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Chapter 1

Introduction

1.1 Scientist’s fields of interest

Science can be described as “a system of knowledge covering general truths
or the operation of general laws especially as obtained and tested through
scientific method.” The goal of scientists is to contribute new knowledge
to science. Scientists do this by the use of scientific method, which can be
described as “principles and procedures for the systematic pursuit of knowl-
edge involving the recognition and formulation of a problem, the collection of
data through observation and experiment, and the formulation and testing
of hypotheses” (Merrian-Webster, 2004).

In order to be able to formulate problems and hypotheses, scientists
study the existing pool of scientific knowledge. The size of this pool is
immense and expands at an exponential rate. An example from the medical
domain is the number of medical journals, which has doubled every 19 years
since 1870 (Wyatt, 1991). As a consequence, no single scientist is capable
of studying all available scientific knowledge. This forces scientists to focus
on a part of this knowledge, to specialize.

We will call the part of scientific knowledge a specific scientist focuses
on and which he studies and keeps up with his field of interest. This field
of interest might be very specialized in a certain discipline of science, or
it might be more general and span multiple disciplines. Either way, it is
limited by the knowledge capacity of the individual scientist. A scientist can
only absorb a limited amount of knowledge and can only keep up with a
limited amount of new knowledge.

New knowledge spreads by communication among scientists. Communi-
cation is more frequent between scientists with overlapping fields of interest.



This communication can take many forms. There is direct communication,
such as telephone calls, e-mails, and discussions at meetings and conferences.
More indirect and more formal communication takes the form of publishing
in journals and books.

A scientist tries to study and keep up with the knowledge in his field of
interest. To do this, he must determine which instances of communication
to use as a source of knowledge for his field. For example, he must choose
which books to read and which conferences to attend. This process is not
trivial. Different scientists have different fields of interest and a scientist is
only interested in those parts of the fields of interest of others that overlap
with his own field. Also, fields of interest can change over time. A failure
to determine correctly which knowledge sources to study and keep up with
means that a scientist will not have all knowledge available in his field of
interest.

Some of the knowledge missed may be relevant to a current research
topic of the scientist. A scientist without knowledge of all relevant new
information on his research topics might make less progress than he would
have if he did have this knowledge. Also, different scientists might be solving
the same problem without being aware of each other’s efforts.

Another way in which relevant knowledge can be missed, is if it is outside
a scientist’s field of interest. This should not be possible, as an ideal field
of interest would include all knowledge relevant to the scientist’s current
research. In practice, a scientist’s field of interest is that part of scientific
knowledge he studies and keeps up with. A scientist might not be aware of
existing knowledge of interest to him and thus not include it in his field of
interest.

To sum up, scientific progress would benefit if all scientists had all knowl-
edge relevant to their research topics. Part of the reason they do not have all
this knowledge are the difficulties involved with determining which knowl-
edge sources to use to keep up with knowledge in their field of interest.
Another reason is that some relevant knowledge can only be found outside
of their field of interest.

1.2 Undiscovered public knowledge

Science is divided into manageable units, or specialties, and so scientific
knowledge is created and assimilated in manageable units. While many of
these units of knowledge are related to each other, they are created to some
degree independently of each other and the relationships among them may



be unknown to even their creators. Because of the independence with which
they are created, the relationships among the units may remain undiscov-
ered. (Swanson, 1986)

This is similar to what we described in section 1.1. A scientist’s field of
interest includes the units of knowledge he is working on and those units of
which he knows that they have a relationship with his own units. His field
of interest should include all units related to his own, but this will not be
the case if the scientist has no knowledge of some of those related units. The
related units not included in his field of interest might contain knowledge
relevant to his research.

It might even be so that some progress can only be made when two
related different pieces of knowledge are brought together. However, when
no single scientist’s field of interest includes those two pieces of knowledge,
their relationship will remain unknown. Even when a specific scientist’s
field of interest includes both pieces, the relationship may remain unknown
when a scientist chooses the wrong sources of knowledge for that field of
interest. Swanson called these unknown relationships “undiscovered public
knowledge”. Public because all pieces of knowledge needed already exist
and are publicly available, undiscovered because no scientist has brought
the pieces together yet.

To illustrate this, let us consider the following situation. A relation-
ship exists between two topics, say A and C'. However, no unit of scientific
knowledge describes this relationship, and thus it is unknown. However,
there might be a unit describing a relationship between A and another topic
B. Also, there exists another unit, in which a relationship between B and
C is described. A scientist with a field of interest including both the unit
describing the relationship between A and B and the unit describing the re-
lationship between B and C might notice both relationships. He might then
hypothesize that there is a relationship between A and C'. If he succeeds in
supporting this hypothesis with (experimental) evidence, new knowledge is
discovered. Figure 1.1 shows an example where a scientist’s field of knowl-
edge does not include both units and the relationship will remain undiscov-
ered.

Don R. Swanson has made several discoveries by studying separate units
of knowledge. For example, he discovered a relationship between two topics,
Raynaud’s disease and fish oil, while studying two separate units of knowl-
edge. In one of them, fish oil A has been proven to improve blood circulation
B. Patients with Raynaud’s disease C' have intermittent blood flow B in
their extremities. Both of these relationships are supported by substantial
scientific evidence and literature. Taken together, these relationships sug-



Figure 1.1: Example of an undiscovered relationship between some A and
some C'. The circle represents the field of interest of some scientist interested
in A. The squares are units of knowledge. The scientist will not discover
the relationship of A with C' through B, because the unit describing a rela-
tionship between B and C' is outside of his field of interest.

gest that dietary fish oil has a relationship with Raynaud’s disease, namely
that a diet containing fish oil can ameliorate the effects of Raynaud’s disease.
(Swanson, 1986). This relationship was not known at the time of Swanson’s
discovery, but has later been shown to exist in a clinical trial (Chang et al.,
1988; DiGiacomo et al., 1989). The hypothesis could be proven and therefore
new knowledge was discovered.

1.3 Searching for undiscovered public knowledge

When we wish to improve scientific progress by finding undiscovered public
knowledge, we will need to search in the pool of existing public knowledge.
More specifically, we will need to bring together two parts of existing knowl-
edge that are relevant to the same research topic and have not been brought
together before. An important decision in this process is choosing what
exactly will serve as a source of knowledge.

As stated before, there are many forms of communication among sci-
entists; all representing exchanges of knowledge. The recorded forms of
communication can serve as a source of knowledge when operationalising
a discovery process to unearth undiscovered public knowledge. There are
many of these recorded forms, but we will focus on the publications made



by scientists in journals and books. We will refer to these publications as
the scientific literature.

The scientific literature has several advantages over other sources of
knowledge. Firstly, it has been reviewed by peer scientists and is therefore
likely to be more reliable than other sources, such as websites. Secondly, lit-
erature covers most existing scientific knowledge. Among scientists, it is the
standard way of adding new knowledge to the existing pool. Thirdly, scien-
tific literature is accessible. It is available in libraries, and also increasingly
electronically. A disadvantage of scientific literature is the delay with which
it is published. Sources such as websites are usually far more up-to-date.
Considering both the advantages and disadvantages, the scientific literature
seems a reasonable representation of current existing scientific knowledge.

When we wish to search for undiscovered public knowledge, we will
search for it in the scientific literature. A scientist reads the literature in
his field of interest. In this way, chance discoveries such as Swanson’s dis-
covery from section 1.2 can be made. A more structured approach to search
undiscovered hidden knowledge will require studying much more literature
than just the literature in one field of interest. However, fields of interest
exist because scientists have limited knowledge capacity. Therefore, scien-
tists will need help to make searching for hidden knowledge in a structured
way possible.

Fortunately, several developments might assist in providing this help.
One is the already mentioned increased electronic availability of the scien-
tific literature. Others are developments in research in making literature
available in a structured way and developments in scientific research in pro-
cessing, searching and extracting information from text using computers.
Combining all these developments, it is possible to use a computer to assist
scientists in searching for undiscovered public knowledge. We will call this
search process literature-based knowledge discovery.

1.4 Goal, methodology, and structure of this the-
sis

Goal

The main goal of this thesis is to make recommendations for a system that
assists scientists in finding undiscovered public knowledge in the scientific
literature. This system is a computer system which interacts with the user
to exploit the user’s knowledge without requiring more than a reasonable



amount of effort from the user.

Methodology

Since Swanson first published the idea of undiscovered public knowledge,
several scientists have done research in literature-based knowledge discovery.
This research has resulted in several systems for literature-based knowledge
discovery. We will begin our study by studying some of the available re-
sources and tools which were used by these systems and/or can be used by
our own system. Because there are some excellent resources and tools in the
biomedical domain, we will pay special attention to this domain. We will
then examine and compare the existing systems for literature-based knowl-
edge discovery in the biomedical domain. From this comparison, we will
derive guidelines for our own system.

Following these guidelines, we will suggest two basic approaches to search-
ing for undiscovered public knowledge. We will also suggest possible im-
provements to these approaches. Our approaches will center around a tool
called the Associative Concept Space (ACS), which is described in section
4.1. We will implement our approaches and evaluate them using a case study
of the first discovery made by Swanson. During this process, the added value
of the ACS in our system will also be evaluated. Finally, we will discuss our
findings and do suggestions for further research.

Structure

The structure of the remaining part of this thesis is as follows: chapter 2
deals with tools and resources useful in literature-based knowledge discov-
ery. In chapter 3 previous systems for literature-based knowledge discovery
are discussed. Based on the advantages and disadvantages of each of these
systems, we will make suggestions for a new system in chapter 4. This chap-
ter will also discuss the tool used in those suggestions. Chapter 5 will then
describe the case and evaluation method used to evaluate our suggestions.
The results of this evaluation are discussed in chapter 6. Finally, chapter 7
concludes with a general discussion and suggestions for further research.



Chapter 2

Resources and tools for
literature-based knowledge
discovery

In this chapter, we discuss tools and resources that can be used for literature-
based knowledge discovery. In section 2.1, we discuss how the scientific
literature is available electronically. Next, we discuss how computers can
infer ‘knowledge’ from text. Section 2.3 discusses resources and tools for
literature-based knowledge discovery in the biomedical domain.

2.1 Availability of scientific literature

Our goal is to make recommendations for a system that assists scientists in
finding undiscovered public knowledge in the scientific literature. The rea-
son scientists need assistance for this is largely the same as the reason for the
existence of undiscovered public knowledge; the amount of literature scien-
tists can handle is only a fragment of the total amount of scientific literature
available. To do more than make chance discoveries, much more literature
than one scientist can handle needs to be searched. Since computers can
handle large amounts of data easily, a literature-based knowledge discovery
system should at least be partly automated.

To examine how computers can help with literature-based knowledge
discovery, we need to consider how the scientific literature is available to
automated systems. The scientific literature consists of the publications
made by scientists. These publications are published in journals and books.
However, to be of use to an automated system, they should be available



electronically.

Luckily, more and more literature is available online. Some scientists
have begun to publish their articles in online journals. Also, many tradi-
tional journals offer online access to their content. An example is LinkOut,
an extensive list of biomedical journals who provide online access to their
content (National Library of Medicine, 2003a). Note, however, that online
access to the full text of articles is still limited and when available, often not
free of charge.

Access to the titles and abstracts of scientific publications is more readily
available. Most libraries today offer free online searching of their catalogue.
Also, many libraries use some form of indexing. With indexing, keywords
are assigned to articles describing their contents. Using the online search
functions of libraries results in online access to titles, abstracts and keywords
describing the contents of articles. These sources can be easily accessed by
automated systems.

2.2 Extracting knowledge from text

Access to the scientific literature is not all we need for literature-based knowl-
edge discovery. To a computer, the text of which the titles, abstracts, and
full text of articles consists is just a string of characters. To a human, that
same piece of text has meaning. To humans, the terms in the text - con-
sisting of one or more words - refer to concepts. A concept is “something
conceived in the mind, a thought, a notion” (Merrian-Webster, 2004).

The relationships existing between terms and concepts are complex. For
one thing, concepts exist in the mind and differ from person to person.
Another problem is that the relationships are not one-on-one. Different
terms, synonyms, may refer to the same concept. Also, the same term, a
homonym, may be used to describe different concepts. Figure 2.1 shows
examples of a homonym and a synonym.

If a computer would be able to recognise concepts in text, it would be
able to handle it in a more meaningful way than just as a string of characters.
Because of the complex relationships described above, the process described
above is not trivial.

Thesauri have been developed to deal with these complexities. A the-
saurus is a structured list of concepts. These concepts have unique numbers
associated with them and all the terms that are used to refer to them. These
terms include synonyms, lexical variants and translations. A thesaurus also
contains hierarchical relations between the concepts contained in it. These
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Figure 2.1: Examples of a homonym and a synonym. The circled words
represent concepts, the others represent terms.
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are of the is-a form, where a more specific concept is an instance of a more
general concept. (National Library of Medicine, 2003b)

The concepts in the thesaurus are defined clearly, making the relation-
ships between terms and concepts less person dependant. Also, synonyms
can be easily matched with only one concept. The problem of homonymity,
one term used for more than one concept, is not solved by thesauri. Con-
textual information is needed to determine which concept is referred to.

A resource for the non-hierarchical relationships among concepts is a
semantic network. A semantic network records concepts and the relation-
ships among them. Another resource that can be used to interpret text is
a lexicon. A lexicon contains the terms in a language and their definitions.
(National Library of Medicine, 2003b)

2.3 Resources and tools in the biomedical domain

Several practical resources and tools for literature-based knowledge discov-
ery in the biomedical domain are listed here. The first deals with the elec-
tronic availability of medical literature and the structured ways in which
this is available. Next, some resources that can be used to interpret biomed-
ical text are discussed. We finish with a discussion of two tools that make
concept representations of text.
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Figure 2.2: An example of a MEDLINE record. (National Library of
Medicine, 2003b).

2.3.1 Electronic availability of biomedical literature

A major contributor to the electronic availability of the medical literature
is the United States National Library of Medicine (NLM). The NLM is the
world’s largest medical library and has a multitude of projects to make
information easily available by electronic means. The most important of
these projects is MEDLINE.

“MEDLINE is the premier bibliographic database of the NLM. It con-
tains over 12 million references to articles published between 1966 and now.
It covers basic biomedical research, clinical sciences, and life sciences that
are critical to biomedical research.” (National Library of Medicine, 2003b).

A typical MEDLINE record includes the title, author, and publishing
information of an article. It may also contain an abstract of the article.
Figure 2.2 shows an example. The records contained in MEDLINE can be
accessed online by PubMed, free of charge. Through PubMed, MEDLINE
can be searched using search terms such as author names, title words, text
words or phrases, journal names, or combinations of these.

Many of the articles contained in MEDLINE are indexed by human in-

10



dexers. They assign terms to the records which describe what each document
is about. These descriptors are chosen from a structured list called Medical
Subject Headings (MeSH). The descriptors in MeSH are structured in a hier-
archy. They also have cross-references among them. MeSH contains almost
22,000 descriptors. The MeSH descriptors assigned to a record are divided
in major and minor MeSH descriptors. The major descriptors describe the
most important topics in an article, the minor the other topics.

MEDLINE is essential to literature-based knowledge discovery in the
biomedical field. It is used by all of the knowledge discovery systems dis-
cussed in the next chapter.

2.3.2 Resources used to interpret biomedical literature

The NLM’s Unified Medical Language System (UMLS) project provides a
large thesaurus, the UMLS Metathesaurus, and two related resources. These
are the SPECIALIST Lexicon and the UMLS Semantic Network.

UMLS Metathesaurus

The UMLS Metathesaurus is compiled from many already existing thesauri
in the biomedical field. It preserves the information found in those thesauri,
adds certain basic information and establishes new relationships among
terms found in different thesauri. The July 2003AB edition includes 900,551
concepts and 2.5 million concept names derived from over 100 biomedical
source thesauri. A typical record in the UMLS Metathesaurus consists of a
name, a number, a definition, synonyms, and translations. It also contains
references to the source thesauri and to ancestors in the hierarchy. Figure
2.3 shows an example of a Metathesaurus entry.

SPECIALIST lexicon

The SPECTALIST lexicon is intended to be a general English lexicon that is
augmented with many biomedical terms. Lexical entries may be single- or
multi-word terms. The information associated with an entry includes syn-
tactic category (i.e., verb, noun, etc.), inflectional variation (e.g., singular
and plural for nouns, the conjugations of verbs), and allowable complemen-
tation patterns (i.e., the objects and other arguments that verbs, nouns, and
adjectives can take).

11



IMetathesaurus Search for: malaria in TMLS Release 2003AC
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Concept: Malaria
CUT: CO024530

Semantic Type: Dizsease or Syndrome

Definition:

& protozoan disease caused in humans by four species of the genus PLASMODIUM (P.
faleiparum (MATLARTA FATCIPARTIN, P wivax (MATARTA VIVASD, P. ovale, and P
malariae) and transmmitted by the bite of an nfected female mosquito of the genus Anopheles.
Malaria is endetnic in parts of Asia, Aftica, Central and South America, Oceania, and certain
Catibbean 1slands. It is characterized by extreme exhaustion associated with parozysms of
high fever, sweating, shaking chills, and anernia. Malaria in animals i cawsed by other species
of plasmodia. (MeZH)

Synonyms:

IMalara

HUnspecified malaria
Paludism

Plasmeodiosis

™ Source asserted synonymy Flasmodium Infections

[T Allowsable Subheadings
] Agsociated Expressions

Unspecified malaria

Figure 2.3: An example of a Metathesaurus entry. Only part of the entry is
displayed here. (National Library of Medicine, 2003b)
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UMLS semantic network

The UMLS semantic network categorizes all the concepts in the UMLS
Metathesaurus. Concepts in the Metathesaurus have one or more of the
134 semantic types in the network assigned to them. There are 54 links
between these semantic types, which represent important relationships in
the biomedical domain. The semantic network also contains information
regarding each of the semantic types.

2.3.3 Making concept representations of text

This section describes two tools that have been developed to identify con-
cepts in natural language text: MetaMap and Collexis. We first discuss
MetaMap, then Collecis, and we conclude with a brief comparison.

MetaMap

MetaMap is a program developed at the NLM to map biomedical text to
concepts in the UMLS Metathesaurus (Aronson, 2001). There is a Java
implementation of MetaMap, MMTx, that can use any thesaurus for this,
instead of only the UMLS Metathesaurus. The algorithm consists of five
steps.

The first step is parsing. In this step, a piece of free text is parsed into
a list of simple noun phrases. This step uses the SPECIALIST lexicon to
recognise phrases in the text. The parser also indicates which part of each
phrase is the most central part, the head.

The next step is variant generation. For each phrase in the list, vari-
ants are generated. A variant is a phrase word, along with all its acronyms,
abbreviations, synonyms, derivational variants, meaningful combinations of
these, and inflectional and spelling variants. This step uses the SPECIAL-
IST lexicon and an additional database of synonyms.

After this, a candidate set of all the terms used in the UMLS Metathe-
saurus to refer to concepts is retrieved, where each retrieved string contains
at least one of the generated variants. This step is called candidate retrieval.

Next is candidate evaluation. In this step candidates are evaluated
against the input text. First, a mapping is computed from the phrase words
to the candidate’s words. Then, the strength of the mapping is computed
using an evaluation function consisting of a weighted average of four metrics:
centrality, vartation, coverage, and cohesiveness. These metrics measure re-
spectively the involvement of the head, the variation between phrase and

13
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Figure 2.4: Example of a fingerprint in which Raynaud’s Disease is the most
important concept.

candidate, how much of a candidate matches the text, and in how many
pieces. The candidates are ordered according to strength.

The last step is mapping construction. Complete mappings are made by
combining candidates that were involved in disjoint parts of a phrase. The
strength of these combinations is calculated in the same way as the strength
of the candidates was. The highest scoring complete mapping is the concept
representation of the phrase.

After these five steps, MetaMap has mapped a piece of free text to a list
of concept representations of each phrase in the text.

Collexis

In (van Mulligen et al., 2000), Erik van Mulligen and his colleagues describe
a system that derives a weighted profile of a scientist from a set of documents
by that scientist. Part of this system is an algorithm that maps a given piece
of free text to a fingerprint. A fingerprint is a weighted list of concepts. The
weight of each concept in the fingerprint represents two things. First, a
concept with a higher weight is more probable to be the actual concept that
the words in the text refer to. Second, a concept with a higher weight has
more importance in the text. Figure 2.4 shows an example of a Collexis
fingerprint.

The algorithm starts by normalizing the words in the text. The terms
in the thesaurus are also normalized. The normalized words from the piece
of text are then matched against the normalized words from the thesaurus.

14



The concepts in the thesaurus whose terms match against words in the text
form a list of candidate concepts. The next step is clustering the words
found in the text. Words within a certain distance (in words) of each other
that refer to the same concept are combined. For each of the concepts, sta-
tistical features are computed and combined to form a weight. Six statistical
features are calculated.

The first is specificity. For each word that both occurs in the text and is
used in one of the terms listed in the thesaurus for a candidate concept, the
algorithm calculates to how many concepts in the thesaurus that word also
could refer. A candidate concept receives more weight if the text contains
words that occur in one of that candidate’s terms, but do not often occur
in terms of other concepts.

The second feature is similarity. It measures the fraction of a candidate
concept’s name that is covered by words from the text. The more of a
concept’s name is covered by words in the text, the higher weight it receives.

For the third measure, co-occurrence, the algorithm looks at each possible
pair of candidate concepts. The measure indicates how often each pair of
candidate concepts co-occur in other texts. To determine this, resources
such as MEDLINE are used. If two candidates often co-occur in other texts,
both receive more weight.

Dispersion is the fourth measure. It is the mean distance (in words)
between words referring to one concept. A candidate concepts receives more
weight if the words referring to it appear close together.

A word, or cluster of words, usually refers to more than one candidate
concept (homonymity). The number of concepts that each word or cluster
refer to is called the cluster size. Candidate concepts receive more weight if
the cluster sizes of the words or clusters referring to them are small.

The last measure, frequency, represents the number of words or concepts
referring to a candidate concept. Candidates with high frequency receive
more weight.

When the six measures for each concept have been combined for a single
weight for each concept, the concepts are sorted by weight and together form
a fingerprint.

Comparison

There are several differences between these two methods to map text to
concepts:

e MetaMap uses syntactical information through its recognition of noun

15



phrases. Collexis does not use this information. This potentially makes
MetaMap more accurate.

e MetaMap generates variants from the words in the text and compares
these with the concept records in the thesaurus. Collexis normalizes
both the words in the text as the words in the thesaurus. MetaMap
potentially recognizes more concepts in the text in this way, but also
generates more noise.

e Collexis is much faster than MetaMap.

16



Chapter 3

Literature-based knowledge
discovery systems

Several scientists, the first being Swanson, have done research in literature-
based knowledge discovery. Several systems have been developed to search
for undiscovered public knowledge in the scientific literature. These systems
differ in approach and in results. Since we wish to make suggestions for
a new system, it is important to study the systems developed previously.
In this chapter these systems are discussed and compared. In section 3.1,
we describe a general architecture for literature-based knowledge discov-
ery systems. The next section discusses the systems developed previously.
Finally, section 3.3 discusses general issues we encountered while studying
these systems.

3.1 A general architecture

The systems we discuss all roughly fit a general architecture. In this ar-
chitecture, two steps are discerned in the discovery process. Systems might
consist of either or both of these steps. We will call the first step the open
discovery process and the second the closed discovery process, terms intro-
duced by Weeber (Weeber et al., 2001).

Open discovery process

The open discovery process starts with the user expressing interest in a cer-
tain topic of interest, topic A. Literature concerning this topic is sought.
The system then uses this literature to compile a list of topics that are re-

17
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Figure 3.1: Open Discovery Process

lated to topic A. This list generally consists of many topics. Most systems
use filtering, ranking, or other processing to put the most interesting re-
lated topics forward. The criteria for determining which topics are the most
interesting differ strongly among the different systems.

From the resulting list a number of topics is selected, usually by the user.
These topics have a relationship with A which is deemed interesting by the
user. The selected topics are the B-topics, For these B’s, literature is sought.
From this literature, a list of candidates for C-topics is extracted. Again,
this list is usually very large and again most systems use filtering, ranking,
or other processing to put the most interesting related topics forward. On
top of that, the list of C-topics is filtered to exclude topic A and topics that
have a relationship with A that is already directly described in the literature.
The open discovery process is illustrated in figure 3.1.

The C’s discovered in this way represent topics that have a potentially
relevant relationship with the starting topic A. This relationship is not
described directly in scientific literature, but can be inferred from direct
relationships between A and one or more intermediate topics B and direct
relationships between those B’s and the C' discovered. If the relationship
discovered this way is meaningful and interesting, it may constitute valuable
new knowledge.

Closed discovery process

The closed discovery process starts with a hypothesis of the existence of an
unknown relationship between some A and some C. If the closed process
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follows an open process, the hypothesis follows from the latter. The closed
discovery process can also be used separately from the open process, if a
hypothesis already exists.

The system searches for literature that contains either A or C. It then
extracts B topics that are directly related with both A and C. Note that
the number of B-candidates generated in this way is much smaller than in
an open process, were only a relationship with A is required.

The candidates are then filtered and/or ranked to put forward the most
interesting ones. Because there are less candidates than in an open process,
the criteria for this filtering can be less strict. This means that interesting
B-topics can be discovered which were filtered out in the A — B step of the
open process. These extra connections between A and C' can strengthen the
hypothesis resulting from the open discovery process. The closed discovery
process is illustrated in figure 3.2.

Summary

To summarize, the open discovery process starts with a topic of interest and
finds a topic related to it through an intermediate topic, while the closed
discovery process finds (more) intermediate topics connecting two related
topics. From the open process follows an initial hypothesis, which can be
strengthened by the closed process.

19



3.2 Literature-based knowledge discovery systems

3.2.1 Swanson and Smalheiser
Background

As mentioned in the introduction, Don R. Swanson made his first discovery
in 1986. He accidently discovered a connection between Raynaud’s disease
and fish oil after having studied literature on both topics (Swanson, 1986;
Swanson, 1987). This discovery led him to identify the existence of undis-
covered public knowledge and the opportunity to discover this knowledge
by bringing together “complementary but disjoint literatures”.

Having identified this opportunity, Swanson began working on a struc-
tured approach to searching for undiscovered public knowledge. During
this search, he made several other discoveries. In (Swanson, 1988; Swan-
son, 1989), he describes a connection between Migraine and Magnesium. A
relationship between Somatomedin C and Arginine is discussed in (Swan-
son, 1990). Working with Neil R. Smalheiser, he describes relationships be-
tween Magnesium deficiency and neurologic disease in (Smalheiser & Swan-
son, 1994), between Indomethacin and Alzheimer’s disease in (Smalheiser &
Swanson, 1996a), between estrogen and Alzheimer’s disease in (Smalheiser
& Swanson, 1996b), and between Calcium-Independent Phospholipase A2
and Schizophrenia in (Smalheiser & Swanson, 1998a).

As Swanson developed his process, he increasingly used informatics tools.
Where the first discovery was made completely by hand, the third already
made use of several online information sources and tools (Swanson, 1990).
This growing use of informatics is also apparent in his proposed systems for
literature-based knowledge discovery. His 1991 system for the open discovery
process requires a lot of human effort (Swanson, 1991). His 1997 system for
the closed discovery process, ARROWSMITH, is more automated. This
system is fully described in (Swanson & Smalheiser, 1997; Smalheiser &
Swanson, 1998b; Swanson & Smalheiser, 1999).

Swanson evaluated ARROWSMITH by trying to replicate his first three
discoveries (Swanson, 1986; Swanson, 1988; Swanson, 1990). He succeeded
in replicating his first two discoveries, but failed to replicate the third.

Research

Swanson’s research covers both the open and closed discovery process. Top-
ics are represented by words or phrases from the titles of documents. The
open process starts with a keyword, representing the starting topic, topic
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A. A search is done in MEDLINE to retrieve all article titles containing
this keyword. From these titles, all words co-occurring with the keyword
are extracted. These represent candidate B-words.

The list of candidate B-words is filtered in four ways. First a pre-
compiled stop list is applied. This stop list contains words that are off
topic, vague, very general, or otherwise unsuitable as B-words. The second
filter only retains words which occur relatively more in titles also containing
A than they occur in all the titles in MEDLINE. Thirdly, the user removes
all words that are judged to be unsuitable. The fourth filter excludes all
words that do not fall into certain user-defined categories of interest.

The resulting list of B-words is used for another search in MEDLINE
to obtain all titles containing a B-word. From the result, a list of words
that co-occur with a B-word is extracted. These are candidate C-words.
First, this list is filtered with the stop list used before. The second filter is
also repeated, but based on co-occurrences with the B-words, instead of on
co-occurrence with the A-word.

The resulting list of C-words is ranked according to the number of B-
words through which they are linked to the A-word. This list is presented
to the user, who can then choose C-words for further examination using the
closed process. Each of these C-words represents a hypothesis that this C'
has an relationship with A.

Each hypothesis can be strengthened or rejected by performing a closed
discovery process. Before starting the closed discovery process with a certain
‘A relates to C” hypothesis, a search in MEDLINE is done to make certain
A has no known relationship with C. If a search for MEDLINE records (not
just titles) containing both A and C has results, these are studied before
starting the closed discovery process.

The closed discovery process, called ARROWSMITH, starts with a given
A and C. It retrieves all literature containing either A or C. From this, a
list of B-terms is extracted. These B-terms are words or phrases (of up to
six words) which co-occur at least twice with both A and C. The stop list is
applied next and the list is further edited by the user to remove redundancies
and useless terms.

Finally, the system displays each A-B-C' link with the titles in which
the A-B and B-C co-occurrences are present. The user can now study the
context of the co-occurrences and determine which A-C' links merit further
investigation.
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3.2.2 Gordon and Lindsay
Background

Swanson’s first discovery was re-examined by Michael D. Gordon and Robert
K. Lindsay (Gordon & Lindsay, 1996). They stated that Swanson’s work
called for a re-examination, due to both its originality and its exploratory,
nonsystematic character. The goals they had in re-examining Swanson’s
work were threefold: to examine and try to replicate the discovery path
that led from Raynaud’s disease to fish oil; to contribute to research into
computer-based tools for supporting literature-based knowledge discovery;
and to extend Swanson’s findings.

To simulate Swanson’s discovery, Gordon and Lindsay used statistical
methods related to those in information retrieval. Statistical features ex-
tracted from the documents on Raynaud’s disease assisted in constructing a
query for related documents. With the method developed in this way, they
managed to replicate Swanson’s discovery.

In (Lindsay & Gordon, 1999), Gordon and Lindsay applied their method
to Swanson’s second discovery of a connection between migraine and mag-
nesium. The purpose of this experiment was further testing of the applica-
bility of their information retrieval methods to literature-based knowledge
discovery. Using the same statistics and method as in their first article,
replicating Swanson’s second discovery initially failed. Only after applying
major changes to the method used, they were able to replicate the discovery.

Research

Gordon and Lindsay used an open discovery process to simulate Swanson’s
discoveries. Topics are represented by one-, two-, or three-word terms. The
process starts with downloading of all MEDLINE records on topic A by
searching for term A. The user selects which MEDLINE record fields should
be used. From the selected fields, all terms co-occurring with topic A are
extracted.

The list can be filtered in up to four ways. First, one or more stop lists
can be used. Gordon and Lindsay used three of these lists: one contain-
ing frequently used words in English, one with words with high MEDLINE
frequency, and one with an ad hoc collection of stop words. The user can
select one or more of these and can also add his own. The term list is
further shortened by automatically collapsing singular and plural forms of
the same term. A third, optional filter is a frequency threshold. This filter
removes all words that occur too infrequent, or in too few documents. The
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last possibility is the manual collapsing of different terms into one. This is
appropriate for synonyms, antonyms, generalizations, and specializations.

The items can then be ranked in four ways, by four different statistics.
The first is the term frequency fi x r, which counts how often term X ap-
pears in the retrieved record set R. The second statistic is the document
frequency fqx r of X in R. This statistic counts the number of documents
in R in which X appears. The statistic tfidf (term frequency - inverse
document frequency) is the third:

tfidf = f; x g - log ot

where N is the number of records in the complete record set of MEDLINE
M and fq x ar is the document frequency of X in M. The last statistic used
is the relative frequency of X in A versus MEDLINE as a whole:

fax,Rr
fa.x,Mm

relative frequency =

In the replication of the first discovery, Gordon and Lindsay found that
term frequency, document frequency, and the tf-idf statistic are strongly
related. They used these first three statistics to select B-terms. Repeating
the whole process, but with each of these B-terms, they used the fourth
statistic, relative frequency, to discover the C-term. With this method,
they managed to replicate Swanson’s discovery. They hypothesized that
this would be also be applicable to other discoveries.

In their attempt to replicate Swanson’s second discovery this approach
failed. The first three statistics did lead to discovering most of the B-topics
also found by Swanson. Relative frequency, however, did not lead from one
of these B’s to the C-topic sought. Only when using a different method,
where information from multiple B-terms was combined, the C-topic was
discovered.

3.2.3 Weeber et al

Background

Marc Weeber and his colleagues developed a literature-based knowledge dis-
cover system called the DAD system. This system uses concepts to represent
its topics. This system is described in (Weeber et al., 2000; Weeber et al.,
2001). In the latter article it is also evaluated by simulating the first two
discoveries of Swanson.
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Using this system, Weeber managed to replicate Swanson’s first two dis-
coveries. In 2003, Weeber used his system to search for new therapeutic uses
for the drug thalidomide. He found several diseases for which thalidomide
might be helpful in (Weeber et al., 2003; Weeber, 2003).

Research

The DAD-system consists of both an open and a closed discovery process.
The open process starts with a query describing topic A. This query is
mapped to a concept using MetaMap. Synonyms are retrieved and lexical
variants for these concepts are generated. These lexical variants are used
for a PubMed query to retrieve all records containing topic A.

From these records, all sentences that contain topic A are selected. Using
MetaMap, these sentences are mapped to concepts. All concepts that co-
occur with topic A in a sentence are put in a list.

The list is filtered with a semantic filter. The user selects semantic
categories of concepts that are likely to contain interesting B-concepts. Ex-
amples of such categories are ‘diseases’ and ‘drugs’. The system then only
retains those concepts fitting in one of these categories. The user chooses
the B-concepts from the resulting list.

The described process is repeated with the selected B-concepts to get
a list of C-concepts. Studying this list, the user can come up with one or
more hypotheses of the existence of a relationship between A and some C.

These hypotheses can be strengthened by the closed process. In this
process, records on C are retrieved, again using MetaMap. A list of concepts
co-occurring with C' in a sentence is retrieved. Next, only concepts occurring
in both the C-list and the A-list are considered.

This B-list is reduced by applying the same semantic filters as used
in the A-B step. The resulting list will probably highlight more potential
pathways between A and C' then was apparent in the open discovery process.
The pathways can be verified by studying the sentences in which the A-B
and B-C co-occurrence can be found.

3.2.4 Hristovski et al

Background

Another literature-based discovery system was developed by Dimitar Hris-
tovski and his colleagues (Hristovski et al., 2001). This system uses MeSH
descriptors (see section 2.3.1), because they incorporate human expert knowl-
edge. According to Hristovski, this makes them better document descriptors
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than title words. Association rules are used to discover relationships between
topics. This system was evaluated by making potential discoveries in Med-
line publications with early publication dates and see how many of these
discoveries become realised at later dates.

In (Hristovski et al., 2003), a new version of this system is described. The
modified system is called BITOLA. The main difference with the earlier
version system is the use of genetic knowledge. This is applicable when
the system is used to find connections between a disease A and a gene C.
The system uses domain knowledge about the chromosomal location of the
candidate genes.

Research

In BITOLA, each MEDLINE record is represented by the MeSH descriptors
assigned to the record and the gene symbols found in the title and abstract.
The source of the gene symbols and names are a number of gene databases
described in (Hristovski et al., 2003).

BITOLA starts with the calculation of all associations between MeSH
descriptors in a part of Medline. The association rules used take the form
of X — Y (confidence, support). Confidence is the percent of articles con-
taining X which also contain Y. Support is the number of articles which
contain both X and Y. The calculated associations are stored.

The system uses an open discovery process to discover new relations. Be-
ginning with a topic of interest A, the system retrieves all MeSH descriptors
for which A — B exists. Filtering can be done in two ways. The semantic
filters also used by Weeber can be applied. Also, thresholds can be set on
the support and confidence levels of the association rules.

The system then moves on from B to C' in the same way as from A to B.
Additional filtering of the C-list is done by excluding al C' terms for which
an A — C rule already exists. An optional filter requires that both A and
C occur at the same chromosomal location, if that information is available.
Ordering of the C-list can be done by confidence or support levels, or by
semantic type.

3.2.5 Srinivasan

Background

In (Srinivasan, 2001), Padmini Srinivasan introduced a text mining tool
that exploits the MeSH information accompanying MEDLINE records. It
can be used to explore MeSH concepts and subheadings in a retrieved set of
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documents. The tool has evolved since then and one of the functions offered
now is that of concept exploration. This function can be used to build a
profile for a concept from a text collection. A concept profile consists of a
set of attributes that are strongly associated with the concept of interest in
the text collection. (Srinivasan & Wedemeyer, 2003)

Srinivasan identified several possible uses for her concept exploration
function. In (Srinivasan & Wedemeyer, 2003), she uses the function to
study research trends over time. The differences between concept profiles
of the same concept, but over a different time period, tell something about
the changes in research over time. Another use of the exploration function
was studied in (Srinivasan & Sehgal, 2003). Here, Srinivasan used her tool
to identify similar drugs or genes, given a initial drug or gene concept.
In (Srinivasan, 2004), a third use was studied. In this paper, Srinivasan,
used her exploration function to build a literature-based discovery system
fitting the framework described earlier. She used this system to successfully
replicate many of the discoveries and hypotheses made by Swanson.

Research

The system developed by Srinivasan consists of both an open and a closed
discovery process. As usual, the open process starts with a search in MED-
LINE for documents about starting topic A. All MeSH terms extracted
from this retrieved set R are candidate B-terms. These candidate B-terms
are organized by MeSH semantic type. The list can be filtered by selecting
semantic types. Only B-terms belonging to one or more of the selected types
will be retained.

The B-terms are ranked within each semantic type by weight. The
weights for each term are calculated using the tf-idf weighting scheme and
are normalized within each semantic category. The weight of a B-term ¢,
in semantic type x (t,) is:

Vz,y

——— with =1, ...
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where m is the total number of terms belonging to semantic type x. Further,

Uzy = Nay,R - 10g .
x’y?

where N is the number of documents on A retrieved from MEDLINE, n, ,, 1
is the number of documents in MEDLINE in which ¢, , occurs and ng , g is
the number of retrieved documents for A.
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The B-terms are now further filtered by retaining only the top n (n
is used defined) B-terms within each semantic type. The next step is a
MEDLINE search for each of the B-terms left. From each of the retrieved
sets, MeSH terms are retrieved. These can again be filtered by selecting
semantic types. Organizing by semantic type and ranking by weight is
also repeated. The lists are now combined, where the weight of each term
is the sum of its weight in each of the separate lists. This combined list is
filtered by excluding all terms for which a search in MEDLINE for documents
containing both the A-terms and the candidate C-terms returns non zero
results.

The result of the open process is a list of C-terms organized by semantic
type and ranked within each semantic type.

The closed process starts with two MEDLINE searches for A and C.
For both searches, a list of candidate B-terms is generated. These lists are
organized by semantic types. They can be filtered by selecting semantic
types. B-terms not falling in one of these types are excluded. The next
step is the merging of these lists. Only items appearing in both lists are
retained, and their new weight is the sum of their weights in the separate
lists. The resulting list is filtered by excluding all items for which a search in
MEDLINE for documents containing A, B, and C' returns non zero results.

The result of the closed process is a list of B-terms organized by semantic
type and ranked within each semantic type.

3.3 General issues in literature-based knowledge
discovery

The systems above present different approaches to literature-based discov-
ery. Although they all fit a general framework, they make different choices
on several important points. By studying the choices made and the motiva-
tion behind those choices, we can form some ideas for our own system. We
will compare the systems on three major issues, which are the knowledge
source chosen (section 3.3.1), the knowledge representation chosen (section
3.3.2), and the choice between an open and/or a closed discovery process
(section 3.3.3).

We will not provide a complete evaluation of these systems, to see which
is the best, or to compare them to our own system. The difficulties involved
with such a comparison become apparent when studying how the systems
themselves were evaluated. This is discussed in section 3.3.4.
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3.3.1 Knowledge source

In section 1.3, we argued that the scientific literature would be a good source
of knowledge for a knowledge discovery system. Each of the systems dis-
cussed in this chapter use the scientific literature as a knowledge source.
However, within the scientific literature, there are still choices to be made.
There are different sources to derive the contents of a scientific article from.
It is possible to use the full text of each article. Other possible sources are
the title of the article, an abstract of it, or document descriptors such as
MeSH descriptors. There are several differences among these four knowledge
sources.

The first difference is the format in which the knowledge is represented.
Full texts, abstracts and titles are in a free text format. The way humans
read text, is difficult to simulate with a computer. Therefore, free text is
harder to analyse automatically than structured forms of knowledge. Doc-
ument descriptors are more structured, and thus easier to use with a com-
puter.

The online availability of the sources is another difference. Titles and
abstracts are readily available online (through PubMed). Full text only in a
limited number of cases. Descriptors are only available for indexed articles.

Since document descriptors are assigned by human indexers, there is a
time lag between the publication of an article and the availability of doc-
ument descriptors. The other three sources also suffer a time lag, between
their date of publication and their appearance in library systems. However,
the time lag of document descriptors is much larger.

A fourth difference is the amount of text versus the focus of the text.
Full text has more text (and thus contains more knowledge) than the other
sources. Abstracts have less text, and titles even less than that. The amount
of text used for descriptors vary. While full text has more text, it is less
focussed than the others. Both abstracts and descriptors attempt to describe
the main point of an article. The more focus a knowledge source has, the
easier to extract the main point of an article from it. However, there is less
knowledge to extract.

The choices made in the systems studied differ. Swanson uses titles and
headings as knowledge sources. Gordon/Lindsay use complete MEDLINE
records in their recent research. Weeber uses titles and abstracts. Hristovski
and Srinivasan both use MeSH descriptors.

We would like to build a system that is independent of human indexing,
to make it as general as possible and enable it to use knowledge with a
minimal time lag. Therefore, our system cannot depend on just document
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descriptors. However, we will include them when available. Since the other
sources are in the free text format, our system must be able to deal with free
text. As full texts are not readily available online, we will not use them as
a knowledge source. This leaves titles and abstracts. Titles are even more
focussed than abstracts, but the amount of knowledge in them is limited.
However, since both are available and in the same format, we will use both
for our system.

To sum up, we will use titles, abstracts, and document descriptors for
our system. Since we will apply our system to the biomedical literature, we
will use complete MEDLINE records (which contain all three).

3.3.2 Knowledge representation

Another important choice to be made is how to represent the knowledge con-
tained in articles. Closely related is the question of how to determine which
topics are contained in a certain document. Swanson and Gordon/Lindsay
used words or short phrases to represent topics. Weeber chose to use UMLS
concepts; Hritovski and Srinivasan chose MeSH concepts. Note that the
MeSH concept set is a subset of the UMLS set.

Words and short phrases are easily extracted from free text. When a
word or phrase occurs in a piece of text, the topic represented occurs in that
piece of text. The problem is determining which are meaningful words or
phrases. Swanson and Gordon/Lindsay use stop lists to exclude meaningless
words. Stop lists, however, have to be domain specific to be very useful and
would therefore have to be build anew for each new discovery.

The advantage of using concepts, like Weeber, Hritovski, and Srinivasan
do, are manyfold. Using concepts ensures that all candidates for topics
retrieved from a document are meaningful. This is especially useful in the
case of multiple word phrases. Using a domain-specific thesaurus ensures
that all concepts retrieved are relevant to that domain. The two advantages
above lead to a third: there is no need for a user-defined stop list. A fourth
advantage is the collapsing of synonyms and textual variants in a single
concept. This will ensure that topics with many synonyms and/or textual
variants will not go unnoticed. A fifth advantage is the possibility to exploit
the semantic types and relationships often associated with thesauri.

The disadvantages of using concepts in combination with a representa-
tion of source literature which is in the free text format include the difficulties
involved with extracting concepts from free text. Hritovski and Srinivasan
didn’t have this problem, the MeSH descriptors they use to represent an in-
stance if literature are all MeSH concepts. Weeber uses MetaMap to extract
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concepts from the free text. Other disadvantages of using concepts surface
when we use a domain-specific thesaurus or when we exploit the semantic
types and relationships often associated with thesauri. Both will limit the
domains where the system can be applied to the ones where these resources
are available.

Because we choose to use a knowledge source which is partly in free
text format, we will be faced with the challenge of automatically extracting
concepts from free text if we choose to use concepts to represent knowledge.
The Collexis software described in section 2.3.3 provides a solution for this.
A lot of semantic information is lost when using fingerprints instead of text,
but we hope that the advantages of using concepts outweigh this.

3.3.3 Open and/or closed discovery process

We think that both the open and the closed process contribute to the discov-
ery process. The open process is the most important, because it generates
hypotheses, which is the goal of the discovery system as a whole. However,
the closed process can supply evidence to support or weaken the generated
hypotheses, and plays an important role in determining whether to further
pursue the discovery.

Both Gordon/Lindsay and Hritovski focus on an open process. Swanson,
Weeber, and Srinivasan use both processes. We think our system should
include both an open and a closed discovery process. However, this thesis
will only cover the open process.

3.3.4 Evaluating systems

The goal of the literature-based discovery systems described in this chapter
is to discover unknown, but valid relationships between topics described in
literature. The systems should therefore be evaluated by their ability to
discover unknown, but valid relationships. It is feasible to check if the re-
lationships ‘discovered’ by the systems are unknown. You can search the
scientific literature to see if any of the relationships are directly described.
The scope of the available literature and the difficulties involved with de-
termining automatically what knowledge a document contains make this
difficult. However, as Swanson shows in his articles, it is feasible to ensure
that every discovered relationship is at least relatively unknown.

To see if the discovered relationships are valid is much more difficult.
We can use a closed discovery process to strengthen each hypothesis of the
existence of a relationship. However, eventually the hypotheses will have to
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be judged by human experts. While these experts may be able to dismiss
several relationships off hand, much experimentation may be required to
verify even one of the discovered relationships. Because of this, we will need
another evaluation method than simply try to discover unknown relation-
ships.

All but one of the systems discussed in this chapter are evaluated in
the same way, which is trying to replicate discoveries made by Swanson.
Swanson’s discoveries are well documented, and a couple of them have been
supported by (experimental) evidence. Swanson himself evaluates his AR-
ROWSMITH tool by trying to replicate his Raynaud’s disease and fish oil,
his Migraine and Magnesium, and his Somatomedin C and Argine discover-
ies. Both Gordon/Lindsay and Weeber use the first two of these discoveries
to evaluate their systems. Srinivasan uses not only all three, but also his
Indomethacin and Alzheimer’s disease and Calcium-Independent Phospho-
lipase A2 and Schizophrenia discoveries.

The methods used by the different researchers to evaluate the systems
on these cases are very similar. They all start their discovery systems with
one end of the relationship, and see if they end up at the other end. The
criteria used is if they can argue that the connection would be made with a
reasonable amount of effort by an expert user.

Hristovski used another evaluation method. He used his system to dis-
cover relationships in a body of literature published before a certain date.
The relationships must be unknown at that date. Next, he checks which new
relationships have been discovered since the date. He does this by searching
the literature published since that date for documents where two concepts
appear together which did not appear together in the literature from be-
fore the date. His system is judged by checking the percentage of the new
published relationships which have been ‘predicted’ by his system and the
percentage of his predictions which have been realised.

Both these methods of evaluation have their own problems when used for
comparing the systems. Successfully replicating some cases by Swanson only
shows that the systems are indeed capable of discovering some relationships.
Success or failure in this does not say much of the capability of the systems
to discover other relationships. Hristovski’s method may be more useful, but
can only be used to compare completely automated systems. Most of the
other systems rely on human input to make discoveries. The effort involved
in making enough discoveries to do a good comparison is huge and certainly
beyond the scope of this thesis. We will use the first method to evaluate our
own system.
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Chapter 4

System description

In this chapter, we present a new system for literature-based knowledge
discovery. We use the general architecture and the discussed issues in the
previous chapter as a guideline. Thus, we will use complete MEDLINE
records as our knowledge source. Topics will be represented by concepts.
Also, the system should allow for both an open and a closed discovery pro-
cess. However, this thesis will only cover the open discovery process.

A part of the architecture not discussed so far is the filtering and sorting
of candidate concepts (B’s and C’s). This part of a literature-based discov-
ery system is both the most important and most difficult one. An enormous
list of words, terms or concepts related with the seed concept (A) is no more
useful to a scientist than the complete collection of articles including A. The
system should filter and/or sort this list to put forward the topics that are
most relevant to the scientist. For this filtering/sorting step, we will use the
tool described in the next section. We used it in two different approaches,
which are described in section 4.2 and section 4.3. We suggest some modifi-
cations that may improve the results of our two basic approaches in section
4.4.

4.1 Associative Concept Space

The Associative Concept Space (ACS) is a n-dimensional space in which
concepts are positioned. Along with the positions of each concept, the ACS
stores the connections among the concepts. A connection between two con-
cepts reflects their co-occurrence in one or more articles. The position of a
concept reflects the connections with the other concepts in the ACS. Con-
cepts that have many connections, being either direct or through interme-
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Figure 4.1: A 2-dimensional projection of an ACS. Concepts are repre-
sented by their names. Connections among concepts are represented by
lines. (Biosemantics Group Rotterdam, 2003)

diate concepts, are positioned closer to each other than concepts with fewer
connections.

The algorithm for constructing such an ACS was introduced in (Schuemie,
1998; Schuemie & van den Berg, 1998; van den Berg & Schuemie, 1999;
Schuemie & van den Berg, 1999) and further developed in (van der Eijk,
2001; van der Eijk et al., 2002; van Mulligen et al., 2002; van der Eijk et al.,
2004). A 2-dimensional projection of a small ACS is shown in figure 4.1.

An ACS is constructed from a set of Collexis fingerprints. As described in
chapter 2, a Collexis fingerprint consists of a list of concepts. Each concept
in a fingerprint has a weight associated with it, reflecting the importance of
that concept in the text. Because the low-weight concepts are less likely to
be important in the text represented by the fingerprint, the ACS only uses
concepts for which the weight falls above a certain threshold.

Each remaining concept ¢; in the fingerprint set L gets a n-dimensional
location vector x; in the ACS with randomly assigned coordinates:

€Ty — (1‘@1, :L'Z'g, . ,a;i’n)
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After this, two rules are applied each learning cycle t. The first rule, the
learning rule, moves all the concepts in each fingerprint to the centroid of
that fingerprint. The centroid of a fingerprint f; with m concepts (py) is
defined as the average of the concept vectors zp(h = 1,2,...m) in fj:

m m
Z Lh,1 Z Thn
h=1 h=1

Pk = [Pk, Dkn] = e

The learning rule is:

Pr(t) — zi(t)
1w () = i(8)]
where n(t) is the learning rate. The learning rate is defined as:

Vi:ai(t+ 1) =x(t) +n(t)

with u a constant set by the user.

After the learning rule is applied for each fingerprint in L the second
rule, the forgetting rule, is applied. This rule moves all concepts in L away
from the centroid pr, which is defined as the average of the vectors of all
the concepts in L. This separates the concepts and prevents congregation
of the concepts in one point. The forgetting rule is:

Vit 1) = 2t) = Al (0) ~ (O LS =2

where A(z) is defined as:

)\(x):{l forx <1

1/z forx>1

After these steps have been repeated an user defined number of cycles
T, the ACS is trained. It can then be used for discovery purposes, such as
retrieving the k closest concepts to a given seed concept. For determining
the distance between two concepts ¢ and j, the Euclidean distance between
their vectors (d; ;) is used:

n

dij= | > _(wig — ;1)

=1
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Figure 4.2: The A — B step of the two-step approach.

4.2 Two-step approach

The first of our two approaches closely fits the general architecture for an
open discovery process described in chapter 3. Since it consists of an A — B
step and a B — C step, we call it the two-step approach.

Step one: the A — B step

The first step starts with the downloading of MEDLINE records on the con-
cept of interest, A. These records are converted into fingerprints using the
Collexis software described in 2.3.3. With the resulting set of fingerprints,
an ACS is trained.

The concepts contained in this ACS are A and candidates for B-concepts.
Note that this list of candidates has already been filtered by the cutoff used
in the training of the ACS. Only concepts with a weight above a given
threshold are included in the ACS. Further filtering is not done, but the
candidates are ranked to put the most interesting forward. For this, the
distance in the ACS between the candidate B-concepts and A is used. Due
to the training process, concepts close to A are supposed to have a stronger
relationship with it than concepts that are further away.

From the ranked list of B-concepts, the user selects one or more to
complete the A — B step. The A — B step is illustrated in figure 4.2. If
the user selects more than one B-concept, the A — B step is followed by
multiple B — C steps, one for each B. In this way, multiple interesting
A — B combinations can be explored.
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Step two: the B — C step

In the second step, MEDLINE records on the B-concept selected in the
A — B step are downloaded and converted to fingerprints. The resulting set
of fingerprints is filtered by excluding the fingerprints which contain A. An
ACS is trained on the filtered set.

The concepts in this ACS are candidates for C-concepts. These concepts
are ranked by distance from B and the user selects one or more C-concepts.
Together with A, these form hypotheses of relationships between A and some
C, which can then be used for a closed discovery process.

Finally

The approach introduced above not only uses direct co-occurrence to de-
termine the strength of a relationship, but might also exploit indirect co-
occurrence through other concepts. If two concepts are strongly related,
there should be many direct and indirect co-occurrences in the literature.
The ACS can be used to exploit this information and, by combining an
A — B and B — C relationship, discover strong and novel relationships be-
tween previously unconnected concepts.

4.3 One-step approach

Our second approach skips the B-concepts and makes one step from A to
C. This approach requires some pre-processing before the actual discovery
process starts.

Pre-processing

Before discoveries can be made, an ACS is trained on a large body of scien-
tific literature. This should cover as much literature of interest for potential
discoveries as currently feasible. Examples include an entire year of articles
published in MEDLINE, or all articles that appeared in a certain journal.
The ACS can be used to make discoveries with A — C' steps.

The A — C step

A seed concept A can be selected from the ACS. From the ACS, a list of
candidate C-concepts is extracted. These are the concepts that do not co-
occur with A. The list is sorted ascending by distance between A and each
C-candidate. From this ranked candidate list, C-concepts can be selected
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Figure 4.3: The one-step approach.

and used for the following closed process. The A — C step is illustrated in
figure 4.3.

Finally

The one-step approach uses less input from the user than the two-step ap-
proach, because no B-concepts are selected. It does possibly exploit more
indirect information, because the ACS is trained on a larger and more gen-
eral corpus of literature. In such a corpus, there are more documents and
thus more possibilities for indirect relationships between A and C.

4.4 Modifications

In addition to the two basic approaches presented above, we present four
possible modifications to these approaches here. They may improve the
results of our basic approaches, and will be evaluated along with them.

Combining rankings

In our basic two-step approach, candidate concepts are ranked by distance
to the seed concept. There are several more ways to rank these concepts
based on information available in the fingerprints or the ACS. It is possi-
ble that these other rankings contain other information of the relationship
between seed and candidates than the ranking based on distance. In this
first modification to the basic two-step approach, we seek to exploit this
information.

37



Additional to the ranking ascending based on distance (D), which is used
in the basic approach, we discern six ways to rank candidate concepts:

e Descending based on co-occurrence (C'), the number of fingerprints
which include both the seed concept and the candidate concept.

e Descending based on average seed weight (S), which measures the
average weight of the seed concept in the fingerprints which include
both the seed concept and the candidate concept.

e Descending based on average candidate weight (W), the average weight
of the candidate concept in the fingerprints which include both the seed
concept and the candidate concept.

e Descending based on WS (W - 5).
e Descending based on CW (C' - W).
e Descending based on CW S (C - W - S).

The last two ways of ranking presented above can be seen as examples of
weighted co-occurrence, because they use not only information of the number
of co-occurrences, but also of the importance of each co-occurrence, which
is reflected by the weight of the candidate and/or seed.

Some of the information expressed by the different ways of ranking is
already used in the training of the ACS and is thus reflected in the rank-
ing based on distance. The information provided by the average candidate
weight is used to exclude low-weight concepts from ACS training. Co-
occurrence information is at the core of ACS training. However, not all
information in the average candidate weight is used, and the information
which is used might not be (fully) reflected by ACS distance. Average seed
weight is not used at all in ACS training.

We try to exploit the information contained in rankings not based on
distance by combining other rankings with the ranking based on distance.
To combine two or more rankings, the positions of candidate concepts in
them are averaged. A new ranking is then computed based on these average
values. For example, when a candidate x has position 3 in one ranking, and
position 5 in another (average 4), while a candidate y has positions 1 and
11 (average 6), candidate = will be ranked higher in the combined ranking.
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Using a more general document set

The main strength of the ACS is the use of indirect co-occurrence informa-
tion. Concepts do not only appear closer together if they co-occur much
in the training set, but also if there are a lot of connections through (one
or more) intermediate concepts. In our basic two-step approach, we train
each ACS on a document set obtained by searching for documents on the
seed concept. This means that the set includes all documents mentioning
both the seed concept and one or more candidate concepts. Thus, we use
all direct co-occurrence information available in the training of the ACS.
However, this set will probably not include all indirect co-occurrence infor-
mation.

For example, a candidate concept x has several strong indirect relation-
ships with the seed concept s through another concept y. The documents
describing the relationship between s and y are in the document set, since
that set contains all documents on y. There are also some documents de-
scribing a (weak) direct relationship between s and x (otherwise it would
not be a candidate concept). However, the documents describing the rela-
tionship between y and x are not in the document set. In this example, s
and x are positioned far from each other in the ACS, based on the weak di-
rect relationship. When the documents describing the relationship between
y and x would be included in the training set of the ACS, they would be
positioned closer to each other.

The idea presented here is identical to the one underlying the use of a
large and general document set for the one-step approach. The difference is
the use of user selected B-concepts in this approach, which does not happen
in the one-step approach. We will explore the effects of using more indirect
co-occurrence information by training the ACS using a document set based
on a query that is more general than that used in the basic approach, thus
including more indirect information in the set.

Using inverse document frequency

In both our approaches, the rankings are based on the distance between
seed concept and candidate concepts in the ACS. The position of concepts
in the ACS is influenced by their co-occurrence with other concepts. Two
concepts co-occur if they appear in the same fingerprint. However, for the
training of the ACS, a cutoff is used. All concepts in each fingerprint with a
weight below a certain cutoff value, are excluded from that fingerprint. The
weights are influenced by six statistics, which represent the importance of
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that concept in the source document of the fingerprint (see section 2.3.3).
This way, concepts who are unimportant in the document, do not influence
ACS training.

The weights do not reflect the generality of the concepts. General con-
cepts have the same influence on ACS training as more specific concepts.
However, the presence of a general concept in a fingerprint had less signifi-
cance than the appearance of a specific concept. Very general concepts, such
as ‘Human’, appear in many documents. They are thus likely to be present
in a randomly chosen fingerprint, and their presence is not very informative.
The presence of a more specific concept, which is not likely to be present
in a randomly chosen fingerprint, is more informative. A way to improve
ACS training, and thus our rankings, would be to reflect the generality of
concepts in the fingerprint weights. More general concepts should receive
less weight, and less general concepts more.

We will explore the effects of compensating for generality by using inverse
document frequency (IDF) to correct the fingerprints used for ACS training.
In each fingerprint, the new weight w; ; of concept ¢; in fingerprint f; is:

Wy j = vivj/highest(v“) withl=1,...,m

where m is the total number of concepts belonging to fingerprint f;. Further,

vm' = ui,j . (log + 1)

d,X,M
where u; ; is the old weight of concept ¢; in fingerprint f;, N is the number
of documents in a large document set M, and f4 x  is the number of
documents in M in which ¢; is present.
This is similar to the compensating Gordon/Lindsay and Srinivasan did
in their systems (see section 3.2.2 and section 3.2.5).

Using semantic categories

In both our approaches, candidate concepts are presented in a long, ranked
list. This list contains all concepts related to a seed concept. Some of these
concepts might be very different. For example, ‘blood viscosity’ and ‘Japan’.
This makes it harder for a user to see which concepts are important in the
discovery process. He might be more interested to see how concepts in a
certain category are ranked. For example, which ‘chemical’ is most strongly
related to the seed concept. When we present the candidate concepts in
categories, the user might notice relationships more easily. Also, the user
can apply filtering by ignoring concepts in certain categories. This last
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Table 4.1: Semantic categories

Activities & Behaviors Disorders Objects
Anatomy Drugs Occupations
Chemicals Genes & Molecular Sequences Phenomena
Concepts Ideas Physiology
Devices Living Beings Procedures

possibility has been used by both Weeber and Srinivasan in their discovery
systems (see section 3.2.3 and section 3.2.5).

We will use the semantic types assigned to concepts in the UMLS seman-
tic network (section 2.3.2). There are 134 semantic types in this network,
which have been aggregated in 15 semantic categories in (McCray et al.,
2001). These 15 categories are listed in table 4.1. Each contains several
UMLS semantic types. For example, the semantic category ‘Anatomy’ con-
tains, among others, the semantic types ‘Body Location or Region’, ‘Cell’,
and ‘Tissue’. A semantic type ‘Body Location or Region’ contains such
concepts as ‘Arm’, ‘Toes’, and ‘Leg’.

We will explore the use of semantic categories by presenting candidate
B or C candidates divided among these 15 categories. We can then use the
possibility to focus on one or more categories during the discovery process.
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Chapter 5

Method of evaluation

This chapter discusses how we evaluate the two approaches to a literature-
based knowledge discovery system presented in chapter 4. We discern three
objectives of this evaluation:

1. To evaluate the added value of the ACS in the discovery process.

2. To evaluate whether any of the possible modifications improve the
basic discovery process and thus should be used.

3. To evaluate whether a scientist using either the two-step or the one-
step approach will be able to make discoveries with a reasonable amount
of effort.

We discussed evaluating literature-based discovery systems in 3.3.4. We
will evaluate our system by simulating a former discovery, a test case. The
discovery we will use for this is the first discovery made by Swanson, which is
described further in section 5.1. To meet our first two evaluation objectives,
we want to compare different rankings of candidate concepts. We will use a
technique called ROC' analysis for this. This technique is further discussed
in 5.2. The methodology used in our evaluation is described in section 5.3.

5.1 Test case

There are a couple of well-documented examples of literature-based discov-
ery. One of them is the already mentioned first discovery of Swanson. We
will use this discovery as a test case for our evaluation. We first provide
a detailed description and then discuss how we use this test case in our
evaluation.
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Figure 5.1: The three pathways through which Raynaud’s Disease is con-
nected to fish oil.

5.1.1 Description

Swanson’s first discovery was a relationship between Raynaud’s disease and
fish oil. Raynaud’s disease is a condition that causes some areas of the
body, such as fingers, toes, tip of the nose, and ears, to feel numb and cool
in response to cold temperatures or stress. It is a disorder of the blood
vessels that supply blood to the skin. During a Raynaud’s attack, there is
limited blood circulation to affected areas.

Fish oil is present in high amounts in some fish, particularly fatty types
prevalent in cold water, such as salmon, mackerel, and herring. It has been
shown to improve blood circulation.

Swanson hypothesized that dietary fish oil might ameliorate or prevent
Raynaud’s disease. The relationship was not described directly in the med-
ical literature, but Swanson found three indirect connections. Dietary fish
oil had been shown to reduce platelet aggregability and blood viscosity. It
also indirectly causes wasodilation. Patients with Raynaud’s disease have
intermittent blood flow in their extremities. This is caused by high platelet
aggregability, high blood viscosity, and vasoconstriction. These three path-
ways are shown in figure 5.1.

The effects of fish oil, and especially Eicosapentaenoic acid (EPA), which
is a fatty acid found in fish, were first discovered in an Eskimo population.
Their low levels of blood cholesterol, triglycerides, and low-density lipopro-
teins and the low incidence of myocardial infarctions in the population was
found to be a result of their EPA-rich diet.

Later EPA-rich experimental diets have been reported to reduce platelet
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aggregation. EPA leads to the synthesis of the prostaglandin PG13, which
strongly reduces platelet aggregation. There are also other mechanisms
through which EPA reduces platelet aggregation.

The vasodilating effects of fish oils have been reported to occur in rats.
There are also several other reasons to suspect this effect. PG13 (produced
by EPA) can be presumed to be a strong vasodilator because of its similar-
ity to PG12. Furthermore, EPA’s effect on platelet aggregation suppresses
vasoconstriction, since aggregating platelets normally release vasoconstrict-
ing substances.

The third effect of fish oil is that it reduces blood viscosity. Several
laboratories have found this effect. EPA incorporates into cell-membrane
phospholipids, which results in improved erythrocyte fluidity or deformabil-
ity, which in turn leads to viscosity reduction. Fish oil also reduces blood
lipids, especially triglycerides. The blood levels of triglycerides have been
shown to be directly related to blood viscosity.

In patients with Raynaud’s disease, abnormally high platelet aggregabil-
ity, high blood triglycerides, and high blood viscosity have been reported.
Both Prostaglandin E1 and prostacyclin have been successful in treating
Raynaud’s disease, which is thought to be because of their effect on platelet
aggregation and their vasodilating effect. Another vasodilator, Nifedipine,
has also been successful against Raynaud’s. Finally, a selective antagonist
of the serotonin receptor, Ketanserin, has had some success in treating Ray-
naud through reducing blood viscosity (Swanson, 1986).

The hypothesis following from this, that dietary fish oil might ameliorate
or prevent Raynaud’s disease, has later been shown to exist in a clinical trial
(Chang et al., 1988; DiGiacomo et al., 1989). This, and the fact that is well
documented by Swanson, makes it a good case to evaluate our algorithms
on.

5.1.2 Usage in the evaluation

We will use our system to simulate the discovery made by Swanson. A
scientist using our system to do a discovery will have to spend time when
selecting B or C' candidates from the ranked lists presented by our system.
The higher B or C' candidates relevant to the discovery process are ranked,
the less time the user will have to spend to discover them. For the second and
third evaluation objectives we will compare different rankings using ROC-
analysis. The ROC-analysis is based on the ranking of relevant candidates
versus that of non-relevant concepts.

So, for all three of our evaluation objectives, we need to assess the quality
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of rankings. This quality is determined by the position of relevant concepts
in the ranking. So far, we haven’t discussed what relevant concepts are.
Relevant B-candidates are those that will lead to a C-concept. A relevant
C-concept is one that has an unknown, but valid relationship with A. Since
we use the Raynaud’s disease case for our evaluation, relevant B-candidates
are those that will lead to fish oil. The relevant C-candidates are fish oil
and concepts very similar to the concept of fish oil.

Relevant B-concepts

We evaluate our two-step approach by studying the ranking of B-candidates.
To be able to do our evaluation, we used our knowledge of the Raynaud’s
Disease case to label these candidates as relevant or not relevant. Within the
relevant group, we discern highly relevant concepts and not highly relevant
concepts. Those concepts considered highly relevant are very similar to the
B-concepts Swanson describes. Those that are not highly relevant are less
similar. We list the B-concepts we considered highly relevant in table 5.1.
A table listing those we considered not highly relevant can be found in the
appendix. Both tables are divided into the three pathways discerned by
Swanson. This is for presentation purposes only, our evaluation method did
not use this distinction.

Relevant C-concepts

In the second step of our two-step approach and in the one-step approach,
we need to assess the quality of rankings of C-concepts. For this, we labelled
C-candidates relevant or not relevant. The relevant C-concepts are listed in
table 5.2.

5.2 ROC analysis

We need an algorithm that measures the quality of a ranking. For example,
the ranking of B-candidates which co-occur with the seed concept A. Some
of the B-candidates are relevant to our discovery process and should be used
as B-concepts to continue the search. We would like to rank the relevant
ones as high as possible, to bring them to the attention of the user of the
system.

To judge a certain ranking of concepts, we will look at the area that a
scientist using our system will study and use to select concepts from. (In the
B-candidates case, B-concepts to search further with.) The system should
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Table 5.1: Highly relevant B-concepts

Blood Viscocity

Blood Circulation Blood Flow Velocity Blood Viscosity
Hemodilution Viscosity
Platelet Aggregation
Agglutinins Alprostadil Anticoagulants
Antithrombins beta-Thromboglobulin Blood Coagulation
Blood Coagulation Disorders  Blood Coagulation Tests Blood Platelets
Dipyridamole Edetic Acid Epoprostenol
Erythrocyte Aggregation Erythrocyte Deformability Fibrin
Fibrinolysis Fibrinolytic Agents Platelet Activation
Platelet Adhesiveness Platelet Aggregation Thrombosis
Thromboxanes Venous Thrombosis
Vascular Reactivity
Alprostadil Blood Circulation Blood Flow Velocity
Blood Pressure Capillary Permeability Capillary Resistance
Dipyridamole Epoprostenol Vascular Resistance
Vasoconstriction Vasodilation

Table 5.2: Relevant C-concepts
Fatty Acids, Essential
Fish Oils
Cod Liver Oil
Docosahexaenoic Acids
Fatty Acids, Omega-3
5,8,11,14,17-Eicosapentaenoic Acid
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Figure 5.2: ROC sets. C is the set of all candidate concepts, R the set
of relevant concepts and S the selection of the n highest ranking concepts.
Area 3 should be as large as possible, while keeping area 4 small.

rank relevant concepts higher than non-relevant concepts. Thus, a scientist
should find the relevant concepts R in the n highest ranking concepts. We
will call this selection S. It is a subset of the complete collection of candidate
concepts, as is R. This situation is illustrated in figure 5.2.

The selection S should cover as much of R as possible (area 3 should
be large), because the scientist using the system will have more chance to
make a discovery when the system presents him all concepts relevant to that
discovery. This could be accomplished by making S large enough to include
the whole of R. However, S would then also include more non-relevant
concepts (area 4 would be larger). The user has to spend unnecessary time
and effort to study and dismiss the concepts in area 4, making the discovery
process harder.

There is thus a trade-off between the number of relevant concepts pre-
sented to the user and the time and effort the user has to spend studying
the presented concepts. This trade-off is influenced by two things. The size
of S, which is determined by n, and the position of S, which is determined
by the quality of the ranking of the concepts in C. (A good ranking would
position S over R.) For a given n, we would judge a ranking based on the
number of relevant concepts in S. However, since n depends on the number
of relevant concepts present and on the time and effort the user is willing to
spend, we need a way to judge rankings based on a large number of possible
values of n.

A way to do this comes in the form of Receiver Operating Character-
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istic (ROC) analysis. We will adopt the ROC analysis described in (Metz,
1978) for our purposes. In this adopted algorithm, the fraction of all rele-
vant concepts present in the top n concepts is defined as the True Relevant
Fraction:

RN S|
|R|

Similar, the fraction of all not relevant concepts that are present in the
selection, the False Relevant Fraction:

TRF =

|mRN S|
- R
There are two similar figures for concepts not included in the selection.
The True Non-relevant Fraction:

FRF =

[-RN =S|
[~R]|
And finally, the False Non-relevant Fraction:

TNF =

RN =S
|R|

Of these four, we are most interested in the first two, the TRF and the
FRF. The TRF reflects area 3, and should be as high as possible, capturing
as many of the relevant concepts possible in the selection. The FRF reflects
area 4, and should be as low as possible, keeping the number of not relevant
concepts in the selection as low as possible. As n increases from 0 to the
total number of concepts, both fractions will increase from 0 to 1. Any value
chosen for n will mean a trade-off between the two fractions.

Different values of n will result in different pairs of FRF and TRF. We
can plot these pairs as x and y coordinate values of points on a graph. The
points representing all possible combinations of FRF and TRF form a curve.
This curve is the ROC curve. An example ROC curve is plotted in figure 5.3.
A ROC curve always passes the lower left corner (n is 0), where we select
no concepts, and thus include no not relevant concepts in our selection, but
also miss all relevant concepts. The curve also always passes the upper right
corner, where we include all concepts in our selection, thus including all
relevant concepts, but also all non-relevant ones. A ROC curve of a ranking
should be above the lower left to upper right diagonal of the ROC space,
because we otherwise would be better off by looking at the concepts not
selected (—S) by our system.

FNF
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Figure 5.3: Examples of ROC curves. The left graph shows a typical ROC
curve. The small n point shows a low FRF and low TRF. A larger n increases
both values. The right graph shows three different ROC-curves. A is a ROC
curve of a perfect ranking, B a more typical curve, and C a ROC curve of a
ranking where the concepts have random positions.

If we obtain ROC curves for each different way of ranking, the rankings
can be compared. In general, a ranking with a ROC curve more to the upper
left is better. A numeric value that reflects this is the Area Under the Curve
(AUC). It is the fraction of the area of the graph that falls under the ROC
curve (Ming, 2002). An interesting property of the AUC is that its value
is equal to the chance that a relevant concept will be ranked higher than a
non-relevant one (Fawcett, 2003). The AUC of a ranking i is:

AUC; = Pr(Pos(cp,i) > Pos(c—r, 1))

where Pos(c;, 1) is the position of a randomly chosen relevant concept ¢, in
i and Pos(c—,1) is the position of a randomly chosen non-relevant concept
C—p In 1.

We will use the AUC value to compare different rankings. It represent
the quality of a ranking for all possible values of n. In a literature-based
discovery system, the number of candidate concepts is often quite large.
Because of this, we might only be interested in the quality of rankings for
small values of n (making the assumption that the user will never study
more than, for example, two fifth of all candidates). To be able to compare
rankings for these smaller values of n, we will also calculate an AUC for these
cases. (See figure 5.4.) In fact, we will calculate the AUC with n ranging
from 0 to one fifth of the total number of concepts, ranging to two fifth, to
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Figure 5.4: Area Under the Curve. The left graph shows the AUC of an
example ROC curve. The right graph shows the AUC measured over a range
of small values of n.

three fifth, to four fifth, and finally ranging over all the cases. These values
for smaller values of n are limited. They can not be used to assess chances,
as the complete AUC does. They can only be used for the comparison of
different rankings.

5.3 Evaluation methodology

This section discusses the methodology we used to evaluate our system. We
begin with the two-step approach and its modifications in section 5.3.1 and
the one-step approach and its modifications in section 5.3.2.

5.3.1 Two-step approach

This process starts with downloading articles on A from MEDLINE. The
resulting set of documents is converted into a set of fingerprints by Collexis
software. Using this set of fingerprints, an ACS is trained. The concepts in
this ACS are the candidates for B-concepts in an A to B, B to C discovery

process. A ranked and filtered list of these candidates is extracted from the
ACS.

Basic approach

For the basic approach, we did a search in MEDLINE with the following
query:
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Table 5.3: Default ACS parameter values

number of dimensions n 8

constant for learning rate u 10
number of learning cycles T 10
fingerprint cutoff Wmin 0.4

Table 5.4: Different rankings used in experiment 1-2.

D C w S

cw Cws WS D& C
D& S D&W c&s c&w
S&W D&C&S D&C&W D&S&W

C&S&W D&C&S&W D&CSW  D&CW

raynaud s disease AND 1900:1985 [dp]

We used the fingerprints made from these documents were used to train
an ACS. Training the ACS was done with the default parameters, which
were adopted from (van der Eijk et al., 2004) and are listed in table 5.3.
We sorted the B-candidates in this ACS ascending by their distance from
the seed concept. To evaluate the use of the ACS, we also sorted them
descending by co-occurrence with the seed concept.

Combining rankings

To evaluate the use of combining ranking, we tested a total of 20 rankings.
They are listed in table 5.4. The others are combinations of rankings. These
methods of ranking B-candidates were applied to candidates from the same
ACS used in the basic approach.

Using a more general document set

To see the effect of a larger ACS on the ranking based on distance, we used
a more general query to obtain our initial document set. The query used
was:

vascular diseases AND (peripheral OR extremities OR finger OR
fingers OR toe OR toes) AND 1900:1985[dp]
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The ACS trained on the resulting document set was trained using the same
parameters as in the basic approach.

Using inverse document frequency

To test the effect of the use of IDF on our rankings, we trained an ACS based
on a corrected version of the fingerprint set used in the basic approach. The
fingerprints are corrected using IDF. The IDF values are calculated using
a set of Collexis fingerprints constructed using all MEDLINE records with
an entry date between the year 1996 and the year 2000. The compensated
fingerprints are used to train an ACS, with the default parameters. Note
that because the weights are corrected, different concepts are cut from the
fingerprints. This affects both distance and co-occurrence.

Using semantic categories

For this last modification of the two-step approach, we used the same ACS
used in the basic approach. We then divided the B-candidates over the 15
groups, using their semantic category. We sorted the concepts within each
group using distance and co-occurrence. We then focussed on the Physiology
group, using our expert knowledge that most relevant concepts should be in
that group.

5.3.2 Omne-step approach

This process starts with downloading a large, general set of MEDLINE
records. This set of documents is converted into a set of fingerprints by
Collexis software. Using the resulting set of fingerprints, an ACS is trained.
The concepts in this ACS are the candidates for C-concepts in a A to C
discovery process. A ranked and filtered list of these candidates is extracted
from the ACS. We will evaluate the different rankings by examining the po-
sitions in the ranking of the relevant concepts for C. We can not use ROC
analysis here, because the number of candidates is too large for us to label
as we did with the B-candidates in the two-step approach.

Basic approach

The basic approach starts with downloading MEDLINE records using the
following query:

(raynaud s disease OR diet OR dietary) AND 1900:1985[dp]
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Table 5.5: ACS parameter values for the one-step approach

number of dimensions n 8
constant for learning rate u 10
number of learning cycles T 150
fingerprint cutoff Wmin 0.5

The settings used to train an ACS on this document set are listed in table
5.5. The number of learning cycles is much higher because of the larger
size of the fingerprint set. The cutoff is higher to keep the size of the ACS
within bounds. A higher cutoff results in fewer concepts and fewer edges.
All concepts in this ACS are regarded C-candidates. We sorted them by
distance to A.

Using inverse document frequency

We use the same fingerprint collection as in the basic one-step approach
and the same method of correcting for the IDF as used with the two-step
approach.

Using semantic categories

We applied the same semantic groups used in the two-step approach to
both the ACS used in the basic one-step approach and the ACS used in the
IDF-corrected one-step approach. The group of interest is now Chemicals
& Drugs.
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Chapter 6

Test results

The results of various experiments done using the test case and evaluation
method described in the previous chapter are described here. The first
section discusses the results of the experiments done with the two-step ap-
proach, which were described in section 5.3.1, the second section discusses
those done with the one-step approach, which were described in section 5.3.2.

6.1 Two-step approach

During experimentation with the two-step approach, we observed that the
top 10 highly relevant concepts usually contain concepts from all three path
ways. We think that when the user has studied multiple concept from more
than one of these pathways, a discovery of the A — B step is likely. We
therefore assume that when the user has seen roughly one fourth of the highly
relevant B-concepts (10 out of 39), discovery is likely. The other highly
relevant B-concepts can be identified later using a closed discovery process.
We will present the 10 highest ranking concepts with their positions for each
experiment. The names of the concepts are presented for illustration. The
position tables also contain the results of ranking by co-occurrence.

To compare the various modifications with the basic approach, we present
AUC tables with each experiment. These contain the AUC of the ROC
curves based on highly relevant concepts and those based on all relevant
concepts (see section 5.1.2). They also contain AUC values based on smaller
values of n (see section 5.2). With some experiments, we will show the ROC
curves for illustration. The AUC tables and ROC curves will also contain
the results of ranking by co-occurrence, with which we will evaluate the
contribution of the ACS.
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Table 6.1: Highest ranking highly relevant concepts for experiment 1-1

Distance Co-occurrence
Position Name Position Name
1 Vasodilation 53 Blood Pressure
93 Blood Circulation 54 Blood Flow Velocity
104 Anticoagulants 70 Vasoconstriction
115 Thrombosis 74 Thrombosis
209 Blood Flow Velocity 84 Vasodilation
253 Dipyridamole 91 Blood Viscosity
266 Blood Pressure 96 Blood Circulation
289 Blood Viscosity 153 Epoprostenol
293 Vascular Resistance 208 Vascular Resistance
320 Capillary Resistance 231 Platelet Aggregation

For each experiment, we will assess the chance a relevant concept has
to be ranked higher than a non-relevant one. This chance is estimated
using both the AUC obtained using highly relevant concepts and the AUC
obtained using all relevant concepts.

6.1.1 Experiment 1-1: The basic approach

The document set used in this experiment contains 2,176 documents. The
ACS trained on this set contained 2,336 concepts, with a total of 49,727
edges between them. Of the 2,335 B-candidates from this ACS, 39 are
highly relevant. The highest ranking highly relevant concepts are listed in
table 6.1 along with their positions in the ranking. The positions in the
distance ranking vary between 1 and 320. This means that the user will
have to study 320 concepts to discover one fourth of the highly relevant
concepts.

The ROC curves based on highly relevant concepts are plotted in figure
6.1 and those based on all relevant concepts in figure 6.2. The different
values for the AUC of these curves are shown in table 6.2.

The AUC of both distance curves vary roughly between 0.64 and 0.69.
This means that a relevant concept has a chance of being ranked higher than
a non-relevant concept roughly between 64% and 69%. Rankings produced
by this basic approach thus do better than random (a random ranking would
have a AUC of 50%). Comparing distance and co-occurrence, we observe
that both for the results based on highly relevant concepts and the results
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Figure 6.1: Exp. 1-1 ROC: Based on highly relevant concepts.

based on all relevant concepts, distance has a larger AUC. Co-occurrence
has higher AUC values in the first part of the curve, for which distance
compensates in the rest of the curve. This is especially noticeable when
looking at figure 6.1.

6.1.2 Experiment 1-2: Combining rankings

The rankings of B-candidates based on average candidate weight W or av-
erage seed weight S, have lower AUC values than those based on distance or
co-occurrence. This is shown in figure 6.3. However, several combinations of
rankings have a similar or better AUC than any of the single rankings. An
interesting combination is that of D and C, which does better than either
distance or co-occurrence alone. Another combination that has high AUC
values is that of D, C, and W.

Both these combinations are plotted in figure 6.4. Their AUC values
are listed in table 6.3. The AUC values of all the combinations tested can
be found in the appendix. Table 6.4 lists the top ranking highly relevant
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Figure 6.2: Exp. 1-1 ROC: Based on all relevant concepts.
Table 6.2: AUC for experiment 1-1
Ranked on Auc 1/5 2/5 3/5 4/5
Highly relevant Distance 0.685 0.033 0.151 0.315 0.492
Co-occurrence 0.673 0.055 0.172 0.322 0.487
All relevant Distance 0.647 0.048 0.160 0.303 0.463

Co-occurrence 0.641 0.054 0.157 0.297 0.455
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Figure 6.3: Exp. 1-2 ROC 1

concepts in these two rankings.

6.1.3 Experiment 1-3: Using a more general document set

Here, we use a more general document set to see if the ACS-distance will
improve. The document set used contained 23,749 documents. The ACS
trained on this set contained 6,531 concepts with 313,818 edges. The AUC
values of the rankings based on distance and co-occurrence are listed in table
6.5.

Note that we do not present the highest ranking concepts for this experi-
ment. This because it is based on a different document set, and the resulting
positions of relevant concepts are not comparable with the positions in other
experiments.
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Table 6.3: AUC for experiment 1-2

Ranked on Auc 1/5 2/5 3/5 4/5
Highly relevant D 0.685 0.032 0.146 0.311 0.490
DC 0.698 0.042 0.168 0.329 0.505
DCW 0.686 0.0561 0.171 0.329 0.498
All relevant D 0.647 0.042 0.146 0.293 0.459
DC 0.652 0.054 0.163 0.304 0.466
DCW 0.658 0.061 0.172 0.311 0.472
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Table 6.4: Highest ranking highly relevant concepts for experiment 1-2

D and C D, C,and W
Position Name Position Name
6 Vasodilation 15 Vasodilation
32 Thrombosis 31 Thrombosis
35 Blood Circulation 38 Blood Circulation
61 Blood Flow Velocity 49 Blood Flow Velocity
88 Blood Pressure 62 Blood Pressure
107 Blood Viscosity 87 Blood Viscosity
152 Vasoconstriction 112 Vasoconstriction
180 Vascular Resistance 179 Vascular Resistance
223 Platelet Aggregation 198 Platelet Aggregation
282 Anticoagulants 259 Epoprostenol

Table 6.5: AUC for experiment 1-3

Ranked on Auc 1/5  2/5 3/5 4/5
Highly relevant Distance 0.630 0.023 0.108 0.255 0.439

Co-occurrence 0.596 0.044 0.137 0.247 0.403
All relevant Distance 0.628 0.028 0.115 0.258 0.437

Co-occurrence 0.669 0.058 0.170 0.309 0.476
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Table 6.6: AUC for experiment 1-4
Ranked on Auc 1/5 2/5 3/5 4/5

Highly relevant Distance 0.702 0.041 0.157 0.315 0.502
Co-occurrence 0.658 0.048 0.158 0.301 0.469
All relevant Distance 0.730 0.061 0.202 0.360 0.537

Co-occurrence 0.677 0.062 0.171 0.318 0.488

Table 6.7: Highest ranking highly relevant concepts for experiment 1-4

Distance Co-occurrence
Position Name Position Name
36 Thrombosis 42 Blood Viscosity
80 Platelet Aggregation 55 Vasoconstriction
82 Vasodilation 60 Blood Circulation
110 Viscosity 64 Epoprostenol
113 Blood Coagulation 65 Blood Flow Velocity
169 Platelet Adhesiveness 70 Viscosity
215 Alprostadil 93 Vasodilation
263 Blood Pressure 105 Thrombosis
287 Fibrinolysis 148 Platelet Aggregation
289 Blood Viscosity 190 Alprostadil

6.1.4 Experiment 1-4: Using inverse document frequency

The ACS based on the corrected fingerprint set has 2,223 concepts, with
26,439 edges. The AUC values for distance and co-occurrence are listed in
table 6.6.

The AUC values of both distance and co-occurrence have increased when
compared with experiment 1-1. However, the AUC of the distance ranking
has increased relatively more, and distance has higher AUC values than co-

occurrence in this experiment. The top ranking concepts are listed in table
6.7.

6.1.5 Experiment 1-5: Using semantic categories

Figures 6.5 and 6.6 and table 6.8 show the ROC curves and AUC values of
distance and co-occurrence within the ‘Physiology’ group. The top ranking
concepts within this category are listed in table 6.7. The group contains

61



L T T 7 T
distance / /
/

Co-occurrence ------—-

0.8 -

02 |

0.6 0.8 1

Figure 6.5: Exp. 1-5 ROC: Using highly relevant concepts

a total of 143 candidate concepts. Both the AUC values and the positions
of the top ranking concepts are much higher than in any of the preceding
experiments.

6.2 One-step approach

For the one-step approach, we will study the rankings of the C-candidates
by the basic approach and its modifications. We will show the positions of
the relevant C concepts. Of these, the concepts ‘Dietary Fats’ and ‘Fatty
Acids, Essential’ are more general than the other five. They are relevant,
but we think that about three of the other five should be seen by the user
to make discovery likely.

6.2.1 Experiment 2-1: The basic approach

The document set used in this basic one-step approach contains 105,928 doc-
uments. The ACS resulting from this set has 11,072 concepts with 707,634
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Figure 6.6: Exp. 1-5 ROC: Using all relevant concepts

Table 6.8: AUC for experiment 1-5

Ranked on Auc 1/5 2/5 3/5 4/5
Highly relevant Distance 0.793 0.068 0.224 0.410 0.602

Co-occurrence 0.821 0.095 0.254 0.435 0.630
All relevant Distance 0.847 0.090 0.265 0.455 0.649

Co-occurrence 0.865 0.123 0.284 0.472 0.668
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Table 6.9: Highest ranking highly relevant concepts for experiment 1-5

Distance Co-occurrence
Position Name Position Name
6 Blood Circulation 4 Blood Flow Velocity
8 Vasodilation 6 Blood Pressure
10 Blood Flow Velocity 7 Blood Viscosity
11 Blood Pressure 8 Vasoconstriction
14 Erythrocyte Deformability 11 Blood Circulation
16 Platelet Aggregation 12 Vasodilation
17 Vasoconstriction 17 Platelet Aggregation
34 Fibrinolysis 20 Fibrinolysis
36 Platelet Adhesiveness 27 Platelet Adhesiveness
38 Vascular Resistance 28 Vascular Resistance
Table 6.10: Relevant concepts in experiment 2-1
Position Name
55 Dietary Fats

301

1278
2133
2202
3721
4438

Fatty Acids, Essential

Fish Oils

Cod Liver Oil

Docosahexaenoic Acids

Fatty Acids, Omega-3
5,8,11,14,17-Eicosapentaenoic Acid

edges. The positions in the distance ranking of the 7 relevant C-concepts in
this ACS are listed in table 6.10.

6.2.2 Experiment 2-2: Using inverse document frequency

In this experiment, the fingerprints are corrected with IDF. The ACS based
on the corrected fingerprints contains 11,984 concepts and 564,125 edges.
The positions of the relevant concepts in the distance ranking are listed in

table 6.11.
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Table 6.11: Relevant concepts in experiment 2-2

Position

Name

535

074

1188
2438
3562
3834
4803

Dietary Fats

Fatty Acids, Essential

Fish Oils

Cod Liver Oil

Docosahexaenoic Acids

Fatty Acids, Omega-3
5,8,11,14,17-Eicosapentaenoic Acid

Table 6.12: Relevant concepts in experiment 2-3-1

Position Name

119 Fatty Acids, Essential

487 Fish Oils

781 Cod Liver Oil

805 Docosahexaenoic Acids

1340 Fatty Acids, Omega-3

1612 5,8,11,14,17-Eicosapentaenoic Acid

6.2.3 Experiment 2-3: Using semantic categories

We applied semantic categories to both the ranking produced by the basic
approach and the ranking produced by the IDF-corrected approach. We
focus on the category ‘Chemicals & Drugs’, which contains 6 out of the 7

relevant concepts.

In the ranking based on the basic approach, Chemicals & Drugs contains
3,576 concepts. The positions of the C-concepts in this category are listed

in table 6.12.

In the ranking based on the IDF-corrected approach, Chemicals & Drugs
contains 4,240 concepts. The positions the C-concepts in this category are

listed in table 6.13.
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Table 6.13: Relevant concepts in experiment 2-3-2
Position Name

182 Fish Oils

183 Fatty Acids, Essential

1199 Cod Liver Oil

1284 Docosahexaenoic Acids

1304 Fatty Acids, Omega-3

1647 5,8,11,14,17-Eicosapentaenoic Acid

6.3 Summary of results

Two-step approach

In the ranking produced by our basic two-step approach (section 6.1.1), the
320 highest ranking B-candidates contain one fourth of the highly relevant
B-concepts. The chance that a relevant concept is ranked higher than a not
relevant one is between 64% and 69%. The ranking based on distance has a
higher AUC than the ranking based on co-occurrence, but the difference is
very small. The co-occurrence ranking does better for smaller values of n.

The best combined rankings (section 6.1.2) are DC and DCW. For
DC, the chance of highly relevant concepts being ranked higher than other
concepts is between 65% and 70%, for DCW this chance is between 66%
and 67%. The user will have to study 282 (DC') and 259 (DC') concepts to
discover one fourth of the highly relevant concepts. The AUC values of these
rankings are higher than the AUC values of distance in the basic approach
(D). Interestingly, the AUC of DC is higher than the AUC of both D and
C'. For smaller values of n, DC and DCW also do better than D, if only
marginally so.

In the third experiment (section 6.1.3), we tried a more general document
set. In the ranking based on this, the chance of relevant concepts being
ranked higher than other concepts is roughly 63%. The AUC values of the
rankings based on highly relevant concepts suggest that distance does better
than co-occurrence in a larger ACS. When we include all relevant concepts
however, the roles are reversed. In both cases, the values are lower than
those obtained with the basic approach.

The results of using inverse document frequency (section 6.1.4) are bet-
ter, with a chance of 70% to 73% of highly relevant concepts being ranked
higher than other concepts. The user will still have to study 289 concepts
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to discover the 10 highest ranked highly relevant concepts. The AUC values
of this approach are higher than those obtained with the basic approach.
Using co-occurrence, we also obtain higher rankings. However, the AUC of
the distance ranking has increased relatively more, and distance has higher
AUC values than co-occurrence in this experiment.

In section 6.1.5, we use semantic categories to focus on the semantic
category ‘Physiology’. With this focus, the number of candidates is reduced
to 143 concepts, of which the user has to study 38 to discover the 10 highest
ranking highly relevant concepts. The chance of a relevant concept ranked
higher than a not relevant concept in this group is between 79% and 85%.
The AUC values within this category are much higher than in the basic
approach. The values of the co-occurrence ranking have increased even
more and are higher than distance in this experiment.

One-step approach

In the ranking produced by the basic one-step approach (6.2.1), the user
will have to study 2,202 out of 11,072 concepts to discover three of the five
more specific relevant concepts.

When using IDF-corrected fingerprints (6.2.1), the user will have to
study 3,562 concepts for this.

When we focus on the semantic category ‘Chemicals & Drugs’, the num-
ber of concepts the user has to study is 805 out of 4,240 using the basic
ranking and 1,284 using the IDF-corrected ranking.
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Chapter 7

Discussion and outlook

In this chapter we discuss our results and methodology, and we look to the
future. In section 7.1, the results presented in chapter 6 are discussed. The
limitations of our evaluation are discussed in section 7.2. Next, we do some
suggestions for further research in section 7.3. In section 7.4, we present
an out look to the future of literature-based knowledge discovery. Finally,
section 7.5 contains some acknowledgements.

7.1 Discussion of results
Chapter 5 identified three objectives of the evaluation of these suggestions:

1. To evaluate the added value of the ACS in the discovery process.

2. To evaluate whether any of the possible modifications improve the
basic discovery process and thus should be used.

3. To evaluate whether a scientist using either the two-step or the one-
step approach will be able to make discoveries with a reasonable amount
of effort.

Here, we discuss the results presented in chapter 6 to meet these three
objectives.

Contribution of the ACS

We evaluated the added value of the ACS in the discovery process by com-
paring the rankings obtained by using ACS-distance with rankings obtained
using co-occurrence. Since the C-candidates do not co-occur with A, this can
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only be done for the two-step approach and not for the one-step approach.
We compared the rankings by their AUC-values.

For the basic two-step approach and for the modification which uses
a more general document set, we have contradicting results. Some results
indicate the ranking based on distance is better, some that the ranking based
on co-occurrence is better. In both cases, the differences are very small.
The distance ranking improves more from IDF-corrected fingerprints than
co-occurrence. The results using these fingerprints indicate that distance
does better than co-occurrence. When we focus on the semantic category
‘Physiology’, co-occurrence has better results than distance.

In two experiments, the difference between co-occurrence and distance is
small or not clear. On one, distance does better. In another, co-occurrence
does better. Based on these four experiments, we conclude that the ACS
has no added value in a two-step discovery process.

Using modifications

To evaluate whether any of the possible modifications improve the basic dis-
covery process and thus should be used, we compared the rankings obtained
by the basic approach with those produced by the modifications. For the
two-step approach, we looked at the AUC values. We also looked at the
number of concepts that the user has to study to make discovery likely. For
the one-step approach, we looked at the positions of the relevant concepts.

In the first modification done on the two-step approach, there are some
combinations of features which have better results than the distance used in
the basic approach. However, the differences are small. The results of using
a more general document set are worse than those of the basic approach.
When we use IDF-corrected fingerprints, the results are better than those of
the basic approach. Focussing on a semantic category improves the results
drastically.

For the one-step approach, we tried two modifications. The results ob-
tained with IDF-correction are worse than those obtained with the basic
approach. The positions obtained with the use of semantic categories are
higher. However, this is solely caused by a decrease in candidate concepts.
The user still has to study roughly one fifth of the candidates to make the
discovery.

We conclude that our first two modifications to the two-step approach
do not improve the discovery process. The last two do. This suggests that
IDF-correction should be used for the two-step approach. Using seman-
tic categories drastically improves results. They should be used when the
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user has the required expert knowledge to focus on one or more semantic
categories.

In our experiments with the one-step approach, IDF correction does
not improve the discovery process. Using semantic categories succeeds in
filtering the candidates, but the ranking within the semantic category does
not improve. Again, they should be used when the user has the required
expert knowledge.

Making discoveries

To see if literature-based knowledge discovery is possible with one of our
approaches, we looked at the number of concepts that have to be studied
to make discovery likely. For the two-step approach, we also looked at the
chance a relevant concept has to be ranked higher than a not relevant one.
For both approaches, we discuss both the best method (basic or modified)
which does not require the expert knowledge to focus on a semantic category
and the method with semantic categories.

In the IDF-corrected two-step approach, the user will have to study
almost 300 concepts to make discovery likely. The chance of a relevant
concept being ranked higher than a not relevant one is 70% to 73%. With
semantic categories, this chance is 79% to 85%. The user has to study almost
40 concepts to make discovery likely.

For the basic one step approach, the user has to study over 2000 concepts
to make discovery likely. Using semantic categories, this number is still over
800.

We think that the use of a literature-based discovery system is very
limited when the user has to study a large amount of concepts to make a
discovery. This is the case with the IDF-corrected two-step approach and
the one-step approach. The two-step approach with semantic categories
seems suitable for literature-based discovery.

Summary

We conclude that:

e Our results do not indicate that the ACS contributes to a literature-
based discovery process.

e Using inverse document frequency and semantic categories contributes
to our two-step discovery process. Semantic categories also contribute
to our one-step process.
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e Literature-based knowledge discovery is likely possible with our two-
step approach with semantic categories without requiring more than
a reasonable amount of effort.

7.2 Limitations of our evaluation method

There are several limitations to the way we have evaluated our approaches.
First of these is the use of just one study case. It introduces the chance that
the conclusions we have drawn from the test results are only valid for this
single case, and will not hold when applied to other cases. Possible solutions
are the use of artificial data and increasing the number of test cases. It is
difficult, however, to capture the complexities of literature in artificial data.
More test cases are available, and using them would have improved the
confidence in our test results. Time constraints were the reason we did not
use them.

The labelling of concepts as relevant or not relevant is another limitation
of our method. It is subjective and a different set of relevant concepts may
lead to different results and thus different conclusions. We tried to take part
of this effect away by defining two different sets of relevant concepts (highly
relevant and all relevant concepts), and comparing the results using either
one. In one case, this led to contradicting results. In all other cases, the
results had the same implications.

Another limitation is the experimental status of the ACS algorithm.
The settings we use for ACS training are based upon (?) and on some
experimentation done by ourselves. However, neither of these sources are
out of the experimental phase when the optimal ACS training parameters
are concerned. It is not certain that the parameters we used are optimal
for ACS training. Thus, it is possible that the ACS-distance rankings are
sub-optimal.

We did not use ROC analysis for the one-step approach. This makes
it hard to compare the basic approach with its modifications. The reason
for this was the limited amount of relevant concepts we defined. We could
have solved this by defining more loosely relevant C-concepts and dividing
the set as done with the two-step approach. However, the set of candidate
C-concepts is very large and time constraints withheld us from spending the
necessary time to manually label such a large set of concepts.

The two-step approach was only evaluated based on the A — B step. A
proper case evaluation should also do the B — C' step. However, we tried
the method with which the A — B step was successfully made, semantic
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categories, near the end of our research period. Time constraints withheld
us from evaluating the B — C' step.

7.3 Suggestions for further research

Two-step approach with semantic categories

We obtained the best results while using semantic categories in a two-step
discovery process. We suggest further examination of the possibilities of this
approach. Follow-up work could implement the two-step approach with a
number of differences with the basic approach we presented. It should use
IDF-corrected fingerprints, and use co-occurrence and semantic categories
to rank candidate concepts. The possibilities of this approach can then be
further explored by replicating more of Swanson’s discoveries.

Note that the system suggested above is very similar to Srinivasan’s
system for literature-based discovery (section 3.2.5). The differences are the
use of free text and fingerprints instead of MeSH headings, and the use of
aggregated semantic categories instead of the much narrower semantic types.

One-step approach with semantic categories

We did not reach satisfying results with the one-step approach. Using se-
mantic categories improved the results, but did not lead to a ranking in
which discovery is likely. A reason for this might be that the semantic
category used there, Chemicals & Drugs, contains many concepts.

We suggest exploring the use of our one-step approach with semantic
categories. The categories should be much smaller that the categories we
used. In that way, the user can provide (and thus also needs to have) more
expert knowledge to the system, and discovery may become likely.

Other suggestions

We tried to exploit the information contained in the fingerprint weights in
one of our experiments. We suggest trying different ways to exploit this
information. Our last suggestion is to pay special attention to the size and
generality of the document sets in which discoveries are done. This has a
large influence on the discovery process.
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7.4 Outlook

The results obtained with semantic categories suggest that using expert
knowledge contributes significantly to the discovery process. Most of the
literature-based knowledge discovery systems discussed in chapter 3 also
use expert knowledge in their systems. Swanson’s system relies on the user
to filter terms in the discovery process. In Weeber’s system, the user has
to select semantic categories to filter concepts. Hristovski also supports this
semantic filtering. Also, his system uses human assigned MeSH terms to as-
sess the contents of documents. The best results are obtained by Srinivasan,
whose system also relies on human assigned MeSH terms, and does filtering
by having the user select semantic types.

We think human expert knowledge is a necessary contribution to the
discovery process. There are two reasons for this. In the first place, it
is extremely difficult to model all the domain knowledge humans use to
contribute to the discovery process. Our results support this. We were only
able to successfully identify the relevant B-concepts with the help of expert
knowledge of which semantic category to focus on. Even when we could
model this knowledge, a fully automated process would not be useful. Such
a process would only transform the large amounts of text into large amounts
of (ranked) hypotheses. A human is still needed to decide which hypotheses
to text experimentally. (See also (Weeber, 2003))

We think therefore that further research in literature-based knowledge
discovery should focus on its role as a support system. Combining ex-
pert knowledge from the user with computational power from the computer
should be the prime target of future systems. We think that in this role,
literature-based knowledge discovery has rising prospects.

There are several developments that contribute to these rising prospects.
The first is the availability of the scientific literature, which should only in-
crease. Another is increasing computer power, which will enable computers
to do more complex analysing of larger amounts of text. We believe that
these developments will eventually make literature-based discover a powerful
way to assist scientists with hypothesis generation

To have them actually be used (outside of information science), however,
the ideas of literature-based discovery will have to be communicated to other
fields than that of information science. In (Spasser, 1997), Mark A. Spasser
explores the degree to which Swanson’s valid idea of using the scientific
literature to generate new knowledge has been adopted in the biomedical
literature. He concluded that biomedical scientists largely ignored Swanson’s
ideas. Spasser identified several barriers which may have caused this failure
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of exporting Swanson’s ideas to the biomedical field.

One of these barriers is identical to the reason for the existence of undis-
covered public knowledge: scientist’s limited fields of interest. Understand-
ing the possibilities of Swanson’s ideas requires at least a basic understanding
of information science. However, the scientists in the biomedical field are
already busy enough with the knowledge in their own field of interest.

Another barrier he identified consists of the different disciplinary con-
ceptions of what constitutes valid data generation, evaluation, and exper-
imentation. Biomedical researchers (among others) require all theories to
be testable in the real world. They are reluctant “to concede the legiti-
macy of an explicitly exploratory methodology, one that does not depend
on empirical and quantitative hypothesis testing”.

To overcome these obstacles, it is even more important that literature-
based discovery focusses on its role as a support system. Systems should be
supported by an extensive user interface and support from information sci-
entists. This takes away the need for users to study the underlying theories.
Their skepticism about the possibilities can be taken away by presenting a
system that simply works. An example of this is the access to the electron-
ical biomedical library MEDLINE through PubMed. The algorithms with
which this database is searched, may be less complex than those used in
literature-based knowledge discovery, but understanding them does require
knowledge in information science. Knowledge which most users, from the
biomedical field, do not have. Yet, they use the system because it is easy to
use and because it works.

As technical developments and research make literature-based knowledge
discovery more powerful, the likelihood of a user-friendly, working system
that assists scientist with hypothesis generation increase. Literature-based
knowledge discovery can not replace, but it can support hypothesis driven
experimental research. Tools such as we strived to develop here could help
scientists develop hypotheses more efficiently and thus improve scientific
progress.
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Appendix

Table A.1: Relevant B-concepts, excluding highly relevant concepts.

Blood Viscocity

Cryoglobulinemia Cryoglobulins
Erythrocyte Membrane Erythromelalgia
Hemangioendothelioma Hematologic Diseases

Hemodynamics Hemolysins
Hemophilia A Hemorheology
Hemorrhagic Disorders Hemostasis
Hemostatics Pentoxifylline
Rheology
Platelet Aggregation
Agglutination Tests Albumins
Anemia

Antifibrinolytic Agents
Arachidonic Acid
Blood Cell Count

Antithrombin III
Arachidonic Acids
Dextrans

Dicumarol
Disseminated Intravascular Coagulation Embolism
Factor VIII Factor XII
Factor XIII Fibrin Fibrinogen Degradation Products
Fibrinogen Gabexate
Heparin Kallikreins
Ketanserin Pentoxifylline
Platelet Count Platelet Function Tests
Prothrombin Time Thrombocytopenia
Thrombocytosis Thromboembolism
Thrombophlebitis Thromboplastin

Thromboxane A2 von Willebrand Factor

Vascular Reactivity

Aminorex Angiotensin II
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Angiotensin-Converting Enzyme Inhibitors Antihypertensive Agents

Arterial Occlusive Diseases Arterioles
Arteriosclerosis Arteriosclerosis Obliterans
Arteriovenous Anastomosis Arteriovenous Fistula
Arteriovenous Malformations Bencyclane
Bradykinin Capillaries
Captopril Dihydroergotamine
Diltiazem Endothelium
Endothelium, Vascular Epinephrine
Ergoloid Mesylates Ergonovine
Ergotamine Fibromuscular Dysplasia
Guanethidine Histamine
Hydralazine Hydroxyethylrutoside
Hypotension Tloprost
Indapamide Indoramin
Isosorbide Dinitrate Isoxsuprine
Ketanserin Labetalol
Microcirculation Minoxidil
Moxisylyte Muscle, Smooth, Vascular
Nafronyl Neurokinin A
Niacin Nicergoline
Nicotinyl Alcohol Nifedipine
Nitroglycerin Nitroprusside
Norepinephrine Oxprenolol
Papaverine Pentoxifylline
Phenoxybenzamine Phentolamine
Phenylpropanolamine Pindolol
Polyarteritis Nodosa Prazosin
Propranolol Sotalol
Suloctidil Theophylline
Thromboxane A2 Tolazoline
Varicose Veins Vascular Diseases
Vasoconstrictor Agents Vasodilator Agents
Vasomotor System Vasopressins
Xanthinol Niacinate
Other
Acidosis, Lactic Blood Bactericidal Activity
Blood Component Removal Body Temperature
Body Temperature Regulation CREST Syndrome
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Extracorporeal Circulation Extremities

Fingers Ischemia
Pain Insensitivity, Congenital Peripheral Vascular Diseases
Piribedil Plasma
Plasma Cells Plethysmography
Regional Blood Flow Skin Diseases, Vascular
Skin Temperature Toes

Table A.2: AUC for experiment 1-2 (Based on highly relevant concepts)

Ranked on Auc 1/5 2/5 3/5 4/5
D 0.685 0.033 0.151 0.315 0.492
C 0.673 0.055 0.172 0.322 0.487
W 0.519 0.006 0.064 0.173 0.338
S 0.504 0.005 0.046 0.155 0.321
CW 0.672 0.054 0.172 0.319 0.489
CWS 0.667 0.055 0.172 0.315 0.476
WS 0517 0.002 0.052 0.163 0.325
D&C 0.698 0.042 0.168 0.329 0.505
D&S  0.626 0.037 0.130 0.259 0.433
D&W  0.652 0.040 0.151 0.299 0.466
C&S 0.640 0.046 0.153 0.292 0.460
C&W  0.639 0.046 0.147 0.284 0.449
S&W 0.519 0.002 0.051 0.164 0.327
D&C&S 0.673 0.046 0.160 0.307 0.480
D&C&W  0.686 0.051 0.171 0.329 0.498
D&S&W  0.599 0.022 0.104 0.241  0.409
C&S&W  0.587 0.026 0.109 0.236 0.396
D&C&S&W  0.648 0.041 0.149 0.290 0.459
D&CWS 0.684 0.043 0.165 0.321 0.494
D&CW  0.683 0.042 0.166 0.326 0.496
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Table A.3: AUC for experiment 1-2 (Based on all relevant concepts)

Ranked on Auc 1/5 2/5 3/5 4/5
D 0.647 0.048 0.160 0.303 0.463
C 0.641 0.054 0.157 0.297 0.455
W 0.555 0.023 0.093 0.208 0.368
S 0.480 0.011 0.046 0.142 0.294
CW 0.655 0.057 0.162 0.304 0.466
CWwWS§ 0.639 0.056 0.161 0.291 0.449
WS 0.529 0.006 0.062 0.182 0.340
D&C 0.652 0.054 0.163 0.304 0.466
D&S 0.595 0.035 0.130 0.252 0.409
D&W  0.644 0.054 0.163 0.298 0.458
C&S 0.597 0.040 0.135 0.262 0.415
C&W 0.641 0.055 0.160 0.296 0.455
S&W 0.527 0.006 0.061 0.180 0.338
D&C&S  0.628 0.049 0.153 0.285 0.441
D&C&W  0.658 0.061 0.172 0.311 0.472
D&S&W  0.591  0.029 0.118 0.244 0.402
C&S&W  0.578 0.025 0.108 0.233 0.388
D&C&S&W  0.629 0.052 0.155 0.281 0.440
D&CWS 0.647 0.055 0.163 0.302 0.459
D&CW  0.654 0.055 0.164 0.306 0.468
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