is based on Classifi-
cation and Regression Trees (CART).

For many years MDA models are used as standard tools for the bankruptcy pre-
diction problem, despite the fact that many techniques outperform MDA in prediction
corporate bankruptcy. This is mainly due to two facts. Firstly, because MDA models
are easy to apply for this bankruptcy prediction problem. Secondly, extensive research
conducted on the application of MDA models for the bankruptcy prediction problem
makes these models comprehensible and common used.

This report compares the popular Z-score model 3, which makes use of MDA,
with CART. CART is classification technique which uses historical data to construct
decision-trees (supervised learning). These decision-trees can be used to classify new
data. Before building these trees it is necessary to know the number of classes a pri-
ori. The bankruptcy prediction problem has two classes, namely bankrupt and non-
bankrupt. The CART technique has the ability to select the input variables which are
most important in determining the variable to be explained.

The goal of this report is not only to compare the Z-score model with CART, but
also to get a better feeling for the input variables which are of most importance in
determining the dependent variable to be explained. The knowledge that, hopefully, is
acquired from this report will help future research. For example, it could contribute to
structure identification for adaptive neuro-fuzzy inference systems (ANFIS).

1.3 Methodology

In this report a decision tree is constructed to perform a regression and classification
for bankruptcy prediction. The building and testing of this tree, which is constructed
by the CART algorithm, consists of three stages. In the first stage, the maximum tree
has to be build to classify all the examples in the training set, growing the tree. During
the second stage, this maximum tree has to pruned, pruning the tree. Reason that this
maximum tree is based on the training data, which will bring a high degree of bias
with it. In other words, overfitting and overspecializing toward the training set will be
the result, instead of increasing the accuracy toward the test set. Finally, this pruned
tree has to classify new data. To test the accuracy the tree is feeded with test data, of
which, a priori, is known to which class it belongs.

3Introduced by Altman (1968)
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This report will also describe other techniques to predict bankruptcy comprehen-
sively. From these techniques, the Z-score model is the most popular one4. That’s
why this technique will act as a benchmark technique for the decision tree based on
the CART algorithm.

The data set used in this report consists of 61 bankrupt and 61 non-bankrupt Dutch
companies. Each bankrupt company has a comparable non-bankrupt company. The
balance sheets from up to 5 years before failure are available from all of these compa-
nies. Various financial ratios result from these balance sheets and are used as the input
variables for the decision tree and for the Z-score model.

1.4 Structure

In addition to this introductory chapter, this report consists of five chapters. In fact this
report can be subdivided into three parts. The first part, consisting of Chapter 2 and 3,
gives some financial background to corporate bankruptcy and introduces the models
that will be used in this report. The second part, Chapter 4, describes the experimental
setup. Results, conclusions and suggestions for future research will be discussed in the
third and last part. (Chapter 5 and 6)

In Chapter 2, the financial background for this report is sketched. A through under-
standing of the reasons and stimulating circumstances under which corporate distress
occurs will be created. Section 2.2 gives a literature review about the history of bank-
ruptcy prediction models. This chapter will be concluded with some limitations and
suggested improvements of the discussed techniques.

Chapter 3 is the methodology chapter and is divided into two sections. The first
section describes the Z-score model of Altman (1968). The second section is the
examination of the CART algorithm. This section starts with the technical explanation
of the CART algorithm and proceeds with the application of a CART model for our
bankruptcy prediction problem.

Chapter 4 will function as the experimental setup. This chapter starts by introduc-
ing the data set of bankrupt and non-bankrupt companies that will be used. Details
about this data set will be given. Besides that, this chapter will give a short commen-
tary to the composition of the balance sheet. The financial ratios that are important for
this research, will be clarified and the framework of the research will be mapped.

The results of both the Z-score and the CART model will be described in Chapter
5. Positive and negative characteristics concerning these techniques solving this prob-
lem will be discussed. Also this chapter will show a table with the accuracy of both
models with respect to the bankruptcy prediction problem.

Chapter 6 recapitulates findings of the report and attaches a conclusion to it. This
chapter will also suggest new topics for future research.

4The Z-score model is extensively described in most of the articles written on the bankruptcy predic-
tion subject
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Chapter 2

What is Bankruptcy Prediction ?

This Chapter describes the fundamental idea behind bankruptcy prediction. Section
2.1 starts with background information about corporate distress. Section 2.2 describes
the importance of bankruptcy prediction, the history of bankruptcy prediction and will
be concludes with some limitations and suggested improvements of the most common
techniques used for bankruptcy prediction.

2.1 Corporate Distress

At the end of the twentieth century, corporate distress reached levels not seen since
the great depression of the 1930s.1 The number of business failures and bankruptcies
increased together with the increase in corporate distress. Four generic terms that
are generally found in literature for corporate distress are failure, insolvency, default
and bankruptcy. Their individual economic meaning are described in the following
paragraphs.

Failure means that the realized rate of return on invested capital, with allowances
for risk consideration, is significantly and continually lower than prevailing rates on
similar investments. Somewhat different criteria has also been utilized, including in-
sufficient revenues to cover costs and cases of the average return on investment being
below the firm’s cost of capital. A firm could be an economic failure for many years
without failing to cover its current obligations because of the absence of legally en-
forceable debt.

Insolvency is a term used in a more technical way. It indicates lack of liquidity,
so it is more cash based, which happens when a company cannot meet its financial
obligations. Technical insolvency most often is the cause of formal bankruptcy decla-
ration. Bankruptcy comes along when the insolvency of a company becomes critical,
when the total liabilities of a company exceed a fair value valuation, for example stock
based, of its total assets.

Default is another condition that is inescapably associated with distress. Defaults
always occur between the debtor firm and a creditor class. A firm is not always im-
mediately in default when it misses a loan payment or its interest payments. However,
when a firm misses an interest payments or a principal repayments of publicly held
bonds, and this problem is not fixed within 30 days, the security is immediately ”in

1This section is based on the book Altman (1993)
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default”. In the last few decades these defaults on publicly held indebtedness have
become a commonplace event.

Finally the term bankruptcy will be discussed . A firm can go bankrupt when the
total liabilities exceed a fair value of the total assets of that firm, as discussed in the
paragraph about insolvency. On the other hand a firm can be declared bankrupt by
a Federal District Court. This Federal District Court can declare the firm bankrupt
immediately or offer the firm to participate to a recovery program, which is called a
“bankruptcy reorganization”. When a firm value is worth more than its liquidation
value, the company has to participate to a recovery program.

The firm’s creditors and the owners of the firm are the two primary groups of
interest when a firm is in corporate distress. These two groups both have an extremely
large importance in the evaluation of the bankruptcy reorganization process. The goal
of the reorganization process is to restructure the firm in a way that the firm’s financial
situation will stabilize and that no other financial problems will occur in the near future.

2.1.1 Causes of corporate distress and bankruptcies

It is important to identify the main reasons for corporate distress with bankruptcies as a
consequence. Several studies about this subject have been done over the past decades.
An example of these studies was done by a consulting firm, Buccino & Associates
(1991)2. They surveyed over 1,300 managers, and the result pointed out that, by 88%
of the respondents, the quality of management was identified as the primary difference
in success or failure. Dun and Bradstreet (1980) identified earlier that lack of experi-
ence, unbalanced experience, or just plain incompetence was the cause of firm failures
in more than 44% of the situations.

Another important issue to take into account is the relation between the age of a
firm and the possibility to fail. Dun and Bradstreet (1980) showed that over 50% of all
failures occur with firm with ages between two and five. After the age of five, firms
tend to be more stabilized, experienced, established and as an indirect result of these
reasons have better access to capital.

Other, mainly financial reasons for firm failure which had the upper hand during
the 80s are the following:

Industries Some industries tend to be “sick”. Firms which are active in these indus-
tries have a high possibility to fail in the near future,

Interest rates Because of high interest rates some firms fall into the position in which
they cannot obey to their obligations anymore,

Competition International competition intensifies the charges for companies enor-
mously. Scale advantages will bring with itself that small firms will take off
against big firms, because these firms are more capable of doing business at a
sharper price,

Debt to equity Companies, particularly in the United States, increased their leverage.
Because of that, a lot of firms put themselves in the situation of more obligations.
In times of corporate distress these persisting obligations could lead to failure,

2See Altman (1968)
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Deregulation Deregulating of key industries leads to a far more competitive environ-
ment,

Formation rates High new business formation rates will cause higher frequency of
firm failures. New companies just have the characteristic to have a higher failure
possibility than established companies, as mentioned in the preface paragraph.

Eventually all aforementioned reasons and probably even much more reasons con-
tribute to the chance of failure of a firm. In this report, the focus will primarily be
on the financial causes of firm failures, mainly because of the fact that these causes
are just more quantifiable. We hope to outline the problem in a way, in order that the
models used in this report are able to act as a reliable bankruptcy predictors.

2.2 Bankruptcy Prediction

2.2.1 Why is bankruptcy prediction important

As mentioned in the preface section there are two primary groups of interest3 when a
firm is in corporate distress, but besides these two groups bankruptcy prediction also
is of importance to bond holders, and to a lot of other major players in the financial
and legal services. The reasons of importance to the owners and the creditors are easy
to imagine, but for the other mentioned interested parties some further explanation
will be given. For bond holders the default risk of a bond is an important factor in-
fluencing the value of a bond. When a company or government, who issued a bond,
is not capable of meeting the obligations which come along with the bond, we say
that the issuer has ‘defaulted’ on the bond 4. So it is of great importance for the bond
holder to know about the possibility of failure of the issuer of the bond. For legal and
accounting companies, bankruptcies are big business5. Particularly the bankruptcy re-
organizations processes are extremely profitable for these businesses. Besides them
bankruptcy courts are extremely busy handling all new or current bankruptcies.

The bankruptcy prediction problem can be seen a classification problem6. In-
vestors, auditors, and other individuals, who like to evaluate the risk of an investment,
want to know if the company they are looking at is going to be bankrupt in the near
future with a certain probability. The input of the classification problem can be mod-
eled as a vector of financial and/or strategic ratios. Given this vector a classification
technique has to be able to assign one of the two possible outputs to the company,
bankrupt or not bankrupt.

2.2.2 History of bankruptcy prediction models

Factors which can contribute to the understanding of corporate bankruptcy can be
found in the fields of Economics and theory of Business Management. Probably be-
cause of the diversity of the problem, we still have not seen a fully successful model to

3The owners of the firm and the firm’s creditors
4Tan (2000) page 11
5Altman (1993)
6see Trippi and Turban (1996) page 230
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predict bankruptcy7. A possible explanation could be the fact that all firms are unique
and information about firms is limited and most of the time not uniform. Within the
bankruptcy prediction models we are not only looking for the explanatory factors, we
also want to get a feeling for the reasons why a particularly outcome of bankruptcy
was observed.

According to Altman (1993), Smith and Winakor (1935) were the ones who did
the first studies about bankruptcy prediction. They were followed by Merwin (1942).
Both their studies pointed out that failing firms show significantly different ratios8 than
successful firms do. This basic principle was an enormous breakthrough and offered
considerable perspectives for further research. In addition, Hickman (1965) did some
research about ratios of large asset-size corporations that experienced difficulties in
meeting their fixed indebtedness obligations. Another academic who studied on ratio
analysis and bankruptcy prediction models was Beaver (1966). His study is considered
as one of the classical works on this subject. Beaver questioned the use of multivariate
analysis. Instead, Beaver strongly believes in the use of univariate analysis of financial
analysis to predict corporate bankruptcy. Neter (1966) on the other hand, a discussant
of Beaver, strongly supports the use of multivariate analysis. Beaver found that up
until 5 years before failure of a firm a number of ratios differ from a matched non-
failed-firm. Beaver viewed a firm as “reservoir of liquid assets, which is supplied by
inflows and drained by outflows. The solvency of the firm can be defined in terms
of the probability that the reservoir will be exhausted, at which point the firm will be
unable to pay its obligations as they mature”. By this framework Beaver stated four
propositions:

• The larger the reservoir, the smaller the probability of failure,

• The larger the net liquid-asset flow from operations, the smaller the probability
of failure,

• The larger the amount of debt held, the greater the probability of failure,

• The larger the fund expenditures for operations, the greater the probability of
failure.

The ratios which Beaver used were categorized into six groups. These groups
together consist of 30 ratios that were expected to capture relevant aspects (see table:
A.1). By a univariate discriminant analysis, these ratios were applied on 79 pairs
of bankrupt/nonbankrupt firms. The best discriminators were working capital funds
flow/total assets and net income/total assets which correctly identified 90% and 88%
of the cases.

The studies discussed before make use of several different ratios. These ratios
tell us something about the probability of bankruptcy. Most of these ratios measure
profitability, liquidity, and solvency. The aforementioned studies didn’t make clear
which ratios have the most explaining power. All these studies mentioned different
ratios as being the most effective ones. So questions for further research will be;

7Bernhardsen (2001)
8Beaver (1966) quoted: “A financial ratio is a quotient of two numbers, where both numbers consist

of financial statement items”
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1. which ratios are most important in the prediction of bankruptcy,

2. what weights should we attach to these ratios,

3. how do we attach these weights objectively.

The bankruptcy prediction model which nowadays still is extremely popular and
well known is the Z-score model designed by Altman (1968). This Z-score model,
introduced in 1968, is based on five variables and uses multiple discriminant analysis
(MDA) which showed very strong predictive power. MDA is a statistical technique
capable of classifying observations into groupings based on the characteristics of the
observations. The Altman technique and his application of MDA will be discussed
in further detail in chapter 3. Various studies validated the results of the study of
Altman, and mainly because of that reason MDA became a common used approach in
bankruptcy prediction. Although this Z-score model was extremely popular, there was
a need to update the model because of the following reasons9:

• The Z-score model was focussed on relatively small firms. Because of the dra-
matic increase in size of the bankrupt firms the need was born for a model which
was more able to predict business failure with these ”bigger” firms .

• We would like to have a model which should behave as customary as possible
with respect to the temporal nature of the data

• Up until now models only concentrated on specific industries. The updated
model must be capable of coping with different industries.

• The models seen up until now only look at past failures. The new model has to
be applicable to the data which will appear in the future as well.

• The updated model would enable us to test and assess several of the advances
and controversial aspects of the discriminant analysis. For discussions about
the use of discriminant analysis especially with respect to failure prediction see
H.D.Platt and M.B.Platt (1990, 1991), Weiss (1981), Zavgren et al. (1988) and
many others.

For these reasons Altman et al. (1977) came up with the ZETA model which can be
applied to larger firms, not limited to specific industries. The ZETA model appeared
to do quite well for bankruptcy classification, it showed 90% of the sample one year
prior and 70% accuracy up to 5 years.

In the succeeding years several academics used the models introduced by Beaver
(1966) and Altman (1993) as a basis for their studies. One of them was Deakin (1972).
Deakin proposed an alternative model for bankruptcy prediction which was based on
the models used by Beaver and Altman. Deakin tried to capture best of both models,
mainly because he believed that Beaver’s empirical results showed greater predictive
ability, but the method of Altman had more intuitive appeal. He searched for the linear
combination of the 14 ratios used by Beaver which best predicts firm failure in each of
the five years prior to failure. Wilcox (1971), Edmister (1972), Libby (1975) and Scott

9For further details see Altman (1968)
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(1981) where other people who based their studies on the models introduced by Beaver
and Altman. Sung et al. (1999) quoted that according to Scott: ”the ZETA model is
perhaps the most convincing multi-dimensional model since it has high discriminating
power, is reasonably parsimonious, and includes accounting and stock market data as
well as earnings and debt variables”. Ohlson (1980) introduced a logit analysis model
for bankruptcy prediction. Ohlson based his study on two unpublished papers of White
and Turnball (1975a,b) and on a paper by Santomero and Vinso (1977), the first stud-
ies which logically and systematically develop probabilistic estimates of failure. He
examined the probability of firm failure by the effect of the following four factors: the
size of the firm, measures of the firm’s financial structure, measures of performance,
and measures of the current liquidity. Instead of using 5 independent variables, as
Altman did, Ohlson used 9 independent variables to predict the probability of failure.
This model had some success, nevertheless the model have never been a common used
approach by practitioners so far.

Classical classification techniques, discriminant analysis, form the basis for bank-
ruptcy prediction models in the studies described so far. The last three decades other
methods like recursive partitioning, neural networks, genetic programming and other
decision tree techniques gained popularity for the bankruptcy prediction problem as
well. The aforementioned Artificial Intelligence (AI) techniques will be described
globally in the following paragraphs.10 These techniques offer good alternatives for
the classical techniques discussed so far and will form an introduction to the technique
which which will be explored in this thesis.

Recursive partitioning

Recursive partitioning is a supervised learning technique in the form of inductive learn-
ing. Supervised learning means that it uses of examples of which the dependent vari-
ables are already known. The training of a supervised learning model is based on these
dependent variables. Inductive learning is a technique used for building decision trees
which are able to learn from examples by a process of generalization. A decision tree
partitions an input space of a dataset into subsets. The recursive partitioning procedure
then recursively partitions each subset into sub-subsets. By following this procedure
there will occur a tree with a root in the top and mutually exclusive regions, leafs,
in the bottom of the tree. All of these leafs have a label, in the scope of this report
they can have the label bankrupt or nonbankrupt. Inductive learning have the goal to
find the hypothesis that fits the data, which has as an advantage that it only requires
little prior knowledge.11 The ID3 algorithm introduced by Quinlan (1986) is a popu-
lar inductive partitioning algorithm. This algorithm learns trees by constructing them
top-down. Every time the algorithm needs to decide which variable (financial ratios
in the scope of this report) is the most valuable. This is done by using a statistical
test (see formulas B.2 and B.1) to determine how well it alone classifies the training
examples.(for further information about this ID3 algorithm see appendix B.1.1)

In the bankruptcy prediction problem, decision trees are constructed by recursively
partitioning the training dataset into subsets until the final nodes (leafs) only consists
of one of the two types, bankrupt or nonbankrupt. When the tree is built, a new firm

10Technical details about the techniques can be found in Appendix B
11see chapter 12 in Mitchell (1997)
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can be evaluated by following the tree. The leaf in which the firm will fall, points out
to what group, bankrupt or nonbankrupt, it belongs to.

Artificial neural networks

Artificial Neural Networks (ANNs) or simply neural networks offer another suitable
classification possibility for the bankruptcy prediction problem. These ANNs perform
their classification task in the same way as a human would decide whether water is hot
or cold, in a response to impending signals of financial health of a firm. ANNs have
proven to be good classifiers in many real-world classification problems due to their
nonlinear nonparametric adaptive-learning properties.

ANNs are networks existing of a number of layers of interconnected simple logic
units or nodes.12 These networks have been invented in the 1950s and were inspired
by the way scientists believed the human brain worked. The use of of ANNs how-
ever, was limited strongly by the lack of suitable training methods. This changed in
the mid-1980s with the reformulation of the backpropagation algorithm by Rumelhart
et al. (1986). The logical units in feedforward neural networks - as opposed to recur-
rent ones - are called perceptrons. These perceptrons model a human brain’s neuron
that ’fires’ on the output side when a certain threshold is reached. In perceptrons the
input x is a weighted linear combination of the outputs of perceptrons in the previ-
ous layer and a so called ’bias’ (always equal to 1). The output is computed by using
a nonlinear, differentiable activation function called a ’transfer function’ or the iden-
tity function f(x) = x. The following activation functions are most commonly used.13

Logistic function:

f(x) =
1

1 + e−x
(2.1)

Hyperbolic tangent function:

f(x) = tanh(
x

2
) =

1− e−x

1 + e−x
(2.2)

Information on explanatory factors would be taken at input nodes via input layers,
when using ANNs for the bankruptcy prediction problem. From these input nodes,
weighted interconnections are made to hidden layer nodes, which collect and process
the information and determine the probability of failure. The first attempt to use ANNs
for bankruptcy prediction was done by Odom and Sharda (1990).

Genetic algorithms

Genetic Algorithms (GAs) are stochastic derivative free optimization techniques which
can search effectively through very large spaces, in many different ranges of applica-
tions. GAs are motivated by the analogy of biological evolution.14 (Darwin’s theory
of evolution, survival of the fittest)
GAs have a number of advantages which contribute to their popularity:

12This paragraph is based on Jang et al. (1997)
13for further information about the backpropagation algorithm see appendix B.2.1 or the books Jang

et al. (1997) & Mitchell (1997)
14Holland (1992) was the first who proposed and investigated the GAs.
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1. The possibility that GAs get trapped in a local minimum is small, because they
are stochastic and they use many points instead of one in the search space simul-
taneously;

2. GAs are able to optimize continuous and discrete functions, or even combina-
tions;

3. GAs can be used on several computers at the same time, which will increase the
speed of the optimization;

4. GAs use probabilistic instead of deterministic rules in the optimization;

5. GAs work with strings of characters representing the parameters, instead of
working with the parameters themselves;

6. The nature of GAs is inductive, which means that it doesn’t have to know any
rules of the problem, because it works by its own internal rules;

7. GAs can be used to identify or even estimate parameters for use in other AI
models like neural networks or fuzzy inference systems.

Every GAs works with a collection of hypothesis, called a population, which is eval-
uated every generation. These hypothesis are represented by bit strings, called chro-
mosomes.15 In each generation these chromosomes are evaluated according to their
fitness value, which is usually equal to the output of the objective function. The chro-
mosomes which have the highest fitness value immediately go, unaltered, to the new
population. Others are used create offspring individuals by utilizing genetic opera-
tors such as crossover and mutation.16 GAs are heavily used for variable selection for
example in neural networks within the bankruptcy prediction.

15explanation about terms used in this paragraph see appendix B.3
16for further information about GAs see appendix B.3.1 or the books Jang et al. (1997) & Mitchell

(1997)
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2.2.3 Limitations and improvements

This section describes the (dis-)advantages of both aforementioned statistical and ar-
tificial intelligence prediction models. To make a clear comparison between the pre-
diction models is difficult, mainly because each application has different goals and
circumstances that need to be treated differently. For this reason every application
requires different techniques.

In sign of this report, division has been made between the different prediction
models, resulting into discriminant analysis, decision trees, neural networks and ge-
netic algorithms. First the classical, statistical, discriminant analysis will be discussed,
which will be followed with the ones which make use of artificial intelligence. For
each of these techniques some of the disadvantages will be highlighted.

Discriminant analysis

Discriminant analysis are extremely popular ever since Beaver (1966) introduced the
multivariate analysis approach for bankruptcy prediction. Based on his work Altman
(1968) introduced his Z-score model, which also makes use of discriminant analysis
and is seen as the basic tool for bankruptcy prediction. Although discriminant analysis
is so heavily used, there are some disadvantages connected to it. The most prominent
disadvantages are taken up in table 2.117.

Discriminant analysis
-Requires that the decision set used to distinguish between distressed and viable firms need
to be linearly separable
-Does not allow for a ratios signal to vacillate depending on its relationship to another ratio
or set of ratios
-Reduction of dimensionality
-Difficulty in interpreting relative importance
-Violations of normality and independence
-Difficulty in specifying classification algorithm
-Difficult to interpret time-series prediction test

Table 2.1: Disadvantages of discriminant analysis.

Decision trees

Recursive partitioning is a supervised learning technique which also gained popular-
ity in the world of bankruptcy prediction. Mainly because decision trees are able to
generate understandable rules and are capable to deal with continuous and categorial
variables. Decision trees can cope with missing values in a data set. Nevertheless there
are at least three demonstrable weaknesses, quoted in table 2.2.

Artificial neural networks

ANNs are less heavily used as the aforementioned techniques, but they also catched
up popularity for bankruptcy prediction problems. ANNs can handle a wide range

17Source of information Bernhardsen (2001) and Sung et al. (1999)
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of problems and produce really good results for complicated problems, and is like
decision trees capable of coping with continuous as well as with categorial variables.
Some of the disadvantages are cited in tables 2.2.

Genetic algorithms

Most of the advantages of genetic algorithms are described in section 2.2.2 and B.3.1,
the most apparent disadvantages can be seen in the following table18, which comprises
of the main disadvantages of the decision trees, ANNs and GAs.

Decision trees ANNs Genetic algorithms
-Error-prone with too many
classes

-Black boxes, difficult to un-
derstand

-Difficulty in encoding

-Computationally expensive
to train

-Cannot explain the results -No guarantee of optimality

-Trouble with non-
rectangular regions

-May converge on an inferior
solution

-Computationally expensive

Table 2.2: Disadvantages of the different Artificial Intelligence techniques.

2.2.4 Conclusion

Discriminant analysis and decision trees are the two techniques to be used within this
report. The discriminant analysis model will function as a benchmark model. The
reason for choosing this discriminant analysis as the benchmark technique was rather
obvious, because this technique simply is the most common used and most examined
technique for bankruptcy prediction. Besides that, this technique proved to be robust
and has showed respectable prediction accuracies for this classification problem. The
reasons for choosing a decision tree based technique was less obvious. Classification
and Regression Trees (CART) was selected as the main technique for this report. A
number of factors was determinative for choosing this technique. CART trees are able
to cope with missing values, the final models are easy to interpret and show a good
overall picture of the data set. Moreover, relatively little research has been done on
CART models for the bankruptcy classification problem.

18Source of information Bernhardsen (2001) and Sung et al. (1999)

20



Chapter 3

Methodology

This Chapter describes the relevant techniques used in this research. The first section
will extensively discuss the traditional Z-score model of Altman (1968). This Z-score
model functions as the benchmark model within our research. “Classification and
Regression Trees” (CART) will be described in Paragraph 3.2, and is considered as
the main technique to predict bankruptcies within this research. First the technical
background of this, decision tree based, technique will be described. Subsequently a
sketch of a CART model application for the bankruptcy prediction problem will be
given.

3.1 Classical bankruptcy prediction: Altman Technique

This section will be dedicated to the bankruptcy prediction model introduced by Alt-
man (1968)1. As mentioned before in subsection 2.2.2, Altman’s Z-score model is
extremely popular ever since the introduction in 1968. The Z-score model is based on
multiple discriminant analysis (MDA), a statistical technique used to classify an obser-
vation into one of the, a priori determined, groupings dependent on the observation’s
individual characteristics. This MDA model is primarily used for predicting qualita-
tive dependent variables, so very suitable for the bankruptcy prediction problem2. The
MDA technique has the advantage to take several characteristics into account at the
same time, as well as their inter-relational behavior. Another strength of MDA is the
ability to reduce the ”a priori” groupings into a small dimension. MDA reduces the
dimension in our problem to the simplest form, where the a priori groupings are bank-
rupt and nonbankrupt. Because of this, the MDA model used for bankruptcy prediction
can treated as “simple” discriminant analysis (DA).

3.1.1 Discriminant analysis

Before exaggerating about the DA application for the bankruptcy prediction problem,
we need to have a clear description of discriminant analysis on its own. Discriminant
analysis, like analysis of variance, is an analysis of dependence method which actually

1based on chapter 8 of Altman (1993)
2bankrupt, nonbankrupt
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is a variant of canonical correlation.3 However in the case of discriminant analysis the
dependent variables are categorical, which divide the set of observations into mutually
exclusive and collectively exhaustive groups. Simple discriminant analysis, which has
only two groups, only needs a single dichotomous dependent variable to indicate group
membership. For multiple discriminant analysis (MDA) we need n − 1 dichotomous
variables to indicate group membership across n groups. Discriminant analysis make
use of information about independent variables, and turn that information into the
clearest possible separation between or among groups. The Fisher approach, a well
known discriminant analysis approach, finds the linear combination of independent
variables that produces the best discriminant score. If we look at the scatter plot 3.1 4

and keep the two plots of figure 3.2 in mind, we see that figure 3.4 represents the best
linear combination to discriminate between the two groups.

Figure 3.1: Scatter plot showing two
groups.

Figure 3.2: Visualization of two pos-
sible linear combinations of two inde-
pendent variables.

Figure 3.3: Scatter plot of two groups
using x or y to discriminate between
both groups.

Figure 3.4: The best linear combina-
tion of x and y to discriminate between
both groups.

3This section is based on Lattin et al. (2003) Chapter 12
4Source of information:

http://www.doe-mbi.ucla.edu/∼parag/multivar/dawords.htm
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When we look at the technical background and when k denotes the linear combi-
nation, then the discriminant scores are given by;

t = Xk (3.1)

The linear combination of k has to maximize the ratio of the between-group sum of
squares to the within-group sum of squares of the discriminant scores t. This ratio is
proportional to:

k′dd′k
k′CW k

(3.2)

where d = (x̄(2) − x̄(1)) is a vector describing the difference between the means of
the two groups, and CW is the pooled within-group covariance matrix of X. So the
smaller the within-group variation the larger the objective function. In fact, equation
3.2 is maximized by choosing k as follows:

k ∝ C−1
W d (3.3)

Formula 3.1 calculates the discriminant function scores for all the observations in the
data set.

A cutoff score, tc, can be used to categorize observations. All observations with
discriminant function scores t > tc are assigned to one group, the others are assigned
to the other group. The following formula will do to calculate the cutoff score for a
two group discriminant analysis

tc =
(t̄(1) + t̄(2))

2
, (3.4)

where t̄(1) = x̄′(1)k and t̄(2) = x̄′(2)k are the discriminant function scores of the two
group centroids. This formula is only appropriate when the two groups are of equal
size. When the groups sizes differ the following formula for the cutoff score is

tc =
(n1t̄(1) + n2t̄(2))

n1 + n2
(3.5)

This equation minimizes the expected probability of misclassification.
The objective in MDA is no different than the objective in DA. The only difference

is the number of groups exceeds two, which has more than one dependent variable as
a consequence5. Letting W denote the within-group sum of squares matrix and A
denote the across-group sum of squares matrix, then the objective for this discriminant
problem is given by

k′Ak
k′Wk

, (3.6)

When we take the derivative and solve the first order condition for k we get

W−1Ak = λk (3.7)

Because the bankruptcy prediction problem only has two groups, namely bankrupt and
non-bankrupt, the MDA model constructed for this report can be seen as a two group
discriminant analysis. For this reason Chapter 4 and 5 continues with formulas 3.1 to
3.5.

5For three groups we need two indicator variables. For instance, Y1 and Y2 which indicate two groups
and if both of them are false⇒ third group.
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3.1.2 Discriminant analysis application for bankruptcy prediction

The DA determines the discriminant coefficients, while the independent variables are
the input (actual) values6. These individual variable values transform the following
discriminant function:

Z = V1X1+V2X2+. . .+VnXn

{
V1, V2, . . . , Vn = discriminant coefficients, and
X1, X2, . . . , Xn = independent variables,

(3.8)
into a single discriminant score, or Z-score. Some of these variables might have a cer-
tain degree of correlation or collinearity with each other. This brings careful selection
of the variables as a consequence. The DA technique, with its ratio analysis, has the
potential to reformulate a problem properly. The discriminant score in fact is the value
which follows from applying a discriminant function formula to the data for a given
case. The Z-score is the discriminant score for standardized data. A Z-score measures
the placement of a specific value in terms of the number of standard deviations away
from the mean. There is a corresponding Z-score for each value in a particular data
set. The definition for the Z-score given by Shiffler and Adams (1995) is:

“The Z-score, denoted by Z, that corresponds to a value of X is the distance
between X and its mean in units of standard deviation.”

Altman’s Z-score model is a linear analysis of five ratios, which are all weighted
objectively. The summation of the five ratios formS the Z-score. This Z-score forms
the basis for the classification of a firm. It classifies a firm into one of the a priori
known groupings.

Altman based his research for this Z-score model on a data set of 66 firms, 33
bankrupt and 33 non-bankrupt firms. The bankrupt firms went bankrupt in the period
1946 - 1965 and all were manufacturers. Every bankrupt firm was matched with a
non-bankrupt firms with the same characteristics. It’s obvious to see that this data set
might not be the best data set for this research. A number of points for discussion are:

• Small data set. Only 33 bankrupt firms and 33 paired non-bankrupt firms form
this data set. It is difficult to say if this data set is reliable enough to form the
basis for his research.

• Long time period. It would be better to have a smaller time period, because
average ratios can drift over time.

• Small mean asset size. The mean asset size is $6.4 million dollar, with a range
from $0.7 million and $25.7 million dollar. It would be better to have a more
synchrone data set with respect to this asset size.

• Only one specific industry. The data set, and with that the Z-score model is
based on only one industry; manufacturers. This produces a reliable model for
this industry, but as a result it is risky to use this model for other industries.

6This subsection is based on the books Altman (1993)(Chapter 8) and Trippi and Turban (1996)
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In spite of these problems, this date set functioned as the input for the Z-score model.
Unfortunately it simply wasn’t possible to built a date set which was more suitable,
thanks to the lack of available data.7

Balance sheets and income statements were collected for these 66 companies. Alt-
man did a comprehensive literature review to collect the variables (ratios) which are
significant indicators for bankruptcy prediction. A list of 22 helpful ratios originated,
which were classified into five groups or categories, including liquidity, profitability,
leverage, solvency, and activity. The best8 five ratios were selected for the Z-score
model. Several steps had to be taken to get to the final profile of variables. First,
observe the statistical significance of the various functions and determine the relative
contribution of the independent variables. Second, look at the inter-correlations be-
tween the variables. Third, observe the predictive accuracy. Fourth, take a judgement
by an analyst. The following discriminant function formed the Z-score model of Alt-
man (1968) after taking these steps.

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (3.9)

where,
X1 = Working capital / total assets,
X2 = Retained earnings / total assets,
X3 = EBIT / total assets (where EBIT is earnings before interest and taxes),
X4 = MVE / total debt (where MVE is the market value of equity and total debt is
book value of total liabilities)
X5 = Sales / total assets

Altman assigned all firms with a Z-score higher than 2.99 to the category of non-
bankrupt, whereas he assigned firms with a Z-score below 1.81 to the category of
bankrupt firms. Firms with a Z-score between 1.81 and 2.99 were allocated to the gray
area, what means that the model cannot link a conclusion to these firms. However, for
simple predictive purposes, Altman classified the firms as bankrupt if Z ≤ 2.675 (the
1968 model’s cutoff score) and as non-bankrupt if Z > 2.675.

Altman used an accuracy matrix to test the accuracy of his Z-score model. (see
table 3.19) Where H stands for correct classifications, M1 for a Type I error and M2

represents a Type II error. To see how accurate the model is, you have to sum the H
diagonal and divide this number by the total number of firms in the data set. This will
give the accuracy percentage.

7The data was derived from Moody’s Industrial Manuals and selected annual reports
8The best overall job together in the prediction of corporate bankruptcy. This means that the individual

prediction power of each variable might not be the most significant.
9copied from Altman (1993) page 191
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Predicted Group Membership
Actual Group Membership Bankrupt Non-Bankrupt
Bankrupt H M1

Non-Bankrupt M2 H

Table 3.1: The accuracy matrix used to measure the accuracy of the Z-score model of
Altman.

Altman’s model proved to be extremely accurate, the correct classifying percent-
age was 95% with the initial sample of 33 firms in each group.10 Type I and Type II
error respectively were 6% and 3%.11 From these numbers you can conclude that his
model proved to be accurate. But remember the fact that this model is only based on
the small data set as discussed before.

The second test for the Z-score model of Altman was to observe the degree of
discriminating power. For this test, the model was exposed to a data set consisting of
a compilation of two financial statements prior to bankruptcy. This gave a reduction in
accuracy, which is explicable because the indications are less clear. Notwithstanding
it correctly classified 83 % of the total sample.12

Until now the same data set has been used for training the model as well as for test-
ing the model. This can give a distorted picture of the accuracy, for example because
of overfitting toward the training data set. In order to test the accuracy more rigorously
two new data sets were introduced. The first consisted of 25 bankrupt firms with more
a less the same asset size as the bankrupt firms in the initial group. The result for this
data set was astonishing, it even exceeded the initial discriminant sample. (96 % ver-
sus 94 %) The second new data set consisted of 66 non-bankrupt firms which suffered
from a two or three years of negative profits. Again the performance of the model on
this data set was surprisingly high, 79 % of the sample firms was correctly classified
as non-bankrupt13.

3.2 Classification and Regression Trees

The ”Classification and Regression Trees” (CART) methodology is introduced by
Breiman et al. (1984) and is a classification technique which uses supervised learn-
ing14 to built a decision tree. Decision trees are represented by a set of questions
which split a data set into smaller and smaller parts. As a result decision trees partition
a data set into mutually exclusive regions. When decision trees are used for classifi-
cation problems, these trees are called classification trees. If it concerns a regression
problem then they are often called regression trees. CART is a technique which com-
bines both of them. The CART algorithm only asks yes or no questions like: ”Is the
(working capital / total assets) > x ?” 15 The algorithm searches for all possible input

10When using the financial statement 1 year before bankruptcy
11Type I error of 6% means that 2 out of 33 bankrupt firms were predicted as non-bankrupt
12For details about the accuracy of the prediction model of Altman see tables 8.4, 8.5 and 8.7 on pages

191-193 in the book of Altman (1993)
13For further details see Altman (1993) page 194
14Make use of historical data, from which the values of the dependent variables are known on forehand.
15Where x is certain number which act as a boundary line.
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variables in order to find the best split.16

CART is a classification technique which can function directly as a model, or can
be used for structure identification for other techniques. CART can, for example, iden-
tify the most relevant input variables, which can be helpful for other models which can
only handle a few input variables.17

3.2.1 Technical background: Classification and Regression Trees

Recursive partitioning, or in other words decision-tree induction of sample data, is a
heavily explored topic within Artificial Intelligence, ever since the introduction.18 ID3
and C4, both proposed by Quinlan (1986), are good examples of recursive partitioning
algorithms. At the same time Breiman et al. (1984) introduced the CART algorithm,
which was built to approach similar problems. According to Jang et al. (1997) the
fundamentals of ID3 and CART are the same, the main difference between CART and
ID3 is that CART induces strictly binary trees and uses resampling techniques for error
estimation, while ID3 partitions according to attribute values.

The following sections will describe the three stages of the CART algorithm. It
first grows the tree to the maximum tree is reached, which means splitting the learning
sample up to the last observations. Then the tree pruning process will be explained.
This implies cutting of some insignificant nodes and/or even subtrees to counteract
overfitting. The section will be concluded with tree testing. Different ways to test a
tree will be discussed in this part.

Tree growing

Tree growing is the most time consuming stage of the CART algorithm. It simply
means that the tree gets bigger by splitting the data into subsets. This action is done
recursively in order to split the entire data set into disjoint subsets. Every time when
the algorithm wants to grow the tree it searches for the best split, which means that it
searches for the splitting variable that best reduces an error measure.

Now we will have a closer look at the construction of classification trees and pro-
ceed afterwards with the construction of regression trees.

Classification trees are used when we know the class, to which the samples belong
to, up forehand. In order to grow a classification tree properly, we need to have
an “impurity function”. This function acts like an error measure E(t) that quan-
tifies the performance of a node t in separating data into classes. This measure
should get a value of zero when the given data all belong to one class. When the
data is evenly distributed through all possible classes, this measure reaches its
maximum value.

The fundamental idea is to select the splits in such a way that the data in the
subsets is ”purer” than the data in the parent subset. So the purity of the de-
scendent nodes has to be greater than their parent nodes. Figure 3.519 illustrates

16The question which splits the data into two parts with the highest homogeneity.
17For instance when building a fuzzy system. This system can only use a few variables, otherwise the

input-space would increase to an unacceptable level.
18This subsection is based on Chapter 14 of Jang et al. (1997)
19Copied from Breiman et al. (1984)
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this idea clearly. Lets say t is a node, and some split s is going to be happening
which divides t into tL and tR. Here a proportion pL is going to node tL and a
proportion pR is going to node tR.

Figure 3.5: Visualization of a split from parent node to a left and a right child-node.

The change in impurity which follows from this illustration is20;

∆i(s, t) = i(t)− pLi(tL)− pRi(tR), (3.10)

and measures the “goodness” of the split. And therefore the CART algorithm
solves for every node the following maximization problem;

arg max[i(t)− pLi(tL)− pRi(tR)] (3.11)

When we look at the impurity function for a J-class problem, we can see that
the impurity function φ is a J-place function that maps its input arguments
p1, p2, . . . , pj , with

∑J
j=1 pj = 1, into a non-negative real number, such that

φ(1/J, 1/J, · · · , 1/J) = maximum, (3.12)

φ(1, 0, 0, · · · , 0) = φ(0, 1, 0, · · · , 0) = φ(0, 0, 0, · · · , 1) = 0.

Which means that the impurity is largest when the all J classes are equally
mixed over the subsets, and is smallest when the subsets only contain one class.

The impurity measure of node t is expressed as

E(t) = φ(p1, p2, . . . , pJ), (3.13)

when using this impurity function φ, where pj stands for the percentage that
each class is represented in node t. The function of the impurity measure of the
total tree is expressed as

E(t) =
∑
tεeT

E(t), (3.14)

20Technical background is based on Breiman et al. (1984), Jang et al. (1997) (Chapter 14) and Timofeev
(2004)
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where T̃ is the set of terminal nodes in tree T .

In theory there are several impurity functions, the Entropy function and the Gini
splitting rule, or Gini diversity index, are the most popular ones and will be
described shortly. The Entropy function is expressed as

φe(p1, . . . , pJ) = −
J∑

j=1

pj ln pj , (3.15)

and the Gini splitting rule, the most broadly used rule, is expressed as

φg(p1, . . . , pJ) =
∑
j 6=1

pipj = 1−
J∑

j=1

p2
j , (3.16)

where
∑J

j=1 pj = 1 and 0 ≤ pj ≤ 1 for all j, the preceding two functions
are always positive unless one of pj is unity and all the others are zero. Both
formulas reach their maxima when pj = 1/J for all j.

In a binary tree, which are used by the CART algorithm, the impurity change
due to splitting is expressed as follows:

∆E(s, t) = E(t)− plE(tl)− prE(tr), (3.17)

which gives the following change in impurity when we apply the Gini splitting
rule to the maximization problem 3.10:

∆i(s, t) = −
J∑

j=1

p2
j|Parent + pLeft

J∑
j=1

p2
j|Left + pRight

J∑
j=1

p2
j|Right (3.18)

When we go back to formula 3.17 we can say, in symbols, that the tree growing
procedure is trying to find the ”best” split s∗ for a root node t1 in the way that
this split gives the largest decrease in impurity:

∆E(s∗, t1) = max
sεS

∆E(s, t1), (3.19)

where S is a set of all possible ways of splitting the cases in node t1. After
defining the best split s∗ node t1 is splitted into t2 and t3, this procedure will
repeat over and over until the change in impurity will be smaller than a certain
threshold. Until now we have only discussed input variables that are numerical
or ordered. A typical question for these variables could be;

Is x ≤ si?

Where x is a numerical value and the split value si regularly is the average of the
x values of two data points that are adjacent in terms of their x coordinates alone.
The number of possible splits is equal or less than the size of the dataset minus
one. The same procedure is applicable to another category of input variables,
namely category variables. The question to ask here is;

Is x in S1?
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Because of the fact that splitting a node depends on how to put the possible
labels of a variable into disjoint sets. S1 usually is equal or less than half the
size of S, and is a non-empty proper subset of S.

Another impurity function is the Twoing splitting rule which will maximize the
following change in impurity;

plpr

4
[
∑

j

pj(tl)pj(tr)]2 (3.20)

This Twoing splitting rule searches for two classes that make up together more
than 50% of the data. This has as a result that this Twoing splitting rule will
produce more balanced trees than the Gini index does. The main disadvantage
of this Twoing splitting rule is the fact that it works slower than the Gini index.

Regression trees have the same goal as classification trees. Splitting nodes recur-
sively and minimize an error measure is the goal of both types of trees. The
difference is that regression trees do not have pre-assigned classes. Because of
that reason the aforementioned impurity functions21 can not be applied to re-
gression trees. The splitting procedure in regression trees usually minimize the
squared error by the following formula:

E(t) = min
θθθ

N(t)∑
i=1

(yi − dt(xi, θθθ))2, (3.21)

where {xi, yj} is a typical data point, dt(x, θθθ) is a local model for t and E(t) is
the mean-squared error of fitting the local model dt to the data set in the node.
The change in error works approximately the same as the change in impurity
function with the classification trees. The change in error function for regression
trees are expressed as

∆E(s, t) = E(t)− E(tl)− E(tr). (3.22)

The goal of this function is the find the split with the highest decrease in error.
The following formula shows this

∆E(s∗, t) = max
sεS

E(t, s). (3.23)

For now we have discussed how to construct a maximum tree by tree growing pro-
cedures. The problem of these maximum trees is the fact that they are too specific
and too much adapted on a training data set. This gives the problem of overfitting the
data. For this reason the tree has to be pruned. This procedure is described in the next
section.

Tree pruning

After having constructed a maximum tree, the next step in the CART procedure has to
be taken: “Tree pruning”. The global idea behind this step is to counteract overfitting.

21like the Gini diversity index, Entropy function and the Twoing splitting rule
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This maximum tree is built by a training data set, so it is made to fit this training data
set. This has as a big disadvantage that this tree will be too specific for the training
set, and are because of this situation biased toward this training data set. Besides that,
these trees are frequently too large and as a direct result of this are extremely complex
to read. Too large trees have a higher misclassification rate than generalized smaller
trees. On the other hand these trees can not be too small, because then they loose their
prediction ability. As a result of above mentioned reasons, maximum trees are mostly
overspecialized toward training data sets, and therefore these trees can not generalize
good enough for new data points.

The goal of tree pruning is cutting the tree in such a way that it leaves a tree with the
right size.22 So after having constructed the maximum tree Tmax, we have to find the
weakest subtrees in it. This weakest subtree can be deleted. This will have a smaller,
less complex, more general tree as a result. An effective way to find the tree with the
right size is based on the principles of minimal cost-complexity or weakest-subtree
shrinking.

Breiman et al. (1984) stated the following definition for minimal cost-complexity:
For any subtree T ⊂ Tmax, define its complexity as |T̃ |, the number of terminal nodes
in T . Let α ≥ 0 be a real number called the complexity parameter and define the
cost-complexity measure Eα(T ) as

Eα(T ) = E(T ) + αT̃ . (3.24)

From this formula follows that Eα(T ) is a linear combination of the “cost” and the
“complexity” of a tree. The α parameter describes the complexity cost per terminal
node. If Tmax is so large that every leaf in the tree contains only one case, then every
case is correctly classified.23 For this reason the α “complexity” parameter functions as
a penalty parameter. As a result of this penalty parameter the minimized tree contains
less terminal nodes than Tmax.

We want to search for a smaller tree than Tmax which minimizes Eα(T ). This
leads to the following minimization problem24

Eα(T (α)) = min
T⊂Tmax

Eα(T ) (3.25)

where the tree is Tmax when α is zero and when α is sufficiently large T will consist of
only the root, so Tmax will be pruned completely. Although α runs through an contin-
uum of values, only a limited number of subtrees of Tmax possible with progressively
fewer nodes than Tmax. Though this pruning process is easy to describe, a few critical
question are left:

• Is there one unique T ⊂ Tmax which minimizes Rα(T )?

• In minimizing sequence of trees T1, T2, . . . , is each subtree obtained by pruning
upward from the previous subtree, i.e., does the nesting T1 � T2 � . . . � {t1}
hold?

22The right size means that the tree is complete enough to make proper and accurate predictions without
losing its generality.

23At least for the training data set.
24Has to be done for each value of α.
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Next to these questions the most important issue is to that of finding an effective prun-
ing algorithm. Every time we need to search for the next minimizing tree of T starting
with the Tmax. A direct search through all possible subtrees is computationally very
expensive. To find the next minimizing tree for a tree T , we follow this procedure:

a) Find, for each internal node t in T , a value for α that makes T − Tmax the next
minimizing tree. This α, denoted by αt, is expressed as

αt =
E(t)− E(Tt)

|T̃t| − 1
, (3.26)

where αt is equal to the ratio between the change in error measures and the
change in the number of terminal nodes before and after the shrinking,

b) Then we have to choose the internal node with the smallest αt. This node will
function as the target node for the shrinking procedure.

c) Repeat step a) and b) until the tree only consist of a single root node.

Only a few candidate trees will be the result of this pruning procedure, which re-
duces the problem enormously. The next step is to select one of these few trees as the
optimum-sized tree. This decision is made by testing the trees. The one which gives
the smallest error is the optimum-sized tree. This testing procedure can be done in two
ways. The first option is to check the trees on an independent test data set. This is
an easy and computational cheap option. The second option, cross-validation, is a bit
more time consuming but more reliable, because is makes more effective use of the
available data.25

Most of the time these testing procedures apply both to the training and to the test
data sets. In fact nearly in every situation you encounter the same pattern.26 The error
measure decreases, when the tree complexity becomes larger for the training data set.
This sounds logical, because then the tree is overspecializing toward the training set.
The same pattern happens for the error measure when looking at the test data set for
the smaller, low complex trees. The error measure will decrease when the number of
terminal nodes increase until a certain number of nodes are reached. After this number
of nodes the error measure will increase in case of adding an extra node. This is the
point where the tree looses generality. Therefore, it is the goal to find this critical point,
number of terminal nodes, where the error measure decrease change-over to increase
in case of adding another node.

Tree testing & classification of new data

Before starting to classify new data we need to test the accuracy of the tree extensively.
Roughly this testing of a constructed tree can be done in three ways:

Holdout method The idea behind this technique is extremely simple. It simply splits
a data set into two individual data set, a training and a test data set.27 So it

25Cross-validation will be discussed in the following section and in chapter 4 and 5.
26In a situation when you plot the error measure on the y-axis, and the number of terminal nodes on

the x-axis
27Where the test set usually is smaller than the training set.
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leaves the test set out of the training of the tree. In this way the test data set can
function as an independent data set to determine the accuracy of the tree. The
advantages of this method is its simpleness and low computational costs. The
main disadvantage is the possibility of high variance in the evaluation. Mainly,
because this evaluation totally depends on the way how the data set is separated.

K-fold cross validation This technique is an improvement over the holdout method
described before. This technique splits the data set into k subsets, so the holdout
method can be repeated k times. Every iteration one subset is used as the test
data set, while k − 1 subsets form the training data set. Then the average error
of the k tests is computed. Because of this technique some of the disadvantages
of the holdout method are banned. For instance the fact that this technique uses
several different test data sets, it reduces the change to score high variances. As
a disadvantage there is the problem of high computational cost, because it has to
train and test the tree k times. The number which they usually assign to k is 10.
A variant to this k-fold cross validation is to randomly divide the data set into a
training and test data set k different times.

Leave-one-out cross validation This is the same as k-fold cross validation, only now
it assigns the size of the total data set to k. This means that every iteration the
tree is trained by N − 1 data points and tested by 1 data point. In this way the
data set is optimally utilized.

It depends on the data set and on the situation which of the aforementioned techniques
to elect as the best technique. But as you can see the last two techniques make more use
of a data set than the holdout method and obtain smaller variances in the evaluation.

Finally, after the testing procedure, the tree can be used for classification of new
data. When a new observation arrives at the tree, it will be confronted with several
question which will lead this observation to a terminal node. This terminal node will
assign a class to the observation.28

3.2.2 Strengths and weaknesses of CART

So far we have broadly discussed the technical details of CART. In this section the
advantages and disadvantages of the CART method will be made explicit.

Strengths of CART

Most of the advantages of CART will be highlighted in the following summary:

- CART is nonparametric and does not make any assumptions about variables
to be selected. CART can be used as a tool to identify the most significant
variables.

- CART can handle outliers easily, and is not affected to collinearities and het-
eroscedasticity.

28Bankrupt or non-bankrupt are the two classes used in this report to which the observations can be
assigned to.
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- CART does not make any distributional assumptions. Therefor none of the vari-
ables in CART follow a statistical distribution.

- CART can handle continuous, interval and even categorical explanatory vari-
ables.

- CART is able to cope with outliers.

- CART is invariant to monotone transformation of independent variables.29

Weaknesses of CART

Next to the strengths that the CART method possess, it has a few weaknesses as well.
A few of these weaknesses are:

- It is not based on a probabilistic model, instead it is purely based on historical
data. The accuracy of these models is also based on historical accuracy.

- Sometimes CART can produces unstable decision trees.

As you can see the strengths of CART win from the weaknesses. In particular the fact
that CART can be used as a tool to identify the most significant variables, is extremely
powerful. In this way the results of this report can be used for other research, where
the most significant variables have to be selected in advance.

3.2.3 Application of CART for bankruptcy prediction

CART is an appropriate method for the bankruptcy prediction problem. In fact, the
bankruptcy prediction problem is very simple to understand and to model. The CART
model only has to classify each observation into two classes, bankrupt or non-bankrupt
for this problem. Especially when the most significant variables are not known in
advance, CART can offer good results. CART can handle many different variables at
high speed, for this reason there is no restriction to the number of input variables.

In Chapter 4 the construction of a CART model, for the bankruptcy prediction, will
be clarified. Besides that all encountered problems will be described in this Chapter.
First of all the data set, the financial statements and the the financial ratios to be used
will be clarified carefully. This is crucial for the construction of this prediction model.
Secondly, the construction of the models, the Z-score model and the CART model,
will get attention. In this section the complete preparation of both these models will
be done for this economical classification problem.

29This means that the transformation of explanatory variables to logarithms or squares or square roots
has no effect on the tree produced. The splitting variables stay the same, only the values will change.
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Chapter 4

Experimental Setup

The fundamental research of this report will be outlined in this Chapter. This Chapter
starts with the financial setup in section 4.1. This section consists of four subsections,
in which the data set and financial ratios, derived from this data set, will be explained.
The architecture of the models will be sketched in section 4.2.

4.1 Financial Setup

This section pays attention to the data collection and to the derivation of the financial
ratios. Before we go deeper into these financial ratios, the balance sheet and in the
profits and losses accounts (P&L), which are used for data representation, will be
illustrated.

4.1.1 Data set

The data set used for the research of this report consists of 122 Dutch N.V.’s1. (61
bankrupt and 61 non-bankrupt firms.) All of these companies2 were listed, during the
period 1945-1999, at the official Amsterdam Stock Exchange (AEX). The motivation
for this data set is based on a number of reasons and restrictions. For instance, the
companies in the data set had to be located in one country with a focus on only one in-
dustry group. Besides that, the companies had to be listed, otherwise it just would have
been to hard to get all the relevant financial information about these companies. Only
with the combination of these restrictions my research and models can give reliable
results.

For the period 1945-1999, 134 AEX listed companies we re declared bankrupt.
These companies were allocated to five industry groups.3 The fifth industry group,
business trade, industries and others, was best represented with 65 bankrupt compa-
nies. As mentioned before, the restriction was to look at one industry group, but on the
other hand data set had to be representative as well, so therefore the focus of this re-

1This data set originated from the research done by Caljé (2000) about “Costs of Financial Distress
and Bankruptcy in the Netherlands”

2See appendix C and tables C.1,C.2 and C.3
31) Bank, credit and insurance, 2) Railway, 3) Mine and Petroleum, 4) Cultural, 5) Business trade,

industries and others.
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port was on this fifth industry group, which in fact is a combination of several smaller
groups.

Only 61 of the 65 bankrupt companies have been taken along in this report, mainly
because of the lack of financial information about the other 4 companies. For each
of these 61 companies the data set provides a ”matched” financially healthy company.
This means that every bankrupt company is paired with another non-bankrupt listed
company with the same core business, size and period of listing on the AEX. The
financial data4 of the foregoing five years to the possible failures were collected for this
data set. These five years will give a reliable idea behind the process which happens
before a possible firm failure.5

4.1.2 Financial statement analysis

The financial statement of a firm encapsulates the balance sheet and the profits and
losses account. These financial statements must obey to strict accounting regulations.
These accounting regulations vary enormously among different countries, which does
not matter in the scope of this report because all the companies absorbed into the
data set originate from the Netherlands. Besides these variations, financial statements
of different industry sectors can diverge as well. Especially the financial statement
of industrials and of financial companies differ, among other things like the fact that
industrials have a lot of inventory on their balance where financial companies have not.
The next section describes the ”normalized” financial statements used for this report.

4.1.3 Balance sheet and profits & losses accounts

In this section the “normalized” financial statement will be explained. The term “nor-
malized” is used, because the data set consists of 122 companies from a time period
between 1945 and 1999, where the financial statements were multifarious. For this
reason it was necessary to standardize and translate these financial statements into one
uniform financial statement, otherwise it simply was not possible to calculate compa-
rable values/ratios.

The financial statements and the stock quotes of the foregoing 5 years to the pos-
sible failures of all the 122 companies were collected, which add up to 610 financial
statements and stock quotes. The underlying thought behind the foregoing 5 years is
the fact that a single financial statement, which follows from a single annual report,
is a recording of single moment. A firm can for instance increase their liquidity just
before the publication of the annual report. When you have a look at five preceding
years it is possible to look at the average, which gives a more reliable portrait of the
financial situation of the firm. Tables 4.1 and 4.2 illustrates the standardized financial
statements used for this report.6

4Financial data consists of five years of balance sheets, P&L’s and stock quotes.
5Several sources of information were consulted for the collection of the data. These sources of in-

formation are; Publications in the financial press, annual reports, data research done before by other
researchers, yearbook of Dutch companies, archive Amsterdam Exchange, manual of the official pri-
cepaper of the Amsterdam Exchange, van Oss securitiesbook.

6To see how the completed standardized financial statements look like, see table C.4 and C.5 in Ap-
pendix C.2., where the balance sheet and profits & losses account of the bankrupt firm Air Holland are
illustrated.
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Consolidated balance sheet
Assets/Period Liabilities/Period

Tangible fixed assets Issued and paid up capital

Financial fixed assets Reserves

Other fixed assets Loss

Total Fixed assets Shareholders’ equity

Inventories

Receivables Provisions

Cash and cash equivalents Long-term debt

Total Current assets Long-term liabilities

Short-term bank debt

Intangible assets Other short-term debt

Accounts payable

Current liabilities

Other assets Other liablilities

Total assets Total Liabilities

Period Period

Highest share price Number of outstanding shares

Lowest share price

Average share price

Period Nominal value share

Number of employees

Table 4.1: Standardized balance sheet.

Consolidated profits & losses account
Period

Net sales (excluding turnover tax)

Cost of goods sold

Gross margin

Wages and salaries

Operating costs

Operating income (EBITDA)

Depreciation

Income from equity participations

Interest expenses

Result on ordinary activities

Extraordinary profits and losses: provisions

Other extraordinary profits and losses

Result before tax

Income tax expense

Result after tax

Minority interest

Net result

Table 4.2: Standardized
profits & losses account.

4.1.4 Financial ratios

The financial performance of a company can be measured by looking at several finan-
cial ratios. The definition for a financial ratio given by Beaver (1966) is:

“A financial ratio is a quotient of two numbers, where both numbers consist of
financial statement items.”

These financial ratios can be allocated to five groups, including liquidity, profitability,
leverage, solvency and activity. Although financial ratios provide a fast and easy way
to compare different companies, some caution has to be taken when using them. As
described before, financial statements of companies can differ enormously, not only
because of industry differences but also because of different notations in the financial
statements.7 The ratios used within this report are described in table 4.38. Section 4.2

7This is the reason why the financial statements of our data set is normalized.
8These ratios follow from the data base and Master thesis made by Caljé (2000)
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describes architecture of both two models constructed in this report, and will assigns a
selection of the financial ratios to each of the models.

# Abbreviation Description of the fraction
1 WC/TA Working capital/total assets
2 RE/TA Retained earnings/total assets
3 EBIT/TA Earnings before interest and taxes/total assets
4 MVE/TL Market value equity/total debt
5 S/TA Sales/total assets
6 LIQ/TA Cash and cash receivables /total assets
7 (LTL+CL)/(LTL+CL+MVE) (Long-term liabilities + current liabilities)/ (long-term lia-

bilities + current liabilities + market value equity)
8 (LTL+CL)/TL (Long-term liabilities + current liabilities) /total liabilities
9 MVE/TFA Market value equity/total fixed assets

10 Employee change-ratio ((# employees year x) - (# employees year x-1))/(# employ-
ees year x-1)

11 (TFA+Inv.)/TA (Total fixed assets + inventories)/total assets
12 IA/TA Intangible assets/total assets
13 EBITDA growth-ratio ((EBITDA year x)-(EBITDA year x-1)) /EBITDA year x-1
14 Cash turnover rate ((Inventories + receivables - accounts payable) /(Sales)) *

12
15 (W&S+OC)/S (Wages & salaries + operation costs)/Sales
16 MVE/(LTL+CL+MVE) Market value equity/(long-term liabilities + current liabili-

ties + market value equity)

Table 4.3: The 16 financial ratios used in this report. The abbreviation and the descrip-
tion of the fraction.

4.2 Architecture of the models

This section encapsulates the selection of the financial ratios, and a comprehensive
explanation about the accuracy testing methods used for each of the two models. The
construction and testing procedures of the models are accomplished in MATLAB 6.59,
chiefly because MATLAB includes all the techniques used for this report. Besides that
this program is rather simple to use. Subsection 4.2.1 starts with the architecture of a
discriminant analysis based on the research done by Altman (1968). Subsection 4.2.2
follows with an overview of the architecture of the CART model constructed within
this report.

9MATLAB, short for ”matrix laboratory”, refers to both the numerical computing environment and to
its core programming language. Created by The MathWorks, MATLAB allows one to easily manipulate
matrices, plot functions and data, implement algorithms, create user interfaces, and interface with pro-
grams in other languages. Although it specializes in numerical computing, an optional toolbox interfaces
with the Maple symbolic engine, making it a full computer algebra system.
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4.2.1 Classical model: Altman Z-score model

As mentioned before the Altman Z-score model forms a benchmark model within
this report, because of that reason this Z-score model, as described in Altman (1993),
keeps the same characteristics as Altman assigned to it in 1968. Therefore variable se-
lection will not be utilized. Variable numbers 1-5 from table 4.3 form the independent
variables.

To construct the discriminant analysis model based on the variables used by Alt-
man (1968) the following action plan is very useful.

1. Find the discriminant coefficients They are determined by utilizing equations 3.2
and 3.3 as stated in subsection 3.1.1. Before identification of the discriminant
coefficients we need to calculate the differences between the two group means
and the pooled within-group covariance matrix.

2. Create the discriminant function scores Equation 3.1 finds the discriminant scores.

3. Determine the cutoff score The cutoff score has to be calculated to be able to clas-
sify the observations and to check the accuracy of the model which follow from
the first step. (Equations 3.4 and 3.5 identify the correct cutoff score)

4. Determine the accuracy In this step the overall accuracy of the model will be be
calculated. This is the fraction between the total number of correctly classified
observations and the total number of observations.

5. Create an accuracy matrix This accuracy matrix, as reported in table 3.1, illus-
trates the classification of the observations perfectly.

6. Test the accuracy The accuracy, or hit rate, is a simple and intuitive approach to
measure the goodness of fit for the classification model. Though, the question
is; “is this accuracy percentage reasonable?” For this reason the accuracy should
be compared to some sort of benchmark. To test the accuracy of the model the
frequently used benchmark method ,the proportional chance criterion, is imple-
mented. This method creates the following accuracy matrix based on the relative
frequency with which each group appears in the data.

Expected number classified by chance
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt np2 np(1− p) np
Non-Bankrupt np(1− p) n(1− p)2 n(1− p)
All np n(1− p) n

Table 4.4: The accuracy matrix based on the relative frequency with which each group
appears in the data.

Where p is the change that an observation will be assigned to group ‘bankrupt’
and 1 − p is the change the observation will be assigned to the group ‘non-
bankrupt’. The expected correctly classified observations which follow from the
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matrix 4.4 is
hexpected = np2 + n(1− p)2 (4.1)

With this expected hits we can calculate expected hit ratio

hrexpected =
hexpected

n
, (4.2)

which obviously return 50 percent for hrexpected when the the group sizes are
equal. With this hexpected and hrexpected we can do a t-test. This t-test calculates
if the chance of coincidence of a certain accuracy will be negligible. In fact the
accuracy is compared with the expected accuracy, based on the probability of
classifying an observation in the right way. Before we can accomplish this t-test
we need to calculate the last missing variable. The standard deviation of the
number of expected hits from the proportional chance criterion. This standard
deviation is given by

sCPRO =
√

nhrexpected(1− hrexpected) (4.3)

We can now execute the t-test, which is given by

t =
hactual − hexpected

sCPRO
(4.4)

This aforementioned action plan will be done twice for the research of this report. The
first time the model will be defined by the total data set. After the determination of
this model, the performance will be tested on the same data.(Test data set and training
data set are the same for this operation procedure) This procedure can produce poten-
tial bias, bias which is a result of overfitting toward the training data set. The second
time leave-one-out cross validation will be practised.10 This method is more time con-
suming, in fact it runs n discriminant analysis, but the accuracy percentage following
from this procedure is far more valuable than from the previously mentioned operation
procedure.

In Chapter 5 the results for the discriminant analysis prediction model will be
described extensively. Besides that the encountered problems will be tagged, and the
possible solutions for these problems will be expounded.

4.2.2 Classification and Regression Trees

The aforementioned procedure will partly be applicable for the CART model. Never-
theless there are some difference, for instance we can use more ratios with the CART
model, to be exact we can use all the ratios as described in tables 4.3. Moreover the
way to construct the model differs from the way to construct a discriminant analysis11.

To make the benchmark of the two models more valuable, the CART model will
be constructed twice. The first construction is based on the five ratios used by Altman
(1968), the second construction will use most of the ratios as mentioned in table 4.3.

10See subsection 3.2.1 for a detailed explanation about leave-one-out cross validation.
11See section 3.2 for explanation about the CART model construction procedure.
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For this report the Gini diversity index, as described in equation 3.16, is used for
the impurity function. First of all the maximum trees are built. The pruning process
starts after having constructed these maximum trees, which have an accuracy of 100%
toward the training set. When these pruned trees are determined the action plan used
for the discriminant analysis will carry on at step 4. From this point each observation
will follow the tree and will be classified to one of the two possible groups. Each obser-
vation will encounter the different financial ratios which function as boolean questions.
An example of such a question can be; WC/TA ≤ x12? The CART algorithm will de-
termine which ratio will settle in which node, and which value will be allocated to
these financial ratios.

With the classifications of the individual observations we can determine the accu-
racies and accuracy matrices. Besides that the accuracy will be tested, in the same
way as the accuracy of the discriminant analysis is tested. The CART models will be
constructed twice, as we also did for the discriminant analysis. The first one is tested
with the same data as used for training, the second way makes use of leave-one-out
cross-validation.

The realization of the CART models and the test results will be described in the
next Chapter. The encountered problems will be mentioned and solved whenever pos-
sible.

12x is a certain number, threshold, determined by the CART algorithm
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Chapter 5

Results

In this Chapter, the results of the experiments, as described in the previous chapters,
are discussed. The first section describes the the procedure and results for the discrim-
inant analysis based on the Z-score model of Altman. The composition of section 5.2
is exactly the same, except for the fact that this section describes the results of the
Classification and Regression Trees for the bankruptcy prediction problem. Finally,
the Chapter will be concluded with a short comparison of both models.

5.1 Discriminant analysis: Based on the Z-score model of
Altman

As described in subsection 3.1.1 the Z-score model of Altman is based on discriminant
analysis. In this section we follow the action plan, which is discussed expansively in
subsection 4.2.1, to construct and test the discriminant score model based on the same
variables used by Altman (1968). But before we can start with this action plan, some
problems about the data set have to be discussed.

The data set, as described in subsection 4.1.1, struggles with a lot of missing val-
ues. This has as a consequence that 26 out of the 122 companies in the data set misses
information about their sales.1 Another data set was created to cope with this prob-
lem. This new data set consists of 55 bankrupt and 41 non-bankrupt companies. Both
data sets are used to create a discriminant analysis score function, and are tested in the
following paragraphs.

5.1.1 DA test results for the data set consisting of 122 companies

Before starting to build and test the model it is helpful to visualize the data. Figure
D.12 illustrates bivariate scatterplots and univariate histograms for each variable3 for
this data set. This figure helps to get a feeling for the data set.

Step one of the action plan starts at this point. (Produce the discriminant values,
see tables 5.1) As mentioned in section 4.2.1 this action plan will be executed twice.

1Sales is a variables used for the fifth ratio in table 4.3, Sales / Total Assets
2Unfortunately it is not possible to show a 5 dimensional plot in this report. Figure D.1 functions as a

substitute. Figure D.3 shows a multivariate plot for the data set.
3Financial ratio
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The first results, which are shown below, were calculated by using the same training
data set as test data set. The second results are based on leave-one-out cross-validation.

Discriminant coefficient values
Independent variables

WC/TA RE/TA EBIT/TA MVE/TL S/TA
k 2.2513 5.6977 11.0038 -0.4706 -0.0313
k determined by Altman (1968) 1,2000 1,4000 3,3000 0,6000 1,0000

Table 5.1: Discriminant coefficient values for the complete data set compared to the
values for k determined by Altman.

The values determined for k are compared with the values defined by Altman (1968).
The Altman values used in table 5.1 differ from the values mentioned on page 25.
When using proportions like 0.10 for 10% instead of 10 for the independent variables,
Altman proposed the values used in table 5.1.(See Altman (2000) page 13) As you can
see, these value differ significantly, but overall the values are in proportion. The value
defined for the fifth discriminant coefficient (S/TA) is substantially out of proportion,
which in fact is as expected, because of the missing values in the data set for this
financial ratio.

With these coefficients the discriminant function scores (t) can be determined. In
order to assign a group tag to each of the observation, the correct cutoff score had to
be defined. The cutoff score (tc) for this data set is determined by formula 3.4.4 If
t > tc then this observation will fall into the non-bankrupt group. The calculated tc
for this data set is 1.7167. Accuracy matrix 5.2 was produced with this cutoff score,
from which follows an accuracy of 77.05 %.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 49 12 61
Non-Bankrupt 16 45 61
All 65 57 122

Table 5.2: Accuracy matrix for the total data set.

At this point only step 6 is left, in this step the accuracy of the model will be tested.
Tables 5.3 shows the expected classifications.

4Formula 3.4 because both groups of the training data have the same size
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Expected number classified by chance
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 30.50 30.50 61.00
Non-Bankrupt 30.50 30.50 61.00
All 61.00 61.00 122.00

Table 5.3: The accuracy matrix based on the relative frequency with which each group
appears in the data.

We can compare these expected classifications (table 5.3) with the actual classifica-
tions from table 5.2. This leads to a standard deviation of 5.5227 and a value of 5.9754
for the t-test5, which in fact is significant compared with the expected accuracy6.

The test result presented so far were gained by using the same training set as test
set. This methodology can have overfitting toward the training set as a consequence.
For this reason the same test was done for leave-one-out cross-validation. The results
from this test are shown in the tables 5.4 and 5.5.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 46 15 61
Non-Bankrupt 18 43 61
All 64 58 122

Table 5.4: Accuracy matrix for the total data set using leave-one-out cross-validation.

Results (leave-one-out cross-validation)
accuracy sCPRO t-test

Values 72.95% 5.5227 5.070

Table 5.5: Test results for the complete data set based on leave-one-out cross-
validation. (Where sCPRO is the standard deviation)

Of course the standard deviation is the same as with the first test. On the other hand
the accuracy and t-test results are lower, although the t-test still turns out significant
compared with the expected accuracy.

5.1.2 DA test results for the data set consisting of 96 companies

For the adjusted data set we follow exactly the same procedure as for the complete
data set. The only difference can be seen, as expected, in the test results. This data set
obviously show better test results than the test results seen in the previous subsection.

5see formula 4.3 and 4.4
6See 4.2 for further details about this t-test.
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Table 5.10 show accuracies of 89.58% and 85.42% respectively for the two ways of
training and testing. (Test set is data set and leave-one-out cross-validation)

The accuracy of the leave-one-out cross-validation procedure points out that dis-
criminant analysis for bankruptcy prediction, as introduced by Altman (1968), is robust
to different data sets and works respectably accurate.

Table 5.6 shows the values determined for k. Again these values are compared
with the values defined by Altman (1968). Also for this data set the values of k differ
a lot, but are in proportion, even for the fifth discriminant coefficient.

Discriminant coefficient values
Independent variables

WC/TA RE/TA EBIT/TA MVE/TL S/TA
k 1.7819 5.8929 14.0613 -0.5744 0.4805
k determined by Altman (1968) 1,2000 1,4000 3,3000 0,6000 1,0000

Table 5.6: Discriminant coefficient values for the adjusted data set compared to the
values for k determined by Altman.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 53 2 55
Non-Bankrupt 8 33 41
All 61 35 96

Table 5.7: Accuracy matrix for the adjusted data set.

Expected number classified by chance
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 31.5104 23.4896 55.00
Non-Bankrupt 23.4896 17.5104 41.00
All 55.00 41.00 96.00

Table 5.8: The accuracy matrix based on the relative frequency with which each group
appears in the data. For the this adjusted data set, with different groups sizes.
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Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 48 7 55
Non-Bankrupt 7 34 41
All 55 41 96

Table 5.9: Accuracy matrix for the adjusted data set using leave-one-out cross-
validation.

Results for adjusted data set
accuracy sCPRO t-test

Values test set is training set 89.58% 4.8979 7.5500
Leave-one-out cross-validation 85.42% 4.8979 6.7334

Table 5.10: Test results for the adjusted data set . (Where sCPRO is the standard
deviation)

5.2 Classification and Regression Trees

The test results for bankruptcy prediction using Classification and Regression Trees,
the main subject of this report, are described in this section. Four tests are accom-
plished, two tests for each of the two data sets7. The first tests make use of the five
financial ratios as described by Altman (1968), the second tests are based on the finan-
cial ratios as presented in tables 4.3. Unfortunately it was not possible to make use of
all 16 financial ratios from tables 4.3, simply because the data set was incomplete for
5 financial ratios8. Because of this situation only 11 financial ratios could be used.

The first subsection shows the results for the total data set, the second subsection
shows the results of the adjusted data set. As mentioned in subsection 4.2.2 the testing
procedure of CART is largely the same as for Discriminant Analysis. For this reason
the composition of the following subsection will show similarity with the previous two
subsections.

5.2.1 CART test results for the data set consisting of 122 companies

First of all the CART algorithm has to built the maximum trees9 as described in 3.2.1.
The impurity function used for the tree growing process within this report is the Gini
diversity index or Gini splitting rule. The “TREEFIT” function within MATLAB was
used to construct these trees. Within the maximum tree the impure nodes must have 1
or more observations to be split. At the same time other trees were constructed, where
the impure nodes must have 10 or more observations to be split, see figure E.3 and E.4.
When we test the maximum tree and use the same test as training data set, obviously
the accuracy will be 100%. This result is useless because it does not say anything

7Two for the complete data set and two for the adjusted data set. The complete data set consists of all
122 companies, the adjusted data set consists of 96 companies

85) S/TA, 10) Employee change ratio, 12) IA/TA, 14) Cash Turn , 15) (W&S+OC)/S , 16) W&S/Gross
Margin

9See Appendix E figure E.1 and E.2
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about the prediction capability of the tree. The other trees10 are more useful, because
these trees already show a little bit more generality.

To find the tree with the optimum generalization the “TREETEST” function within
MATLAB was used. This function is able to find the number of terminal nodes which
minimizes the error costs, and is able to produce a plot which shows the relationships
between the number of terminal nodes and the residual variance. Figures 5.1 and 5.2
show that the best number of terminal nodes are only 2 for both trees. This can indicate
that these CART models can be oversimplified for this prediction problem.

Figure 5.1: Best number of terminal nodes for the
tree using the financial ratios introduced by Altman,
when using the complete data set. Shows the rela-
tionship between the number of terminal nodes and
the residual variance.

Figure 5.2: Best number of terminal nodes for the
tree using the 11 financial ratios defined in table 4.3,
when using the complete data set. Shows the rela-
tionship between the number of terminal nodes and
the residual variance.

Figures E.5 and E.6 in Appendix E show the pruned trees for the complete data set.
The first pruned tree is based on the 5 ratios as introduced by Altman (1968) the second
is based on the 11 financial ratios as proposed in this report. As you can see, both trees
are identical.

So far the trees have been constructed, and we have arrived at the point where
the validation process of these trees can be started. In the following paragraphs the
validation and test results are shown. For the validation process the “TREEVAL”
function within MATLAB was used, this function returns a list of classes to which the
tree assigns the individual observations to. From this list the prediction accuracy can
be computed and tested.

10figure E.3 and E.4.
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Test results using 5 financial ratios

This paragraph reports the test results for the complete data set using the 5 financial
ratios introduced by Altman (1968). The composition of the paragraph is almost the
same as section 5.1.2, except for the fact that there are 3 ways of training and testing.
The first way makes use of tree E.3, the second makes use of the pruned tree E.5 and
the third way makes use of leave-one-out cross-validation.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 54 7 61
Non-Bankrupt 3 58 61
All 57 65 122

Table 5.11: CART accuracy matrix for the complete data set before pruning, using 5
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 53 8 61
Non-Bankrupt 14 47 61
All 67 55 122

Table 5.12: CART accuracy matrix for the complete data set after pruning, using 5
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 47 14 61
Non-Bankrupt 11 50 61
All 58 64 122

Table 5.13: CART accuracy matrix for the complete data set using leave-one-out cross-
validation with 5 financial ratios.

Table 5.14 shows that the leave-one-out cross-validation method has an accuracy of
79.51% when making use of 5 financial ratios. To test the accuracy again the t-test
was used in the same way the accuracy of the preface discriminant analysis was tested.
The standard deviation is identical to the one calculated for the discriminant analysis,
see 5.3 and 4.3. The t-test turned out to be significant.
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Results for the complete data set using 5 ratios
accuracy sCPRO t-test

Values test set is training set before pruning 91.80% 5.5227 9.2346
Values test set is training set after pruning 81.97% 5.5227 7.0618
Leave-one-out cross-validation 79.51% 5.5227 6.5186

Table 5.14: Test results for the complete data set using 5 ratios. (Where sCPRO is the
standard deviation)

Test results using 11 financial ratios

The tables below show the results for the same data set, the only difference is the
number of financial ratios used, 11 instead of 511. The prediction accuracy for the
leave-one-out cross-validation with these 11 ratios is 78.13%, where the t-test again
turned out to be significant.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 59 2 61
Non-Bankrupt 4 57 61
All 63 59 122

Table 5.15: CART accuracy matrix for the complete data set before pruning, using 11
ratios..

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 53 8 61
Non-Bankrupt 14 47 61
All 67 55 122

Table 5.16: CART accuracy matrix for the complete data set after pruning, using 11
ratios.

11See table 4.3
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Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 53 8 61
Non-Bankrupt 13 48 61
All 66 56 122

Table 5.17: CART accuracy matrix for the complete data set using leave-one-out cross-
validation with 11 financial ratios.

Results for the complete data set using 11 ratios
accuracy sCPRO t-test

Values test set is training set before pruning 95.08% 5.5227 9.9589
Values test set is training set after pruning 81.97% 5.5227 7.0618
Leave-one-out cross-validation 78.13% 5.5227 6.2130

Table 5.18: Test results for the complete data set using 11 ratios. (Where sCPRO is the
standard deviation)

5.2.2 CART test results for the data set consisting of 96 companies

This subsection expounds the results for the adjusted data set, the composition of this
subsection is exactly the same as the previous subsection. Figures 5.3, 5.4, E.11 and
E.12 show that, just as with the total data set, the number terminal nodes which min-
imize the error is 2. The prediction accuracy for the leave-one-out cross-validation is
79.17% and 78.13% respectively when using 5 or 11 financial ratios.

Figure 5.3: Best number of terminal nodes for the
tree using the financial ratios introduced by Altman,
when using the adjusted data set. Shows the rela-
tionship between the number of terminal nodes and
the residual variance.

Figure 5.4: Best number of terminal nodes for the
tree using the 11 financial ratios defined in table 4.3,
when using the adjusted data set. Shows the rela-
tionship between the number of terminal nodes and
the residual variance.
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Test results using 5 financial ratios

The accuracy of the leave-one-out cross-validation for this test is 79.17%.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 50 5 55
Non-Bankrupt 1 40 41
All 51 45 96

Table 5.19: CART accuracy matrix for the adjusted data set before pruning, using 5
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 49 6 55
Non-Bankrupt 7 34 41
All 56 40 96

Table 5.20: CART accuracy matrix for the adjusted data set after pruning, using 5
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 44 11 55
Non-Bankrupt 9 32 41
All 53 43 96

Table 5.21: CART accuracy matrix for the adjusted data set using leave-one-out cross-
validation with 5 financial ratios.

Results for the adjusted data set using 5 ratios
accuracy sCPRO t-test

Values test set is training set before pruning 93.75% 4.8979 8.3667
Values test set is training set after pruning 86.46% 4.8979 6.9375
Leave-one-out cross-validation 79.17% 4.8979 5.5083

Table 5.22: Test results for the adjusted data set using 5 ratios. (Where sCPRO is the
standard deviation)
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Test results using 11 financial ratios

The last test results for this report are shown in this paragraph. The accuracy of the
leave-one-out cross-validation is 78.13%, which is acceptable but not astonishing.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 55 0 55
Non-Bankrupt 6 35 41
All 61 35 96

Table 5.23: CART accuracy matrix for the adjusted data set before pruning, using 11
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 49 6 55
Non-Bankrupt 7 34 41
All 56 40 96

Table 5.24: CART accuracy matrix for the adjusted data set after pruning, using 11
ratios.

Predicted group membership
Actual Group Membership Bankrupt Non-Bankrupt All
Bankrupt 42 13 55
Non-Bankrupt 8 33 41
All 50 46 96

Table 5.25: CART accuracy matrix for the adjusted data set using leave-one-out cross-
validation with 11 financial ratios.

Results for the adjusted data set using 11 ratios
accuracy sCPRO t-test

Values test set is training set before pruning 93.75% 4.8979 8.3667
Values test set is training set after pruning 86.46% 4.8979 6.9375
Leave-one-out cross-validation 78.13% 4.8979 5.3042

Table 5.26: Test results for the adjusted data set using 11 ratios. (Where sCPRO is the
standard deviation)
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5.3 Comparison and summary

The following tables show the difference in prediction accuracy for all tested models.
The Discriminant Analysis with the adjusted data set shows the best results, although
the CART models show results which are more steady. CART shows significantly
better results for the complete data set, which indicates that CART models can handle
missing values more easily than discriminant analysis models12. From these results we
can conclude that the model proposed by Altman (1968) works quite accurate, 85.42%
is a relatively high percentage. Especially when we look at the quality of the data set,
as described in section 4.1.1, this percentage is surprisingly high. The results for the
CART models show respectable results as well. The fact that the results of the CART
models using 11 ratios did not surpass the models which only used 5 ratios confirm
how well and precise the 5 ratios were identified by Altman (1968). To compare our
results with other results, the article written by Rahimian et al.13 was used. This article
showed test results for five different techniques with accuracies between 74.54% and
81.81%, which indeed are comparable to our results.

Results using Discriminant Analysis
accuracy sCPRO t-test

Complete data set 72.95% 5.5227 5.070
Adjusted data set 85.42% 4.8979 6.7334

Table 5.27: Leave-one-out cross-validation test results for both data sets using Dis-
criminant Analysis. (Where sCPRO is the standard deviation)

Results using Classification and Regression Trees
accuracy sCPRO t-test

Complete data set 5 ratios 79.51% 5.5227 6.5186
Complete data set 11 ratios 78.13% 5.5227 6.2130
Adjusted data set 5 ratios 79.17% 4.8979 5.5083
Adjusted data set 11 ratios 78.13% 4.8979 5.3042

Table 5.28: Leave-one-out cross-validation test results for both data sets using CART.
(Where sCPRO is the standard deviation)

12This was already mentioned on forehand as a strength of decision trees techniques on page 19.
13Source of information: Trippi and Turban (1996)
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

This report was devoted to bankruptcy prediction using CART models. In order to
construct an accurate model, the “bankruptcy” event had to be stated precisely. Bank-
ruptcies became common events since the economical depression of 1930. Bankrupt-
cies have negative effects on company shareholders, creditors, employees, customers
and even on national economies. For this reason bankruptcy prediction models were
developed over the years. The Z-score model introduced by Altman (1968), which
is based on discriminant analysis, is described in most literature as the most common
used model for this problem.

The goal of this report was to accomplish a benchmark between a CART model and
the Z-score model based on the financial input ratios as proposed by Altman (1968).
The data set used for this report consisted of 122 companies, which all were or still
are listed on the Amsterdam Stock Exchange. 61 of these companies went bankrupt
during the period 1945-1999. The other half of the data set consists of 61 “matched”
companies, which means that these companies are from the same industry, have the
same size and were listed in the same period. The main problem of this data set is the
fact that the time period is far to long. Financial situation can have complete different
effects in different periods. Unfortunately each observation had to be treat similarly.
This resulted in poorer or less reliable prediction power of our prediction models.
Besides that, the data set struggled with a lot of missing values. For that reason 26
companies had to be deleted from the data set in order get a proper useful data set.

The Z-score model showed an accuracy of 85.42%, the CART model did not reach
more than 79.17% prediction accuracy. Nevertheless both accuracies showed relatively
accurate results, especially when we take the moderately poor data set into account.
Above all this report showed the power of the Z-score model for this problem, and
also proved the easiness to construct this model. For that reason it is very comprehen-
sible that this model is so widely used over the past few decades for this prediction
problem. The CART models produced for this report showed poorer results, but on the
other hand they have a lot of potential. The construction process of CART models is
harder to understand than the construction process of the Z-score model, although the
output models are simple to read and give a helpful visual portrait of the classification
problem.

54



6.2 Future research

There are three main issues for future research:

1. In this report most of the so far used bankruptcy prediction models were dis-
cussed. Subsection 2.2.2 presented a history/literature review for these models.
Most of these models were based on the ideas of Beaver (1966), others were
based on Artificial Intelligence (AI). These AI models are relatively new within
the world of bankruptcy prediction, although a lot of these models show per-
fect characteristics for these problems. Future research about the quality of AI
models for bankruptcy prediction could point out when to use which model.

2. CART is a classification technique which can function directly as a model, or can
be used for structure identification for other techniques. They can perfectly iden-
tify the most relevant input variables for models which uses other techniques. A
fuzzy system, also an AI technique, is a perfect example where the identification
of these most relevant input variables is very helpful. Fuzzy systems prefer to
have only a few input variables. The most important variables identified by the
CART models, constructed for this report, can act as the input variables for new
research for fuzzy systems for bankruptcy prediction.

3. Most of the discussed techniques for bankruptcy prediction also work for bond
rating. Bond rating more a less is an expansion to bankruptcy prediction. Bond
rating is about the chance that a firm can go bankrupt, therefore the addition of a
probability parameter can turn these bankruptcy prediction models into bond rat-
ing models. A combination of a CART model, for input variable identification,
and probabilistic fuzzy systems can be an excellent topic for future research.
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Appendix A

Appendix A: Tables

A.1 Beaver’s list of ratios tested

Figure A.1: List of ratios tested by Beaver (1966). The component of these ratios
are defined in the following manner: cash flow - net income plus depreciation, deple-
tion, and amortization; net worth - common stockholders’ equity plus deferred income
taxes; cash - cash plus marketable securities; quick assets - cash plus accounts receiv-
able; working capital - current assets minus current liabilities; fund expenditures for
operations - operating expenses minus depreciation, depletion, and amortization; and
defensive assets - quick assets.
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Appendix B

Appendix B: Algorithms

B.1 Recursive Partitioning Algorithms

B.1.1 ID3 algorithm

ID3, which stands for Interactive Dichotomizer 3, is a recursive partitioning algorithm
developed by Quinlan (1986). The central question, as mentioned before in section
2.2.2, in the ID3 algorithm is selecting the variable that is most useful for classifying
examples1. Information gain, is a statistical property term used to measure how well a
variable separates the training examples. Entropy, a measure to describe the disorder
in data, is used to describe information gain precisely. Entropy is used to assess the
information value of each variable to develop the optimum splitting point for each
variable. The variable which causes the highest reduction in entropy will be selected as
the splitting point variable. This splitting point will partition the dataset into subsets.
The same procedure will repeat recursively, with the variables left, until no feasible
partitioning is possible. The algorithm thus creates a decision tree, where every node
in the tree is divided into two branches which will lead to a leaf. This leaf has a label
which can be seen as the dependent variable. The formula for entropy is:

Entropy(S) ≡
c∑

i=1

−pi log2 pi (B.1)

Given a collection S, consisting of positive and negative examples, where n is the
number of possible classes, in the scope of this report c = 2 (i = 1 ⇒ bankrupt, and
i = 2⇒ nonbankrupt), and pi is the proportion of S belonging to class i.

So far we have calculated the entropy, which characterizes the impurity of the
training examples in the dataset. Now we need a quantitative way of seeing the effect
of splitting the dataset with a certain variable. We can use a measure called information
gain, which calculates the reduction in entropy that would result on splitting the data
on an attribute, A.

Gain(S, A) ≡ Entropy(S)−
∑

υεV alues(A)

|Sυ|
|S|

Entropy(Sυ) (B.2)

1this section is based on Mitchell (1997) and McKee and Greenstein (2000)
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where V alues(A) is the set of all possible values for attribute A, and Sυ is the subset
of S for which attribute A has value υ, so mathematically Sυ = {sεS|A(s) = υ}. The
first part of the information gain formula (B.2) is the entropy for the total collection
S, the second part is the expected entropy after partitioning collection S into subsets
using attribute A. This expected entropy is the sum of the of entropies of all the subsets
Sυ, weighted by the fraction of examples |Sυ |

|S| that belongs to Sυ. To summarize the
ID3 algorithm2:
——————————————————————————————————
ID3(Examples, Target Attribute, Attributes)
Examples are the training examples. Target Attribute is the attribute whose value is
to be predicted by the tree. Attributes is a list of other attributes that may be tested
by learned decision tree. Returns a decision tree that correctly classifies the given
examples.

• Create Root node for the tree

• If all Examples are positive, return the single-node tree Root, with label = +

• If all Examples are negative, return the single-node tree Root, with label = -

• If Attributes is empty, return the single-node tree Root, with label = most com-
mon value of Target Attribute in Examples

• Otherwise Begin

– A← the attribute from Attributes that best3 classifies Examples

– The decision attribute for Root← A

– For each possible value, υi, of A,

∗ Add a new tree branch below Root, corresponding to the best A = υi

∗ Let Examplesυi be the subset of Examples that have value υi for A

∗ If Examplesυi is empty
· Then below this new branch add the leaf node with label = most

common value of Target Attribute in Examples
· Else below this new branch add the subtree ID3(Examplesυi, Tar-

get Attribute, Attributes - {A})

• End

• Return Root

——————————————————————————————————

2literally copied from Mitchell (1997) page 56
3with the highest information gain as defined in equation B.2
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B.2 Artificial Neural Networks

B.2.1 Backpropagation algorithm

Error propagation towards the input nodes - backpropagation - is by far the most pop-
ular training algorithm for ANNs.4 It is only applicable in the case of continuous,
differentiable activation functions like the logistic function. The ’net input’ xj of a
node j is defined as the weighted sum of of the incoming signals plus a bias term.

xj = xT
j · wj , (B.3)

where xj is the vector of inputs and wj is the vector of weights. The unit’s output is
then computed by using:

f(xj) = f(x) =
1

1 + e−xj
(B.4)

First a squared error measure for the pth input-ouput pair is defined as

Ep =
∑

k

(dk − xk)2, (B.5)

where dk is the desired output for node k and xk is the actual output for node k when
the input part of the pth data pair is presented. To find the gradient vector, an error
term εi for node i is defined as

εi =
∂+Ep

∂xi
(B.6)

By the chain rule, the recursive formula for εi can be written as

εi =

{
−2(di − xi)∂xi

∂xi
= −2(di − xi)xi(1− xi) if node i is a output node,

∂xi
∂xi

=
∑

j,i<j
∂+Ep

∂xi

∂xi
∂xi

= xi(1− xi)
∑

j,i<j εjwij otherwise,
(B.7)

Next, the weights are updated using

∆w = −η
∂+E

∂w
= −η∇wE, (B.8)

where E =
∑

p Ep.
This algorithm effectively minimizes the sum of squared errors Ep and therefore

it creates the best possible model, given the training data and the chosen network
structure.

4This paragraph is based on Jang et al. (1997)
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B.3 Genetic Algorithm

Genetic algorithms are stochastic derivative free optimization methods based on the
evolutionary theory of Darwin. The first research about these GAs was done by Hol-
land (1992). Some of the advantages of GAs are discussed in section B.3.1, in this
section some of the terms commonly used in GAs or equivalent techniques will be
explained.

Chromosome A bit string which represent one possible solution.

Population A pool of chromosomes. GAs work with several chromosomes (possible
solutions) simultaneously to increase the speed and to create offsprings for the
new population.

Generation Each generation creates a new population. So every generation exists of
one population which main role is to evaluate to a new population.

Fitness When a new population is created all chromosomes are evaluated. This evalu-
ation simply means that the bit string, chromosome, is evaluated by its objective
function.

Elitism Elitism is a form of selection. A small percentage of a population immediately
flows to the next generation. Only the most fit chromosomes are allowed to do
this, so only the elitism percentage part of the current population.

Selection The ones which will participate in creating the offspring for the next gener-
ation. Only the ones with high fitness will participate.

Crossover Crossover comes along in the part where the offspring is created. Chromo-
somes, which are not fit enough for the elitism percentage will be joined together
with other chromosomes. (See figure B.1 for visual explanation)

Mutation When crossover does not accomplish the best solution in the solution space,
for example a local minimum/maximum instead of a global minimum/maximum,
the mutation operator can produce the satisfactory solution. It randomly mutate
(flips) a bit in the bit string so a new chromosome will be the result.(see figure
B.2 for a visual explanation)
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Figure B.1: One-point and 2-points crossover operators within GAs

Figure B.2: Mutation operator within GAs

B.3.1 The algorithm

The summary of a standardized GA:5 6

——————————————————————————————————
GA(Fitness, Fitness threshold, p, r, m)
Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitness threshold: A threshold specifying the termination criterion.
p: The number of hypothesis to be included in the population.
r: The fraction of the population to be replaced by Crossover at each step.
m: The mutation rate.

• Initialize population: P← Generate p hypothesis at random

• Evaluate: For each h in P , compute Fitness(h)

• While [maxh Fitness(h)] ¡ Fitness threshold do
Create a new generation Ps:

1. Select: Probabilistically select (1 − r)p members of P to add to Ps. The
probability Pr(hi) of selecting hypothesis hi from P is given by

5literally copied from Mitchell (1997) page 251
6see figure B.3 for a visualization of a standardized GA
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Pr(hi) =
Fitness(hi)∑p

j=1 Fitness(hj)

2. Crossover: Probabilistically select r·p
2 pairs of hypothesis from P , accord-

ing to Pr(hi) given above. For each pair, 〈h1, h2〉, produce two offspring
by applying the Crossover operator. Add all offspring to Ps.

3. Mutate: Choose m percent of the members of Ps with uniform probability.
For each, invert one randomly selected bit in its representation.

4. Update: P ← Ps

5. Evaluate: For each h in P , compute Fitness(h)

• Return the hypothesis from P that has the highest fitness.

——————————————————————————————————

Figure B.3: Visualization of a standardized GA, copied from http://www.ece.
concordia.ca/∼kharma/ResearchWeb/html/research/ayo.html
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Appendix C

Appendix C: Data set

C.1 Lists of bankrupt and non-bankrupt firms
1

Bankrupt firms Presumably bankrupt Non-bankrupt firms
C.V. Tieleman & Dros 1954 N.V. Hero Conserven Breda
Fridorfabrieken 1957 N.V. Haarlemsche Machinefabriek v/h

Gebr. Figee
Klinker Isoliet B.V. 1957 N.V. Maats. Tot Expl. Van Steenfab-

rieken Udenhout
Ned. Kaiser-Frazer fabrieken NV 1959 N.V. Machinefabriek Breda voorheen

Backer & Rueb
N.V. Allan & Co. Meubelen en Spoor-
wegmaterieel

1959 Orenstein en Koppel Spoorwegma-
terieel

Arch N.V. 1964 Landr & Glinderman N.V.
Motorenfabriek Pluvier N.V. 1964 N.V. Gazelle Rijwelfabriek
Ubbink-Davo N.V. 1964 Kon. Fabr. Diepenbroek & Reigers

N.V., Dru.
N.V. Verffabriek Avis 1966 Varossieau & Cie N.V.
Tricotagefabrieken v/h Frans Beeren &
Zn. N.V.

1967 N.V. Stoomspinnerij Twenthe

Kunstzijdespinnerij Nijma N.V. 1967 N.V. Kon. Fabr. Van Verbandstoffen
Utermohlen & Co.

Mulder-Vogem N.V. 1969 N.V. Kon. Metaalwaren Fabr. v/h J.N.
Daalderop & Zonen

Table C.1: List of companies used for the data set of this report.

1This data set is created by Caljé (2000)
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Bankrupt firms Presumably bankrupt Non-bankrupt firms
Hoogestraten Conserven N.V. 1969 Klene’s Suikerwerkfabrieken N.V.
Entcomayer Handelsmaatschappij N.V. 1970 Hagemeijer Handelsmaatschappij
A.N. de Lint’s beheermaatschappij
N.V.

1970 Mees bouwmaterialen N.V.

Tricobest N.V. Kousenfabrieken 1971 N.V. Kon. D.S. van Schuppen & Zonen
N.V. Veneco 1972 N.V. Kon. Ned. Fabr. van Wollen

dekens v/h Zaalberg
Kon. Ned. Textiel Unie N.V. 1972 Hatma-texoprint N.V.
Gebr. Gerzon’s Modemagazijnen 1973 N.V. Kemo Hunkemoller Lexis
N.V. Gerofabriek 1973 N.V. Kon. Ned. Fabr. van Kempen &

Begeer
Machinefabriek Reineveld N.V. 1973 N.V. Kon. Ned. Machinefabriek v/h

E.H. Begemann
N.V. Ver. Ned. Kleermakerijen Gebr.
Ibelings

1974 George Droge Textiel N.V.

Batava Margarine Fabrieken (Batava
Marg. Works)

1975 Kwatta International N.V.

Enkes N.V. 1975 VMF Stork N.V.
Verenigde bedrijven Nederhorst N.V. 1975 Bredero N.V.
NV Kon. Delftsche Fabrk. De Porce-
leyne Fles

1976 Schuttersveld N.V.

Alg. Vruchten Import Maatsch.
(AVIM N.V.)

1977 A.L. van Beek N.V.

Ver. Ned. Tapijtindustrie (VENETA)
N.V.

1977 Tapijtfabriek Desseaux N.V.

Vulcaansoord N.V. 1977 Netam N.V.
N.V. Kon. Ned. Grofsmederij 1978 Koninklijke Hoogovens N.V.
Koninklijke Scholten-Honig N.V. 1978 De erven de Wed. J. Van Nelle N.V.
Noordelijke Industrie voor Vezelverw-
erking N.V.

1979 Drentsch Overijselsche Houthandel
N.V.

Ned. Bontweverij N.V. 1980 Leidsche Wolspinnerij

Table C.2: List of companies used for the data set of this report.
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Bankrupt firms Presumably bankrupt Non-bankrupt firms
Vandervliet-Werning Beheer N.V. 1980 Bam Holding N.V.
Duikers Apparatenfabriek 1981 Batenburg N.V.
G. Dikkers & Co. N.V. 1981 Grasso’s Koninklijke Machinefab-

rieken N.V.
Asselbergs Holland N.V. 1981 VMF Stork N.V.
Papierfabrieken van Gelder & Zn. N.V. 1981 Kon. Ned. Papierfabrieken N.V. (KNP)
Bergos N.V. 1982 Tapijtfabriek Desseaux N.V.
OGEM Holding N.V. 1982 HBG
Vihamij Buttinger N.V. 1982 Nedap N.V.
Rijn-Schelde-Verolme N.V. (RSV) 1983 IHC Holland N.V.
N.V. Kon. D.S. van Schuppen & Zonen 1986 Gamma
Rademakers 1986 NAEFF
Leidsche Wolspinnerij N.V. 1987 Macintosch
Verenigde bedrijven Bredero N.V. 1987 HBG
Textlite Holding N.V. 1990 De Drie Electronics
Chamotte Unie 1991 ASR
Melia 1991 Center Parcs
Air Holland N,V, 1991 KLM
Infotheek Groep N.V. 1991 Volmac
Medicopharma N.V. 1991 Norit N.V.
Homburg Holding N.V. 1992 Alanheri
HCS Technology NV 1992 Getronics N.V.
United Dutch 1993 Burgman Heybroek
Verto 1993 Twentsche kabel N.V.
DAF N.V. 1993 DSM
Palthe N.V. 1993 Holland Colours N.V.
Berkel’s Patent N.V. 1993 NKF
van Besouw N.V. 1995 Gamma N.V.
Wyers Beheer N.V. 1995 Blydenstein Willink N.V.
Fokker N.V. 1996 Schuttersveld N.V.
Tulip Computers N.V. 1998 LCI Technology N.V.

Table C.3: List of companies used for the data set of this report.

C.2 Financial statements

C.2.1 Balance sheet
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C.2.2 Profits & losses account

Consolidated profit & losses account (in thousands of NLG)
Period 1991 1990 1989 1988 1987

Net sales (excluding turnover tax) 135808 134422 110992 81074 59770

Cost of goods sold

Gross margin 135808 134422 110992 81074 59770

Wages and salaries 17075 13848 12496 8312 6825

Operating costs 121757 102272 77169 60053 42053

Operating income (EBITDA) -3024 18302 21327 12709 10892

Depreciation 9169 5725 4492 6189 5971

Income from equity participations

Interest expenses 4797 2231 2435 1495 1365

Result on ordinary activities -16990 10346 14400 5025 3556

Extraordinary profits and losses: provisions 32014 1114

Other extraordinary profits and losses

Result before tax -49004 10346 14400 5025 2442

Income tax expense -7242 3073 4169

Result after tax -41762 7273 10231 5025 2442

Minority interest

Net result -41762 7273 10231 5025 2442

Table C.5: Profit & losses account Air Holland.
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Appendix D

Appendix D: Scatters and plots

D.1 Discriminant analysis

D.1.1 Bivariate scatterplots between the five input variables for the Alt-
man model
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Figure D.1: Bivariate scatterplots for complete data set between our five variables,
along with a univariate histogram for each variable.(Red is Bankrupt, green in Non-
Bankrupt)
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Figure D.2: Bivariate scatterplots for adjusted data set between our five variables,
along with a univariate histogram for each variable. (Red is Bankrupt, green in Non-
Bankrupt)
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D.1.2 Multivariate plots for the model based on the variables used by
Altman

Figure D.3: Multivariate plot for complete data set. In this plot, the coordinate axes
are all laid out horizontally, instead of using orthogonal axes as in the usual Cartesian
graph. Only the median and quartiles (25% and 75% points) for each group are shown.
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Figure D.4: Multivariate plot for adjusted data set. In this plot, the coordinate axes
are all laid out horizontally, instead of using orthogonal axes as in the usual Cartesian
graph. Only the median and quartiles (25% and 75% points) for each group are shown.
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Appendix E

Appendix E: Classification and
Regression Trees

Figure E.1: Maximum tree for the complete data set using 5 ratios.
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Figure E.2: Maximum tree for the complete data set using 11 ratios.
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Figure E.3: Tree for the complete data set using 5 ratios. For this tree the impure nodes
must have 10 or more observations to be split
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Figure E.4: Tree for the complete data set using 11 ratios. For this tree the impure
nodes must have 10 or more observations to be split
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Figure E.5: Pruned tree for the complete data set using 5 ratios
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Figure E.6: Pruned tree for the complete data set using 11 ratios
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Figure E.7: Maximum tree for the adjusted data set using 5 ratios.

82



Figure E.8: Maximum tree for the adjusted data set using 11 ratios.

83



Figure E.9: Tree for the adjusted data set using 5 ratios. For this tree the impure nodes
must have 10 or more observations to be split.
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Figure E.10: Tree for the adjusted data set using 11 ratios. For this tree the impure
nodes must have 10 or more observations to be split.
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Figure E.11: Pruned tree for the adjusted data set using 5 ratios
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Figure E.12: Pruned tree for the adjusted data set using 11 ratios
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