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Abstract

Assuming the market is efficient, an obvious portfolio management strategy is passive
where the challenge is to track a certain benchmark, such that equal returns and risks
are achieved. In this paper, we investigate an approach for tracking the Dutch AEX-
index where an optimal tracking portfolio (consisting of a weighted subset of stocks)
is determined. The optimal portfolio is found using a hybrid genetic algorithm where
the fitness function of each chromosome (possible subset of stocks) equals the mini-
mal tracking error achievable. This minimal tracking error is determined by solving
the corresponding quadratic programming problem. Finally, we compare the out-of-
sample performance of the portfolio constructed by the hybrid genetic algorithm with
several other portfolios.

Keywords: Index Tracking; Passive Management; Portfolio Selection; Quadratic Program-
ming; Genetic Algorithms; Heuristic Approaches; Hybrid Methods
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Chapter 1

Introduction

1.1 General background

1.1.1 Portfolio Management
A fund manager is faced with the problem to create a portfolio from an immense set
of assets offered in the market that will perform in line with his objective. A common
objective is to provide a capital growth over the medium to long-term while respecting
certain constraints. Once a portfolio is created it has to be controlled and re-optimized
over time due to the dynamic of asset markets. As discussed by Beasley et al. [2003],
approaches to portfolio management can be divided into two broad categories:

• Active management relies on the belief that skillful investors are able to outper-
form the aggregate market return. An active manager tries to pick stocks that
will outperform other stocks and attempts other active activities such as market
timing. (optimal timing their buy/sell decisions) These opportunities are pos-
sible because active management assumes that financial markets are not fully
efficient.

• Passive management on the other hand is adopted by investors who believe that
financial markets are efficient. Consequently, passive managers believe that it is
impossible to consistently beat the market. Their main activity is endeavoring
to achieve the same returns and risk of a certain benchmark. Attempting to
reproduce the performance of an index, such as the S & P 500, is often referred
as index tracking. A passively managed fund whose objective is index tracking
is called an index fund, or tracker fund.

A mixed strategy of the two is also possible; a portion of the money is invested active
and a portion passive.
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1.1.2 Active versus passive management
The question of active versus passive management is a major issue to pension funds
and other large participants. Both strategies have their advantages and disadvantages:

Active management advantages

• Seasoned managers can profit from inefficiencies of the market because of expert
analysis and experience.

• Possibility of superior returns

• Managers can make changes if they believe the market will fall

Active management disadvantages

• High transaction and management costs

• Because of the decision making process which securities to include, many mis-
takes are possible

• Exposed to market and company risk

Passive management advantages (compared to active management)

• Low transaction and management costs

• Much easier decision making process

• Only exposed to market risk

Passive management disadvantages

• Lack of control, managers can not take action if they think markets will fall

• Returns are determined by the performance of the benchmark

The debate about active versus passive management will always continue. However,
Sharpe [1991] asserts that on average active managers can not beat passive strategies.
Active investing is a zero sum game where some investors will win and some will lose
relative to the return of the market or a market segment. Consequently, after costs, the
return on the average actively managed dollar will be less than the return on the average
passively managed dollar. Empirical researches by Malkiel [1995], Sorenson et al.
[1998] and Frino and Gallagher [2001] have shown that passive strategies are found to
outperform active strategies on average. So it is not a surprise that passive strategies are
increasingly popular. Frino and Gallagher [2001] estimates that in total $1,5 trillion is
passively invested in index funds in the USA alone. Or to quote Sorenson et al. [1998]:

“Equity index funds have become as popular to investors as electronic cash
machines have to consumers.”
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1.1.3 Index Tracking
As discussed before, index tracking is a method of passive portfolio management. It
attempts to match the performance of a certain benchmark. Matching the performance
of an index can be performed two ways.

The first is full (or complete) replication, a method in which all the shares mak-
ing up an index are held in their respective market weights. This method perfectly
reproduces the index, but has some important disadvantages. It incurs high transaction
costs; imagine buying all the stocks of the Wilshire 5000 (composed of more than 6000
companies). Moreover, when stock weights comprising the index change (as a result
of a merger, stock split etc.) high transaction costs will occur again. Unfortunately,
composition changes of indices happens a lot. The process of adjusting a tracking
portfolio due to changes of an index is referred as rebalancing.

For these reasons many index fund managers hold only a subset of stocks from the
index. This method is called partial replication and involves lower transaction and
management costs.

However, this strategy introduces tracking error, the measure of the deviation of
the chosen portfolio from the index.(Shapcott [1992]) Obviously, index fund managers
try to minimize this tracking error. Consequently the index tracking problem exists
of minimizing tracking error and trying to minimize transaction costs. Fore more
information concerning the challenge facing index managers see Frino and Gallagher
[2001].

1.2 Goal
In this thesis we try to reproduce the performance of the Dutch AEX-index with only a
subset of shares comprising the index (partial replication). Tracking error is minimized
in order to accomplish this objective. The goal of the research described in this thesis is
to provide insight with regard to the sophisticated methods used to minimize tracking
error and to provide insight how a tracking portfolio performs.

1.3 Methodology
A genetic algorithm is used to search the solution space efficiently for possible subsets
of stocks in order to create a tracking portfolio. For each subset quadratic program-
ming will be used to determine the weights of the chosen stocks by minimizing track-
ing error. This in sample tracking error is based on historical calculated returns and
covariances. After the optimal portfolio is determined, out-of-sample performance of
the tracking portfolio compared to the index is evaluated.
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1.4 Structure
The structure of this thesis is as follows. Firstly existing literature in the field of index
tracking is discussed in chapter 2. Next the research approach with the research prob-
lem, theoretical model and the development of the genetic algorithm will be further
explained in chapter 3. The experimental setup and results of the tracking portfolio
will be reported in chapter 4. In chapter 5 conclusions and thoughts about further
research will be discussed. References and figures can be found at the end.
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Chapter 2

The Existing Literature of Index
Tracking

2.1 Literature Survey
In spite of the great performance of index tracking recent years, researches about the
topic are relatively scarce compared to active management. Whereas the objectives
of index tracking are simple and well known, problems arise when trying to put this
simple objectives into an optimal solvable model. In order to structure this literature
review we first consider empirical insights on index tracking. After that, we con-
sider different techniques to find optimal tracking portfolios including factor models,
Markowitz models, quadratic programming and heuristic approaches.

2.1.1 Empirical Insights on Index Tracking
As discussed before, the main objective of index tracking is to reproduce the perfor-
mance of an index. Performance deviations of the tracking portfolio, i.e. tracking
error, arise through several factors. The main factors identified by Frino and Gallagher
[2001] are transaction costs (the amount of transaction costs is determined by the liq-
uidity of the underlying index and the efficiency of the market), the way dividends
are treated by the index, the volatility of the index, timing effects, front-running by
arbitrageurs and index composition changes. Frino and Gallagher [2001] also noticed
seasonality in tracking error. Tracking error is significantly higher in January due to
“January effect” and during months when stocks go ex-dividend.

Liquid indices such as the S & P 500 tend to have low transaction costs compared
to non-liquid ones, but investors have to pay a substantial price premium for stocks
in these markets as identified by Petajisto [2004]. When a new stock is added to the
index, this generally goes up, this brings extra costs for index managers because they
have to buy the stock at the new price.

Larsen-Jr. and Resnick [1998] have shown that tracking portfolios for value weighted
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indices (based on market capitalization) have less tracking error and lower standard de-
viations of tracking error than they have for equal weighted indices.

2.1.2 Traditional Methods
There are several ways described in literature to formulate a model that tries to repro-
duce the performance of an index using only a subset of stocks. Meade and Beasley
[2004] and Larsen-Jr. and Resnick [1998] used a single factor model in order to mini-
mize tracking error given a subset of shares. Factor models contribute security returns
on one ore more underlying sources. In the case of a single factor, this is usually the
market return.

Meade and Salkin [1990] and Meade and Salkin [1989] discuss some assumptions
related to the tracking error in order to solve the problem by using quadratic pro-
gramming. They also considered the effect of industry stratification within a tracking
portfolio. That is, shares are selected in order to achieve the same sector representation
as the index. However, this stratification strategy did not boost performance in their re-
search. On the other hand, Larsen-Jr. and Resnick [1998] found out that stratification
does works, especially for high capitalization indices.

Tabata and Takeda [1995] considered the traditional asset allocation of the Markowitz
type (Markowitz [1952],Markowitz [1959]) and used an efficient approach to find a
local optimal solution. They also pointed out that the problem is a bi-criteria optimiza-
tion problem: firstly the zero-one integer problem deciding which stocks to include in
the portfolio must be solved and afterwards an algorithm solving the weights of the
chosen stocks by minimizing tracking error must be applied. This problem has no
tractable analytic solution because of its combinatorial explosion and belongs to the
class of NP complete problems.

Consider the Dutch AEX-index, which is generally composed of 25 shares. If we
want to track this index with a portfolio consisting of 10 stocks, we can build

25!

10! ∗ 15!
= 3.268.760 portfolios. (2.1)

In order to minimize tracking error, we have to solve the optimal weights for the stocks
for each of these portfolios. This might be still feasible with nowadays computers, but
what happens if we want to track the S & P 500 with 200 stocks?

500!

200! ∗ 300!
= 5, 0549498499355322213139907819098 ∗ 10144 portfolios. (2.2)

As we can see, the solution space is very large because of its combinatorial explosion.
That is why Tabata and Takeda [1995] proposed a heuristic approach for this problem.

2.1.3 Heuristic Optimization Techniques
Stochastic and deterministic search procedures - in order to find a subset of shares out
of a large universal set that tracks an index well - have been successfully implemented
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in different ways.

Threshold Accepting

Gilli and Kllezi [2001] used a Threshold Accepting Algorithm.

“The Threshold Accepting Algorithm is a refined local search procedure
which escapes local minima by accepting solutions which are not worse
by more than a given threshold. The algorithm is deterministic as it does
not depend on some probability. The number of steps where we explore
the neighborhood for improving the solution is fixed. The threshold is
decreased successively and reaches the value of zero after a given number
of steps.”

The constructed portfolios performed rather well for different data sets. In their objec-
tive function they also considered transaction costs and they performed various exper-
iments with different constraints.

Simulated Annealing

Another heuristic search approach is simulated annealing. The underlying principle
arises from an analogy from metallurgy: reach a minimum energy state upon cool-
ing a substance, but not too quickly in order to avoid reaching an undesirable final
state.(Corana et al. [1987]) This procedure is implemented for the tracking error prob-
lem by Derichs and Nickel [2003]. Besides the creation of a successful tracking port-
folio, they also considered the revision - including the transaction costs involved - of
an existing tracking portfolio over time.

Hierarchical Clustering

Dose and Cincotti [2005] formed a tracking portfolio based on complete-link hierar-
chical clustering. They cluster homogeneous groups based on similarity of returns and
then take one stock from each cluster to form a subset. After the selection they per-
form weight optimization of the subset. An interesting method, but not as good as the
previous methods.

Genetic Algorithm

Last but not least is the use of genetic algorithms in order to search the solution space
for a subset of shares that performs well in tracking an index. When this subset is
determined, optimization techniques such as quadratic programming are used to solve
the optimal proportions to hold the shares. Shapcott [1992] is to our knowledge the
first who successfully employed this strategy. He tracked the FTSE 100 index (UK)
effectively with a portfolio consisting of 20 stocks. He also proved the superiority of
the algorithm compared to random search algorithms.
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Eddelbütter [1996] used a similar strategy, but he tracked the German Xetra DAX
30 index. The research included also a section that the genetic algorithm was able to
converge to the global minimum tracking error portfolio.

Beasley et al. [2003] extended these approaches by considering transaction costs
and the revision of an existing tracking portfolio.(not just its creation) They tested the
approach on the S & P 500 (USA), the FTSE 100 (UK), Hang Seng (Hong Kong), Xe-
tra DAX 100 (Germany) and the Nikkei 225 (Japan). The results are quite impressing.
They also conducted reduction tests in order to reduce the size of the search space and
hence enabling the algorithm to be more effective. Because of the completeness of
their research, this is the leading paper for index tracking using genetic algorithms.

Inspired by the outstanding results of the genetic algorithm, we try to track the
Dutch AEX-index in this paper. The next paper describes our research approach.
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Chapter 3

Research Approach

3.1 Research Problem
Index tracking involves building an investment portfolio designed to reproduce the per-
formance of a particular benchmark index. Because of cost reduction, only a subset of
stocks is included in our replicating portfolio. The objective function is to minimize
the tracking error of this subset. Following Grinold and Kahn [1999] we define track-
ing error as the standard deviation of the difference in returns between our portfolio
and the benchmark. Calculated as

TE1,p = stdev(RPt −RPb) =

√√√√ 1

T − 1

T∑
t=1

((RPt −RPb)− (RPt −RPb))2 (3.1)

The symbols are defined as follows,

• TE1,p = Tracking error of the portfolio compared to the benchmark

• RPt = Return of the portfolio in period t

• RBt = Return of the benchmark in period t

An alternative measure mentioned by Roll [1992] is to define tracking error as the
absolute difference in returns of the index portfolio and the benchmark. Calculated as

TE2,p =

∑T
t=1 |RPt −RPb|

T
(3.2)

We will use TE1,p because when the tracking portfolio consistently outperforms the
index, this measure will result in zero tracking error. TE1,p is an ex-post measure
because we need RPt and RBt. However, we want to predict tracking error in order
to minimize tracking error of the portfolio to be created. The expected tracking error
following Eddelbütter [1996] is calculated as,

E(TEp) =
√

(hT
p − hT

b )V (hp − hb) (3.3)

16



The symbols are defined as follows,

• hp = the vector defining the weights of the stocks of our portfolio (subset)

• hb = the vector defining the weights of the stocks of the index (benchmark)

• V = the symmetric matrix of sample covariance’s between members of the index

Quadratic programming involves minimization of a quadratic function subject to linear
constraints. We can formulate our problem as a quadratic programming problem as

Minimize
√

xT V x

Subject to s · x = 0

with − hb ≤ x ≤ (−hb + 1) (3.4)

Where x = the vector of active weights (that is, hp − hb) and s is a vector containing
only ones. Because the weights of the index (hb) and our portfolio (hp) sum to 1,
follows the constraint that the sum of the active weights (x) must be 0.

3.2 Approach
A hybrid genetic algorithm is used to search the solution space efficiently for possible
subsets of stocks and quadratic programming will be used to determine the optimal
weights of the stocks in order to minimize expected tracking error. In order to minimize
expected tracking error (3.4) we need the benchmarks weights (hb) and the covariance
matrix (V ).

3.2.1 Benchmark weights
There are two major ways of constructing an index:

• Equally weighted index (every company has equal weight)

• Market capitalization weighted index (Each of the company is weighted relative
to their market capitalization)

An example of the former is the Dow Jones Industrial Average. The latter is the most
common one, an example is the S & P 500. 1

3.2.2 Covariance matrix
The covariance matrix defines the relationship between all of the companies in the
index. This is important information because our tracking portfolio performances op-
timal when it has roughly the same similarities and differences between the stocks. In
this section we consider three risk models to estimate this important matrix.

1In this thesis we track the Dutch AEX-index. This is a real time market capitalization based index.

17



Single Index Model

The Single Index Model supposes that systematic risk can be captured by a single
factor; the market. Returns are calculated as

rn = βn · rm + θn (3.5)

Where rn is stock n’s return, θn is stock n’s residual return,βn is stock n’s beta and rm

is the return of the market. As discussed by Grinold and Kahn [1999], the single index
model assumes that the residual returns θn are uncorrelated, and hence

cov(rn, rm) = βn · βm · σ2
m (3.6)

Where σ2
m is the variance of the market.

Multi-factor Model

The multi-factor model is a more advanced version of the single index model and is
based on the notion that returns can be explained by a collection of common factors
plus an idiosyncratic element that belongs to that particular stock. Following Grinold
and Kahn [1999], returns are calculated as

rn(t) =
∑

k

χn,k(t) · bk(t) + un(t) (3.7)

The symbols are defined as follows,

• rn(t) = return on stock n above the risk-free return from time t to time t + 1

• χn,k(t) = exposure of asset n to factor k at time t

• bk(t) = factor return to factor k from time t to time t + 1

• un(t) = stock n′s idiosyncratic return to the stock from time t to time t + 1

If we assume that the idiosyncratic returns are not correlated with the factor returns
and are not correlated with each other, the covariance matrix becomes

cov(rn, rm) =
K∑

k1,k2=1

χn,k1 · Fk1,k2 · χm,k2 + ∆n,m (3.8)

The symbols are defined as follows,

• Fk1,k2 = covariance of factor k1 with factor k2

• ∆n,m = idiosyncratic covariance of asset n with asset m

18



Historical estimation

Historical estimation relies on historical variances and covariances. This method does
not apply any statistical assumptions, and instead relives history using raw historical
data. It requires a large dataset, but it is easy implemented. In this thesis, we will use
equal weights for past returns. Returns are calculated continuous as

Rn(t) = ln
( Pn(t)

Pn(t− 1)

)
(3.9)

The covariance matrix is calculated as

cov(rn, rm) =

∑T−1
t=0 (rn(T − t)− rn)(rm(T − t)− rm)

T − 1
(3.10)

An alternative way of estimating the covariance matrix using historical data is JP Mor-
gan’s RiskMetricsTM who use exponentially declining weights for past returns. Con-
sequently, recent observations are more important than old ones.

3.3 Genetic Algorithm

3.3.1 Introduction
As mentioned before, a genetic algorithm is used to search the solution space effi-
ciently for possible subsets of stocks. This section provides a description of how
genetic algorithms work. Furthermore, it explains how the algorithm is used in this
application. The genetic algorithm (GA) is a randomized search algorithm based on
mechanics of natural selection and genetics invented by Holland [1992]. The evolu-
tion starts from a population of completely random individuals represented by chro-
mosomes and happens in generations. In each generation, the fitness of the whole
population is evaluated, multiple individuals are selected from the current population
(based on their fitness) and modified (crossover and mutation) to form a new popu-
lation, which becomes current in the next iteration of the algorithm. See for more
information Mitchell [1996]. Each chromosome represents a possible solution to the
general problem. In this case, they take the form of a representation of a particular
subset of shares from the index. Typically, binary strings are used as an encoding in
order to sample a maximum number of schemata Holland [1992]. An example of a
possible chromosome is:

[1001010011001000110010010] (3.11)

In this investigation, each character represents a stock. For example, the first character
is representing ABN AMRO, the second one Aegon etc. If a stock is included in our
portfolio it denotes ”1”, otherwise ”0”.
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3.3.2 Basic Outline
Now we understand how a chromosome might look like, the basic outline of the GA
is:

1. (Start) Generate a random population of n chromosomes (solutions for the prob-
lem)

2. (Fitness) Evaluate the fitness of each chromosome in the population (In this ap-
plication, calculate the tracking error of each chromosome)

3. (New population) Create a new population by repeating following steps until the
new population is complete

(a) (Selection) Select two ’parents’ chromosomes from the population

(b) (Crossover) With a crossover probability crossover the parents to form new
offspring.

(c) (Mutation) With a mutation probability mutate new offspring

(d) (Replace) Replace parents by offspring

4. (Next generation) Use new generated population for a further run of the algo-
rithm until the number of generations is reached

3.3.3 Implementation of operators
Fitness function and hybridization

The fitness function evaluates the strength of the chromosomes. A more fit individual
has a higher probability of reproduction over a less fit one. In our research, the fit-
ness function calculates the tracking error of each chromosome. The lower the better,
because our objective is to minimize tracking error.

FitnessFunction = E(TEp) =
√

(hT
p − hT

b )V (hp − hb) (3.12)

In order to calculate the fitness of each chromosome, we do need hp (the vector defin-
ing the weights of the stocks for each chromosome). At this stage, the genetic algo-
rithm is hybridized with the quadratic programming routine. The routine solves the
problem for each chromosome and delivers the corresponding tracking error to the fit-
ness function of the genetic algorithm. This approach combines the efficient search
procedure of the genetic algorithm in the solution space with the local convergence
properties of the quadratic programming solver.
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Selection

Selection is the stage of a genetic algorithm in which individuals are chosen from a
population for later breeding. In this thesis we use deterministic tournament selec-
tion. Tournament selection runs a tournament among a few individuals and selects the
winner (the one with the best fitness) Tournament selection has several benefits; it is
efficient to code, works on parallel architectures and allows the selection pressure to
be easily adjusted. See for more information Miller and Goldberg [June 1995].

Associated with the selection step is the ’elitism’ strategy. Elitism is a method that
guarantees that a number of best solutions are placed directly into the next generation.
In this thesis elitism is used, because that way, the search for a good solution never
goes backwards.

Crossover

Crossover operators, which take two parent chromosomes and combine them in such a
way as to produce a child, need to be carefully designed. The most common crossover
operator is ”one point crossover”. This crossover operator picks a random point within
the chromosomes, and then switches the genes of the two chromosomes at this point
to produce two new offspring. If an offspring takes the best parts from each of its
parents, the result will likely be a better solution. However, when using this operator

Parent 1 1110100100
Parent 2 0100101011

Cut Point 5
Child 1 1110101011
Child 2 0100100100

Table 3.1: Example of a single-point crossover

the number of ones and zero’s in the string of the parents compared to the children can
change. This is undesirable; because we don’t want that the number of stocks included
in the portfolio can change. (Remember, ”1” denotes inclusion and ”0” non-inclusion)

A two point order based crossover is used in this thesis as a result of this constraint.
The idea behind the order based crossover is to swap the genes in the order found at
the other parent. The number of ones and zeros will remain the same.

Mutation

Mutation is necessary to prevent areas of the search space being discarded, but a too
high mutation rate will prevent the desired convergence. The standard mutation oper-
ator will choose a single bit at random and swaps its value. (So, a zero becomes a one
and vice versa). Again, we don’t allow changing the number of ones and zero’s. In
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Parent 1 1000011011
Parent 2 0110110010

Cut Point 3 and 7
Child 1 1000110011
Child 2 0111001010

Table 3.2: Example of a two point order based crossover. The bold part is swapped in
the order found at the other parent. The underlined part remains the same.

this thesis we will use mutation inversion. Rather than selecting a single bit to mutate,
inversion mutation finds two random characters in the string and reverses them.
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Chapter 4

Experimental setup and Results

4.1 Data set
The AEX-index is the best known index of Euronext Amsterdam and is made up of 25
high capitalized stocks. The weights of the stocks are based on market capitalization
and are adjusted real time. The index provides a fair representation of the Dutch econ-
omy. For more information, see http://www.euronext.com. In this thesis we
will try to reproduce the performance of this index with a subset of 10 shares.

The composition of the AEX-index changes often. In Figure A.2 we can see that
the index has changed 17 times between 01/01/2001-04/05/2004.

We will test our tracking portfolio out-of-sample during the period 03/03/2004-
03/03/2005. Therefore we will use the composition of the index on 02/03/2004 to
determine the benchmark weights and to make the necessary calculations. See Table
4.1 for this composition. The covariance matrix is calculated using daily stock quotes
between 02/01/2001-02/03/2004. All quotes are obtained by using DATASTREAM
and are adjusted for stock splits, dividends etc. A graph of historical AEX quotes that
covers our dataset can be found in Figure A.1.

4.2 Test Environment
The returns and covariance matrix are calculated using Microsoft Excel 2003. This
program is also used to evaluate the performance of constructed portfolios and to make
the graphs that are presented in the results section. MATLAB 6.5 is used to code
the genetic algorithm and it performs the quadratic programming. All computations
were performed on an AMD AthlonTM 64 processor, 1.80 Ghz, 1 GB Ram, personal
computer running Windows XP Professional.
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Symbol Company Quote Coefficient Index Contribution Percentage
AAB ABN AMRO Holding 18,68 197,00 3679,96 10,22
AGN Aegon NV 11,98 203,00 2431,94 6,75

AH Ahold 7,32 206,00 1507,92 4,19
AKZ Akzo Nobel 31,51 38,00 1197,38 3,32

ASML ASML 15,45 68,00 1050,60 2,92
BHR Buhrmann 8,18 18,00 147,24 0,41
DSM DSM 37,99 13,00 493,87 1,37
FOR Fortis 18,78 173,00 3248,94 9,02
GUC Gucci 70,12 3,50 245,41 0,68
GTN Getronics 2,65 68,00 180,20 0,50
HEI Heineken 27,06 27,00 730,62 2,03

HGM Hagemeyer 1,96 66,00 129,36 0,36
ING ING 19,91 181,00 3603,71 10,01
KPN KPN 6,49 332,00 2154,68 5,98

MOO van der Moolen 7,28 5,00 36,40 0,10
NUM Numico 25,69 23,00 590,87 1,64

PHI Philips 25,22 146,00 3682,12 10,22
RD Royal Dutch 40,76 89,00 3627,64 10,07

REN Reed Elsevier 11,04 95,00 1048,80 2,91
SBMO SBM Offshore NV 39,97 4,50 179,87 0,50

TNT TNT 17,96 49,00 880,04 2,44
UN Unilever 58,85 60,00 3531,00 9,80

VNU VNU 26,85 34,00 912,90 2,53
VRS Versatel 2,25 60,00 135,00 0,37

WKL Wolters Kluwer 15,02 39,00 585,78 1,63
SUM 36012,24 100,00

AEX-Index 360,12

Table 4.1: Composition of the AEX-Index as of 02/03/2004.
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4.3 Parameters of the Genetic Algorithm
One of the difficulties of genetic algorithms is finding the best internal parameters in
order to optimize speed and convergence. These parameters are;

• Size of the initial population

• Number of generations

• Crossover probability

• Mutation probability

• Rate of elitism

After extensive trial and error, we have found adequate and robust parameters for our
problem. These parameters are presented in Table 4.2.

Size of the initial population 20
Number of generations 100

Crossover probability 0,1
Mutation probability 1,0

Rate of elitism 2

Table 4.2: Internal parameters of the Genetic Algorithm
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4.4 Results
We did several experiments and while using the parameters discussed in section 4.3,
the hybrid genetic algorithm found the solution presented in Table 4.3. We call this
portfolio GA Tracker. Both the companies and their weights in the tracking portfolio
are given.

Company Weight
ABN AMRO 0,126271
Aegon NV 0,075173

Ahold 0,04673
Akzo Nobel 0,078453

Fortis 0,087774
ING 0,084059
KPN 0,075942

Philips 0,141958
Royal Dutch 0,139015

Unilever 0,144623
SUM 1

E(TE1) 0,032607

Table 4.3: The portfolio constructed by the genetic algorithm

We observe that the stocks selected for our GA Tracker coincide with the 10 largest
stocks of to the AEX-index. (Compare with Table 4.1) This is very reasonable because
these heavy weighted stocks do influence the index most. In addition we note that the
minimum weight in the tracking portfolio (that of Ahold shares) is around 4,7% and
the maximum weight (that of Unilever shares) somewhat less than 14,5%.

In order to estimate the quality of this tracking portfolio found, we performed sev-
eral other experiments. First of all, we measured the in section 4.1 described out-of-
sample performance. Figure A.3 shows the out-of-sample performance of our tracking
portfolio compared to the performance of the true AEX-index. We observe that ini-
tially, both performances are almost equal while gradually small differences emerge
(due to, among other things, changes in the weights of the shares composing the AEX-
index). We further note that the up and down movements of both portfolios are quite
similar.

To better assess the quality of the tracking portfolio found, we also constructed
other portfolios:

• Random: 10 random selected stocks, equal proportions: Figure A.4

• High Cap.: the 10 highest capitalized stocks, equal proportions: Figure A.5

• Low Cap.: the 10 lowest capitalized stocks, equal proportions: Figure A.5
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• Full Replication: All the shares making up the AEX are held in their respective
market weights (figure not shown, because the graph becomes one line)

The corresponding out-of-sample tracking errors as defined in Chapter 3 are listed
in Table 4.4.

GA Tracker Random High Cap. Low Cap. Full Replication
TE1 0,001170 0,005197 0,001611 0,005449 0,000122
TE2 0,001534 0,005229 0,001905 0,006034 0,000089

Table 4.4: Out-of-sample tracking errors of different portfolios

We observe that generally TE1 is slightly larger than TE2, but the pattern be-
tween the portfolios is very similar. As might be expected, we note that the tracking
performance of the high capitalized portfolio is quite good, but not as good as the
performance of the GA Tracker. Probably because the former is equally weighted
and the latter is optimal weighted. Furthermore, the performance of the GA Tracker
clearly dominates randomly chosen portfolios and portfolios consisting of low capi-
talized stocks. The full replication method performs even better, but this strategy is
accompanied with high transaction costs. (as discussed in section 1.1.3)

27



Chapter 5

Conclusions and Further Research

5.1 Conclusions
In this thesis we have considered the index tracking problem and presented a heuristic
approach for its solution. A genetic algorithm has been used to search the solution
space efficiently for possible subsets of stocks in order to create a tracking portfolio.
For each subset quadratic programming has been applied to determine the weights
of the chosen stocks by minimizing tracking error. We have employed this hybrid
approach in order to track the Dutch AEX-index as closely as possible.

We conclude that the performance of the tracking portfolio found is much better
than that of randomly selected portfolios and that of low capitalized portfolios which
can be derived from the AEX-index. In addition, it is shown that the performance of
high capitalized portfolios is similar although still slightly worse than the optimal GA
tracking portfolio. This research shows that even a small stock index like the AEX-
index can be tracked quite well by a relatively subset of its composing stocks.

On the other hand, we have to remark that we tested our portfolios only 1 year
out-of-sample. In this period the AEX-index was a rather dull market without big
movements up or down. (See Figure A.1 2004-2005) A longer and more turbulent
period is preferable in order to test the robustness of our portfolios.

Another weakness in this project is the design of the crossover operator. It turns out
that our genetic algorithm performs best without this “order based crossover operator”
or when it is applied with a low probability. (See Table 4.2)

Nevertheless, the algorithm finds the optimal solution considerable fast. (Our GA
generally needs about 2000 calculations out of 3.268.760 possibilities) We suspect that
this is possible because the ultimate cooperation between the mutation operator and the
elitism strategy.
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5.2 Further Research
In this thesis we have focused on building a tracking portfolio with minimal tracking
error. However, in practice we are also confronted with the revision of an existing
tracking portfolio. It is interesting to analyze the frequency needed for re-balancing
the optimal tracking portfolio in an attempt to further improve the performance in
the long run of the GA tracker. Moreover, when re-balancing we are also faced with
the trade-off between tracking error and transaction costs. For more information, see
Beasley et al. [2003].

Other interesting issues are the effects of index composition changes (due mergers,
liquidations etc.) and the effect of dividend payments. This is by our means not yet
fully investigated.
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Appendix A

List of Figures

Figure A.1: Historical AEX-Index quotes

32



Figure A.2: Composition changes of the AEX-Index



Figure A.3: Tracking performance of a portfolio (10 stocks) constructed by the Hybrid
Genetic Algorithm
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Figure A.4: Tracking performance of a typical random drawn portfolio (10 stocks)
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Figure A.5: Tracking performance of respective high and low capitalized portfolios
(10 stocks)
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