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Abstract 
One very common approach to bankruptcy prediction is by using classification 

techniques, based on key financial ratios. This approach also stands at the core of this 

paper, together with a (slightly) modified Ant System. The purpose of combining the two 

is to find a suitable classification rule by which bankrupt firms can be separated from 

non-bankrupt ones. The results obtained by using the Ant System are benchmarked 

against the performance of Discriminant Analysis on the same data. 
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1. Introduction 

It might start with defaulting on an obligation, or when a company’s liabilities outweigh 

its assets. It’s called bankruptcy: a legally declared inability or impairment of ability of 

an individual or organization to pay their creditors1. Its consequences are disastrous; no 

wonder that scientists and finance professionals have been trying, for over 50 years now, 

to develop efficient failure prediction models. 

 

One very common approach to bankruptcy prediction is by using classification 

techniques, based on key financial ratios. This approach also stands at the core of this 

paper, together with a (slightly) modified Ant System. The purpose of combining the two 

is to find a suitable classification rule by which bankrupt firms can be separated from 

non-bankrupt ones. The choice for the financial ratios used in this study is based on a 

study by Altman [1] who has selected five financial ratios out of a list of 22 such ratios as 

providing the best classification ‘power’ for the bankruptcy prediction problem. The Ant 

System is based mostly on research done by Dorigo et. al. [9,10], but also on other 

available literature on ants behavior and applications/implementations of that behavior in 

optimum-seeking problems. 

 

After presenting and discussing the data collected for the purpose of this study in the 

second chapter, attention will be dedicated to the behavior of real ants and to the 

algorithm based on this behavior. The necessary modifications to the original algorithm 

in making it suitable for the bankruptcy problem will be discussed in the same chapter. 

The fourth chapter will present the experimental setup used for the purpose of this paper, 

while in the fifth chapter the empirical results will be reviewed, providing a first 

comparison between the results obtained by using the Ant System and the results 

obtained by using discriminant analysis on the collected data. Finally, the last two 

chapters of this paper will provide the reader with a discussion on the performance of the 

Ant System in predicting bankruptcy, as well as with a general conclusion and 

suggestions for further research. 

                                                 
1 http://en.wikipedia.org/wiki/Bankruptcy 
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2. Bankruptcy Data 
In the first section of this chapter, the five financial ratios selected for the analysis are 

presented and this selection is sustained with previous research. The final section presents 

the criteria used for the selection of the (bankrupt and non-bankrupt) firms and the 

datasets used in the analysis. Statistic properties of the data can be found in Appendix A. 

 

2.1 Financial Ratios 
Five different financial ratios have been selected for the purpose of this study, as derived 

by Altman [1]. In his 1968 study, Altman has selected these ratios, out of a set which 

counted a total of 22 variables, as ‘doing the best overall job together in the prediction of 

corporate bankruptcy’ [1]. The five financial ratios derived by him, which are also used 

in this study, are:  Working Capital/Total Assets (X1), Retained Earnings/Total assets 

(X2), EBIT/Total Assets (X3), Market Value of Equity/Book Value of Total Debt (X4) 

and Sales/Total Assets (X5). 

 

Based on this five financial ratios, Altman [1] derived the following discriminant 

function as the providing the best performance in separating the bankrupt from the non-

bankrupt firms in his dataset: 

54321 999.006.033.014.012. XXXXXZ ++++=   (2.1) 

 

2.2 The Datasets 
Two different datasets are used in this study. The first one, called altman_1Y in this 

paper, is the original dataset used by Altman in [1]. This dataset contains 66 corporations 

(33 bankrupt and 33 non-bankrupt), all manufacturers. The bankrupt set contains firms 

with asset sizes ranging between $0.7 million and $25.9 million, that have filed for 

bankruptcy (under Chapter X) in the period 1946-1965. The five financial ratios for the 

bankrupt firms were calculated using data on the financial statement one reporting period 

prior to bankruptcy. The non-bankrupt set consists of a paired sample of similar firms 

with asset sizes ranging between $1 million and $25 million, that were still in existence in 

1966. 
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The second dataset used in this study, called 110_2Y in this paper, consists of 110 

corporations (55 bankrupt and 55 non-bankrupt), all manufacturers. The financial data for 

all the 110 corporations was collected from the Thomson One Banker database2. The 

firms in the bankrupt set where selected using the Bankruptcy Research Database 3; these 

firms filed for bankruptcy between 1998 and 2004 and had, at the time of filing for 

bankruptcy, asset sizes lower than $1 billion. The five financial ratios for the bankrupt 

firms were calculated using data on the financial statement two years prior to bankruptcy. 

The non-bankrupt set consists of a paired sample of similar firms with asset sizes lower 

than $1 billion, that were still in existence in 2005. 

 

The two datasets are each used both as a whole as well as divided into a train and test set. 

It should be noted that the altman_1Y might prove too small to be divided into two 

subsets. However, for the symmetry of the analysis, both sets will be divided into a 

training and a testing set, respectively. 

 

The altman_1Y dataset is randomly divided in two subsets: altman_1Y_train, containing 

42 firms out of the 66 available (21 bankrupt and 21 non-bankrupt) and altman_1Y_test, 

containing the rest of 24 firms (12 bankrupt and 12 non-bankrupt). The 110_2Y dataset is 

randomly divided in two subsets: 110_2Y_train, containing 70 firms out of the 110 

available (35 bankrupt and 35 solvent) and 110_2Y_test, containing the rest of 40 firms 

(20 bankrupt and 20 solvent). Both algorithms will be given a chance to derive a 

classification rule based on the training set; this rule will then be evaluated based on its 

performance on the testing set. 

 

                                                 
2 http://banker.analytics.thomsonib.com/ 
3 Lynn M. LoPucki’s Bankruptcy Research Database (WebBRD), available at http://lopucki.law.ucla.edu 
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3. Ants 
This chapter is meant to provide the reader with a basic understanding of the algorithm 

used in this paper. To achieve this, ants are first introduced in their biological sense. The 

second part will present an abstraction of the biological ants and their plunging into the 

binary world. Finally, the third part will discuss the modifications made to the original 

algorithm in making it suitable for bankruptcy prediction. 

 

3.1 Real Ants and Stigmergy 
Although very limited in their capacities as individuals, ants present a high degree of 

societal organization. In their 100 million years existence, they have proved to be one of 

the most successful species, statement supported by the number of ants currently on 

Earth: 1016. In fact, the total weight of all the ants is equal to, if not higher than, the total 

weight of humans alive today [10]. But how did they do it? 

 

A detailed answer to this question is beyond the purpose of this paper, but a few aspects 

are not only interesting, but useful in understanding the computational techniques based 

on their behavior. Stigmergy, a term first introduced by Grassé [10, 13], refers to a 

particular form of indirect communication used by social insects to coordinate their 

activities. He defined it as ‘stimulation of workers4 by the performances they have 

achieved’. A better understanding of stigmergy can be achieved through the example of 

nest building in termites. In this process, soil pallets, impregnated with pheromone5, are 

first deposited at random. When one of the deposits has reached a critical size, the 

process transforms into a coordinated one (as opposed to random, in the first phase). The 

higher number of soil pallets results in a higher6 amount of pheromone, which stimulates 

workers. As the deposit increases, so does the amount of pheromone present, and the 

combined effort of the workers results in the construction of pillars. Another aspect worth 

                                                 
4 Workers are one of the castes in termite colonies [10] 
5 A pheromone is any chemical produced by a living organism that transmits a message to other members 
of the same species. [http://en.wikipedia.org/wiki/Pheromone] 
6 Snowball effect [10] 
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of mentioning is that if the density of builders is too small, the pheromone will 

evaporate7, bringing the process back in the first phase. 

 

The same procedure is followed by ants when searching for food. In this case depositing 

pheromone when searching/finding sources of food results in trail-laying/trail-following 

behavior [15], which explains the amazing ability of ants to find the shortest path 

between their nest and food sources [7]. The modeling of this process will be described in 

more detail in the next section, where the biological ants will make room for their digital 

counterparts. 

 

3.2 Ant Systems 
The first algorithm based on the foraging behavior of ants was the Ant System [9,10]. 

One of the most obvious applications of this algorithm is the Traveling Salesman 

Problem (TSP): finding a closed tour of minimal length connecting n given cities. In this 

brief presentation of the original algorithm, the same problem will be used to introduce 

the variables used in the model as well as the computational behavior of the ants. 

 

In finding an optimal path for the TSP problem, a number of ants visit sequentially the 

nodes of the graph. After completing a tour, the ants deposit a quantity of pheromone, τ, 

proportional to the fitness of the solution found. Dorigo et. al. [1] define the quantity of 

pheromone Δτk
ij(t) deposited by ant k on each edge (i,j) of the tour Tk(t) as a function of 

the length Lk of the tour: 

⎩
⎨
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where Q is an adjustable parameter. 

 

A probabilistic transition rule pk
ij(t), the probability that ant k will go from i to j at 

iteration t,  is used by the ants in building their tours. This probability depends on 2 

parameters: a heuristic measure of the desirability of adding edge (i,j) to the current tour, 

                                                 
7 Pheromone decay [10] 
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ηij, and the amount of pheromone currently on edge (i,j), τij. Dorigo et. al. [9]use the 

following formula for calculating the probability that ant k will move from city i to city j: 
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where α, β are adjustable parameters and Jk(i) is the set of cities that remain to be visited 

by ant k. A good desirability measure, ηij, for the TSP problem is the inverse of the 

distance between cities i and j. 

 

Because in the beginning of the simulation the paths generated by the ants are mostly 

random, pheromone evaporation should take place, thus avoiding convergence to a local 

optimum. According to Dorigo et. al. [9], this can be implemented as: 

)()()1()1( ttt ijijij ττρτ Δ+−=+  (3.3) 

where ρ is the coefficient of evaporation (0 <  ρ < 1) and Δτij is given by: 
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with m being the number of ants. 

 

The initial quantity of pheromone on the edges, before any exploration has taken place, 

should be initialized to a small value; the number of ants should equal the number of 

cities in the problem, and the parameters should take the values: α = 1, β = 5, ρ = 0.5, Q = 

100 [9]. 

 

3.3 The Ant System for Bankruptcy Prediction 
Data 

The first difficulty encountered when designing an Ant System suitable for bankruptcy 

prediction is the continuous nature of the data. For the current purpose, the data should be 

in discrete or categorical form. Wang et. al. [22] choose to divide the collected data for 

each variable into intervals, according to the variable’s statistic distribution. In this paper 

a different method has been chosen: rather than dividing the data into intervals, cut points 
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are generated based on the statistics of each of the variables in the analysis. This way the 

original data stays intact, while the ants operate on a graph composed of the generated 

cut-points for each of the variables. All possible cut-points for ratio Xn are obtained by 

dividing the interval [minxn, maxxn] in smaller intervals of size SXn, where minxn and maxxn 

represent the smallest value and respectively the largest value of ratio Xn encountered in 

the data set and SXn represents the distance between 2 consecutive cut-points for ratio Xn. 

The values obtained in this manner represent the vector of all acceptable cut-points for 

ratio Xn. 

 

Classification Rule 
Having the data defined as cut-points rather than continuous values, a classification rule 

is defined as R = {Cx1, Cx2, Cx3, Cx4, Cx5}, where Cxn represents the cut-point value of 

ratio Xn for which the fitness function is maximized. A firm with values smaller or equal 

to R for each financial ratio is predicted to go bankrupt, otherwise not. For example, a 

firm Fk is considered to go bankrupt if, for all its characteristic ratios Xki, the following 

relationship holds: { }5,4,3,2,1, ∈≤ iCX xiki ; if at least one of the inequalities is false, the 

firm will be classified as not bankrupt. 

 

Fitness Function 
The goal of this simulation is to find a classification rule that will be able to make a good 

separation between bankrupt and non-bankrupt firms, based on the five financial ratios. 

Taking this goal into account, the fitness value FITRk of a classification rule Rk is defined 

as: 
++ += RkRkRk NBBFIT   (3.5) 

where BRk
+ is the number of bankrupt firms correctly predicted by the classification rule 

Rk and NBRk
+ is the number of non-bankrupt firms correctly predicted by the same rule. 

In other words, the fitness value FITRk of a classification rule Rk is equal to the total 

number of correctly classified firms, bankrupt and non-bankrupt. For reasons that will 

become clear in the rest of this chapter, the fitness value is not expressed as a percentage 

(thus dividing by the total number of firms in the dataset). 
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During each iteration, each ant constructs its solution by choosing one cut-point for each 

financial ratio based on the two parameters τij (pheromone) and ηij (distance). 

 

Pheromone 
Following the example of the more sophisticated mechanisms evolved by some species of 

ants [9,14], the amount of pheromone deposited on the edges composing the solution 

should be proportional to the fitness of that solution. For the current problem, the amount 

of pheromone deposited by the ants on each edge belonging to a solution is equal to the 

fitness value of that solution, FITRk, as calculated by formula (3.5). 

 

Distance 
Unlike in the TSP problem, there is no physical distance between the nodes (cut-points) 

of the graph. A distance measure should however be used since, according to Dorigo et. 

al. [9], only taking the amount of pheromone into account will lead to a stagnation 

situation (all ants generate the same, sub-optimal tour). The distance measure for the 

bankruptcy problem should replicate the purpose of distance in the TSP problem, but this 

time taking into account a different fitness function, see 3.5. Since this fitness function 

represents the predictive power of all 5 ratios, it seems like a good idea to calculate the 

distance between two cut-points belonging to different ratios as the predictive power of 

those two points on the original dataset. For the current purpose, the distance DCim,Cjn 

between cut-point m belonging to ratio Xi and cut-point n belonging to ration Xj is 

defined as: 
++ += CjnCimCjnCimCjnCim NBBD ,,,   (3.6) 

where BCim,Cjn
+ represents the number of bankrupt firms correctly predicted by only using 

the two cut-points Cim and Cjn, NBCim,Cjn
+ represents the number of non-bankrupt firms 

correctly predicted by the same two cut-points, Cim and Cjn represent cut-points m, n 

belonging to ratio Xi, Xj. 
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Probabilistic Transition Rule 
Due to the different nature of the current problem, the probabilistic transition rule by 

which ants choose the next point on their path must also be slightly modified. In this case, 

the term [τij]α[ηij] β is not divided by the total pheromone and distance of all points in the 

graph, but only by the total pheromone and distance for all cut-points belonging to a ratio 

Xi. Expression (3.2) becomes: 

∑
∈

=

)(

)]([)]([
)]([)]([

)(

iVl
ilil

ijij
ij

k

tt
tt

tp βα

βα

ητ
ητ

 (3.7) 

where τ is the pheromone trail, η is the distance and α, β are adjustable parameters. In this 

case, the set Vk(i) containing all the cities that ant k can visit when in city i represents all 

the cut-points of ratio Xn from which the ant can choose in building its solution. 

 

The Algorithm 
In searching for the best classification rule, the ants employ the following procedure: in 

each iteration i, each ant j chooses the next cut-point to add to its solution based on the 

probabilistic rule given by (3.7). A cut-point is chosen for each ratio, in the following 

order: Cx1  Cx2  Cx3  Cx4  Cx5. Having completed a tour, the fitness value of each 

of the solutions generated by the j ants during iteration i is calculated according to 

expression (3.5). At the end of each iteration the pheromone trails are updated based on 

the fitness values of the solutions, as illustrated in expression (3.3), taking pheromone 

decay (ρ) into account. The simulation continues until a previously set percentage of ants 

have converged to the same solution. Following the reasoning of Dorigo et. al. [1], the 

number of ants is chosen according to the total number of cut-points, and the parameter 

values are set to: α = 1, β = 5, ρ = 0.5. The pseudo code of the Ant System for bankruptcy 

prediction is rendered below: 

 
procedure AS 
initialize pheromone trails 
calculate distances 

while end condition not satisfied do 
move all ants based on pij 
update pheromone trails 

end while 
end AS 



 17

4. Experimental Setup 
In total, 4 types of experiments have been run. The first type, altman_all, uses the entire 

altman_1Y dataset in order to find the best classification rule by which the dataset can be 

divided into bankrupt and non-bankrupt firms. The same procedure is followed in the 

second type of experiments, 110_all, this time making use of the entire 110_2Y dataset. 

The third and fourth type of experiments (altman_div and 110_div) make use of the 

training and test sets derived from altman_1Y and 110_2Y, respectively. 

 

In all four experiments, the performance of the Ant System is compared to the 

performance of Discriminant Analysis on the same data. Due to the random search 

characteristics of the Ant System, this algorithm is ran ten times for each experiment. 

Results are gathered from all ten runs in order to provide average information on the 

performance of the Ant System. 

 

In the remaining part of this chapter, the parameters used in the experiments are 

presented. For each type of experiment values will be provided for: α, β (the adjustable 

parameters), ρ (pheromone decay), m (number of ants), SXn (the vector containing the 

distance between two consecutive cut-points for each of the five financial ratios), EC (the 

end condition used in the experiment, represented as the percentage of ants that must 

converge to the same solution before stopping the simulation). 

 

Experiment 1 & 3: altman_all, altman_div 

For these two experiments, the values chosen for the parameters α, β and ρ are the same 

values used by Dorigo et. al. [9]. The number of ants (m) and the distances between two 

consecutive cut-points for each financial ratios have been determined after running a 

number of experiments and inspecting the statistic properties of the datasets. The values 

are summarized below: 

α = 1, β = 5, ρ = 0.5, m = 40 

SXn = [3, 3, 3, 10, 0.1] 

EC = 80% 
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Experiment 2 & 4: 110_all, 110_div 

For these two experiments, the values chosen for the parameters α, β and ρ are again 

identical to the values used by Dorigo et. al. [9]. The number of ants (m) and the 

distances between two consecutive cut-points for each financial ratios are again 

determined after carefully inspecting the statistic properties of the datasets and through 

computational experiments. The values are summarized below: 

α = 1, β = 5, ρ = 0.5, m = 30 

SXn = [0.05, 0.05, 0.05, 10, 0.1] 

EC = 80% 

 

The fact that the two SXn vectors present different values for the first three financial ratios 

is due to the differences in the data scaling employed on the two datasets. While the data 

in the 110_2Y dataset has been left intact (no scaling occurred), the data on the first three 

financial ratios in the altman_1Y dataset was probably multiplied by 10, most likely for 

symmetry reasons. This should not affect the performance of the algorithm, since this 

scaling is indirectly contained into the SXn vectors. The lower number of ants used in the 

experiments on the 110_2Y dataset is due to the smaller number of cut-points generated 

from this dataset. This is in concordance with the reasoning of Dorigo et. al. [9] that the 

number of ants should be equal to the number of sites in the TSP problem. For the current 

purpose, better results have been achieved with a number of ants smaller than the total 

number of cut-points defining the search space, most likely because of the different 

nature of this space when compared to the TSP graph. Even though not equal to the 

number of cut-points, the number of ants is however proportional to the number of sites 

in the bankruptcy prediction problem. 
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5. Results 
In this chapter, the results obtained by using both the Ant System (AS) and Discriminant 

Analysis (DA) on the four datasets are presented. For each experiment, data from 10 

consecutive runs is gathered for the AS and the results are presented as average values. In 

the case of DA, the results represent values obtained after one run8. The variables 

considered relevant are: type 1 err. (number of bankrupt companies classified as non-

bankrupt), type 2 err. (number of non-bankrupt companies classified as bankrupt), hitrate 

(number of companies, bankrupt and non-bankrupt, correctly classified), st. dev. 

(standard deviation of best solution; only for AS), min. (smallest hitrate; only for AS) and 

max. (highest hitrate; only for AS). A more detailed overview of the results can be found 

in Appendix B of this paper. 

 

5.1 Experiment 1: altman_all 
The dataset used in this experiment is the entire altman_1Y dataset. The AS is ran ten 

times, using the same parameter values for all ten runs. The average values are then 

compared to the results obtained after running DA once on the same dataset. The results 

are presented in table 5.1: 

 

 type 1 err. type 2 err. hitrate st. dev. min. max. 
AS 2.8 (8.5%) 1.6 (4.8%) 93.3% 1.06 92.4% 95.5% 
DA 2 (6.1%) 1 (3.0%) 95.5% N/A N/A N/A 

Table 5.1: altman_all results 

 

Even though there is a difference between the average hitrate of the AS and the hitrate 

achieved by DA, this difference is small. The AS performs slightly worse on the dataset, 

achieving a hitrate that is 2.2% lower than the DA hitrate. This difference in hitrates is 

roughly equivalent to one extra firm misclassified by the AS. Even though, in one of the 

runs, the AS equaled the hitrate of DA on the altman_1Y dataset, the average hitrate is 

93.3%; this is mainly due to the fact that the most common hitrates obtained in the ten 

                                                 
8 Different runs of discriminant analysis on the same data, using the same parameters, provide identical 
results. For this reason, one run is considered sufficient. 
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runs are 93.9% and 92.4%, respectively. When comparing the two hitrates, it should be 

noted that the altman_1Y dataset is the same dataset that was used to select the five 

financial ratios used in this study. The relatively small standard deviation of the hitrates 

obtained by using AS leads to the conclusion that the algorithm performs relatively stable 

on this dataset. 

 

5.2 Experiment 2: altman_div 
The dataset used in this experiment is again the altman_1Y dataset. This time the dataset 

is divided into two subsets, a training set (42 firms) and a test set (24 firms). The AS is 

ran ten times on the training set, using the same parameter values for all ten runs. The 

partitioning rule(s) thus obtained are used to classify the firms in the testing set. The 

average values are then compared to the results obtained after running DA once on the 

same datasets, following the same procedure as for the AS. These results are presented in 

table 5.2: 

 

TRAINING SET TESTING SET  
type 1 err. type 2 err. hitrate type 1 err. type 2 err. hitrate 

AS 1.3 (3.1%) 0.7 (1.7%) 95.2% 2.5 (20.8%) 1.4 (11.7%) 83.7% 
DA 0 (0.0%) 1 (4.8%) 97.6% 1 (8.3%) 0 (0.0%) 95.8% 

Table 5.2: altman_div results 

 

As in the previous experiment, the AS performed slightly worse than DA on the training 

set. The difference in hitrates is again equivalent to, on average, one extra firm 

misclassified by the AS. Even though the AS does a slightly better job in correctly 

classifying the non-bankrupt firms, it fails where DA achieves the highest possible 

performance: the type 1 error of DA on the training set is 0%. There is a big difference 

however in the hitrate of AS on the testing set relative to the hitrate of DA on the same 

set. Both the type 1 error and the type 2 error of AS are significantly larger than the 

values of the same two errors obtained when using DA, resulting in a significantly lower 

hitrate for the AS. The most likely explanation for this, as already mentioned in chapter 2 

of this paper, is the relatively small size of the training set, which makes it difficult for 

the AS to find a more general classification rule. The small size of the training set makes 
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it more likely that the AS will overfit the data, finding a rule that is too specific and that 

will not perform well on ‘unseen’ datasets. Sustaining this affirmation is the fact that the 

AS performed better on a larger dataset, consisting of 110 firms; on this dataset it 

outperformed DA, as it will be shown in the following two experiments. 

 

5.3 Experiment 3: 110_all 
The dataset used in this experiment is the entire 110_2Y dataset. This set consists of 110 

firms, 55 bankrupt and 55 not bankrupt. The data for the 55 bankrupt firms has been 

collected from the financial statement two years prior to bankruptcy. As in the previous 

experiments, the AS is ran ten times, using the same parameter values for all ten runs. 

The average values are then compared to the results obtained after running DA once on 

the same dataset. The results are presented in table 5.3: 

 

 type 1 err. type 2 err. hitrate st. dev. min. max. 
AS 11.4 (20.7%) 3.7(6.7%) 86.3% 0.9 85.5% 87.3% 
DA 12 (21.8%) 10 (18.2%) 80.0% N/A N/A N/A 

Table 5.3: 110_all results 

 

On this dataset, the AS outperforms DA in classifying firms as bankrupt or non-bankrupt. 

The AS achieves a hitrate of 86.3% on the 110_2Y dataset, 6.3% larger than the hitrate 

obtained by using DA on the same dataset. This difference is equivalent to approx. 7 

firms more correctly classified by the AS as opposed to DA. The number of bankrupt 

firms classified as not bankrupt (type 1 error) is almost equal for both methods, AS 

performing slightly better. The relative large difference in hitrates is mostly due to the 

better capacity of the AS in correctly classifying the non-bankrupt firms. The standard 

deviation of the 10 hitrates obtained by using AS is relatively low (0.9), with hitrates 

between 85.5% and 87.3%, proving again the stability of the AS. 

 

5.4 Experiment 4: 110_div 
The dataset used in this experiment is again the 110_2Y dataset. This time the dataset is 

divided into two subsets, a training set (70 firms) and a test set (40 firms). The AS is ran 
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ten times on the training set, using the same parameter values for all ten runs. The 

partitioning rule(s) thus obtained are used to classify the firms in the testing set. The 

average values are then compared to the results obtained after running DA once on the 

same datasets, following the same procedure as for the AS. These results are presented in 

table 5.4: 

 

TRAINING SET TESTING SET  
type 1 err. type 2 err. hitrate type 1 err. type 2 err. hitrate 

AS 6.1 (17.4%) 3.1 (8.9%) 86.9% 4.0 (20.0%) 3.9 (19.5%) 80.5% 
DA 6 (17.1%) 10 (28.7%) 77.1% 6 (30.0%) 6 (30.0%) 70.0% 

Table 5.4: 110_div results 

 

Again, the AS performs better than DA on both the training set as well as on the testing 

set. The DA is outperformed by 9.8% on the training set, and this difference increases 

even more, to 10.5% (equivalent to approx. 4 firms less that the AS misclassifies when 

compared to DA) on the test set. The difference between the hitrate on the training set 

and the hitrate on the testing set is 6.4% for the AS and 7.1% for DA. Even though not by 

much, it can be concluded that the AS performed better in generalizing when compared 

to DA, this time not overfitting the (larger) training set. The difference of 9.8% between 

the hitrates of the two algorithms on the training set is mostly due to the better capacity of 

the AS in correctly classifying the non-bankrupt firms. The type 2 error on the training 

set drops from 28.7% (equivalent to 10 firms) for DA to only 8.9% (equivalent to 3 

firms) for AS, while the type 1 error stays more or less constant around the value of 6.
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6. Discussion 
In this chapter, the results obtained by using the slightly modified Ant System for 

bankruptcy prediction are discussed, together with the modifications made to the original 

algorithm. This chapter provides the reader with a discussion on three aspects: 

classification accuracy, external validity and computational efficiency. 

 

6.1 Classification Accuracy and External Validity 
The AS did a good job overall in separating the bankrupt from the non-bankrupt firms in 

the two datasets. Even though slightly outperformed by DA on the altman_1Y dataset, the 

AS was capable of better performance on the 110_2Y dataset. The classification error of 

AS on the entire altman_1Y dataset, larger than the error of DA on the same dataset by 

one firm, is consider acceptable. A very important aspect that should be taken into 

account when making this comparison is the fact that the altman_1Y is the same set used 

by Altman in [1] for selecting the five financial ratios that are also used in this study. 

Even then, the AS is able to equal the hitrate of DA on this dataset, but not in each of the 

ten runs, and for this reason the average hitrate obtained when classifying the data by 

means of the AS is slightly lower. As one would expect, this scenario repeats itself on the 

alman_1Y_train dataset, the dataset containing only 42 out of the 66 corporations listed 

in the original set. The AS is able to correctly classify 95.2 of the firms, a slightly lower 

value than the hitrate of 97.6% of DA on the same dataset. Again, the difference between 

the hitrates is equivalent to 1 firm. A large difference in hitrates is encountered when 

testing the ability to generalize (using the altman_1Y_train dataset) of both algorithms on 

the altman_1Y_test dataset. Due to the relatively small size of the training dataset, the AS 

is not able to derive a more general classification rule, which results in a difference of 

12.1% in favor of DA when comparing the two hitrates. The algorithm was also tested on 

a larger dataset, 110_2Y, containing data on 110 firms. This time, the AS outperformed 

DA both on the entire dataset as well as on the training and test sets. The AS showed a 

good ability to generalize from a larger training set (70 firms), outperforming DA on both 

the training and the testing set. The AS proved better in classifying the firms in the whole 

110_2Y dataset, outperforming DA by 6.3%, which is roughly equivalent to seven firms. 
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The AS was able to generalize slightly better from the data in the training set, in the end 

outperforming DA by an average of 10.5% on the testing set, roughly equivalent to 4 

firms. Another aspect worth of mentioning is the fact that, even though the AS does not 

converge to an identical solution in all ten runs for each of the four experiments, the 

standard deviation of the ten hitrates obtained by AS after 10 runs is relatively small, 

proving a good ability of the algorithm to provide similar (and often identical) solutions 

during different runs, on the same dataset, by using the same parameters. 

 

6.2 Computational Efficiency 
One of the features making the Ant System very attractive for optimum-seeking problems 

is its simplicity. With very little knowledge on the data or nature of the problem, the 

virtual ants are able to find their (fitness maximizing) way in a semi-chaotic and often 

complex space. Redefining bankruptcy prediction as a search for optimal cut-points in the 

space defined by the five financial ratios reduces this space, making it more or less 

independent of the size of the dataset. The 15 minutes that it takes the ‘modified ants 

algorithm’ (MAA) developed by Wang et. al. [22] to find a satisfactory solution are 

brought down to 5-7 minutes by the Ant System presented in this paper. It should be 

taken into account however that the search space used by the MAA differs from the one 

used for the current purpose. 
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7. Conclusion and further research 

Using the lessons provided by what David Rogers [21] calls ‘the most extensive 

computation known [that] has been conducted over the last billion years on a planet-wide 

scale’, this study is based on imitating a small part of the evolution of life with the 

purpose of applying it on a big problem: corporate bankruptcy. By modeling the behavior 

of ants it is possible to achieve good results in solving problems that at a first sight seem 

so different than the problems encountered by ants in their actual environment. A few 

abstractions are, of course, necessary, as well as the adaptation of both the ants and the 

bankruptcy ‘environment’. Having done this, imitating evolution proves (again) to be a 

lucrative business, even when business failure is the subject being investigated. 

 

The Ant System that has been used in this paper is based on a number of parameters, 

problem-specific, which the author has determined through different computational 

experiments. A more inspired way of doing this would be to evolve different ant types 

(species), where the particularities of each species are given by the values of its 

parameters. Parameters such as pheromone decay and the number of ants searching for a 

solution could be evolved towards optimal values, maybe further improving the results 

obtained by the Ant System. Unfortunately, this subject seemed too large to be 

investigated for the purpose of this study, but interesting for further research.
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Appendix A – Statistics of the datasets 
 

altman_1Y 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 -6.05 45.55 -185.10 72.40 41.38 14.22 14.00 69.00 
X2 -62.51 71.31 -308.90 20.80 32.99 20.77 -37.30 68.60 
X3 -31.77 51.35 -280.00 6.80 15.32 10.87 -14.40 34.10 
X4 40.05 54.94 0.70 267.90 254.67 206.57 53.40 771.70 
X5 1.50 1.16 0.10 6.70 1.94 0.93 0.90 5.50 
 

 

altman_1Y_train 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 -9.87 50.86 -185.10 36.70 38.60 14.00 14.00 59.30 
X2 -64.47 79.71 -308.90 20.80 30.54 22.94 -37.30 68.60 
X3 -30.22 28.77 -103.20 6.80 16.12 11.26 -14.40 34.10 
X4 28.54 25.01 0.70 96.10 254.43 220.26 53.40 724.10 
X5 1.41 0.78 0.10 3.40 1.90 0.78 0.90 4.00 
 

 

altman_1Y_test 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 0.64 35.45 -60.60 72.40 46.27 13.81 24.40 69.00 
X2 -59.09 56.77 -185.90 -4.00 37.28 16.34 8.50 59.50 
X3 -34.48 78.44 -280.00 6.30 13.91 10.47 -7.80 26.40 
X4 60.18 83.35 7.00 267.90 255.10 189.52 60.50 771.70 
X5 1.67 1.67 0.30 6.70 2.00 1.19 0.90 5.50 
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Appendix A - continued 
 

110_2Y 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 0.12 0.20 -0.42 0.55 0.31 0.16 -0.15 0.75 
X2 -0.14 0.41 -1.27 0.46 0.21 0.29 -0.67 0.79 
X3 -0.10 0.35 -2.38 0.14 0.12 0.10 -0.03 0.54 
X4 0.79 1.53 0.00 9.92 33.66 72.23 0.25 427.90 
X5 1.15 0.54 0.46 3.16 1.20 0.46 0.30 2.41 
 

 

110_2Y_train 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 0.14 0.16 -0.36 0.55 0.30 0.17 -0.15 0.76 
X2 -0.08 0.39 -1.27 0.38 0.22 0.33 -0.67 0.79 
X3 -0.19 0.41 -2.38 0.11 0.13 0.10 -0.03 0.43 
X4 0.73 1.05 0.00 5.04 43.49 82.93 0.25 427.90 
X5 1.11 0.53 0.47 3.16 1.23 0.41 0.59 2.24 
 

 

110_2Y_test 

BANKRUPT NON-BANKRUPT  mean st. dev min. max. mean st. dev min. max. 
X1 0.08 0.25 -0.42 0.38 0.35 0.16 0.12 0.66 
X2 -0.25 0.46 -1.25 0.47 0.18 0.20 -0.38 0.47 
X3 -0.12 0.23 -0.61 0.14 0.11 0.11 0.01 0.54 
X4 0.91 2.20 0.00 9.92 16.45 45.08 0.73 206.08 
X5 1.23 0.57 0.46 2.90 1.13 0.54 0.30 2.41 
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Appendix B – Detailed results of the four experiments 
 

 altman_all altman_div (train) altman_div (test) 
R1 93.9 95.2 83.3 
R2 92.4 95.2 87.5 
R3 92.4 95.2 87.5 
R4 93.9 95.2 83.3 
R5 95.5 95.2 83.3 
R6 92.4 95.2 79.2 
R7 93.9 95.2 83.3 
R8 93.9 95.2 83.3 
R9 92.4 95.2 83.3 
R10 92.4 95.2 83.3 
mean 93.3 95.2 83.7 
st. dev. 1.1 0.0 2.4 
min. 92.4 95.2 79.2 
max. 95.5 95.2 87.5 

Hitrates of AS on the altman_1Y, altman_1Y_train and 
altman_1Y_test datasets, expressed as percentage for each run. 

 
 
 

altman_all altman_div (train) altman_div (test)  type 1 type 2 type 1 type 2 type 1 type 2 
R1 2 1 2 0 3 1 
R2 3 2 1 1 3 0 
R3 4 2 1 1 2 1 
R4 4 0 2 0 3 1 
R5 1 2 1 1 2 2 
R6 3 2 2 0 4 1 
R7 2 2 1 1 2 2 
R8 4 0 1 1 2 2 
R9 2 3 1 1 2 2 
R10 3 2 1 1 2 2 
mean 2.8 1.6 1.3 0.7 2.5 1.4 
st. dev. 1.06 0.97 0.48 0.48 0.71 0.70 
min. 1 0 1 0 2 0 
max. 4 3 2 1 4 2 

Type 1 and type 2 errors on the altman_1Y, altman_1Y_train and 
altman_1Y_test datasets, expressed as absolute values for each run. 
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Appendix B - continued 
 

 110_all 110_div (train) 110_div (test) 
R1 87.3 87.1 77.5 
R2 85.5 87.1 77.5 
R3 87.3 85.7 80.0 
R4 85.5 87.1 85.0 
R5 85.5 87.1 80.0 
R6 85.5 87.1 82.5 
R7 87.3 85.7 82.5 
R8 85.5 87.1 77.5 
R9 86.4 87.1 82.5 
R10 87.3 87.1 80.0 
mean 86.3 86.9 80.5 
st. dev. 0.9 0.6 2.6 
min. 85.5 85.7 77.5 
max. 87.3 87.1 85.0 
Hitrates of AS on the 110_1Y, 110_1Y_train and 110_1Y_test datasets, 

expressed as percentage for each run. 
 
 
 

110_all 110_div (train) 110_div (test)  type 1 type 2 type 1 type 2 type 1 type 2 
R1 11 3 7 2 6 3 
R2 13 3 5 4 3 6 
R3 11 3 7 3 5 3 
R4 10 6 6 3 3 3 
R5 13 3 5 4 2 6 
R6 11 5 6 3 4 3 
R7 11 3 7 3 4 3 
R8 11 5 5 4 4 6 
R9 12 3 6 3 4 3 
R10 11 3 7 2 5 3 
mean 11.4 3.7 6.1 3.1 4 3.9 
st. dev. 0.97 1.16 0.88 0.74 1.15 1.45 
min. 10 3 5 2 2 3 
max. 13 6 7 4 6 6 

Type 1 and type 2 errors on the 110_1Y, 110_1Y_train and 110_1Y_test datasets, 
expressed as absolute values for each run. 

 


