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Abstract 

 

In this thesis, a probabilistic fuzzy model that produces a conditional probability 

for a stock return given a lagged return, is fitted on historical stock returns. The 

model consists of three rules: one for “low”, one for “medium”, and one for 

“high” lagged returns. For each fuzzy class of lagged returns, a conditional 

probability distribution is approximated using a mixture model. The three rules 

are interpolated using a fuzzy reasoning scheme, similar to that of Takagi-

Sugeno fuzzy inference systems. Using the resulting model, potential stock price 

paths can be simulated. From these price paths we can deduce an option price 

that is valid for risk-neutral investors that are not able to benefit from arbitrage 

opportunities. 
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1. Introduction 

 

1.1 General background 

In this thesis, I will investigate the impact of the conclusions of a paper by Jan 

van den Berg, Uzay Kaymak and Willem-Max van den Bergh, all professors at 

the Erasmus University in Rotterdam. In “Financial markets analysis using a 

probabilistic fuzzy modeling approach”, they find that short-term stock returns 

are clearly not independent, but show conditional probabilities for reversal that 

are significantly higher than the unconditional probabilities for the same returns. 

To get to these conclusions, they use a probabilistic fuzzy approach, in which 

two types of uncertainty are modeled, namely fuzzy (linguistic) and probabilistic 

uncertainty. 

 

They have built a probabilistic fuzzy system (PFS) that classifies returns as “very 

low”, “low”, “medium”, “high” or “very high”.  Given the fuzzy classification of 

the last return, the model produces the conditional probabilities for the 

following return. 

 

The key advantage of a PFS is that its rules can be interpreted, while 

interpretability is clearly not one of the strengths of the most widely used 

methods for option valuation. All the additions to the Black-Scholes model that 

are made over the past decades to correct for volatility smiles and conditional 

heteroskedasticity have made an already reasonably complex model into one that 

can only be understood by real specialists.  

 

Another advantage of using a probabilistic fuzzy method is the model-free 

approach. Little assumptions about stock-price behavior have to be made. 

 

1.2 Research goal 

The key question to be answered by this research can be stated as follows: 

 



 6 

Does a probabilistic fuzzy approach based on intraday data produce output 

probability density functions that are significantly different for different lagged 

returns? 

 

1.3 Methodology 

In this thesis, a probabilistic fuzzy system with mixture models describing the 

output conditional probability density functions is estimated from historical 

stock returns. The input space (the lagged return) is partitioned by a certain 

number of predetermined triangular membership functions. The parameters of 

the mixture models describing the pdf for the following return are optimized 

using the maximum likelihood method. The model could be viewed as being 

semi-parametric: part of the model structure is predetermined; part of it is 

induced from the data. This approach is aimed at achieving the best of both 

worlds: avoid assuming a function that is incapable of forming a good 

representation of the underlying process, as can happen when using parametric 

models, and at the same time limit the amount of parameters that can grow very 

quickly when using non-parametric models (Bishop (1995)). 

 

To test whether this model is capable of capturing the patterns that I expect to 

be present in the stock return data, I will first fit the model on an artificial 

dataset that contains a high conditional probability for ‘reversal’. 

 

After that, I will fit the model to a time series of one-minute returns and later on 

five-minute returns. From the resulting pdf’s, conclusions can be drawn about 

the amount of ‘reversal’ and conditional variance in the data. 

 

Using these approximated conditional probability distributions; it is possible to 

value short-lived options by simulating possible price paths and computing the 

expected value of the option at maturity. 
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1.4 Relevance 

Stock option pricing is a very relevant research topic, given the enormous 

volumes of options that are traded around the world every day, the amount of 

money involved, and the known anomalies within existing models. 

 

Furthermore, the analysis of intraday data is still in its infancy. Lack of 

computational power and storage capacity until recently seriously limited its use. 

That day-trading and intraday stock returns are very relevant are possibly best 

illustrated by the fact that many traders in the world’s stock markets are not even 

allowed to hold overnight positions for their own account. 

 

1.5 Unique aspects 

The following aspects of the research conducted in this thesis are, as far as I 

know, unique: 

 

• Practical application of probabilistic fuzzy systems with output 

probability density functions modeled by mixture models existing of 

multiple Gaussians; 

• Monte Carlo simulation using semi-parametrically estimated conditional 

probability distributions estimated by probabilistic fuzzy systems with 

output pdf’s modeled by mixture models. 

 

1.6 Structure of the thesis 

In the next chapter, a further introduction into the topic of option pricing and 

modeling stock price behavior is given. First the basics of options and option 

markets are explained, followed by two of the most popular models for option 

valuation. The chapter is concluded by stating my assumptions about the stock 

pricing process, the impact this has on the expected results of my experiments, 

and how I use these to compute option prices. 

 

In chapter three, the probabilistic fuzzy approach is further explained, followed 

by the method I use to optimize the parameters. 
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The implementation of the model is illustrated in chapter four. I will explain 

which part of the model structure is preset, which parameters are chosen for the 

optimization, and how the data is prepared. 

 

In chapter five I will show the results of the various experiments and in chapter 

six I will elaborate further on the impact of these findings. 
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2. Stock option valuation 

 

2.1 Option basics 

An option contract gives the right to buy or sell an underlying asset for a given 

price at some point in the future. Options that give the right to buy are called 

call options; options that give the right to sell are called put options. The 

predetermined price at which the transaction is executed is called the strike price. 

European options can only be executed at the expiration date, whereas 

American style options can be executed by the contract holder at any time on or 

before the expiration date. 

 

The value of an option contract at the time of the execution (for European style 

options always the expiration date) is determined by the difference between the 

price of the underlying asset and the strike price of the option contract. Before 

expiration, it is harder to determine the value of the contract, because it depends 

on the expected price of the asset at expiration and potentially even a risk 

premium. 

 

In this thesis, only European call options are considered. The price of put 

options can be deduced from call option prices using the put-call parity (see 

Appendix).  

 

Looking at American style options using probabilistic fuzzy models would be 

very interesting, but stretches beyond the scope of this thesis. 

 

2.2 Option markets 

The introduction of stock options on an organized exchange dates back to 1973. 

Since then the volumes in option markets have grown dramatically. Options are 

traded on many exchanges in the world and underlying assets range from stocks 

and stock indices to foreign exchange rates, futures, and even stock price 

volatility. This thesis is concentrated only on the valuation of stocks and – very 
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similar – stock indices. These kinds of options are also the most common and 

most widely traded.  

 

2.3 Option valuation models 

In general, models for option valuation take the following six factors on which 

option prices depend into account: 

1. The current stock price St; 

2. The strike price X; 

3. The time to expiration T; 

4. The volatility of the stock price during the option’s life σT; 

5. The risk free interest rate during the option’s life r; 

6. The dividends expected during the option’s life d. 

 

Binomial models 

In 1979 Cox, Ross, and Rubinstein introduced binomial trees as a simple 

analytical method for option valuation. Consider a call option on a stock 

currently worth 100, with the chance to be worth either 80 or 130 at expiration: 

 

  130 

100 

  80 

 

The exercise price of the option contract is 100, so the pay-off of the option is 

either 30 or 0. Now, consider a portfolio consisting of a short position in the 

option, i.e. you have ‘written’ or sold the option, and a long position in part of 

the share, ∆. The portfolio at expiration is worth either ∆130 – 30 or ∆80 + 0. It 

is possible to choose ∆ so that the portfolio is riskless, or the pay-off is equal in 
both cases. 

 

130 30 80 0 50 30 0.6∆ − = ∆ + ⇒ ∆ = ⇒ ∆ =  

 

At expiration of the option, the portfolio is worth 0.6 80 0 48⋅ − = , or 

equivalently 0.6 130 30 48⋅ − = . As the current value of ∆ stocks (60) is known, 
the current value of the option can be computed if no-arbitrage is assumed: 
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48 60 60 48rT rTe c c e− −− = ⇒ = − . 

 

In general terms the binomial model can be summarized as follows: 

 

Consider a stock whose initial price is S0 and an option initially worth f. Suppose 

that the option’s life is T and that during this time the stock price can either 

move up to S0u, or down to S0d (where u > 1 and d < 1). The option’s payoff 

when the stock prices moves up is fu, and the option’s payoff when the stock 

price moves down is fd. 

Again we have a portfolio consisting of a long position in ∆ shares and a short 

position in one option. We calculate ∆ to make the portfolio riskless. 

 

0 0
0 0

u d
u d

f f
S u f S d f

S u S d

−∆ − = ∆ − ⇒ ∆ =
−

 

 

Discounted at the risk free interest rate, the present value is  

 

( )0
rT

uS u f e−∆ − (or equivalently ( )0
rT

dS d f e−∆ − ). 

 

The cost of setting up the portfolio is 0S f∆ −  and must be equal to the 

expected payoff discounted at the risk free rate. Substituting for the equation for 

∆, the price of a call option is: 
 

( )1rT
u df e p f p f−  = + −   

 

Where 

 

rTe d
p

u d

−=
−

 

 

This option pricing formula above does not take the stock’s expected return into 

account. It does not matter if the chance of the stock price moving up is 90% or 
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50%. The reason is that we are not valuing the option in absolute terms, but in 

terms of the current price of the underlying asset. The probabilities of the stock 

price moving up and down are already incorporated in the current stock price. 

 

Of course in the real world, stock prices do not move either up or down to 

known values. A commonly used way to use binomial models however is to 

build trees that exist of different layers of up and down movements with the 

standard deviation of the stock price returns for that interval length. This creates 

a large number of potential price paths that has the same standard deviation as 

the stock returns. According to the central limit theorem (Appendix), option 

prices from a binomial model are equivalent to Black-Scholes option prices if 

the number of layers in the tree is sufficiently large. 

 

The Black-Scholes Model 

In the early 1970s Fischer Black, and Myron Scholes developed a framework for 

option valuation. Robert Merton offered the mathematical proof some years 

laters. The resulting Black-Scholes model proved to be a revolution is option 

valuation and earned them a Nobel price. In spite of its obvious shortcomings, 

the Black-Scholes model is still widely used today.  

 

To price derivatives that rely on the value of an underlying asset, it is necessary 

to describe the process that the price of the underlying asset will follow in the 

future. The value depends heavily on the nature of the stochastic process 

followed by the asset price. An example of such a process is a geometric 

Brownian motion, on which the famous Black-Scholes option-pricing model is 

based. 

 

Brownian motion 

In the Black-Scholes world, the stock prices are generated by a generalized 

Wiener process called a geometric Brownian motion (Hull (2003)) that describes 

the price change dS in terms of a constant drift µS of the stock, the standard 

deviation σS of the stock, a period of time dt, and a stochastic term γ, which is a 
drawing from a standard normal distribution. 

 

S SdS dt dtµ σ γ= +   
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This kind of process is often referred as a ‘random walk’ because it has no 

structure or statistical properties to give traders the opportunities of having an 

expected return other than µS, or the risk free rate plus a risk premium that 

depends on σS. This property of the Brownian motion is consistent with the 

Efficient Market Hypothesis (EMH), see Hull (2003). 

 

Assumptions 

The following assumptions are made when deriving the Black-Scholes-Merton 

differential equation: 

 

1. the stock price follows a geometric Brownian motion with µ and σ constant; 
2. short selling of the asset is allowed; 

3. there are no transaction costs or taxes; 

4. the asset is perfectly divisible; 

5. there are no dividends during the life of the derivative; 

6. there are no riskless arbitrage opportunities; 

7. asset trading is continuous; 

8. the risk-free rate of interest, rf, is constant and the same for all maturities. 

 

Assumption six means that every riskless asset should earn the same return, 

namely the risk-free interest rate rf. Assumption five can be relaxed. 

 

Using these assumptions it is now possible to derive the Black-Scholes model 

(see Hull (2003)). 

 

( ) ( ) ( )0 1 2
r T tc S N d X e N d− −= −  , 

 

Where c is the price of a call option, S0 is the initial stock price, X the strike price 

of the option, N(x) the cumulative standard normal density function and where 
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( ) ( )( )
( )

( ) ( )( )
( )

( )

2
0

1

2
0

2 1

ln / / 2

ln / / 2

T

T

T

T

T

S X r T t
d

T t

S X r T t
d d T t

T t

σ

σ

σ
σ

σ

+ + −
=

−

+ − −
= = − −

−

  

 

2.4 The stock pricing process 

In 1986, French and Roll have published an article that was aimed at explaining 

the role of publicly available information – news, in the stock pricing process. 

They acknowledge three different sources of volatility in stock prices: 

1. Public information; 

2. Private information; 

3. Trading noise or mispricing. 

Their conclusion is that, although there is a significant amount of trading noise 

present in stock returns, the majority of the short term volatility is caused by 

public information becoming available. 

They come to this conclusion by looking at hourly returns and the difference in 

volatility between trading hours and non-trading hours. 

 

Using realized volatilities for volatility estimation when pricing options has 

gained popularity over the past decade. Realized volatilities are calculated using 

intraday returns and should according to widely accepted financial theory deliver 

an error-free estimation of the interday volatility (Andersen and Bollerslev 

(1998)). When ticker level returns (typically one-minute) are used however, daily 

volatilities are structurally overestimated. Corsi et al. (2001) show that one-

minute returns are about twice as volatile as daily returns and can be scaled to 

produce unbiased volatility estimations.  They fail to propose an explanation for 

the observed phenomenon. 

It seems likely that the additional volatility in short term returns is caused by 

trading noise. 

 

If 0 1, , , TR R R⋯  are independent random drawings from an identical 

distribution, then 
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( )
0 0

Var Var
T T

t t
t t

R R
= =

  = 
 
∑ ∑ . 

 

In Corsi et al. (2001) however, 

 

( )
0 0

Var Var
T T

t t
t t

R R
= =

 
 
 
∑ ∑≪ . 

 

Therefore 0 1, , , TR R R⋯  cannot be independent drawings from an identical 

distribution as often assumed in financial econometrics. 

 

In addition, one would expect that pricing errors will be corrected over time 

when the market’s consensus expectations arise from trading. That is, until 

newly available information alters the market’s expectations. This would imply 

that short-term stock returns are not independent. 

 

If we consider a ‘real’ stock price and an observed one, blurred by the influence 

of trading noise, one would expect that for instance a very low short-term return 

is very likely to be followed by a reversal, as a very low return is likely to be 

composed of a negative ‘real’ return and a negative pricing error. As the pricing 

error will be corrected over time, the probability for an, at least partly, reversal is 

larger than the unconditional probabilities for the same behavior. 

 

This hypothesis also offers a new way of looking at the phenomenon 

‘overreaction and reversal’ often studied in behavioral finance (Fama (1998)). 

Given an extremely negative or positive return, one would expect either a very 

large price change caused by newly available information, a great mistake in the 

pricing process, or a combination of both. This leads to a conditional probability 

distribution of the following return that will differ from the unconditional 

returns that are typical for a Markov process. Please note that I am talking about 

conditional probability: I do not state that traders overreact to news in general, 

but I do state that extreme returns might coincide with overreaction rather than 

underreaction. 
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Another reason for assuming a pricing process with conditional probabilities for 

lagged returns that differ from the unconditional probabilities lies in the 

modeling of conditional volatilities. Incorporating conditional volatilities is an 

adjustment that is often made to the Black-Scholes-Merton-world by 

practitioners because of the obvious amount of heteroskedasticity present in real 

life stock returns. It is not hard to identify periods of significantly low and high 

volatility in most financial time series.  

Conditional pdf’s offer a way to deal with conditional volatilities, although the 

precondition for the conditional volatility in this thesis (the lagged return) is 

different from that in well-known models like GARCH (Bollerslev (1986)), 

where the future volatility depends on the historic volatility, which is never 

directly observed. 

 

The third reason for using a probabilistic fuzzy approach to modeling stock 

price behavior is that the structure of the model is very straightforward and easy 

to understand. Many of the option pricing models used in practice have grown 

to very complex versions of the Black-Scholes model, incorporating conditional 

heteroskedasticity (Bollerslev (1986)), stock-price jumps, volatility jumps, and 

corrections for volatility smiles (Derman and Kani (1994). The rules of the 

general form 

 

( ) ( )1If  is  then , , ,t j t tR A p R Rϕ− = w  

 

Where jA  is a fuzzy class, ( )tp R  the pdf of tR , the return a time t, and 

( ), , ,tRϕ w  a mixture model depending on parameters vectors , ,w , 

should be interpretable for anyone that has, at least a moderate, understanding 

of the Black-Scholes model. 

 

In the following chapter I will explain how I will estimate the conditional 

probability distributions from historical stock price data. Next, I will use the 

Monte Carlo method to numerically estimate an expected payoff from the found 

conditional pdf’s.  
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2.5 Assuming an unobserved consensus price and pricing 

errors 

In the efficient market hypothesis (Hull (2003)), stock-prices are equal to the 

market’s consensus estimate of the sum of the future cash flows discounted at 

the risk-free rate. This consensus estimate is a result of many traders that are 

trying to maximize their profits. 

 

The actual consensus stock price cannot be observed until all market 

participants have declared their orders, consisting of a number of stock and a 

limit price at which they are willing to sell or buy. Some traders however, will 

wait for the orders of others before making their own decisions. To create a 

more efficient market, the market maker who is in charge of the trade in a given 

asset will publish bid and ask prices. These are the lowest price at which he is 

willing to sell for his own account and the highest price at which he is willing to 

buy. Of course these prices are based on the market maker’s estimate of the 

consensus expectations. If there is no trade, he will have a hard time estimating 

and the spread between bid and ask prices will be large. This creates a type of 

volatility in stock returns that is sometimes called the bid-ask-bounce. Usually 

the bid-ask bounce is only taken into consideration when dealing with data on a 

transaction level, which is even more precise than one-minute stock returns. 

 

If we look at stock returns, we can assume the stock returns to be composed of 

changes in consensus estimates and changes in the pricing error. 

 

, , ,
,

, 1 , 1 , 1 1

obs t cons t t cons t t
obs t

obs t obs t cons t t

dS dS d dS d
R

S S S

ε ε
ε− − − −

+ +
= = =

+
 

 

Where Robs,t is the observed stock return at time t, Scons,t the market’s consensus 

stock price, Sobs,t the observed stock price, εt the pricing error, and  

dXt = Xt – Xt-1. 

 

We would expect the changes in the market’s consensus expectations ,cons tdS  to 

be irregular shocks, caused by newly available public or private information. The 

pricing error is likely to be high after a shock, especially when caused by private 
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information, and will tend to zero over time as transactions occur. Pricing error 

can also be caused by errors in the trading process itself. On Friday December 9, 

2005 for instance, one of Japan’s major brokers Mizuho Securities Co. sold 

610,000 shares at 1 yen instead of 1 share at 610,000 yen. This simple typing 

error cost the firm at least 27 billion yen (225 million dollar) and had great 

influence on the stock price for a short period of time. 

 

Assuming and unobserved consensus price and pricing errors that tend to be 

corrected over time leads to the following hypotheses about the conditional 

distribution of returns for “low”, “medium” and “high” lagged returns: 

 

1. For “low” and “high” lagged returns, the mean of the conditional 

probability distribution will shift slightly in the opposite direction 

(‘reversal’) when looking at the right time-frame; 

2. The conditional distribution of returns, given a “low” or “high” lagged 

return will show a larger volatility than the one given “medium” lagged 

returns. 

 

 

Figure 2.1 - An observed stock price (solid line) and imaginary consensus estimates (dotted line) 

 

εt 
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2.6 The option price 

In Duffie (1996), it is proven that if it is assumed that there are no-arbitrage 

opportunities, each asset value should equal its expected value discounted at the 

risk-free interest rate. This argument is called risk-neutral valuation, because it 

cancels out any risk premiums. In markets that are not completely efficient 

however, there could be arbitrage opportunities. 

 

Assuming pricing errors that tend to be corrected over time does not rule out 

the presence of arbitrage opportunities. These opportunities will be very small 

however, as taking advantage of them will quickly restore the equilibrium prices. 

 

In our experiments, we will determine the option’s expected payoff. This 

expected payoff, discounted at the risk-free rate gives the option price for a risk-

neutral investor that is not able to benefit from arbitrage opportunities: 

 

( ) ( )( )0 min 0,rT rT
T Tc e E c e E S X− −= = − . 

 

Here c0 is the option price at time 0, cT is the option price at time T, ST is the 

stock price at time T, and X is the strike price of the option. 
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3. A probabilistic fuzzy approach 

 

3.1 Probabilistic fuzzy systems 

Probabilistic fuzzy systems were introduced in 2002 by Jan van den Berg and 

Uzay Kaymak. These models combine fuzzy inference systems with probabilistic 

mathematics and are therefore capable of dealing with two types of uncertainty: 

 

1. The fuzzy nature of human language (input, reasoning); 

2. Probabilistic uncertainty. 

 

In their paper “Financial markets analysis by using a probabilistic fuzzy 

modelling approach”, they show that PFS are very well suited for capturing 

skewed conditional probability distributions in financial time series. 

 

In “On probabilistic connections of fuzzy systems” Van den Berg and Kaymak 

(2004) introduce a model that combines fuzzy uncertainty with probabilistic 

uncertainty. Probabilistic fuzzy systems are for instance able to answer a simple 

question like: “What is the change that a random Dutch woman is tall?”. To 

answer this question, two questions have to be answered and combined: 

 

1. To what degree is a woman of a given length called “tall”? (fuzzy 

uncertainty) 

2. What is the probability distribution of the variable length over the 

population of Dutch women? (probabilistic uncertainty) 

 

To answer the question, a mapping is made from an input space (a woman’s 

length and the associated membership of the linguistic concept “tall”) to an 

output space (the probability distribution of Dutch women being tall) using a 

number of rules and a certain reasoning scheme to make interpolations between 

these rules. 
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3.2 Fuzzy partitioning and normalized memberships 

A fuzzy partitioning is a set of j membership functions that span the entire input 

or output space of a fuzzy inference system, where for each value of x a the sum 

of all membership value is 1. 

 

( ) 1,
jA

j

x x Xµ = ∀ ∈∑  

 

A fuzzy partitioning is a useful and intuitive way of ensuring that all the 

probabilities in a probabilistic fuzzy system sum up to 1. If probabilities are 

assigned to all classes Aj, these probabilities can simply be multiplied with the 

membership values. However, this can also be realized by using normalized 

membership values. 

( )
( )

( )
'

' 1

j

j

j

A

A a

A
j

µ
µ

µ
=

=
∑

x
x

x
 

 

3.3 Conditional probabilities 

Let (x1, y1), …, (xn, yn) denote a random sample of size n. Using this sample, an 

estimate of Pr(C|A), the conditional probability of event C given event A is 

provided by the following statistical formula 

� ( )
( ) ( )

( )
1

1

|

n

A i C i
i

n

A i
i

x y
p C A

x

χ χ

χ
=

=

=
∑

∑
, 

 

Where the characteristic functions χA and χC are given by 

 

( ) 1 if x

0 otherwiseA

A
xχ

∈
= 


 

And 

( ) 1 if x

0 otherwiseC

C
xχ

∈
= 

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Now suppose that A and C are fuzzy events instead of ordinary crisp events. 

This means that A and C are defined by the membership functions µA and µC 

instead of the characteristic functions χA and χC. 

 

� ( )
( ) ( )

( )
1

1

|

n

A i C i
i

n

A i
i

x y
p C A

x

µ µ

µ
=

=

=
∑

∑
. 

 

This formula is based on Zadeh’s definition of the probability of a a fuzzy event 

(Zadeh (1968)) and can be used for estimating the probability parameters in a 

probabilistic fuzzy system.  

 

3.4 Fuzzy histograms 

The probability distribution over the output space of probabilistic fuzzy systems 

can be approximated using the fuzzy histogram approach as described in Van 

den Bergh, Kaymak, and Van den Berg (2002). 

Traditional histograms have been used for a long time as a simple method to 

approximate and visualize probability density functions.  Observations are 

divided into bins of a certain length. These bins are plotted against the number 

of observations per bin to give an impression of the probability distribution.  

 

 

Figure 3.1 - Example of a crisp histogram 
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Obviously the rigidity of this division into bins is a serious drawback of regular 

histograms when trying to approximate a probability distribution for simulations. 

All approximated probability density functions are shaped like a staircase, which 

is quite an unusual shape in real life. Ludo Waltman (2005) proves that a fuzzy 

histogram, in which an observation belongs to a certain bin to a certain degree, 

always gives the better approximation of the underlying probability distribution 

at the very least if the number of observations goes to infinity and the size of the 

bins to infinitely small. 

 

The probability density function f(y) can be approximated using a fuzzy 

histogram consisting of fuzzy columns 

 

� ( ) ( ) ( )
( )

Pr j j

j

j

C y
f y

y dy

µ

µ
∞

−∞

=
∫

 

 

Where ( )j y dyµ
∞

−∞∫  is a scaling factor representing the fuzzified size of Cj. 

Summing all the colums � ( )jf y  will approximate the complete probability 

density function � ( )f y . 

 

� ( ) ( )j
j

f y f y=∑  

 

3.5 A simple regression using a probabilistic fuzzy system 

The concepts in paragraphs 3.2, 3.3 and 3.4 have led to probabilistic fuzzy 

systems as proposed in Kaymak, Van den Bergh, Van den Berg (2003). In 

chapter 6 of Waltman (2005) however, it is shown that such a Probabilistic 

Mamdani Fuzzy System, performs very badly when trying to estimate a simple 

linear function with a normally distributed error term of the form: 

 

( ) ( ),f x ax b N µ σ= + +  



 24 

 

Ludo Waltman’s explanation for the poor performance of PFS on such a simple 

problem is the method of interpolation between two pdf’s in the output space. 

The interpolation is done by averaging the membership values of the different 

membership functions in the output space weighted by their respective firing 

rate of the associated rule. This results in an estimation of the pdf that is severely 

biased towards dilution. 

 

 

Figure 3.2 - A diluted estimation (solid line) of the underlying pdf (dotted), from Waltman (2005) 

 

A possible solution is to consider a function ( )1; ,...,j jmyφ α α , where jmα  

denotes parameter m for rule j, that describes the  probability density function, 

resulting in a fuzzy system with rules of the following general form: 

 

( ) ( )1If  is  then ; ,...,j j jmA p y yφ α α=x  

 

Where ( )1; ,..., 1j jmy dyφ α α =∫  and ( )1; ,..., 0,j jmy yφ α α ≥ ∀  and 

( )1; ,...,j jmyφ α α  is the same function for every rule. Now we can interpolate 

the parameters to produce an estimate of the pdf. 

 

( ) ( )
jAm jm

j

x xα µ α=∑  

 

Ludo Waltman shows that if one chooses the normal distribution for  

( )1; ,...,j jmyφ α α  and an input space partitioned by triangular membership 
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functions, one can get, not very surprisingly, an excellent estimation of a linear 

regression with normally distributed error terms. He proposes to use mixture 

models for more complex applications. 

 

3.6 Optimizing the parameters using the maximum likelihood 

criterion 

To optimize the parameters of the mixture models describing the conditional 

pdf’s for each of the rules in our model, the maximum likelihood criterion is 

used. The basic principle of maximizing the likelihood criterion is choosing the 

model parameters such that it maximizes the chance of having the observed 

sample data for the entire space of possible models: 

 

( )* arg max Pr |
m M

m D m
∈

=  

 

Where m* is the optimal model given the data, M is the model space, and D is 

the dataset available for training.  

 

The likelihood of a dataset consisting of data pairs (x, y) is given by: 

 

( ) ( ), Pr |i i
i

L y x= ∏x y  

 

As the number of instances grows, the likelihood of the dataset will approach 

zero. This inevitably leads to computational problems. To solve these problems, 

the loglikelihood method is often used. 

Maximizing the natural logarithm of the likelihood is equivalent to maximizing 

the likelihood, as the natural logarithm is a continuously increasing function. 

Taking the logarithm of a product of probabilities is equivalent to summing the 

logarithms of these probabilities, and this will be much easier to implement. 

 

( ) ( ) ( )log , ln Pr | ln Pr |i i i i
ii

L y x y x= =∑∏x y  

 



 26 

3.7 Mixture models 

A mixture model is a weighted linear combination of a number of Gaussian 

pdf’s. 

 

( )2

221

2

i

i

x

i
i i

y w e

µ
σ

σ

− −

= ⋅ ⋅
Π∑  

 

The parameters of the mixture models to be optimized are , , w : the vectors 

of weights, standard deviation and means of the Gaussians. This means that the 

interpolation of the parameters is done as follows: 

 

( ) ( )
jAm jm

j

w x x wµ=∑ , ( ) ( )
jAm jm

j

x xµ µ µ=∑  and ( ) ( )
jAm jm

j

x xσ µ σ=∑ . 

 

When using mixture models as the output for PFS, we have to make sure that 

the right parameters of one mixture model are interpolated with the right 

parameter of the other. If the maximum likelihood method is used to optimize 

the parameters for all rules at once however, we elegantly avoid this problem as 

the interpolation itself is part of the optimization. 

 

3.8 Using an evolution strategy to maximize the likelihood 

criterion 

To optimize the parameters of the fuzzy system using the maximum likelihood 

criterion, I use an Evolution Strategy. Evolution Strategies are based on the 

biological concept of evolution. A population of a certain size is simulated 

during a certain number of generations. Each generation, parents with a high 

‘fitness’ create offspring that is subject to mutations. If the offspring is generated 

by combining parameters from multiple parents, we call this ‘cross-over’. 

Mutation is vital for an Evolution Strategy to prevent the algorithm from getting 

trapped in local optima. 

 

To decrease the tendency to get trapped in a local minimum or maximum 

further, we use tournament selection to produce the parents for each new 
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generation. By randomly selecting pairs from the existing population and using 

only the winner of each pair in terms of fitness, every individual (except the very 

worst performing one) has a chance to be selected, but the selection is biased 

towards the better performing individuals. 

 

In this thesis, the fitness of each individual is measured by its likelihood. 

 

One of the problems when using evolutionary methods for fitting models is 

choosing the appropriate standard deviation for mutation. Mutation works as 

follows: 

 

( )σ,0Ν+= xx   

 

with N(µ, σ) a drawing from the standard normal distribution with mean µ and 
standard deviation σ. When σ is too small, it takes too long before the optimum 

is reached, when σ is too large the mutations can consistently be too large to 

find the optimum. Schwefel (1974) has solved this problem by introducing self-

adaptation, where σ itself is also subject to mutation. In this way, the σ will 
gradually decrease as the population reaches the optimum. 

 

3.9 Monte Carlo simulation  

The Monte Carlo method was invented in 1946 by Stanislaw Ulam, a Polish 

born mathematician who worked in the United States, while trying to compute 

the probability of winning a game of solitaire. It is a very intuitive and widely 

used method. Its major drawback is its computational expensiveness. It is easy 

to code Monte Carlo simulations that run for days, even on modern computer 

systems. Coming up with an analytical alternative however, can take even longer 

and, in many cases, is not even possible. 

 

Monte Carlo simulation, as it is understood today, involves using statistical 

sampling to approximate solutions to a quantitative problem. Looking back at 

the Brownian motion in the Black-Scholes framework the Monte Carlo method 

is easily explained. 

 



 28 

S SdS dt dtµ σ γ= +  

 

It is possible to generate the random variable γ using a pseudo-random number 

generator and compute dS for every step in the time-path, leading to a certain 

stock price at expiration of the option. If you repeat this experiment many times, 

a good estimation of the probability distribution of the option’s payoff can be 

made. 

 

To reduce the number of computational operations needed with the Monte 

Carlo method, a number of techniques have been developed. In summary, they 

all involve searching the output space in a more or less structured way, reducing 

the estimation error when approximation the pdf. These methods are called 

Quasi Monte Carlo (QMC). 

 

In principle one can view the multi-layered binomial trees mentioned before as a 

very simplistic way of Quasi Monte Carlo simulation.  

 

In Lemieux and l’Ecuyer (2001) a clear overview of the use of QMC methods in 

finance is presented. With Monte Carlo simulation, we try to estimate a 

probability density function by choosing a point set from the function’s domain. 

These points are independent and usually generated by a pseudo random 

number generator. 

The idea of QMC is to use a more regularly distributed point set that is typically 

deterministic in stead of stochastic. This will effectively reduce the standard 

error of the estimation of the underlying probability distribution. 

 

3.10 Generating pseudorandom number from the estimated 

distributions 

In order to create pseudorandom number that are distributed according to our 

estimation of the conditional probability distribution, we need to convert 

pseudorandom number that are uniformly distributed from 0 to 1. Uniformly 

distributed pseudorandom numbers are available in each programming language 

and on every computer. In order to do this, we need to compute the cumulative 

probability distribution of our estimated pdf. 
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Figure 3.3 - A standard normal pdf (left) and the associated cumulative probability distribution (right) 

 

The cumulative distribution associated with a pdf is the sum of all probabilities 

lower than the number under consideration, or in mathematical terms: 

 

( )cdf pdf ( )
x

x x dx
−∞

= ∫  

 

As the cumulative distribution by definition ranges from 0 to 1, we have a useful 

mapping from the uniform distributed numbers available in the programming 

language to the empirical pdf. If runiform is a pseudo-random variable, uniformly 

distributed between 0 and 1, then a random variable distributed according to the 

estimated pdf is computed by: 

 

( )invcdf uniformr r= . 

 

To compute the inverse cumulative distribution, we need to numerically 

approximate the integral of the pdf up to the point where it equals runiform and 

then take that point as our new random variable. In pseudo-code: 

 

[ ]

( )
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while  and 

{ | ;

;}

;

uniform limit cum

cum uniform limit

cum cum

r y y p

p r y y
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∈ = − =
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4. Experimental setup 

 

4.1 Choosing the model structure 

Before the parameters of the model can be optimized, a number of choices 

regarding the structure of the model have to be made. For this reason, this 

approach can be viewed as being ‘semi-parametric’ (Bishop (1995)). These 

choices could also be made using an evolutionary algorithm making the model 

entirely ‘non-parametric’, but this would lead to even longer computation times 

and almost certainly to overfitting of the data. Because the maximum likelihood 

is always realized by a probability distribution showing a peak on every data 

point and zero probability elsewhere, a certain generalization has to be made. In 

this case, I choose to limit the amount of Gaussians the mixture model exists of 

and the minimum standard deviation of each Gaussian component to prevent 

peaks on incidental clusters of data points. 

The maximum likelihood always has the tendency to overfit the data. Consider 

e.g. a mixture model existing of two Gaussians and normally distributed data. 

The maximum likelihood will always be for a normal distribution with one small 

peak on the two data points that happen to be closest together. 

 

 

Figure 4.1 - A mixture model with 2 Gaussians on normally distributed data, showing one peak on an incidental data cluster 
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Besides choosing the number of parameters for the mixture models describing 

the output space, I will have to choose the number of rules considered and the 

width of the fuzzy concepts spanning the input space. 

 

I choose to use only three rules: one for “low” lagged returns, one for 

“medium” and one for high”. Between the three resulting probability 

distributions a linear interpolation of their parameters is made because I divide 

the input space with triangular membership functions. The left and right 

membership functions have their peak at Rlimit, this point is chosen so that almost 

every data point falls within the range of the membership function under 

consideration. In some cases, it might be that for one or two outliers the 

distance beyond Rlimit is ignored. This leads to a better approximation of the 

conditional pdf’s than including all data points because stretching the input 

space to contain all outliers would mean that we have less data available for the 

rules associated with “low” and “high” returns.  

 

Figure 4.2 - Partitioning of the input space 

 

LOW MEDIUM HIGH 

Rlimit -Rlimit 
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4.2 Optimizing the parameters 

All mixture models are described by three vectors: w, µµµµ and σσσσ. All individuals in 
the evolution strategy are composed of a set of rules; each associated with a 

mixture model, and can be described by parameter matrices W, M, S. 

In order to optimize the parameters, the parameter matrices first have to be 

initialized for all individuals of the first generation. 

 

Initialization 

For the matrix W, all values are drawn from a uniform distribution between 0 

and 1 and then divided by the sum of all values in their respective row. This is to 

ensure that the weights for each mixture model sum to 1. 

 

For M, all values are drawn from a normal distribution with mean 0 and 

standard deviation Rlimit/10. 

 

For S, all values are initialized at 1 because I use normalized data and I quickly 

found out that this could help the algorithm in quickly finding the optimum and 

decrease the tendency to get stuck in local optima. 

 

Cross-over 

The parents are selected using tournament selection as described in paragraph 

3.10. Cross-over is implemented as a single point cross-over, where the two 

parents interchange a number of parameter vectors, up to a random row in the 

parameter matrices. For each parameter matrix a new row is chosen. 

Cross-over probability is set at 0.7. 

 

W1    W2 

 

 

 

 

 

Mutation 

Mutation is implemented including self-adaptation, which means that each 

individual has its own associated standard deviation σ (not to be confused with 

0.45 0.32 0.23 

0.01 0.22 0.77 

0.35 0.12 0.53 

0.38 0.18 0.44 

0.15 0.80 0.05 

0.03 0.04 0.93 
Randomly chosen cross-over point 
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the vector of standard deviations of the Gaussian components), determining the 

width of the probability distribution from which the mutations are drawn. The σ 
‘s are mutated using σ σ = σ /5, however each σ must remain larger than or 

equal to 0.01. 

 

The mutation probability is set at 0.5. 

 

If a parameter matrix is mutated, random drawings from the normal distribution 

with mean 0 and standard deviation σ are added. To ensure that the weights for 
each mixture model still sum to 1, they are again divided by the sum of their 

respective row. The weights have to remain at least 0.001.  

 

The standard deviations of the Gaussian components of the mixture models 

have to remain at least 0.1 to prevent overfitting. 

 

Elitism 

To prevent the maximum likelihood of the population from downfalls over 

time, the best 5 individuals of the previous generation are added to the next 

generation to replace random individuals at the end of each generation. 

 

Number of generations and population size 

The algorithm will run for a predefined number of generations an population 

size. Increasing both will lead to higher likelihoods until the global optimum is 

found, but both at a heavy computational prize. 

 

4.3 Preparing the data 

I will use one-minute stock quotes from the Microsoft stock (see Appendix), 

downloaded using HQuotes (www.hquotes.com).  

 

Date, time Open High Low Close Volume 

22-4-2005 14:10:00 25.12 25.13 25.11 25.13 94489 

22-4-2005 14:11:00 25.12 25.14 25.12 25.14 62077 

… … … … … … 
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For every minute there is an opening, highest, lowest and closing quote. I take 

the average of open and close to approximate the average quote. Using these 

average quotes, I compute one-minute returns. I choose not to look at the 

highest and lowest quotes because these could have been for very small 

transactions and therefore have less meaning than the opening and closing 

quotes. 

 

Because the first return, recorded at the opening of the stock market at 9:30 AM 

is not a one-minute return but an overnight return, I choose to delete these from 

my data to estimate the model on one-minute returns only. Because I cannot use 

the first return as lagged returns too, the first return I can actually use is from 

9:32 AM. 

 

Next I divide all the returns by their standard deviation because the model is set 

up to work best for standard deviations around 1. One-minute return standard 

deviations are of course far from 1, usually less than 0.1%. I do not subtract the 

mean because 0 seems to be a very common value for one-minute returns, even 

though there are no returns without associated trade volume present in the data. 

I would like this to be shown explicitly in the estimated probability distributions 

as 0, and not as minus the mean divided by the standard deviation.  

 

Logreturns 

In financial econometrics, usually logreturns are used when examing financial 

time series. There are three reasons for this. The first reason is that if one 

assumes that the stock price follows a geometric Brownian motion, 

 

dS Sdt Sdzµ σ= +  

 

Then 

 

( )2
ln 2d S dt dzσµ σ= − + . 

 

This means that  
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( )2

0
0

ln ln ln ,2
T

T

S
S S N T T

S
σµ σ − = −

  
∼ , 

 

Where ST is the stock price at a future time T, S0 is the stock price at time 0, and 

Ν(m, s) denotes a normal distribution with mean m and standard deviation s. 

 

This means that in a geometric Brownian motion, the logreturns 
0

ln TS

S
 are 

normally distributed. 

 

The second reason is that consecutive logreturns can simply be summed to 

produce the total return. In this way it is much easier to remain precise when 

implementing a simulation that consists of a series of return, then when the total 

return is computed by multiplying a large number of returns. 

 

The third reason is that if we draw logreturns from a given probability 

distribution, it is impossible to accidentally produce negative stock prices. This is 

of course crucial in simulation as a negative stock price is impossible in reality. 

 

I do not make the assumption that stock returns are lognormally distributed, but 

I do use logreturns to prevent negative stock prices and to be able to sum 

consecutive logreturns. 

 

4.4 Simulating stock price paths 

In paragraph 3.10, I have explained how we can draw pseudorandom variables 

that are distributed according to the distributions given by the probabilistic fuzzy 

model. To get from these returns to an estimate of the expected value of the 

option, we need to simulate many potential price paths. For each resulting stock 

price, we subtract the strike price of the option and compute the resulting 

option value. From these potential option values, we can compute the expected 

value, equalling the option price for a risk-neutral investor. 

 

( ) ( )( )0 min 0,rT rT
T Tc e E c e E S X− −= = −  
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Where c0 is the current option price, cT is the option value at expiration, ST is the 

stock price at expiration and X the strike price of the option. 

 

The expected value is better estimated with more potential price paths. The best 

way to implement the simulation is by first calculating a lookup table with the 

next return for all potential lagged returns and all possible values of a random 

number uniformly distributed from 0 to 1, with a limited level of precision. Such 

a lookup table would enable quick simulation of potential price paths. 

Calculating it however, is very computationally expensive. For e.g. 1,000 possible 

lagged returns and 1,000 possible random numbers, 1,000,000 returns have to be 

computed. To compute each of these numbers, first the integral of a pdf, 

resulting from interpolating multiple mixture models, has to be numerically 

approximated. This approximation can take up to a second. Calculating a lookup 

table with one million values would take about a week on a high-end pc. 

 

For the purpose of this thesis, I will simply simulate a large number of potential 

price paths. I will use the model I estimated for five-minute returns and 100 

consecutive returns, resulting in 500 minute price paths. The distribution of the 

resulting 500 minute returns can be compared with the theoretical Black-Scholes 

distribution and with the distribution of 500 minute returns in the actual data. 
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5. Results 

 

5.1 A simple experiment 

To test whether the model explained in the previous chapter works in practice, 

we will conduct a simple experiment. I have created a dataset that incorporates a 

very clear pattern of ‘reversal’: the mean of the conditional probability 

distribution of Rt shifts Rt-1 to the opposite direction. 

 

( ) 1N 0,1t tR R −= −  

 

Where N(0, 1) is random drawing from the standard normal distribution. 

 

The dataset contained 1001 data pairs where Rt-1 ranged from -1 to 1 with step 

size 0.002. The input space was partitioned using overlapping triangular 

membership functions. Triangular membership functions are used because I 

want to make a linear interpolation between the output pdf’s of the different 

rules. Only a limited number of membership functions and associated rules need 

to be considered as the range of the input variable is known (from -1 to 1). 

 

 

Figure 5.1 - The partitioning of the input space using 3 triangular membership functions 

LOW MEDIUM HIGH 
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These three membership functions each have one associated rule of the form 

 

( ) ( )1If  is  then , , ,t j t tR A p R Rϕ− = w  

 

In this case, we know exactly how the probability distributions in the output 

space should look like, where the leftmost output pdf is associated with the 

rightmost membership function in the input space and vice versa (reversal). 

 

 

Figure 5.2 - The target output probability distributions for all three rules 

 

The model that is used to estimate these conditional pdf’s is a Gaussian mixture 

model consisting of a single Gaussian. The parameters for the target pdf’s would 

look like this, where W is a matrix of weights where each row represents a rule 

and each column a Gaussian component of the mixture model (one in this case). 

 

W =  1 M =  1 S =  1 

  1   0   1 

  1  -1   1 

 

The parameters of this model are estimated using the maximum likelihood 

criterion as described in paragraph 3.6 and an evolution strategy with population 

Pr(Rt|LOW) 

Pr(Rt|MEDIUM) 

Pr(Rt|HIGH
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size 100, 50 generations, elitism for 5 individuals, a cross-over probability of 0.7 

and a mutation rate of 0.5. The evolution of the maximum likelihood is depicted 

in figure 5.3. 

 

 

Figure 5.3 - Evolution of the maximum likelihood 

 

The Likelihood does seem to have reached an optimum, according to its 

asymptotical behavior.  

 

The resulting parameters are: 

 

W =  1 M =  0.9370 S =  0.9611 

  1   0.0682   1.0482 

  1  -0.9687   0.9721 

 

Leading to the estimates of the output pdf’s depicted in figure 5.4.  
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Figure 5.4 - The estimates of the conditional pdf’s for the following logreturn Rt 

 

Figure 5.4 shows that the model might have a bias towards smaller standard 

deviations for smaller samples. The pdf’s given “low” and “high” lagged returns 

are estimated from smaller samples than the one for “medium” lagged returns. 

This presumption is reinforced by the results from repeating the same 

experiment. 

 

Interpolations of the pdf’s will be made, as described in paragraph 3.7, by 

interpolating the parameters of the mixture models weighted by the fuzzy 

memberships of the input lagged returns. For the partitioning of the input space 

we are currently considering, the membership values for each of the three fuzzy 

classes of x = 0.5 for instance is: 

 

µµµµ =  0     

  0.5     

  0.5     

 

This means that the interpolated parameters of the target model will be w = 1, 

m = -0.5, and s = 1.  

 

Pr(Rt|LOW) 

Pr(Rt|MEDIUM) 

Pr(Rt|HIGH
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The interpolated parameters of the model we have found are w = 1, m =  

-0.4503, and s = 1.0102.  With this level of ‘reversal’ existent in the data, the 

probabilistic fuzzy approach will obviously outperform a model assuming 

constant diffusion anytime. Please note that assuming unconditional constant 

diffusion also leads to an estimation error if we only look at the sample mean 

and standard deviation. The sample mean in this case is 0.0246, the sample 

standard deviation is 1.1527, whereas the population mean is 0 and the 

population standard deviation is 1. 

 

Using a slightly more complex version of the model with more Gaussians, the 

‘reversal’ pattern is also very quickly captured. 

 

5.2 Real-life data 

One-minute returns 

Looking at the conditional pdf’s for one-minute logreturns (Figure 5.5), we can 

see conditional variances that for the “high” and “low” returns are obviously 

much larger than for “medium” returns. This is exactly what I predicted in 

paragraph 2.5 and is certainly not caused by a potential bias towards smaller 

standard deviations for small samples as discussed in paragraph 5.1. 

 

 

Figure 5.5 – 10,000 one-minute logreturns, 4 Gaussians, after 100 generations 

Pr(Rt|LOW) 

Pr(Rt|MEDIUM) 

Pr(Rt|HIGH
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The conditional pdf’s for the following logreturn show the resulting means and 

standard deviations: 

 

( )
( )
( )

Pr | "Low" : 0.1767, 1.4428

Pr | "Medium" : 0.0524, 0.6513

Pr | "High" : 0.7311, 1.9165

t

t

t

R

R

R

µ σ
µ σ
µ σ

= − =
= − =
= =

 

 

Contrary to my expectations, the conditional pdf’s show a clear tendency to 

‘drift’. Low returns are more likely to be followed be another low return and 

even more so, high returns are likely to be followed by high returns. This is 

exactly the opposite of what I had expected. 

 

Five-minute returns 

On five minute returns, the results looked like in figure 5.6. Again the 

conditional volatilities are exactly like I had expected. However, now there is a 

conditional probability for ‘reversal’. Low or high returns are likely to be 

corrected by the next return. 

 

 

Figure 5.6 – 5000 five-minute logreturns, 3 Gaussians, after 50 generations 

 

Pr(Rt|LOW) 

Pr(Rt|MEDIUM) 

Pr(Rt|HIGH
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The conditional pdf’s for the following logreturn show the resulting means and 

standard deviations: 

 

( )
( )
( )

Pr | "Low" : 0.1292, 1.2404

Pr | "Medium" : 0.0084, 0.6138

Pr | "High" : 0.1461, 1.3964

t

t

t

R

R

R

µ σ
µ σ
µ σ

= =
= − =
= − =

 

 

 

5.3 Simulation results 

After simulating 2,750 500-minute stock price paths as described in paragraph 

4.4, we can plot a histogram of the resulting logreturns and compare this with 

the distribution of 500-minute logreturns in a world that adheres to the Black-

Scholes assumptions. In this world the 500 minute logreturns are normally 

distributed with 500 5100min minµ µ=  and 500 5100min minσ σ= . 

 

When comparing the simulated stock price paths using the five-minute model 

with the theoretical distribution of the returns in a Black-Scholes world, it can be 

seen that the mean of the distribution has shifted a little to the right for the 

probabilistic fuzzy approach (0.0015 versus -0.0005), whereas the standard 

deviation of the simulation results is slightly smaller (0.0088 versus 0.0092) and 

shows some evidence of kurtosis (fat tails). 

 

 

Figure 5.7 - The theoretical distribution (left) versus the simulation results (right) 
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6. Discussion and further research 

 

6.1 Discussion of the results 

The difference in conditional probability distributions found for each of the 

rules and the way these differences confirm my hypotheses about stock price 

behavior as explained in paragraph 2.4, shows that a probabilistic fuzzy 

approach is a meaningful approach to modeling short term stock price behavior. 

Whether the difference in expected value of the 500-minute return with the 

Black-Scholes framework is an improvement, needs to be further investigated.  

The difference in standard deviation and the ‘fat tails’ are likely to be an 

improvement, as the ‘fat tails’ are a known anomaly of the Black-Scholes model 

and Corsi et al. (2001) have shown that computing ‘realized’ returns using high-

frequency data leads to structural over-estimation of the longer term volatility.  

 

Looking at the conditional pdf’s (Figure 5.6) alone, it is very interesting to see 

the evidence of a ‘reversal’ pattern and the increased conditional volatility for 

extreme returns. These results may lead to a better understanding of the stock 

pricing process. 

 

However interesting a probabilistic fuzzy approach to modeling stock price 

behavior, it is one that has serious limitations. The most important of them is 

the computational expensiveness of both fitting the model parameters and 

simulating the stock price paths. It does give an option price that is different 

from the Black-Scholes price, and most likely a better estimation of the expected 

pay-off. That the model also outperforms the Black-Scholes framework with all 

the enhancements made over time, including the scaling of realized volatilities 

(Corsi et al. (2001)) however, is less likely. 

The interpretability of the rules however, to my opinion, remains an advantage 

of the probabilistic fuzzy approach, compared to the adjusted Black-Scholes 

model. 

 

Looking at the difference between the results for one-minute returns and for 

five-minute returns with the assumptions from paragraph 2.5 in mind, one may 
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suspect that large shifts in the observed price often take more than a minute to 

occur. This would explain the tendency to drift that can be seen in the 

conditional pdf’s for one-minute returns. 

 

In the end, one can say that regarding the conditional volatility, the research 

question in paragraph 1.2 can be answered positively: the difference in 

conditional volatility for each rule is certainly significant – the standard deviation 

for “low” and “high” lagged returns is more than twice as large as the one for 

“medium” lagged returns. 

Regarding the mean, this research question is a little bit harder to answer, as 

conventional statistical theory is not very well suited for this application. 

Repeating the experiment with a different dataset is the best way to answer this 

question. 

 

6.2 Further research 

There are many possible improvements to the model that is developed in this 

thesis. I have already mentioned that simulation should probably be done after 

computing a lookup table. In this paragraph, I will list a few interesting topics 

for further research. 

 

Exponentially weighting historic returns 

In many applications of financial modeling, recent data is assumed to be more 

representative for future data than less recent data. This concept could easily be 

implemented in the model used in this thesis by making a small adjustment to 

the likelihood criterion. 
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Where 0 1λ< < . 

 

American style options 

Conditional probabilities for ‘reversal’ or ‘drift’ have a large impact on the 

valuation of American option. In many theories, the probability distributions for 



 46 

stock returns are always perfectly symmetric. This implies that it is never optimal 

to execute the option prior to the expiration date. This might change when using 

a probabilistic fuzzy approach. 

 

Longer lag times or multiple lagged returns 

It is very likely that the model in this thesis does not capture all the 

interdependency within short-term stock returns. To improve this aspect of the 

model it is possible to either incorporate longer lag times for the input returns, 

or to use multiple lagged returns as input. 
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Appendix 

 

Put-call parity 

Because there is a direct relation between put and call-option prices, called put-

call parity, there is no need to model both types of options. Put prices can 

simply be deduced from call prices. 

 

Consider two portfolios: 

 

• one European call option plus an amount of cash equal to the strike 

price discounted at the risk free interest rate (X e-rT); 

• one European put option plus one share. 

 

Both portfolios are worth max(ST, X) at expiration. Because they are European, 

they cannot be exercised prior to expiration. Therefore, the portfolios must have 

equal value today. 

 

0 0
rT rTc Xe p S p c Xe S− −+ = + ⇒ = + −  

 

The central limit theorem 

Many random variables are in practice sums of multiple independent random 

variables and stock returns are an excellent example. Each daily return is, for 

instance, the sum of half-hour returns, which are in their turn sums of 30 one-

minute returns. 

 

The mean of a sum of random variables is equivalent to the sum of the means of 

the independent random variables and the variance of the sum is equivalent to 

the sum of the variances. The central limit theorem states that: 
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For the sum of a large number of independent random variables from an 

identical distribution, the sum tends to the normal distribution, whatever the 

distribution of the summed random variables. 

 

The central limit theorem has a substantial impact on the practice of statistics. 

Many problems involve sums or averages of random variables, and in these 

cases, because of this theorem, the normal distribution offers a satisfactory 

approximation of the true distribution. 

 

One of the implications of the central limit theorem is that, if one assumes stock 

returns to have a constant volatility and drift and to be independent, that for 

each sufficiently large interval, the normal distribution is the most appropriate 

distribution to apply. Another implication is that option prices from binomial 

trees converge to the Black-Scholes price when the number of steps in the tree 

grows. Whenever stock returns are not independent or the volatility varies, the 

central limit theorem is no longer applicable.  

 

Microsoft Corp. 

Microsoft Corporation engages in the development, manufacture, license, and 

support of software products for various computing devices worldwide. Its 

Client segment offers operating systems for servers, personal computers (PCs), 

and intelligent devices. The company’s Server and Tools segment provides 

server applications and developer tools, as well as training and certification 

services.  

Its products provide messaging and collaboration, database management, e-

commerce, and mobile information access capabilities. It also offers consulting 

services.  

Microsoft’s Information Worker segment offers business and personal 

productivity software applications, including collaboration tools and document 

management and messaging applications for personal computers.  

Its Microsoft Business Solutions segment offers software solutions to manage 

financial, customer relationship, and supply chain management functions. Its 

products consist of business solutions, customer relationship management 

software, retail solutions, and related services.  
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The company’s MSN segment provides online communication and information 

services, including email and instant messaging, and online search and premium 

content. It also provides Internet access, and Web and mobile services.  

Its Mobile and Embedded Devices segment offers mobile software platform; 

embedded device software platforms used in consumer electronics devices and 

enterprise devices; a hosted programmable XML Web service; and software 

platform to create telematics solutions for vehicles.  

Microsoft’s Home and Entertainment segment offers the Xbox video game 

system; PC software games, online games, and console games; television 

platform products for the interactive television industry; and consumer software 

and hardware products, such as learning products and services, application 

software for Macintosh computers, and PC peripherals.  

Microsoft was founded in 1975 by William H. Gates III. The company is 

headquartered in Redmond, Washington. 

 

Key statistics  

Market Cap (intraday): 285.92B  

Enterprise Value (9-Jan-06)3: 246.39B  

Trailing P/E (ttm, intraday): 22.69  

Forward P/E (fye 30-Jun-07) 1: 17.67  

PEG Ratio (5 yr expected): 1.65  

Price/Sales (ttm): 7.10  

Price/Book (mrq): 5.93  

Enterprise Value/Revenue (ttm)3: 6.11  

Enterprise Value/EBITDA (ttm)3: 13.73  

 

Source: www.microsoft.com 
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