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Abstract 

 
In this thesis I will first explain the concept of delta hedging and the way delta is 
computed in the traditional way. Next I will zoom in on the volatility parameter within 
the traditional formula for computing the Black-Scholes option deltas and try to relax 
the assumption of constant volatility of the price of the underlying asset. I compare 
the constant volatility model with a GARCH(1,1) model and an Evolutionary Artificial 
Neural Network. The three models are tested on two artificial and two real world data 
sets. The conclusion of the thesis is that the amount of heteroskedasticity in real world 
stock index return is not high enough to give the more flexible models a competitive 
advantage when delta hedging a European call option. 
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1. Introduction 
 

1.1 General background 

 
This work is written as a concluding thesis in the Artificial Intelligence and Economics 
major of the bachelor Informatics & Economics at the Erasmus University in 
Rotterdam. 
 
In the third year of this program the knowledge gathered in the courses of this major 
is brought into practice in a 14 week seminar in Computational Finance. The final 
assignment of the seminar was to relax one or more assumptions of the famous Black-
Scholes model for pricing options. I have worked on this assignment together with 
Nees Jan van Eck, Sonja Tomas and Ludo Waltman. 
 
My supervisor for this thesis was dr. ir. Jan van den Berg, who is an Associate 
Professor at the Department of Computer Science of the Faculty of Economics, also 
the teacher responsible for the seminar. 
 

1.2 Goal 

 
I try to relax the assumption of constant volatility in the Black-Scholes world while 
delta-hedging a European call option in order to make the model more flexible and 
more realistic. The estimation of tomorrow’s volatility that is needed when computing 
the amount of shares ∆, needed for the hedge, is produced by three different models: 
a model of constant volatility, a GARCH model and an Evolutionary Artificial Neural 
Network with a structure similar to GARCH(1,1).  
 
In this thesis I will try to find out which of these three methods for forecasting a 
stock’s volatility works best when delta-hedging a short European call option. 
 

1.3 Methodology 

 
The three different methods of volatility estimation are tested on four different sets of 
time series data: one generated by a process with a constant volatility, one generated 
by a process that incorporates mean-reversion of the volatility according to the 
GARCH assumptions, and two series of returns from a major stock index in the real 
world..  



 4

The reason for using the generated data sets is to show that the GARCH model works 
best when the assumptions underlying this model hold and that the constant volatility 
models outperforms the rest if the volatility is indeed constant. Given these results 
and the results on the real world data, conclusions can be drawn about the 
characteristics of financial time series in the real world.  
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2. Derivative pricing and volatility estimation 

 

2.1 The Black-Scholes Model 

 
To price derivatives that rely on the value of an underlying asset, it is necessary to 
describe the process that the price of the underlying asset will follow in the future. 
The value depends heavily on the nature of the stochastic process followed by the 
asset price. An example of such a process is a geometric Brownian motion, on which 
the famous Black-Scholes option-pricing model is based. In this chapter the 
assumptions and derivation of the Black-Scholes model will be explained. 
 

2.2 Brownian motion 

 
In the Black-Scholes world, the stock prices are generated by a generalized Wiener 
process called a geometric Brownian motion (Hull (2003)) that describes the price 
change dS in terms of a constant drift µS of the stock, the standard deviation σS of the 

stock, a period of time dt, and a stochastic term γ, which is a drawing from a standard 
normal distribution. 
 

tStSS ddd γσµ +=   (2.1) 

 
This kind of process is often referred as a ‘random walk’ because it has no structure or 
statistical properties to give traders the opportunities of having an expected return 
other than µS, or the risk free rate plus a risk premium that depends on σS. This 
property of the Brownian motion is consistent with the Efficient Market Hypothesis 
(EMH), see Hull (2003). 

 
Because of the assumed Brownian motion, the Black-Scholes option delta 
incorporates the assumption that the relative change in stock prices are independent 
drawings from a normal distribution with a constant variance. The first method we 
use for hedging our position is based on this assumption. We simply take the variance 
of all past changes to predict tomorrow’s variance. 
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2.3 Assumptions 

 
The following assumptions are be made when deriving the Black-Scholes-Merton 
differential equation: 
 
1. the stock price follows a geometric Brownian motion with µ and σ constant; 
2. short selling of the asset is allowed; 
3. there are no transaction costs or taxes; 
4. the asset is perfectly divisible; 
5. there are no dividends during the life of the derivative; 
6. there are no riskless arbitrage opportunities; 
7. asset trading is continuous; 
8. the risk-free rate of interest, rf, is constant and the same for all maturities. 
 
Assumption five means that every riskless asset should earn the same return, namely 
the risk-free interest rate rf. Assumption four can be relaxed, as will be discussed later 
on. 
 
Using these assumptions it is now possible to derive the Black-Scholes model. 
 

2.4 Derivation of the Black-Scholes option pricing formula 

 

This section is based on Hull (2003). Consider the price of a derivative c, which 
depends on the stock price S. Take for example a plain vanilla call option. Because in 
this case the parameters µ, σ, expiration date T and exercise price K are fixed, the 
change of c must be a function of S and time t. Using a result known as Ito’s lemma 
(see Hull (2003) for more details) the following equation is obtained from the 
Brownian motion described in section 2.3. 
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Because of the fact that the Wiener process underlying S and c in this equation is 
identical, the Wiener process can be cancelled out by choosing a portfolio of the stock 
and the derivative. This characteristic will later in this thesis be used for hedging a call 
option. 

Define a portfolio of –1 derivative and SC ∂∂+  shares. The value Π of this 

portfolio is: 
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The change in the value of this portfolio in the time interval δt is given by 
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Substituting equations (2.1) and (2.2) into equation (2.4) gives: 
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Because this equation does not involve γ, it is not stochastic anymore. This means that 

the portfolio must be riskless during the time δt and earn the risk-free interest rate, 
which follows from the assumption of no arbitrage possibilities. The change in value 
of the portfolio during δt is therefore 
 

,tr f δδ Π=Π    (2.6) 

 
where rf is the risk-free interest rate. After substituting from equations (2.3) and (2.5), 
this equation becomes 
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Rearranging these terms leads to 
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This is the Black-Scholes-Merton partial differential equation. It has many solutions, 
based on the type of derivatives and their boundary conditions, which specify the 
value of a derivative at the boundaries of S and t. In the case of a European call 
option, this condition is 
 

( )0,max),( KSTSf T −=  at time T (2.9) 
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where f(S, T) is a function of the payoff depending on the stock price at time t. The 
Black-Scholes-Merton equation can be solved in various ways. Black and Scholes 
(1973) convert it to the heat-transfer equation for which a solution is given. An 
alternative method can be applied using Theorem 7.11 from Øksendahl (1985). In this 

case equation (1.8) can be solved by substituting ),()( tSfe tTrf −−  for c, where 
)( tTrfe −−  is the discount factor. After simplification, equation (2.8) becomes 
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This equation is equal to Kolmogorov’s backward equation, which has the solution 
f(S, t) = E[f(S, T)] based on the following process: 
 

tStSrS Sf γσδδ += . (2.11) 

 
This means that under process (10) the present value of the derivative is the expected 
value at maturity discounted by the risk-free interest rate: 
 

( ) ( )[ ]TSfEec T
tTrf ,−−= ,  (2.12) 

 
where f(ST, T) is the payoff at the predefined boundary condition. This result can be 
used for all the types of options for which the process of the underlying can be 
modeled according to process (2.1). 
  
An alternative method to obtain equations (2.9) and (2.11) applies the risk-neutral 
valuation argument to equation (2.8). The idea behind the risk-neutral valuation 
argument is based on the fact that none of the variables in this equation depend on 
the risk preference of investors. The reason is that the only factor involving the risk 
preference, namely µ, is absent. This means that because the risk preference does not 
affect the solution of (2.8), any type of risk preference can be assumed. It can 
therefore be assumed that the investors are risk-neutral, which means that the 
expected return on any security is the risk-free interest rate. Thus, the risk-neutral 
process for S is equation (2.10). Furthermore, because it can be assumed that the 
world is risk-neutral, the present value at time t of a derivative can be calculated as the 
expected payoff at maturity in a risk-neutral world discounted at the risk-free interest 
rate, which leads to equation (2.11). 
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Using this result the famous Black-Scholes formula can be derived, see Hull (2003). 
For a European call option the formula is 
 

( ) ( ) ( )210 dNeKdNS tTr −−−  , (2.12) 

 
with S0 the initial stock price, N(x) the cumulative standard normal density function 
and where 
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This formula can be extended by including a continuous dividend yield q. In that case, 
the growth rate in equation (2.10) is set to rf – q instead of rf.  
 

2.5 Volatility estimation 

 
As mentioned earlier, the nature of the process generating the asset returns is crucial 
in determining the Black-Scholes option value. As the volatility increases, the chances 
of the stock price rising and falling both increase equally, because of the symmetric 
nature of the standard deviation measure for volatility. This results in both call and 
put option prices rising. Similarly, a decreasing volatility results in falling option prices. 
Within the equation for the Brownian motion in equation (2.1), the asset’s standard 
deviation σS is one of the parameters. In the Black-Scholes world σS is constant 
(homeskedastic) and can be computed by determining the standard deviation of a 
series of historic relative changes in the stock price. In the real world this assumption 
hardly holds. It is very likely that the volatility of a stock varies over time with period 
of high volatility and periods of relative calmth (heteroskedasticity). If today’s volatility 
is correlated with historic price changes it is called autocorrelation. If we succeed in 
creating a model that makes a better estimation of tomorrow’s volatility than the 
variance of a historic time series, we can improve the approximation of delta, and thus 
improve our hedge. 
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uu tt

ttρ  
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In recent years, the popularity of using intraday data has increased dramatically. If we 
look at five minute returns for instance, we can compute the daily, or 8 hour volatility 

using 96min5σσ =daily , because there are 96 five minute returns in one day. Of 

course it is of great importance not to forget the overnight return and volatility. Using 
intraday data has shown to lead to very good volatility forecasts (Andersen and 
Bollerslev (1998)). If intraday data is available, volatility turns into an observable 
variable because it is possible to calculate realized volatilities. Without intraday data, 
volatilities can never be actually observed but only estimated using the average 
squared daily returns. Unfortunately historic intraday data is still scarce and not 
available in this case. 
 

2.6 Volatility smiles 

 
One of the reasons for investigating the impact of non-constant volatilities is the 
existence of volatility smiles. When Derman and Kani (1994) looked at implied 
volatilities, or the volatilities that are implied by the Black-Scholes formula They found 
that the implied volatilities vary with the strike price. This fact points out a major 
shortcoming of the Black-Scholes framework, namely that it’s assumptions clearly 
don’t hold in the real world. 
The implied volatility also varies with the time to expiration, creating a three 
dimensional non-linear volatility surface. Incorporating these surfaces into the Black-
Scholes framework gives more accurate option prices, see Derman et al. (1996). But 
using this, we have to estimate a volatility function before being able to compute the 
option price. Of course the data needed for estimating this function is not always 
available.  

 
Figure 1 - A non-linear implied volatilty surface (Derman and Kani) 
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In Vahamaa (2003), the author succeeds in significantly improving his delta hedging 
performance, in terms of Mean Absolute Hedging Error – see chapter 5, by using 
volatility smiles in the computation of delta. In a similar way, I hope to improve delta 
hedging performance of the Black-Scholes model by allowing non constant volatility 
forecasts. 
 

2.7 Stochastic volatility 

 
Hull and White (1987) argue that stock returns are generated by processes with 
stochastic volatilities, i.e. the volatilies themselves are random drawings from a 
distribution. If the volatility is stochastic and not correlated with the asset price, it is 
correct to use the average value of the volatility. If the volatility is stochastic and 
correlated with the asset price, it gets more complicated. 

 

2.8 Long-term memory in stock prices 

 
Among the first to suggest that there is a persistence of long-term memory of shocks 
in the volatility of asset was Mandelbrot (1971), who argues that this would lead to 
arbitrage opportunities. Since then many empirical studies have supported this claim. 
This had a lot of impact on the existing theories for common economic problems 
such as determing the optimum between consumption and saving, portfolio allocation 
and derivative pricing. Because the solutions for these problems had become 
extremely dependend of the time-horizon. In the long term assuming a random walk 
or martingale process without autocorrelation between asset returns is still a save 
assumption, but for short periods the existence of autocorrelation can have a 
significant impact. 
 
The autocorrelation for time lag k is computed as follows: 
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Where y0, y1, …, yN is a time series of stock returns. 
 
The following figure shows that the effects of a ‘shock’ in the volatility remain present 
in the time series of asset prices for a long time. (Remember section 2.8 Long term 
memory in stock prices)  
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Figure 2 - Figure 2 - Autocorrelations for different time lags - Andersen and Bollerslev (1998) 

 

2.9 GARCH 

 
In 1986 Bollerslev introduced a model that deals with heteroskedasticity: Generalized 
AutoRegressive Conditional Heteroskedasticity. In this model the estimation of 
tomorrow’s volatility is based on historic relative changes, with the most recent 
change having the most influence and the influence declining exponentially over time. 
The model is based on the assumption that a time series, that is in a state of unusually 
large or small volatility, will gradually return to it’s long-term variance (mean 
reversion). 
 
Every estimation is made using the following formula: 
 

2
1

2
1

2
−− ++= ttt u βσαωσ . (2.14) 

 
Where α, β and ω are determined by maximizing the Maximum Likelihood Score 
(MLS). 
 

( ) ( )( )iii vuvhDMLS 2ln|max −−Σ=Ρ=   (2.15) 

 
The long-term variance is then given by: 
 

βα
ω

−−
=

1LV . (2.16) 

 
Maximizing the MLS is normally done by a non-linear solver program. 
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Since it’s introduction, GARCH models have become very popular and many 
empirical studies have showed the relevance of especially the GARCH(1,1) model, 
where tomorrow’s volatility is forecasted using one historic return and one historic 
volatility forecast. Becauses each estimation of the volatility is based on β times the 
previous one, the influence of the historic returns declines exponentially, even using 
GARCH(1,1).  
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3. Delta Hedging 
 

3.1 Hedging 

 
Hedging is a way to control the risk in a company. If a company, like an airline, is 
vulnerable to changes in financial value, e.g. oil prices, it might want to control this 
risk by buying financial derivatives, e.g. crude oil futures. One of the reasons why 
companies attempt to hedge these risks is that they trie to ensure their future 
cashflows in order to be sure that they can commit to their financial obligations. The 
shareholders might appreciate this effort, because it reduces the risk of bankruptcy. 
 
Another reason for companies to hedge certain risks is that they might have 
shareholders that are not able to diversify their portfolio. In general shareholders are 
able to reduce the risk of investments by having multiple, less than perfectly correlated 
investments. See Markowitz’ Modern Portfolio Theory (1952). 
 
Companies also have a strong incentive not to hedge their risks, namely the cost of 
hedging. In the case of relatively small business-related risks and diversified 
shareholders, it will usually not be in the shareholder’s interest to hedge the risk. In 
short: if the cost of hedging for the company is lower than for the shareholders, 
hedging increases the shareholders’ value. 
 

3.2 The position to hedge 

 
In this thesis, the position I try to hedge is a short position in a European style call 
option contract. A European call option is the right to buy a stock at a given price: the 
strike price of the option. This right can only be exercised on its expiration date, this 
in contradiction to an American stock option, where the right to buy can be exercised 
at any given time before or on the expiration day.  
 
The short position means that I ‘write’ the option contract and sell it to someone else. 
This means I sell the right to buy. If the buyer decides to exercise the option, I have to 
supply the share against the strike price. In practice, the option is usually closed with a 
cash-settlement. This means that I have to pay the difference between stock price and 
the strike price if the stock price is higher than the strike price. 
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3.3 Delta hedging 

 
A common way to hedge a short position in a European call option contract is by 
keeping exactly ∆ stocks, where ∆ = ∂c/∂S, with c the price of’ the option, S the price 

of the stock and ∂c/∂S the partial derivative of c to S. This results in a portfolio –c + 

∆S. For this portfolio, 
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Because the price of the portfolio is insensitive to change of the stock price, as long as 
the amount of shares is adjusted to ∆, the portfolio is riskless. This is called delta 
hedging. 
 
∆ is defined by a part of the Black-Scholes formula explained in chapter 2.  
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σ++
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( ),1dΝ=∆   (3.2) 

 
where S0 is the stock price at t = 0, K is the strike price of the option, r is the risk-free 
interest rate, σ is the volatility of the stock and T the time to expiration. N(x) is the 
cumulative normal distribution function. 
 
If it would be possible to adjust the amount of stock continuously to the changes in 
the option delta, the hedge would be perfect, i.e. the risk would be reduced to zero 
without any costs. Because of the practical impossibility of continuous hedging and 
the presence of transaction costs, the hedge has to be adjusted with a certain time 
interval, e.g. daily.  
 
Adjusting the portfolio with a certain delay always results in making hedging costs, 
with a bigger delay leading to more costs. This is because if the price of the stock has 
dropped, the more time goes by before one sells shares to adjust the portfolio, the less 
money one receives. If the price goes up, the opposite effect occurs and one will buy 
too expensive. If we take fixed transaction costs into account, an optimal adjustment 
interval can be determined, see Clewlow and Hodges (1997). 
 
Because the price change during an interval is uncertain, the cost of adjusting the 
portfolio is uncertain too. This is a highly undesired effect because we started hedging 



 16

to loose the uncertainty in the first place. The uncertainty in the hedging costs, or 
hedging risk is defined as the standard deviation of the hedging costs. In this thesis, I 
will measure hedge performance by the costs of the hedge and the uncertainty – the 
variance - in the costs. To clarify the differences in performance between the different 
models, I compute the level of risk reduction, or the hedging risk as a percentage of 
the asset risk. 
 
The fact that discontinuous delta hedging leads to a remaining hedging risk can also 
be explained in a more mathematical way. Keeping ∆ stocks and a short derivative of 
this stock results in a portfolio that is delta-neutral. Because delta is the first derivative 
of the option value to the stock price, keeping delta stocks only results in a riskless 
portfolio when the first-order derivative is linear. Or in other words, if the second 
derivative is constant. Because in reality this is never the case, delta-hedging in discrete 
time never results in a complete disappearance of risk.  
 

3.4 Delta hedging with stochastic volatility in discrete time 

 
The only paper on delta hedging with the constant volatility assumption relaxed I have 
been able to find is Geyer and Schwaiger (). Strangely enough, they don’t use the 
stochastic volatility model proposed by Hull and White (1987), but they try to 
incorporate GARCH volatility forecasts into delta hedging. 
 
The paper starts with explaining that the Black-Scholes model assumes a geometric 
Brownian motion with constant diffusion – or variance – and states that it’s purpose is 
to investigate the consequence of relaxing the assumption of constant diffusion. 
 
The paper describes three ways of adopting the computed GARCH volatilities into 
the calculation of the option delta: 
 

1. assuming a GARCH process leading to an estimation of tomorrow’s volatility 
and assuming that constant for the rest of the life of the option and compute 
the delta using the normal Black-Scholes formula; 

2. compute an aggregate volatility based on the GARCH process using it’s last 
prediction of σt 2 as σt−1 2 and the expected value of ut-12, namely 0, and using 
this in the Black-Scholes formula; 

3. assuming the GARCH process to continue for the rest of the option’s life and 
find a numerical way to approximate the option delta; 

 
In the second case, the aggregate variance for the rest of the option’s life is computed 
using: 
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where σk2 is the volatility estimation for day k. This method is used in this thesis, 
where the aggregate volatility will be something between the forecast for tomorrow 
and the long-term variance VL. 
 
The third case leads to a different option delta under the GARCH assumptions: 
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where S*T is the value of the stock at expiration time T, S*t is the current value, 
f(S*T, K) is a function that is 1 when the option is exercised and 0 if not, and K is the 
strike price of the option. For a European call option, f(S*T, K) is: 
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Because the GARCH option delta ∆Gt depends on the stochastic evolution of the 
transformed price process S*, it is impossible to derive a closed form solution. In 
Geyer and Schwaiger () a numerical way to approximate the delta is explained. 
Unfortunately the authors only test the three different methods on a generated 
GARCH data set and not on real world data. 
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4. Evolutionary Artificial Neural Networks 

 

4.1 Artificial Neural Networks 

 
Artificial Neural Networks (ANN’s) or simply neural networks are networks existing 
of a number of layers of interconnected simple logic units or nodes, see Jang et al. 
(1997). These networks have been invented in the 1950s and were inspired by the way 
scientists believed the human brain worked. The use of of ANN’s however, was 
limited strongly by the lack of suitable training methods. This changed in the mid- 
1980s with the reformulation of the back propagation algorithm by Rumelhart et al. 
(1986) The logical units in feedforward neural networks - as opposed to recurrent 
ones - are called perceptrons. These perceptrons model a human brain’s neuron that 
’fires’ on the output side when a certain treshold is reached. In perceptrons the input x 
is a weighted linear combination of the outputs of perceptrons in the previous layer 
and a so called ’bias’ (always equal to 1). The output is computed by using a nonlinear, 
differentiable activation function called a ’transfer function’ or the identity function 
f(x) = x. The following activation functions are most commonly used. 
 
Logistic function: 
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Hyperbolic tangent function: 
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An ANN is normally trained on a dataset with an algorithm such as back propagation 
to adjust the weights of the perceptrons. In the back propagation algorithm the error, 
or the desired value minus the model output, is propagated through the nodes 
towards the input side while adjusting the weights so that the error decreases. ANNs 
are frequently regarded as black-box models or non-parametric models. 
 
Because the real variance on a specific day remains unknown, there is no way to 
determine the networks error when tomorrow’s variance is forecasted. The absence of 
direct error feedback is the reason that traditional training algorithms for neural 
networks cannot be used. 
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We can however choose an neural net that maximizes the probability that the data 
available is generated by the given neural network, like in 3.3. This is done by using 
the Maximum Likelihood Criterion. Because there is no simple mathematical 
dependency between the Maximum Likelihood Score (MLS) and the network’s 
weights, the search for the neural net with Maximum Likelihood has to be done 
randomly. A structured way to do a random search is by using an Evolution Strategy. 
 

4.2 Evolution Strategy 

 
Evolution Strategies are based on the biological concept of evolution. A population of 
a certain size is simulated during a certain number of generations. Parents create 
offspring that is subject to mutations. If the offspring is generated by multiple parents 
it is called crossover. The concept of mutation is vital for an Evolution Strategy to 
prevent it from getting trapped in a local minimum or maximum. 
 
To decrease the tendency to get trapped in a local minimum or maximum further, we 
use games to determine which members of the population survive. Every member 
plays against a given number of opponents and receives a point for every game that is 
won. 
 
To measure how the EANN performs, I use the same Maximum Likelihood Score as 
with the GARCH model.  
 
An Evolution Strategy can also be useful for maximizing the MLS when fitting a 
GARCH model. In an experiment fitting a GARCH model with an Evolution Strategy 
easily outperformed fitting it with Microsoft Excel’s Solver. In order to prevent the 
EANN having a positive bias caused by the better optimizer, I also use an Evolution 
Strategy to fit the GARCH model. 
 
One of the problems when using evolutionary methods for fitting models is choosing 
the appropriate standard deviation for mutation. Mutation works as follows: 
 

( )σ,0Ν+= xx   

 
with N(µ, σ) a drawing from the standard normal distribution with mean µ and 

standard deviation σ. When σ is too small, it takes too long before the optimum is 

reached, when σ is too large the mutations will be too large to find the optimum. 

Schwefel (1974) has solved this problem by introducing self-adaptation, where σ is 
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also subject to mutation. See also Beyer (). In this way, the σ will gradually decrease as 
the population reaches the optimum. 
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Figure 3 - The evolution of an EANN in 150 generations 

4.3 EANNs 

 
As there are three design issues in creating an ANN - the weights, the structure, and 
the training rules - it is possible to apply evolution to to ANNs on three different 
levels, according to Yao and Liu (1998). 
Because I have a good estimation of the complexity of the model needed to produce a 
reasonable estimation of tomorrow’s volatility based on the input parameters, I 
determine the structure of the ANN upfront and only let the weights evolve. 
 

 
Figuur 1-Three level of evolution in creating an EANN - Yao and Liu (1998) 
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5. Experimental Setup 
 

5.1 Choices and assumptions 

 
The European call option I short sell has one underlying stock. The option is at-the-
money at the start of the experiment, meaning the strike price equals the current stock 
price. The option expires at the end of the experiment. 
 
Furthermore I assume there is a constant risk-free interest rate of 4%. This is a 
realistic number and will not influence the results. The stock I use for hedging is 
perfectly divisible. Because I use the same updating frequency (daily) for each of the 
models, transaction costs will be roughly the same and are not taken into account.  
 
Because neural networks results in a complex, non-linear, continuous function, there 
is no way to exclude the possibility of forecasting negative variances. Of course this is 
a mathematical impossibility. After replacing the logistic function in the neural net’s 
perceptrons with the tanh function the problems we encountered due to negative 
variances disappeared. 
 
I used an Evolutionary Artificial Neural Network (EANN) with two input nodes ut-12 
and σt-12 and one hidden layer with two nodes and one output node: σt2. The main 
reason I chose for this network architecture lies in the limited availability of training 
data. After a few experiments with more hidden units and more lagged inputs, this 
architecture lead to the best results. 
 
The strategy used for fitting the GARCH model involves a population size of 50, 350 
generations and 10 games per individual. The strategy for the EANN also involves a 
population size of 50 and 10 games per individual, but needs 500 generations. 
 
 

5.2 The stock price data 

 
I use four datasets for my experiments: 
 

1. Random walk: a generated 10-year series of stock prices with a constant 
variance; 

2. GARCH data: a generated 10-year series with mean reversion of the volatility; 
3. AEX: a 10-year series of the Dutch AEX-index; 
4. S&P 500: a 5-year series of the Standard and Poor’s 500 index. 
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The reasons I chose stock index data in stead of single stock data are: 

1. most similar research is done using stock index data and therefore the result 
will be better comparable; 

2. it is more realistic because most investors will hold a diversified portfolio, 
similar to a major index; 

3. the index pays no cash of stock dividends, has no stock splits or secondary 
offerings. 

 
Clearly, I expect the constant variance method to perform best on the first dataset and 
the GARCH model to perform best on the GARCH dataset. If the assumption of 
constant volatility does not hold in the real world, the GARCH model and EANN 
will outperform the constant variance model on real world data. Because the EANN 
is a more flexible model than GARCH, it is possible that it will perform better. 
However, ther risk of overfitting is larger for the EANN than for the GARCH model. 
 
I repeatedly use four months of data for fitting the model and then one month for 
hedging. The first four months of data are solely used for training and every following 
month is used for hedging, giving us 116 experiments in ten years (120 months). 
 

5.3 Starting value 

 
Because the GARCH model and the EANN use today’s prediction for predicting 
tomorrow’s variance, they need a value to start with. 
 

( )2
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2
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For σ-1 the last instance of the training set is used: u-1 

 

( )
2

21
1

−

−−
−

−= S
SSu  

 
When S-1 equals S-2 this leads to problems because u-1 then equals zero. The exact 
value of u-1 has very little influence, but the total absence of variance leads to strange 
results. Because the constant volatility model doesn’t need a. starting value, it does not 
have this problem and outperforms the other models. 
 
The solution for this problem is simple: use the average of the last three squared 
relative changes of the training set. 
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5.4 Variance 

 
Black and Scholes’ d1 use the variance for the rest of the life of the option, while the 
models give a daily variance. There is a simple way to compute the variance for the 
remaining option life (Hull (2003)): 
 

Tdailylife σσ =  

 
with T the rest of the life of the option in days. 
 
5.5 Performance 
 
In literature, there a few ways to compute hedge performance. The different measure 
can roughly be divided into two categories: 
 

1. measures based on the mean hedging error for each interval, or total 
resulting hedging costs; 

2. measures based on the remaing risk, or variance in the total resulting 
hedging costs. 

 
I would argue that, since hedging is always done for reasons of risk aversity, it is not 
fair to measure hedge performance solely in terms of average hedging costs for a 
certain period, as for instance in Vahamaa (2003), and thus completely ignoring a new 
source of risk that lies in the variance of the hedging costs. Therefore I will show both 
the average hedging costs and it’s standard deviation in the following chapter. 
 
Because a simple standard deviation is only meaningful when comparing the results of 
different methods, I have added a measure called risk reduction. This measure shows 
the size of the standard deviation relative to the risk of the underlying asset. 
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6. Results 
 

6.1 Hedging costs 

 
The three volatility models are compared on the way they fit on the set of training 
data (MLS) and on out-of-sample hedge performance. Hedge performance is 
measured in the average costs of the hedge and in the standard deviation of the 
hedging costs. 
 

 Generated data sets Real world 
 Constant 

volatility 
GARCH S&P 500 AEX 

Constant volatility model     
Average MLS 655.44 533.62 228.23 672.17 
Average hedging costs 1.25 8.73 7.00 9.56 
Standard deviation of the costs 0.42 7.32 4.37 6.75 
     
GARCH(1,1)     
Average MLS 656.42 554.93 229.60 6.76.65 
Average hedging costs 1.26 8.17 7.00 9.45 
Standard deviation of the costs 0.65 5.32 4.68 6.87 
     
EANN     
Average MLS 658.57 555.99 232.71 677.15 
Average hedging costs 1.27 8.15 6.96 9.29 
Standard deviation of the costs 0.71 5.15 4.55 6.85 

Table 1 - Comparing the hedging costs 

 

6.2 Risk reduction 

 
A way to clarify the relative results of the models is by computing the level of risk 
reduction, that is the percentage difference between the risk of the underlying asset 
and the resulting standard deviation of the hedging costs. 
 
 Generated data sets Real world 
 Constant 

volatility 
GARCH S&P 500 AEX 

Constant volatility model 86% 69% 83% 55% 
GARCH(1,1) 78% 77% 81% 54% 
EANN 76% 78% 82% 54% 

Table 2 - Risk reduction levels 
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7. Discussions and further research 
 

7.1 Discussion of the results 

 
When we look at the hedging costs, it is obvious that there are no significant 
differences between the models on any of the data sets using a student t-test, because 
the largest difference is still less than one-eighth of the concerning standard deviation 
and the number of observations is 116. 
 
Looking at the remaining or hedging risk, the expectations stated in section 1.3 are 
clearly matched by the results above. On the random walk data set, the performance 
of the constant volatility model is better than the performance of the other models. 
The difference in performance is significant at a 99% confidence level, testing for the 
equality of standard deviations. The other models have a better fit on the training data 
– they have a higher MLS – but every outlier suggesting non-constant volatility they 
react on is nothing more than coincidence and thus can by definition never lead to a 
better result on the test set. This is a clear example of the impact overfitting a model 
on a training data set. The EANN is a more flexible model than GARCH and overfits 
more, resulting in a high standard deviation of the hedging costs 
 
On the GARCH data set, the constant volatility model leads to a much higher hedging 
risk (standard deviation of the costs), significant at a 95% confidence level. The 
sample average hedging costs are also higher than for GARCH and EANN, but this 
difference is by far not as significant as the difference in hedging risk. Strangely 
enough the EANN outperforms the GARCH model. However, this is clearly not 
statistically significant.  
 
Considering external shocks and their impact on short-term volatility as mentioned in 
section 2.8, it might be that the period the impact of the shock is present in the stock 
returns is too long or that the impact of the shocks is too small for the non-constant 
volatility models too have a significant advantage over the random walk model. 
 
In the end, using non-constant volatilities for delta-hedging does not lead to a better 
hedge performance. The amount of heteroskedasticity in real world stock index data is 
not high enough to give the GARCH or EANN model a competitive advantage over 
the simple constant volatility model. 
 



 26

7.2 Further research 

 
In reaction to my conclusions about the amount of heteroskedasticity, it can be argued 
that this could be higher when looking at a single stock in stead of index data. If this is 
the case, it could be that hedging a single stock with non-constant volatilities proves to 
be better. Furthermore it would be interesting to test the numerical method for 
determining the option delta in a GARCH world referred to in section 3.4 on real 
world data. 
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