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Abstract 
 
 

Decision tree learning is one of the most widely used and practical methods for 

inductive inference. It is a method for approximating discrete-valued target functions, 

in which the learned function is represented by a decision tree. In the past, ID3 was 

the most used algorithm in this area. This algorithm is introduced by Quinlan, using 

information theory to determine the most informative attribute. ID3 has highly 

unstable classifiers with respect to minor perturbation in training data. Fuzzy logic 

brings in an improvement of these aspects due to the elasticity of fuzzy sets formalism. 

Therefore, some scholars proposed Fuzzy ID3 (FID3), which combines ID3 with 

fuzzy mathematics theory. In 2004, another methodology Probabilistic Fuzzy ID3 

(PFID3) was suggested, which is a combination of ID3 and FID3. In this thesis, a 

comparative study on ID3, FID3 and PFID3 is done.  
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I: Introduction 
 

 

We often meet decision-making problems in our daily life or working environment.  

Sometimes it is very difficult for us to make good decision. In practice, we usually use 

our past experiences to make a decision. We can see these past experiences as a form 

of performing experiments to come to a correct decision. However, executing 

experiments costs time and money. Fortunately, the developments of computer 

technologies and automatic learning techniques can make this easier and more 

efficient. In the domain of machine learning where it always lets computers decide or 

come up with suggestions for the right decision, there exist many approaches of 

decision making techniques, such as decision trees, artificial neural networks and 

Bayesian learning. This thesis focuses on the decision tree approach to solve decision-

making problems. 

 

There exist many methods to do decision analysis. Each method has its own 

advantages and disadvantages. In machine learning, decision tree learning is one of 

the most popular techniques for making classifications decisions in pattern 

recognition.  

 

The approach of decision tree is used in many areas because it has many advantages 

[17]. Compared with maximum likelihood and version spaces methods, decision tree 

is the quickest, especially under the condition that the concept space is large. 

Furthermore, it is easy to do the data preparation and to understand for non-technical 

people. Another advantage is that it can classify both categorical and numerical data.  
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The decision tree has been successfully applied to the areas of Financial Management 

[23] [24] [25](i.e. future exchange, stock market information, property evaluation), 

Business Rule Management [26](i.e. project quality analysis, product quality 

management, feasibility study), Banking and Insurance [27](i.e. risk forecast and 

evaluation), Environmental Science (i.e. environment quality appraisal, integrated 

resources appraisal, disaster survey) [19][21](i.e. medical decision making for making 

a diagnosis and selecting an appropriate treatment), and more.  

 

A disadvantage of decision tree is its instability.  Decision tree is recognized as highly 

unstable classifier with respect to minor perturbations in the training data [29]. The 

structure of the decision tree may be entirely different if some things change in the 

dataset.  To overcome this problem, some scholars have suggested Fuzzy Decision 

Tree (e.g. FuzzyID3) [8][9][12][13][15] by utilizing the fuzzy set theory to describe 

the connected degree of attribute values, which can precisely distinguish the deference 

of subordinate relations between different examples and every attribute values [32]. 

 

In the beginning, Fuzzy ID3 is only an extension of the ID3 algorithm achieved by 

applying fuzzy sets. It generates a fuzzy decision tree using fuzzy sets defined by a 

user for all attributes and utilizes minimal fuzzy entropy to select expanded attributes. 

However, the result of this Fuzzy ID3 is poor in learning accuracy [8] [12]. To 

overcome this problem, two critical parameters: fuzziness control parameter rθ  and 

leaf decision threshold nθ have been introduced. Besides the minimum fuzzy entropy, 

many different criterions have been proposed to select expanded attributes, such as the 

minimum classification ambiguity, the degree of the importance of attribute 

contribution to the classification, etc.  [12] 
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Recently, an idea of combining fuzzy and probabilistic uncertainty has been discussed. 

The idea is to combine statistical entropy and fuzzy entropy into one notation termed 

Statistical Fuzzy Entropy (SFE) within a framework of well-defined probabilities on 

fuzzy events. SFE is a combination of well-defined sample space and fuzzy entropy. 

Using the notion of SFE, Probabilistic Fuzzy ID3 algorithm (PFID3) was proposed 

[6]. Actually, PFID3 is a special case of Fuzzy ID3. It is called PFID3 when the fuzzy 

partition is well defined.  

 

The performance of the introduced approach PFID3 has never been tested before; we 

do not know whether its performance is better than the performance of the other two 

algorithms. The purpose of this thesis is to compare the performances of the 

algorithms ID3, FID3 and PFID3 and to verify the improvement of the proposed 

approach PFID3 compared with FID3.  

 

The rest of this thesis is organized as follows:  in chapter II we analyze the ID3, Fuzzy 

ID3 and Probabilistic Fuzzy ID3 algorithms and compare them with some simple 

examples. In chapter III, we set up and simulate the experiments by using Iris Plant 

Dataset. Finally, in the last chapter we make the conclusion after discussing and 

analyzing the results.  
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II: Decision Tree (DT) 
 
  

1. ID3 

 
Interactive Dichotomizer 3 (ID3 for short) algorithm [1] is one of the most used 

algorithms in machine learning and data mining due to its easiness to use and 

effectiveness. J. Rose Quinlan developed it in 1986 based on the Concept 

Learning System (CLS) algorithm. It builds a decision tree from some fixed or 

historic symbolic data in order to learn to classify them and predict the 

classification of new data. The data must have several attributes with different 

values. Meanwhile, this data also has to belong to diverse predefined, discrete 

classes (i.e. Yes/No).  Decision tree chooses the attributes for decision making by 

using information gain (IG). [18]  

 

a Entropy and Information Gain 

 

ID3 [1] is the best-known algorithm for learning Decision Tree. Figure 2.1 

shows a typical decision-making tree. In this example, people decide to drive 

the car or take the public transportation to go to work according to the weather 

and the traffic situation. You can find the example data in Table 2.1.  

A result of the learning using ID3 tree is shown if Traffic Jam is long and wind 

is strong, then people will choose to take the public transportation. 
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Figure 2.1 Sample Decision Tree 

 

The basic ID3 method selects each instance attribute classification by using 

statistical method beginning in the top of the tree. The core question of the 

method ID3 is how to select the attribute of each pitch point of the tree. A 

statistical property called information gain is defined to measure the worth of 

the attribute. The statistical quantity Entropy is applied to define the 

information gain, to choose the best attribute from the candidate attributes. 

The definition of Entropy is as follows: 

∑ −=
N

i ii PPSH )(log*)( 2       (2.1) 

where iP  is the ratio of class iC  in the set of examples { },..., 21 kxxxS = . 

S
Cx

P ik
i

∈
= ∑        (2.2) 

For example, we assume that sample set S has 14 members altogether, 

including 9 positive examples and 5 negative examples. Then the Entropy of S 

is: 

940.0)14/5(log*)14/5()14/9(log*)14/9()5,9( 22 =−−=−+H  

Wind Temperatu

Traffic Jam 

Long Short 

No Yes 

Strong Weak 

Yes Yes 

Hot Cool Mild 

No 
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Below we discuss the entropy in the special case of the Boolean classification. 

If all the members of set S belong to the identical kind, then the entropy is null.  

That means that there is no classification uncertainty. 

H = −1* log2(1) − 0 * log2(0) = 0. 

If the quantity of the positive examples equals to the negative examples, then 

the entropy equals 1.  It means maximum uncertainty. 

1)5.0(log*5.0)5.0(log*5.0 22 =−−=H  

These results express separately that the sample set has no uncertainty (the 

decision is clear); or it is 100% uncertain for decision making. If the number 

of the positive examples is not the same as the negative examples, Entropy is 

situated between 0 and 1. The Figure 2.2 demonstrates the entropy relative to a 

Boolean classification. [7] 

 

Figure 2.2: The entropy function relative to a Boolean classification, as the proportion, 

P, of positive examples varies between 0 and 1. 
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To carry on the attribute expansion, which is based on the data of this sample 

set, we must define a standard measure: Information Gain. An information 

gain of an attribute is the final information content, which is a result of the 

reduction of the sample set Entropy after using this attribute to divide the 

sample set. The definition of an information gain of an attribute A relates to 

the sample set S is: 

)(
||
||

)(),(
)(

v
AValuesv

v SH
S
S

SHASG ∑
∈

−=     (2.3) 

Where: the weight 
S
S

W v
i =  is the ratio of the data with v attribute in the 

sample set. 

Just like the example above, the S set [9+, 5- ] contains in total 14 examples. 

There are 8 examples (6 positive examples and 2 negative examples) where 

wind is weak, and the rest with wind is strong. We can calculate the 

information gain of the attribute wind as follow: 

]5,9[ −+=S  

]2,6[)( −+=weakS  

]3,3[)( −+=strongS  

 

)()14/6()()14/8()(),( StrongHWeakHSHwindSG −−=  

                    = 0.940 - (8/14)*0.811 – (6/14)*1.0              

         = 0.048 
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Using the same principle, we may calculate the information gains of attributes. 

Temperature and Traffic-Jam: 

)(*)14/4()()14/6()()14/4()(),( coolHmildHhotHSHTemSG −−−=  

                   = 0.940 – (4/14) *1.0 – (6/14) * 0.918 – (4/14) * 0.811 

                              = 0.029             

)()14/7()()14/7()(),( ShortHLongHSHTrafficSG −−=     

            = 0.940 – (7/14)*0.985 – (7/14)*0.592 

            = 0.151 

As a result, we may choose the highest information content, which belongs to 

the variable Traffic-Jam, to carry on the first expansion of the classification.  

 

 

 

  

 

Figure 2.3: the first classification according to the highest Gain Traffic-Jam 

D1, D2, D3, D4, D8, D12, D14 D5, D6, D7, D9, D10, D11, D13  

Traffic Jam 

Lon Short



Bachelor Thesis (PFDT) 

269167 Liang Page 14 Erasmus University 

 

b The procedure to build the decision tree 

 

We take the original samples as the root of the decision tree.  As the result of 

the calculation above, the attribute Traffic Jam is used to expand the tree. 

Two sub-nodes are generated. The left and the right sub-node of the root 

separately contain the samples with the attribute value Long and Short. Left 

sub-node = [D1, D2, D3, D4, D8, D12, D14], right sub-node = [D5, D6, D7, 

D9, D10, D11, D13].  

 

We then delete the attribute Traffic-Jam of the samples in these sub-nodes 

and compute the Entropy and the Information Gain to expand the tree using 

the attribute with highest gain value. We repeat this process until the 

Entropy of the node equals null. At that moment, the node cannot be 

expanded anymore because the samples in this node belong to the same class. 

In the end we get the decision tree as in Figure 2.1 
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Following is the ID3 algorithm [7]: 

 

ID3 (Examples, Target-attribute, Attributes) 

Examples are the training examples. Target-attribute is the attribute whose value 

is to be predicted by the tree. Attributes are a list of other attributes that may be 

tested by the learned decision tree. Returns a decision tree that correctly 

classifiers the given examples. 

 Create a Root node for the tree 

 If all Examples are positive, return the single-node tree Root, with label = + 

 If all Examples are negative, return the single-node tree Root, with label = - 

 If Attributes is empty, return the single-node tree Root, with label = most 

common value of Target-attribute in Examples 

 Otherwise Begin 

 A ←  the attribute from Attributes that best* classifiers Examples 

 The decision attribute for Root ← A 

 For each possible value, v i , of A, 

 Add a new tree branch below Root, corresponding to the test A = v i  

 Let Examples vi  be the subset of examples that have value v i  for A 

 If Examples vi  is empty 

 Then below this new branch add a leaf node with label = most  

common value on value of Target-attribute in Examples  

    Else below this new branch add the sub-tree 

           ID3 (Examples, Target-attribute, Attributes-{A}) 

 End 

 Return Root  

*The best attribute is the one with highest information gain  
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2. Fuzzy ID3 

 
Fuzzy decision tree is an extension of classical decision tree and an effective 

method to extract knowledge in uncertain classification problems. It applies the 

fuzzy set theory to represent the data set and combines tree growing and pruning 

to determine the structure of the tree. 

 

a Sample data with Fuzzy representation 

 

In general, there exist two different kinds of attributes: discrete and continuous. 

Many algorithms require data with discrete value. It is not easy to replace a 

continuous domain with a discrete one. This requires some partition and 

clustering. It is also very difficult to define the boundary of the continuous 

attributes. For example, how do we define whether the traffic-jam is long or 

short? Can we say that the traffic-jam of 3 km is long, and 2.9 km is short? 

Can we say it is cool when the temperature is 9, and it is mild for 10?  

Therefore, some scholars quote the fuzzy concept in the method ID3, 

substitute the sample data with the fuzzy expression and form the fuzzy ID3 

method. Below is the example of the fuzzy representation for the sample data.  

 

We know that in most areas, the space of the temperature factor x is 

approximately between [-50, 50]. Then the membership functions of the fuzzy 

set hot, mild and cool xμ  may be defined separately as: 

Attribute Temperature: 

⎪
⎩

⎪
⎨

⎧
−=

0
15/1

1
)( xxcμ   

15
150

0

>
<=<=

<

x
x

x
     (2.4) 

    

0
75/

1
3/115/

0

)(
+−

−

⎪
⎪
⎪

⎩
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⎪

⎨

⎧

=
x

x
xmμ  
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x

     (2.5) 
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Figure 2.4: graphic representations of the membership function of Temperature. 

  

Also we can define the membership functions of Wind and Traffic-Jam. 

Attribute Wind: 

 

μw (x) =
1

2.5 − x /2
0

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

x < 3
3 <= x <= 5

x > 5
                  (2.7) 

 

μst (x) =
0

x /5 − 0.6
1

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

x < 3
3 <= x <= 8

x > 8
               (2.8) 
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Figure 2.5: graphic representations of the membership function of Wind. 

 

Attribute Traffic-Jam: 

μsh (x) =
1

1.5 − x /6
0

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

x < 3
3 <= x <= 9

x > 9
               (2.9) 

       

μ
l
(x) =

0
x /10 − 0.5

1

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

x < 5
5 <= x <=15

x > 15
               (2.10) 

 

 
Figure 2.6: graphic representations of the membership function of Traffic-Jam. 

 

As example above, we have partitioned the sample set into different intervals. 

The partition is complete (each domain value is belong to at lease one subset) and 

inconsistent (a domain value can be found in more than one subset).   

Example Traffic-Jam:   

If traffic-jam is 3 km, the value of the MF Long is null. 

If traffic-jam is 3 km, the value of the MF Short is one. 
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b Fuzzy Entropy and Information Gain  

 

Next, we have to calculate the fuzzy Entropy and Information Gain of the 

fuzzy data set to expand the tree. 

 

In this case, we get the same result of the entropy of the as ID3 

 
H f (S) = Hs(S) = 0.940  

 

The formulas of the entropy for the attributes and the Information Gain are a 

little bit different because of the data fuzzy expression. Their definitions are 

defined as follow respectively with the assumption dataset { },..., 21 jxxxS = : 

SS
ASH

N

j ijC

i

N

j ij
f

∑
∑

∑
=

−=
μμ

21
log),(             (2.11) 

 

  ∑ ⊆
−=

N

Av vfs
v

ff ASH
S
S

SHASG ),(*
||
||

)(),(              (2.12) 

 

where: ijμ  is the membership value of the thj  pattern to the thi class. 

     )(SH f presents the entropy of the set S of training examples in the node. 

      vS  is the size of the subset SSv ⊆ of training examples jx with v attribute. 

   S  presents the size of set S. 
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Now we do the calculations on the example set: 

 

 Information Gain of attribute Temperature 

918.06/2log*6/26/4log*6/4),( 22 =−−=cTemH f  

918.041.7/47.2log*41.7/47.241.7/94.4log*41.7/94.4),( 22 =−−=mTemH f  

991.07.2/5.1log*7.2/5.17.2/2.1log*7.2/2.1),( 22 =−−=cTemH f  

991.0*11.16/7.2918.0*11.16/41.7918.0*11.16/6940.0),( −−−=TemSG f  

   = 0.0098 

 

 Information Gain of attribute Wind 

852.09/5.2log*9/5.29/5.6log*9/5.6),( 22 =−−=wWH f  

998.01.2/1log*1.2/11.2/1.1log*1.2/1.1),( 22 =−−=sWH f  

06.0998.0*1.11/1.2852.0*1.11/9940.0),( =−−=WSG f  

 

 Information Gain of attribute Traffic-Jam 

995.009.2/13.1log*09.2/13.109.2/96.0log*09.2/96.0),( 22 =−−=lTH f  

779.081.7/8.1log*81.7/8.181.7/01.6log*81.7/01.6),( 22 =−−=sTH f  

1154.0779.0*9.9/81.7995.0*9.9/09.2940.0),( =−−=TSG f  

 

The same as the result of ID3, the information gain of the attribute Traffic Jam has 

the highest value. We use it to expand the tree. 
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c Define thresholds 

 

If the learning of FDT stops until all the sample data in each leaf node belongs 

to one class, it is poor in accuracy. In order to improve the accuracy, the 

learning must be stopped early or termed pruning in general. As a result, two 

thresholds are defined [8]. 

 

 Fuzziness control threshold rθ  

If the proportion of a data set of a class kC is greater than or equal to a 

threshold rθ , stop expanding the tree. 

For example:  if in sub-dataset the ratio of class 1 is 90%, class 2 is 10% 

and rθ  is 85%, then stop expanding. 

 Leaf decision threshold nθ  

If the number of a data set is less than a threshold nθ , stop expanding. 

For example, a data set has 600 examples where nθ  is 2%. If the number 

of samples in a node is less than 12 (2% of 600), then stop expanding. 

 

The level of these thresholds has great influences on the result of the tree. We 

define them in different levels in our experiment to find optimal values. 

 

Moreover, if there are no more attributes for classification, the algorithm does 

not create a new node. 
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d The procedure to build the fuzzy decision tree: [8] 

 

Create a Root node that has a fuzzy set of all data with membership value 1. 

With the result of the calculation above, we use the attribute Traffic-Jam to 

expand the tree. Generate two sub-nodes with the examples, where the 

membership values at these sub-nodes are the product of the original 

membership values at Root and the membership values of the attribute Traffic-

Jam. The example is omitted if its membership value is null.   

 

For example, for the left sub-node with attribute value Long, the membership 

value of data 1(D1) lμ  equals to 0.25. The new membership value of D1 in 

this node is 0.25. Below is the calculation: 

25.01*25.0* === oldlnew μμμ   

See the rest result in figure 2.7.   

 

Next we have to calculate the proportion of the class C k .  It is the quotient of 

the sum of membership values of class C k to the sum of all the membership 

values. For example, in the left sub-node, the proportion of class N is 

1.13/2.09=54%. The number of the dataset is 7. After that we compare the 

proportion and the number of dataset with rθ  and nθ . If they are smaller than 

rθ  and nθ  and if there are also attributes for classification, then we go further 

to create a new node. Repeat these processes until the stop conditions defined 

in b) are satisfied.  

 

For example, the proportion of the class Y in the right sub-node is 77%. If the 

user-defined fuzzy control parameter is 70%, we stop expanding this node. In 

this case, it means that if traffic Jam is short, the probabilities of Not-driving 

and Well-driving are 23% and 77% respectively.  
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MF TEM WIND T-J C MF TEM WIND T-J C

0.25 32 3 7.5 N 0.25 32 3 7.5 N

0.18 33 4.5 6.8 N 0.37 33 4.5 6.8 N

0.33 30 2.5 8.3 Y 0.12 30 2.5 8.3 Y

0.4 24 1.5 9 Y 0.87 3 2.5 3.8 Y

0.17 12 3 6.7 N 0.8 1 5 4.2 N

0.23 22 5 7.3 Y 1 8 4 2.7 Y

0.53 25 4 10.3 N 0.38 12 3 6.7 N

     0.92 -5 2 3.5 Y

     0.82 12 2.5 4.1 Y

     1 15 6 23 Y

     0.28 22 5 7.3 Y

     

 

1 32 5 2.6 Y

Class membership N: 1.13/2.09=54%       N: 1.8/7.81=23% 

Class membership Y: 0.96/2.09=46%       Y: 6.01/7.81=77% 

Figure 2.7 generated sub-tree of FID3 

 

Calculation of the class membership:  

 Left-node: 

  13.153.017.018.025.0 =+++=NC  

  96.023.04.033.0 =++=YC  

Total membership value: 1.13 + 0.96 = 2.09 

  Proportion of the class N: 54%. Proportion of the class Y: 46% 

 Right-node: 

=+++= 38.08.037.025.0nC 1.8 

=+++++++= 0.128.00.182.092.00.187.012.0YC 6.01 

Total membership value: 1.8+ 6.01= 7.81 

  Proportion of the class N: 23%. Proportion of the class Y: 77%. 

In this case, if rθ is 95%, then both of the nodes expand; if rθ is 75%, the left-

node expands and the right-node stops expanding.

 Traffic Jam 

Long Short
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Fuzzy ID3 Algorithm [8] 

 

1     Create a Root node that has a set of fuzzy data with membership value 1 

2     If a node t with a fuzzy set of data D satisfies the following conditions, then it is     

a leaf node and assigned by the class name 

 The proportion of a class C k  is greater than or equal to rθ ,  

       r

Ci

D
D θ≥

||
||   

 the number of a data set is less than nθ  

 there are no attributes for more classifications 

3   If a node D does no satisfy the above conditions, then it is not a leaf-node. And an 

new sub-node is generated as follow: 

 For A i ’s (i=1,…, L) calculate the information gain G(2.8), and select the test 

attribute A max that maximizes them. 

 Divide D into fuzzy subset D 1 , ..., D m  according to A max , where the 

membership value of the data in D j is the product of the membership 

value in D and the value of F jmax,  of the value of A max  in D. 

 Generate new nodes t 1 , …, t m  for fuzzy subsets D1 , ... , D m  and label the 

fuzzy sets F jmax,  to edges that connect between the nodes t j  and t 

 Replace D by D j  (j=1, 2, …, m) and repeat from 2 recursively. 
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e Reasoning with Fuzzy ID3 

  

We must start reasoning from the top node (Root) of the fuzzy decision tree. 

Repeat testing the attribute at the node, branching an edge by its value of the 

membership function ( μ ) and multiplying these values until the leaf node is 

reached. After that we multiply the result with the proportions of the classes in 

the leaf node and get the certainties of the classes at this leaf node. Repeat this 

action until all the leaf nodes are reached and all the certainties are calculated. 

Sum up the certainties of the each class respectively and choose the class with 

highest certainty [8]. 

 

We present the sample calculation by means of Figure 2.8. Each of tree node 

and leaf node represent the value of the MF of the attribute at the node and the 

proportion of each class at the node respectively. By using method called X-X-

+ [8], we have the result that the sample belongs to 1C  and 2C  with 

probabilities 0.355 and 0.645 respectively. These probabilities are complement. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

  Figures 2.8 Representing of fuzzy reasoning 

 0*4.*75.4.*6.*75.3.*0*75.5.*5.*25.9.*5.*25.1 ++++=C  = .355 

 1*4.*75.6.*6.*75.7.*0*75.5.*5.*25.1.*5.*25.2 ++++=C  = .645 

 121 =+ CC  
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3. Probabilistic Fuzzy ID3 

 

a Well-defined sample space 

 

Zadeh defines the probability of a fuzzy event as: the probability of a fuzzy 

event A, given probability density function )(xf , is found by taking the 

mathematical expectation of the membership function. [6] 

 

∫
∞

∞−
== ))(()()()( xEdxxfxAP AAr μμ             (2.13) 

 
For a discrete sample with outcomes 1x , 2x ,…, this formula reduces to 

 
))(()()()( xExfxAP Ai iiAr μμ == ∑                  (2.14) 

 
As we know, the sum of the probability of events in different situations, which 

occurs at the same time, is 1. Consider throwing a dice as an example of 

discrete events. The possible outcomes are 1, 2, 3, 4, 5 and 6. The probability 

of each situation is equal to 1/6, and the sum is 1. In the other words, 

regardless which point we may obtain, it is only possible to obtain one result a 

time. It is absolutely impossible to obtain two or more results simultaneously. 

If fuzzy events 1A , 2A …, nA  form a proper fuzzy partition in sample space X, 

it implies that 

 
1)(:x

1
=∀ ∑ =

N

i A x
i

μ                (2.15) 

 
Then the sum of the probabilities of the fuzzy events equals to one. All data 

points have equal weight.  

It is the same as the non-fuzzy events we mentioned above.  

 
1)(

1
=∑ =

N

i ir AP                     (2.16) 

The fuzzily partitioned sample having this property is termed well-defined 

sample space [6]. 

 



Bachelor Thesis (PFDT) 

269167 Liang Page 27 Erasmus University 

b Statistical Fuzzy Entropy (SFE) 

 

In the previous chapter we have already introduced the fuzzy events with well-

defined sample space and the Fuzzy Entropy. We combine the well-defined 

sample space and fuzzy entropy into statistical fuzzy entropy within a 

framework of well-defined probabilities on fuzzy events. We may get the 

formula of the Statistical Fuzzy Entropy (SFE).  

 

)))(((log)((
1 2∑ =

−=
C

c AcAsf xExEH
C

μμ                        (2.17) 

 

Now we apply the SFE into the Statistical Fuzzy decision trees. 

We generalize the Statistical Information Gain to the Statistical Fuzzy 

Information Gain by replacing the Entropy with SFE in formula (2.3).  

 

∑−=
i

isf
i

sf SH
S
S

SHASG )(
||
||

)(),(                    (2.18) 

 

To satisfy the condition of well-defined sample space, the sum of the 

membership function must be equal to 1. We fix the membership functions of 

the Fuzzy D3. We see that the membership grade of each event equals to 1 in 

figure 2.9-2.11. 
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Figure 2.9: membership function of Temperature.* 

 

 

 
Figure 2.10:  membership function of Wind. * 

 

 

 
Figure 2.11: membership function of Traffic-Jam.* 

 

 

 

                                                 
* See the formulas of the membership function in the appendix 
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In order to calculate the Entropies of hot, mild and cool, we firstly calculate  

Pr (h,Y) = Pr(Temperature = hot and Car driving = Yes) 

                         = 44.0
5.12.1

2.1
=

+
=

∑
∑

hot

hotyes

μ
μ

 

 

Similarly, we get Pr (h, N) = 1.5/2.7 = 0.56,  

Pr(m, Y) = 5.35/7.7 = 0.69, Pr(m, N) = 2.37/7.7 = 0.31,  

Pr(c, Y) = 2.47/3.6 = 0.69, Pr(c, N) = 1.13/3.6 = 0.31 

 

By using (2.5), we can calculate the entropy. 

99.056.0log*56.044.0log*44.0),( 22 =−−=TemSH hotsf  

89.031.0log*31.069.0log*69.0),( 22 =−−=TemSH mildsf  

89.069.0log*69.031.0log*31.0),( 22 =−−=TemSH coolsf  

 

Finally, by using (2.7), we find the Information Gain of the fuzzy variable 

Temperature: 

03.089.0*
14

6.389.0*
14

7.799.0*
14

7.2940.0),( =−−−=TemSGsf   

            

Similarly, we also calculate the Information Gain of the fuzzy variables Wind 

and Traffic. 

998.0*
14
75.4879.0*

14
25.9940.0),( −−=WindSGsf =0.02 

779.0*
14

8.7999.0*
14

2.6940.0),( −−=TrafficSGsf =0.06 



Bachelor Thesis (PFDT) 

269167 Liang Page 30 Erasmus University 

 

If we go further with the research, we find that the sub-tree of PFID3 is similar 

to FID3 after the first expansion. See figure 2.12 below: 

 

 

 

 

 

MF TEM WIND T-J C MF TEM WIND T-J C
0.75 32 3 7.5 N 0.25 32 3 7.5 N 

0.63 33 4.5 6.8 N 0.37 33 4.5 6.8 N 

0.88 30 2.5 8.3 Y 0.12 30 2.5 8.3 Y 

1 24 1.5 9 Y 0.87 3 2.5 3.8 Y 

0.13 3 2.5 3.8 Y 0.8 1 5 4.2 N 

0.2 1 5 4.2 N 1 8 4 2.7 Y 

0.62 12 3 6.7 N 0.38 12 3 6.7 N 

0.08 -5 5 3.5 Y 0.92 -5 2 3.5 Y 

0.18 12 5 4.1 Y 0.82 12 2.5 4.1 Y 

0.72 22 5 7.3 Y 1 15 6 23 Y 

1 25 4 10.3 N 0.28 22 5 7.3 Y 

     

 

1 32 2.5 2.6 Y 

 

Class membership N: 3.2/6.2=52%    N: 1.8/7.8=23% 

Class membership Y: 3.0/6.2=48%    Y: 6.0/7.8=77% 

Node D 1pf      Node D 2pf  

Figure 2.12 generated sub-tree of PFID3 

 

The calculations of the class membership values in left-node are as below: 

Total-MF = 0.75+0.63+…+1.0 = 6.2 

Total-MF(N) = 0.75+0.63+0.2+0.62+1.0=3.2 

Total-MF(Y) = 0.88+1.0+0.13+0.08+0.18+0.72=3.0 

MF( NC ) = 52% 

MF( YC ) = 48% 

Traffic Jam 

Long Short
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c The procedure to build the sample decision tree 

 

Except for the fuzzy representations of the input sample, the rest of the 

processes of PFID3 are the same as FID3. 

We can see that both of the right sub-nodes are the same because of the 

identical membership functions of the value Short. Let us analyze the left sub-

nodes. The node of FID3 is called D 1f  and that of PFID3 is called D 1pf . There 

are in total 11 samples in D 1pf  and 7 in D 1f . Because there are 4 membership 

values in D 1f  which is equal to null, FID3 has passed over them. In this case, 

the probabilities of these 4 samples are less than one. Also, it is possible that 

the probabilities of some examples are greater than one. It means that there is 

less than one situation for event A to happen in the same time. Just like the 

example ‘dice’ which we have explained above, it is not possible to have a 

possibility less than one. By applying well-defined sample spaces, this kind of 

problem does not occur.  

 

 

 

Probabilistic Fuzzy ID3 Algorithm  

 

1 Create a Root node that has a set of fuzzy data with membership value 1 

that fits the condition of well-defined sample space. 

2 Execute the Fuzzy ID3 algorithm from step 2 to end. 
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4. Comparing the algorithms among ID3, FID3 and PFID3 

 
Because FID3 and PFID3 are based on ID3, these three methodologies have 

similar algorithms. However, there also exist some differences. 

 

a Data representation:  

 

The data representation of ID3 is crisp while for FID3 and PFID3, they are 

fuzzy, with continuous attributes. Moreover, the membership functions of 

PFID3 must satisfy the condition of well-defined sample space. The sum of 

all the membership values for all data value ix  must be equal to 1. 

 

b Termination criteria:  

 

ID3: if all the samples in a node belong to one class or in other words, if the 

entropy equals to null, the tree is terminated. Sometimes, people stop 

learning when the proportion of a class at the node is greater than or equal to 

a predefined threshold. This is called pruning. The pruned ID3 tree stops 

early because the redundant branches have been pruned.  

 

FID3 & PID3: there are three criteria’s.  

1) If the proportion of the dataset of a class is greater than or equal to a  

 threshold rθ  

2) If the number of a data set is less than another threshold nθ  

3) If there are no more attributes at the node to be classified 

 

If one of these three criteria’s is fulfilled, the learning is terminated.  
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c Entropy 

 

 ID3:  

∑ −=
N

i ii PPSH )(log*)( 2  

 FID3 & PFID3:   

)))(((log)((
1 2∑ =

−=
C

c AcAsf xExEH
C

μμ  

 

d Reasoning 

 

The reasoning of the classical decision tree begins from the root node of the 

tree, and then branch one edge to test the attribute of the sub node. Repeat the 

testing until the leaf node is reached. The result of ID3 is the class attached to 

the leaf node.  

 

The reasoning of the fuzzy decision trees is different. It does not branch one 

edge, but all the edges of the tree. It begins from the root node through the 

branches to the leaf nodes until all the leaf nodes have been tested. Each leaf 

node has various proportions of all the classes. In other words, each leaf node 

has own certainties of the classes. The result is the aggregation of the 

certainties at all the leaf nodes. 

 

Let us see what the difference is among the results of the experiment in the 

next chapter.    

 

 



Bachelor Thesis (PFDT) 

269167 Liang Page 34 Erasmus University 

 

 

 

 

 

III:  Experiment and Analysis 
 

1. Purpose of the experiment 

 
In order to compare the performance of the three algorithms, we build the FID3 

and PFID3 tree models using Matlab and the ID3 model using WEKA. All the 

decision trees are pruned in order to get the accurate comparing results. 

      
 

2. Data set: Iris Plant Database 
 

The Iris plant dataset is applied to the experiment. The dataset is created by R.A. 

Fisher and perhaps it is the best-known database found in the pattern recognition 

literature. The dataset contains 3 classes of 50 instances each, where each class 

refers to a type of iris plant. There are in total 4 numerical attributes and no 

missing value in the dataset [11].  

 

Attribute Description  Class Description 

A1 Sepal length in cm  C1 Iris Setosa 

A2 Sepal width in cm  C2 Iris Versicolour 

A3 Petal length in cm  C3 Iris Virginica 

A4 Petal width in cm   

 

Table 3.1: Descriptions of the attributes        Table 3.2: Descriptions of the classes 
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3. Setup 
 

There is an internal classifier of ID3 in WEKA. We can do the experiment easily 

without having to program the ID3 by ourselves again. Therefore, we only focus 

on the setup of PFID3 and FID3. 

We program the FID3 and PID3 algorithms by using Matlab 7.1. Matlab is a high-

performance language for technical computing. It integrates computation, 

visualization, and programming in an easy-to-use environment where problems 

and solutions are expressed in familiar mathematical notation [16]. Matlab also 

has a special toolbox to handle the fuzzy programming: Fuzzy Logic Toolbox. 

That is why we choose it. 

 

First we have to normalize the dataset and then find the cluster centers of each 

class by using Matlab internal clustering function. The number of the clusters has 

a great effect on the result of the experiment. How to choose the correct number is 

not discussed here, and will be done in the future research. In this case, we cluster 

the dataset into 3 crowds because the dataset contains 3 classes. After the 

clustering, we get the 3 sets of cluster centers. Based on these cluster centers, we 

partition the dataset into 3 fuzzy classes (Low, Mid and High) by using the 

membership functions as below.  

 

Membership functions for method FID3: 

 

 Low: using Z-shaped curve membership function [14]. 

This spline-based function of x is so named because of its Z-shape. The 

parameters a and b locate the extremes of the sloped portion of the curve as 

given by: 
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Figure 3.1: Z-shape curve 

 

 Mid: using Gaussian curve membership function [21]. 

The symmetric Gaussian function depends on two parameters σ and c as given 

by:  

2

2

2
)(

σ
cx

eMF
−−

=                             (3.2) 

 
Figure 3.2: Gaussian curve 
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          c 
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 High: using S-shaped curve membership function [20]. 

 

This spline-based curve is a mapping on the vector x, and is so named 

because of its S-shape. The parameters b and c locate the extremes of the 

sloped portion of the curve. 
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Figure 3.3:  S-shape curve 
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Membership functions under condition well-defined sample space for method PFID3: 

 

 Low: using Z-shape membership function [14]. 

The membership function is identical to equation (3.1). 

 

 Mid: using Π-shaped curve membership function [28]. 

This spline-based curve is so named because of its Π shape. This membership 

function is evaluated at the points determined by the vector x. The parameters 

a and c are located at the both feet of the curve, while b is located at its top. 

See Figure 3.4. 

 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

>=

<=<=
+

+
<<=

<=<=
+

+
<=<=

<=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=

cx

cxcb

cbxb

bxba

baxa
ax

bc
xc

bc
bx
ab
xb

cb
ax

MF

2

2

2

2

0

2

21

21

2

0

2

2

2

2

                    (3.4) 

Figure 3.4: Π -shape curve 

 

 High: using S-shape membership function [20]. 

 The membership function is identical to equation (3.3). 
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4. Results of FID3 and PFID3: 

 
 Result of clustering  

 
Below is the table of the cluster centers.  

 
 A1 A2 A3 A4 

a 5.0036 3.4030 1.4850 0.25154 

b 5.8890 2.7612 4.3640 1.39730 

c 6.7749 3.0524 5.6467 2.05350 

 
Table 3.3: cluster centers 

 
We see that the order of center points of A1, A3 and A4 is ascend, whereas A2 

is not monotonic. In this case, we have to adjust the order of the cluster centers 

(a, b and c) when we apply the membership function to attribute A2. We get 

Table 3.4.  

 A1 A2 A3 A4 

a 5.0036 2.7612 1.4850 0.25154 

b 5.8890 3.0524 4.3640 1.39730 

c 6.7749 3.4030 5.6467 2.05350 

 
Table 3.4: adjusted cluster centers which applied in MF functions 

 
Table 3.5 presents the cluster centers and the standard deviation (SD) of the 

second cluster, which are applied to equation 3.2. In this case, it is not possible 

to calculate the fuzzy standard deviation (FSD) because the membership value 

of each data point needed for calculating the FSD, is not defined yet. 

Therefore, we partition the dataset average into 3 parts and calculate the SD of 

the second parts.  

 
 A1 A2 A3 A4 

c 5.88900 3.0524 4.36400 1.39730 

σ  0,51617 0.3138 0.46991 0.19775 

 
Table 3.5: adjusted cluster centers and standard deviation of the second cluster 
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 Result of Fuzzification 
 

By filling the cluster centers (a, b, c) of Table 3.4 in the predefined 

membership functions (equations 3.1, 3.3, 3.4) and applying the centers(c) 

and standard deviation ( σ ) of Table 3.5 to the equation 3.2, we get the 

graphics of the membership functions.  
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Figure 3.5 Graphic of MF with well-defined sample space by using cluster centers  
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Figure 3.6 Graphic of MF without well-defined sample space by using cluster centers  

 

Figure 3.5 and 3.6 are the graphic fuzzy representations of the attributes A1, 

A2, A3 and A4 under condition with and without well-defined sample space 

respectively. Y-axes is the value of the membership function, X-axes is the 

value of data ix . We see that the red and green lines (MF of High and Low) of 

Figure 3.5 and 3.6 are the same, only the blue lines (MF of Mid) are different. 

It is correct according to the predefined MF. Figure 3.5 shows that under the 

condition well-defined sample space, the sum of all membership values (∑ iμ ) 

equals to 1 for each point. 
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 Results of the experiment 

 
We define the splitting size as 2/3. The two thirds of the dataset are used as 

training dataset to train the algorithm. The rest of one third is the validation set 

in order to test the performance of the methodology. The experiments of FID3 

and PFID3 are repeated 9 times by using 9 pairs of thresholds.                              

In order to get the best performance and the global view of the average 

performance, we build 100 decision trees in each experiment with different 

random sample sets and tests them with the test set.  

 
The results of the experiments are given in Table 3.6 according to different 

threshold parameters rθ  and nθ . The program is run 100 times. Mean is the 

average hit rate performance of the experiments, in which each experiment 

uses different random selected training set and test set. SD is the standard 

deviation. Min and Max are respectively the minimum and maximum 

performance value of the experiments.  

 

The result shows that PFID3 performs better than FID3 in classification for all 

situations. The best performance of PFID3 is 100% under all kinds of 

conditions. In general, the method PFID3 performs well, smoothly and stably. 

The performances of PFID3 increase when the fuzzy control parameter 

decreases parameter increases. If we use the same nθ  and decrease rθ , the 

performance increases.  The best performance of PFID3 is 95% with rθ =0.80, 

nθ =0.1.   

 

The best performance of FID3 is 91.4% with rθ =0.80, nθ =0.1.  We can see 

that the performances are monotonic. Therefore, it is difficult to find a rule 

between the thresholds and the performances.  In general, FID3 performs 

better when rθ =0.80. 
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 rθ =0.95 
PFID3 FID3 nθ  

Mean SD Min Max Mean SD Min Max 
0.4 0.934 0.029 0.860 1.000 0.777 0.074 0.540 0.900 
0.2 0.932 0.042 0.780 1.000 0.779 0.075 0.540 0.940 
0.1 0.930 0.043 0.700 1.000 0.767 0.080 0.540 0.920 
 rθ =0.90 
 PFID3 FID3 
 Mean SD Min Max Mean SD Min Max 
0.4 0.945 0.034 0.860 1.000 0.771 0.086 0.580 0.940 
0.2 0.940 0.031 0.840 1.000 0.760 0.084 0.460 0.940 
0.1 0.942 0.026 0.880 1.000 0.769 0.076 0.580 0.940 
 rθ =0.80 
 PFID3 FID3 
 Mean SD Min Max Mean SD Min Max 
0.4 0.947 0.024 0.880 1.000 0.910 0.053 0.560 0.980 
0.2 0.949 0.026 0.880 1.000 0.898 0.071 0.560 0.980 
0.1 0.950 0.028 0.860 1.000 0.914 0.044 0.620 0.980 

 

Table 3.6 Performances of PFID3 and FID3 

 

 

 

 

 

 

 

 

 

       Figure 3.7: Sample structure of FID3 and PFID3 with rθ =0.80, nθ =0.1 
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5. Results of ID3 

 

The dataset is also split into 2 sub dataset, with 2/3 as the training set and 1/3 

as the test set. The termination criterion of the pruned ID3 tree is the minimum 

number of the data at the left-node. In order to compare the results with FID3 

and PFID3, we use the same level as that of the leaf decision parameter nθ . 

Below is the table summary with the best results: 

 

Min No of instances The same as nθ Hit rate 

5 0.1 0.922 

10 0.2 0.922 

20 0.4 0.941 

 

Tale 3.7: Summary table of ID3 

 

Below is the tree structure of ID3 under all the conditions mentioned above.  

 

 

 

 

 

 

 

          Figure 3.8: Tree structure of ID3  
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IV: Conclusion and Future Research 
 

Table 4.1 summarizes the average performances of FID3 and PFID3 and the 

best one from ID3.  In general, PFID3 performs the best, follows by ID3 and 

finally FID3. The best hit-rates are 94.7%, 94.9% and 95% under condition 

that nθ =0.1, nθ =0.2 and nθ =0.4 respectively.  

 

nθ  PFID3 FID3 ID3 

0.1 0.947 0.910 0.922 

0.2 0.949 0.898 0.922 

0.4 0.950 0.914 0.941 

 

Table 4.1: Summary table of performances 

 

First, we compare the results of PFID3 and ID3, the performance of PFID3 is 

always better. For nθ =0.1, ID3 is 0.025 worse than PFID3, while for nθ =0.2, it 

is 0.027 and for nθ =0.4, it is 0.009. Table 4.2 shows the percentage of how 

much ID3 is worse than PFID3. We conclude that applying the well-defined 

sample space to the fuzzy partition have a positive effect on the performance. 

 

nθ  PFID3 ID3 % 

0.1 - -0.025 2.64% 

0.2 - -0.027 2.85% 

0.4 - -0.009 0.95% 

 

Table 4.2: Summary table of difference between PFID3 and ID3 
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Now, we only compare PFID3 and FID3. PFID3 performs much better than 

FID3 under all conditions. The main difference between the learning PFID3 

and FID3 is the well-defined sample space. The weight of the each data point 

of PFID3 is equal to one. Therefore, the data reacts on the learning with the 

same weight; each data has the same contribution to reasoning. On the 

contrary, the data point of FID3 can be overweight or underweight. Thus, the 

learning is inaccurate due to the imbalanced weight of the data. In other words, 

the origin of the better accuracy of PFID3 is the weight consistency of the data.  

We consider this phenomenon as the effect of well-defined sample space. But 

we need more evidences to support this viewpoint. In the further research, 

more experiments will be executed and evaluated. 

 

The leaf decision threshold is very important to the performance of the 

learning. In general, the performance increases along with the increasing of 

leaf decision threshold. This happens because when the leaf decision threshold 

increases, the learning has pruned the redundant branches. However, if the 

threshold increases too much, it causes underfitting. Finding the best leaf 

decision threshold will be done in the future research.  

 

The partitions of the fuzzy data do significantly have effect on the 

performance of the learning. In this thesis, we use the cluster centers to do the 

fuzzy partition. We find that the number of the clusters determines the number 

of the membership functions, which then affects the fuzzy partition. How to 

define the number of the clusters is not discussed in this thesis, it is left for the 

future research.  

 

The definitions of the membership functions also have a great effect on the 

performance of the learning. In this case, we just randomly choose the internal 

membership function of Matlab as the membership function of the dataset. 

How to find the best parameters and define the best membership function 

could further be researched in the future. 
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Appendix A 
 
     Dataset: Iris Plants Database 
 

1. Title: Iris Plants Database 
 
2. Sources: 
     (a) Creator: R.A. Fisher 
     (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 
     (c) Date: July, 1988 
 
3. Number of Instances: 150 (50 in each of three classes) 
 
4. Number of Attributes: 4 numeric, predictive attributes and the class 
 
5. Attribute Information: 
   1. sepal length in cm 
   2. sepal width in cm 
   3. petal length in cm 
   4. petal width in cm 
   5. class:  
      -- Iris Setosa 
      -- Iris Versicolour 
      -- Iris Virginica 
 
6. Missing Attribute Values: None 
 
Summary Statistics: 
          Min Max   Mean SD   Class Correlation 
   Sepal length: 4.3 7.9   5.84 0.83    0.7826    
    Sepal width: 2.0 4.4   3.05 0.43   -0.4194 
   Petal length: 1.0 6.9   3.76 1.76    0.9490  (high!) 
    Petal width: 0.1 2.5   1.20 0.76    0.9565  (high!) 
 
7. Class Distribution: 33.3% for each of 3 classes. 
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5,1 3,5 1,4 0,2 1
4,9 3 1,4 0,2 1
4,7 3,2 1,3 0,2 1
4,6 3,1 1,5 0,2 1

5 3,6 1,4 0,2 1
5,4 3,9 1,7 0,4 1
4,6 3,4 1,4 0,3 1

5 3,4 1,5 0,2 1
4,4 2,9 1,4 0,2 1
4,9 3,1 1,5 0,1 1
5,4 3,7 1,5 0,2 1
4,8 3,4 1,6 0,2 1
4,8 3 1,4 0,1 1
4,3 3 1,1 0,1 1
5,8 4 1,2 0,2 1
5,7 4,4 1,5 0,4 1
5,4 3,9 1,3 0,4 1
5,1 3,5 1,4 0,3 1
5,7 3,8 1,7 0,3 1
5,1 3,8 1,5 0,3 1
5,4 3,4 1,7 0,2 1
5,1 3,7 1,5 0,4 1
4,6 3,6 1 0,2 1
5,1 3,3 1,7 0,5 1
4,8 3,4 1,9 0,2 1

5 3 1,6 0,2 1
5 3,4 1,6 0,4 1

5,2 3,5 1,5 0,2 1
5,2 3,4 1,4 0,2 1
4,7 3,2 1,6 0,2 1
4,8 3,1 1,6 0,2 1
5,4 3,4 1,5 0,4 1
5,2 4,1 1,5 0,1 1
5,5 4,2 1,4 0,2 1
4,9 3,1 1,5 0,1 1

5 3,2 1,2 0,2 1
5,5 3,5 1,3 0,2 1
4,9 3,1 1,5 0,1 1
4,4 3 1,3 0,2 1
5,1 3,4 1,5 0,2 1

5 3,5 1,3 0,3 1
4,5 2,3 1,3 0,3 1
4,4 3,2 1,3 0,2 1

5 3,5 1,6 0,6 1
5,1 3,8 1,9 0,4 1
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4,8 3 1,4 0,3 1
5,1 3,8 1,6 0,2 1
4,6 3,2 1,4 0,2 1
5,3 3,7 1,5 0,2 1

5 3,3 1,4 0,2 1
7 3,2 4,7 1,4 2

6,4 3,2 4,5 1,5 2
6,9 3,1 4,9 1,5 2
5,5 2,3 4 1,3 2
6,5 2,8 4,6 1,5 2
5,7 2,8 4,5 1,3 2
6,3 3,3 4,7 1,6 2
4,9 2,4 3,3 1 2
6,6 2,9 4,6 1,3 2
5,2 2,7 3,9 1,4 2

5 2 3,5 1 2
5,9 3 4,2 1,5 2

6 2,2 4 1 2
6,1 2,9 4,7 1,4 2
5,6 2,9 3,6 1,3 2
6,7 3,1 4,4 1,4 2
5,6 3 4,5 1,5 2
5,8 2,7 4,1 1 2
6,2 2,2 4,5 1,5 2
5,6 2,5 3,9 1,1 2
5,9 3,2 4,8 1,8 2
6,1 2,8 4 1,3 2
6,3 2,5 4,9 1,5 2
6,1 2,8 4,7 1,2 2
6,4 2,9 4,3 1,3 2
6,6 3 4,4 1,4 2
6,8 2,8 4,8 1,4 2
6,7 3 5 1,7 2

6 2,9 4,5 1,5 2
5,7 2,6 3,5 1 2
5,5 2,4 3,8 1,1 2
5,5 2,4 3,7 1 2
5,8 2,7 3,9 1,2 2

6 2,7 5,1 1,6 2
5,4 3 4,5 1,5 2

6 3,4 4,5 1,6 2
6,7 3,1 4,7 1,5 2
6,3 2,3 4,4 1,3 2
5,6 3 4,1 1,3 2
5,5 2,5 4 1,3 2
5,5 2,6 4,4 1,2 2
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6,1 3 4,6 1,4 2
5,8 2,6 4 1,2 2

5 2,3 3,3 1 2
5,6 2,7 4,2 1,3 2
5,7 3 4,2 1,2 2
5,7 2,9 4,2 1,3 2
6,2 2,9 4,3 1,3 2
5,1 2,5 3 1,1 2
5,7 2,8 4,1 1,3 2
6,3 3,3 6 2,5 3
5,8 2,7 5,1 1,9 3
7,1 3 5,9 2,1 3
6,3 2,9 5,6 1,8 3
6,5 3 5,8 2,2 3
7,6 3 6,6 2,1 3
4,9 2,5 4,5 1,7 3
7,3 2,9 6,3 1,8 3
6,7 2,5 5,8 1,8 3
7,2 3,6 6,1 2,5 3
6,5 3,2 5,1 2 3
6,4 2,7 5,3 1,9 3
6,8 3 5,5 2,1 3
5,7 2,5 5 2 3
5,8 2,8 5,1 2,4 3
6,4 3,2 5,3 2,3 3
6,5 3 5,5 1,8 3
7,7 3,8 6,7 2,2 3
7,7 2,6 6,9 2,3 3

6 2,2 5 1,5 3
6,9 3,2 5,7 2,3 3
5,6 2,8 4,9 2 3
7,7 2,8 6,7 2 3
6,3 2,7 4,9 1,8 3
6,7 3,3 5,7 2,1 3
7,2 3,2 6 1,8 3
6,2 2,8 4,8 1,8 3
6,1 3 4,9 1,8 3
6,4 2,8 5,6 2,1 3
7,2 3 5,8 1,6 3
7,4 2,8 6,1 1,9 3
7,9 3,8 6,4 2 3
6,4 2,8 5,6 2,2 3
6,3 2,8 5,1 1,5 3
6,1 2,6 5,6 1,4 3
7,7 3 6,1 2,3 3
6,3 3,4 5,6 2,4 3
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6,4 3,1 5,5 1,8 3
6 3 4,8 1,8 3

6,9 3,1 5,4 2,1 3
6,7 3,1 5,6 2,4 3
6,9 3,1 5,1 2,3 3
5,8 2,7 5,1 1,9 3
6,8 3,2 5,9 2,3 3
6,7 3,3 5,7 2,5 3
6,7 3 5,2 2,3 3
6,3 2,5 5 1,9 3
6,5 3 5,2 2 3
6,2 3,4 5,4 2,3 3
5,9 3 5,1 1,8 3
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Appendix B 
 
 
      Sample data and Membership functions  

 

Day Temperature Wind Traffic-Jam Car Driving 

D1 Hot Weak Long No 

D2 Hot Strong Long No 

D3 Hot Weak Long Yes 

D4 Mild Weak Long Yes 

D5 Cool Weak Short Yes 

D6 Cool Strong Short No 

D7 Cool Strong Short Yes 

D8 Mild Weak Long No 

D9 Cool Weak Short Yes 

D10 Mild Weak Short Yes 

D11 Mild Strong Short Yes 

D12 Mild Strong Long Yes 

D13 Hot Weak Short Yes 

D14 Mild Strong Long No 

 

Sample Data Set Auto Driving 
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Day Tem MF (h) MF (m) MF(c) Wind MF (w) MF (st) Traffic MF (l) MF (sh) C 

D1 32 0.7 0.6 0 3 1 0 7.5 0.25 0.25 N 

D2 33 0.8 0.4 0 4.5 0.25 0.3 6.8 0.18 0.37 N 

D3 30 0.5 1 0 2.5 1 0 8.3 0.33 0.12 Y 

D4 24 0 1 0 1.5 1 0 9 0.4 0 Y 

D5 3 0 0 1 2.5 1 0 3.8 0 0.87 Y 

D6 1 0 0 1 5 0 0.4 4.2 0 0.8 N 

D7 8 0 0.2 1 4 0.5 0.2 2.7 0 1 Y 

D8 12 0 0.47 1 3 1 0 6.7 0.17 0.38 N 

D9 -5 0 0 1 2 1 0 3.5 0 0.92 Y 

D10 12 0 0.47 1 2.5 1 0 4.1 0 0.82 Y 

D11 15 0 0.67 0 6 0 0.5 2.3 0 1 Y 

D12 22 0 1 0 5 0 0.4 7.3 0.23 0.28 Y 

D13 32 0.7 0.6 0 2.5 1 0 2.6 0 1 Y 

D14 25 0 1 0 4 0.25 0.3 10.3 0.53 0 N 

Sum  2.7 7.41 6  9 2.1  2.09 7.81  

 
Fuzzy representation of the Sample Set without condition well-defined Sample Space 
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Day MF(h) MF(m) MF(c) Sum MF(w) MF(st) Sum MF(l) MF(sh) Sum C 

D1 0.7 0.3 0 1 1 0 1 0.75 0.25 1 N 

D2 0.8 0.2 0 1 0.25 0.75 1 0.633 0.367 1 N 

D3 0.5 0.5 0 1 1 0 1 0.883 0.117 1 Y 

D4 0 1 0 1 1 0 1 1 0 1 Y 

D5 0 0.2 0.8 1 1 0 1 0.133 0.867 1 Y 

D6 0 1/15 14/15 1 0 1 1 0.2 0.8 1 N 

D7 0 8/15 7/15 1 0.5 0.5 1 0 1 1 Y 

D8 0 0.8 0.2 1 1 0 1 0.617 0.383 1 N 

D9 0 0 1 1 1 0 1 0.083 0.917 1 Y 

D10 0 0.8 0.2 1 1 0 1 0.183 0.817 1 Y 

D11 0 1 0 1 0 1 1 0 1 1 Y 

D12 0 1 0 1 0 1 1 0.717 0.283 1 Y 

D13 0.7 0.3 0 1 1 0 1 0 1 1 Y 

D14 0 1 0 1 0.5 0.5 1 1 0 1 N 

Sum 2.7 7.7 3.6 1 9.25 4.75 1 6.199 7.801 1  

Ave 0.193 0.550 0.257  0.661 0.339  0.443 0.557   

 

 Fuzzy representation of the Sample Set  



Bachelor Thesis (PFDT) 

269167 Liang Page 59 Erasmus University 

 

 Attribute Temperature: 
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Appendix C 
 

Run information of WEKA. 

  Termination parameter is 5 (0.1) 

=== Run information === 
Relation:     iris 
Instances:    150 
Attributes:   5 
              a 
              b 
              c 
              d 
              e 
Test mode:    split 66% train, remainder test 
 
=== Classifier model (full training set) === 
pruned tree 
------------------ 
 
d <= 0.6: C1 (34.0) 
d > 0.6 
|   d <= 1.5: C2 (32.0/1.0) 
|   d > 1.5: C3 (34.0/2.0) 
 
Number of Leaves  :  3 
Size of the tree :  5 
 
=== Summary === 
 
Correctly Classified Instances          47               92.1569 % 
Incorrectly Classified Instances         4                7.8431 % 
 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 15  0  0 |  a = C1 
  0 17  2 |  b = C2 
  0  2 15 |  c = C3 
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Termination parameter is 10 (0.2) 

=== Run information === 
Relation:     iris 
Instances:    150 
Attributes:   5 
              a 
              b 
              c 
              d 
              e 
Test mode:    split 66% train, remainder test 
 
=== Classifier model (full training set) === 
 
pruned tree 
------------------ 
d <= 0.6: C1 (34.0) 
d > 0.6 
|   d <= 1.5: C2 (32.0/1.0) 
|   d > 1.5: C3 (34.0/2.0) 
 
Number of Leaves  :  3 
Size of the tree :  5 
 
=== Summary === 
 
Correctly Classified Instances          47               92.1569 % 
Incorrectly Classified Instances         4                7.8431 % 
 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 15  0  0 |  a = C1 
  0 17  2 |  b = C2 
  0  2 15 |  c = C3 

 



Bachelor Thesis (PFDT) 

269167 Liang Page 62 Erasmus University 

Termination parameter is 20 (0.4) 

=== Run information === 
Relation:     iris 
Instances:    150 
Attributes:   5 
              a 
              b 
              c 
              d 
              e 
Test mode:    split 66% train, remainder test 
 
=== Classifier model (full training set) === 
pruned tree 
------------------ 
 
d <= 0.6: C1 (34.0) 
d > 0.6 
|   d <= 1.5: C2 (32.0/1.0) 
|   d > 1.5: C3 (34.0/2.0) 
 
Number of Leaves  :  3 
 
Size of the tree :  5 
 
 
=== Summary === 
 
Correctly Classified Instances          48               94.118 % 
Incorrectly Classified Instances         3                  5.882 % 
 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 15  0  0 |  a = C1 
  0 17  2 |  b = C2 
  0  0 17 |  c = C3 
 

 
 
 
 
 
 
 


