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Samenvatting

Coherente oscillatie is een opvallend fenomeen, dat geobserveerd is in verscheidene
neurobiologische experimentele onderzoeken, en daardoor tegenwoordig de nodige
aandacht krijgt. In de eerste plaats was er al geobserveerd, dat de activiteit van biolo-
gische neuronen vaak zeer duidelijke oscillaties vertoont. Wat echter nog opvallender

is, is dat neuronen, zelfs uit verschillende gebieden van de hersenen, soms synchroon
met elkaar oscilleren. Dit laatste noemt men coherente oscillatie.

De meest geopperde theorie over de betekenis van coherente oscillatie is, dat het de
mogelijkheid tot het samenvoegen en uit elkaar houden van gegevens geeft, doordat de
vuurmomenten van de neuronen al dan niet precies tegelijk optreden. Zo kunnen extra

veel gegevens tegelijk verwerkt worden zonder dat deze verward raken. Er bestaan

ondertussen een aantal concrete modellen die proberen een dergelijke verbetering met
behulp van coherente oscillatie te bewerkstelligen.

Het is interessant om te kijken in hoeverre met behulp van deze modellen een systeem
gemaakt kan worden dat ook toepasbaar is voor het oplossen van willekeurigere com-
putationele problemen, met name optimalisatieproblemen, zoals deze al opgelost
worden met behulp van klassieke Hopfield-netwerken. Hier wordt beargumenteerd dat
coherente oscillatie misschien in staat kan zijn om een aantal problemen van deze
klassieke systemen te verbeteren, en om meerdere oplossingen tegelijk te genereren.

Er wordt een model opgesteld aan de hand van de bestaande modellen, die daartoe
eerst geanalyseerd worden op bruikbaarheid. Het zo ontstane model lijkt het meest op

het Spike Response Model. Het model wordt vervolgens getoetst en bijgeschaafd door

middel van simulaties.

Het resultaat van dit onderzoek is, dat het mogelijk blijkt te zijn om meerdere oplossin-
gen van een optimalisatieprobleem tegelijk te genereren, na de juiste architectuur te
hebben gekozen en de juiste aanpassingen aan de dynamische regels van het systeem te
maken. Echter, een aantal beperkingen blijven: de oplossingen mogen onderling geen
overlappende variabelentoekenning hebben, het aantal oplossingen dat tegelijk gegene-
reerd kan worden is beperkt, en het netwerk is niet goed schaalbaar naar grotere proble-
men.
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Abstract

Coherent oscillation is a remarkable phenomenon which has been observed in several
neurobiological experimental studies, and, as a result, has lately received substantial
interest. It has already been observed that the activity levels of biological neurons often
show distinct oscillations. What is more striking however, is that different neurons,
even from separate areas in the brain, are sometimes found to oscillate in synchrony
with each other. It is this last phenomenon that is called coherent oscillation.

The most often-stated theory on the meaning of coherent oscillation is that it gives the
brain the ability to separate or link together information, according to the simultaneity
or nonsimultaneity of neurons’ firing moments. This way, larger amounts of data may
be processed simultaneously without getting jumbled. By now, some concrete models
exist which try to enhance neural computation in this way by using coherent oscilla-
tion.

It is interesting to consider to what extent ideas from these models can be used to create
a system that is also applicable to more arbitrary computational problems, in particular
optimisation problems, to which classical Hopfield networks have already been
applied. It will be argued that coherent oscillation may be able to solve some of the
problems these classical systems have, and to generate multiple solutions simultane-
ously.

A model will be formed, based on the existing models, which have to be analysed for
applicability first. The model that is thus obtained can best be compared to the Spike
Response Model. The model will then be tested and improved by means of simulation.

The results of this study show that it is indeed possible to generate multiple solutions of
a optimisation problem simultaneously, after choosing the right architecture and mak-
ing some suitable modifications to the dynamical rules of the system. However, some
limitations remain: the solutions may not have mutually overlapping variable assign-
ments, the number of solutions that may be generated is limited, and the system does
not scale well to larger problems.
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1.0

In neurobiology, there has been an increased interest in neur
network models which exhibitcollective oscillation also
called coherent oscillation(which will from now on be re-
ferred to as ‘CO’). CO means that specific groups of neuron
are found oscillating (that is, firing and not firing in regular
succession) in synchrony (that is, all oscillating with the samel.

Introduction

that fire precisely in synchrony or in phase belong togethe

otherwise they are considered separate within the system.

frequency or in phase with each other).

This phenomenon has been identified in the cortex and is bez—'
lieved to have a specific function: neurons that fire at exactlg.

%e guestion that | wish to address now is: how does Ct
work, and how well does it lend itself for use in neural net:
analogous to existing neural nets, with the goal of improving
Their performance in some respects? In particular, | wish to:

examine the computational possibilities of existing system
incorporating coherent oscillation,

create a neural network model based on these systems, &
verify it analytically and using simulation where possible.

the same time (or oscillate in phase) belong to the same pat-
tern, while neurons that fire at slightly different times (or 0s-1 2 Methods
cillate out of phase or with a different frequency) belong to™"

separate patterns. This research program can roughly be divided into the follow

This contrasts with the idea of only considering stationary ac!nd phases:

tivation patterns in biological neural systems, in which thel.
main matter of interest is the mean firing rate rather than the
precise moments of firing. It is more complex than the station-

del. but it Is0 b tationall ol 2. After a review of existing systems, examine which aspect
ary model, but it may aiso be computationally more powertul. - 5.6 most essential to a possibly useful computational appl

cation of CO.

Study of the existing literature: Examine existing theorie:
and systems which incorporate CO.

1.1 Object of this thesis 3

. ldentify the general issues and problems that have to be &
dressed in order to arrive at the thesis objective. The ord
in which they will be addressed will start from the known
(aspects of existing systems) and will proceed step by ste
into the unknown (possible applications to computation).

With this thesis, | wish to do research on the possibility of
making CO useful for computation, in particular for Constraint
Satisfaction Optimisation Problems (CSOP). CO may be inter-
esting as a computational principle because it may offer a so-
lution to some of the problems of traditional CSOP-solving 4.
neural nets. It will be argued that CO may enable a neural net-
work to:

Address the identified issues. First, a theory will be formel
about them. Where needed, the theory will be tested or a
justed by simulation experiments until it is acceptable tc
proceed to the next step. Where simulation is used, obje

1. handle single solutions separately rather than having to av- e data and conclusions should be stated.

erage over multiple solutions, which may jumble the con-
straints that have to be considered, and thus drive the-
network towards a suboptimal solution.

State the conclusions and the problems that still remain.

In fact, it is not quite true that these processes actually pre

2. keep several options open at once, so the network does ngéeded in a linear order. It is often very hard to explain th
converge too quickly to a suboptimal solution. This can beprecise processes that lead to typical research results, but so
seen as an interesting alternative to more simplistic metheffort has been made here to document the underlying intuiti
ods that achieve this, like simulated annealing. inspirations and reasoning, both in the case of the discuss

3. find multiple, or perhaps all, solutions. literature, and in the case of any new results found here.

I have arrived at this idea because neurobiology identifies twe 3 Overview of results

problems, which will be argued to be analogous to the issues

mentioned above, by illustrating the analogy of the biological-

ly more feasible ‘binding’ systems with classical optimisation

networks. These problems are:

This thesis establishes a theory of CO, based on existing mo
els, by separating it into three different aspects: oscillation, cc
herence and stability of oscillation, and mechanism:
1. thefeature linkingproblem: how is the brain able to link achieving segmentation.

together signals from many separate areas and deal with
them as a whole? The framework that is obtained by adding together the mo:

2 th tati blem: how is the brain able t ¢ desirable properties from existing systems can perhaps best
- (hesegmentatiorproblem. how 1S the brain able OSEparae(:ompared to the Spike Response Model, which is indee

:E;zfrlzt(;?ya; arrive simultaneously but should be dealt WIthshown to be the most powerful model. Some positive pract

cal results have been obtained, the most profound of which a

A often-stated theory is that CO offers a solution to theseClear segmentation of many patters in an associative memo

problems: it is a means to code how features are linked or seﬁl- bl | der t ke th ‘ ble t : timis.
arated, in the following manner: neurons or groups of neuron§'OPIEMS. In order to make the system able 1o Solve optimis:

Introduction 6 December 1997 7



tion problems, a special activation rule, which includes a hardobiology. A short account of the relevant biological findings

activity constraint, has been introduced. will be given, which will be expanded upon later, when theo
ries about CO are discussed. Any biological origins of actuc

It is shown that some issues in CO still remain. In the ﬁrStappncationS of Hopf|e|d nets will be discussed in Chapter 3.

place, a CO system is apparently not able to work with multi-

ple overlapping patterns, which is the most problematic wherThe original Hopfield neural network model uses a much sim

trying to generate solutions for optimisation problems. Sec-plified model of biological neurons, which can be summarise

ondly, the performance of a CO associative memory degradess follows:

for higher loads, posing some questions as to CO’s biological

feasibility. Also, several of the properties and parameters of \l" {,l---

the systems introduced are still in need of a more rigorous s il

analysis. These include the precise mechanism of segmenta- T

tion, especially that of the optimisation network, and the ef- qx,.\.a

fects of several of the introduced parameters. .

1.4 Structure of this thesis
FIG 1. Schematic illustration of biological neurons

1.4.1 The target audience Each neuron has an axon through which it outputs its signe

, . — and dendrites, where incoming signals are received. A neurc
This thesis is supposed to be largely self-contained: formulag ojther quiet or active. When it's active, it will fire an electri-

and concepts that are used will also be explained. Howevep,| gignal through its axon. The axon leads to the dendrites
when the material is more or less basic knowledge, it will onIymany other neurons, where it connects by means of synaps
bg explained tersely. The following is considered basic kHOWIThese are able to transfer the signal in only one direction.
edge:

The signals collected by the dendrites of any neuron add up
an approximately linear fashion. The cumulative effect of the
* standard Hopfield network architecture & theory, including signals is called thaction potential This, in turn, determines

optimisation networks the activity of a neuron: if the action potential exceeds a ce

tain threshold value, the neuron will become active. In reality

A good starting point for neural networks may be [Hertz & neurons tend to be active only during very short periods c
Krogh & Palmer 91] or [Muller & Reinhardt 90]. An introduc- time: the neuron is said to ensipikes In many models, only

tion to constraint satisfaction problems may be found inthe mean frequency of these spikes, which is positively relate
[Tsang 93]. Some nice examples of the application of optimitg the action potential, is considered.

sation networks can be found in [Takefuji 92].

* constraint satisfaction problems

The amount of effect a signal has on the action potential of tf
receiving neuron is determined by properties of the synap:s
that transfers it: each synapse is assumed to have a weig

_ . ) .._which is directly related to the amount it adds to the action pc
Chapter 2 and 3 describes some basic Hopfield-type arChIte(féntial. There are also specific types of neurons which hay
tures and some of their possible applications, as well as the i

. . - Ir.Lfynapses that decrease the action potential. Such neurons
spirations from neurobiology that originally led to them. calledinhibitory. The other neurons are callegcitatory

1.4.2 The chapters

Chapter 4 discusses the existing CO theories. This is domle
mostly by examining actual neural nets that are based on, an
hence illustrate, these theories.

e most common type of Hopfield networkfidly connect-
d This means that every neuron is connected to every oth
neuron, in analogy with the dense connectedness within a ne
e(_onal column. The column (which typically consists of abou
4000 neurons) is believed to be some sort of functional un
within the brain, since columns can easily be identified by th

In chapter 6, the CO framework will be tested in practice usdense connections of the neurons within a column as oppos
ing simulation, and improved where necessary or possible. {0 the lower density of connections between columns.

In chapter 5, a general architectural framework, based on pr
vious models, is presented and analysed.

Chapter 7 summarises the main results and some of their ran'ﬁ\ notable architectural feature is that the SynaptiC connectior

fications, and shows some possible future research directionsbetween columns are reciprocal. What happens between the
columns is not dealt with in the original Hopfield model, but

some other models exist which do address some of the pos

; bilities. Among the most biologically feasible of these are
2.0 CIaSSICaI neural networks models ofbinding, discussed in chapter 3.

The architecture of Hopfield networks, the type of neural nety; s pelieved that the knowledge contained within any neurs
works that will be discussed here, is partially inspired by neuyet is |argely determined by the weights of the synapses.

Classical neural networks 6 December 1997 8



possible mechanism for learning can be obtained by assuming.1.1 A neuron
that some simple, fixed rule is applied to change individual
synapse weights. The best-known such rule is the Hebb rul
which was proposed by the neurobiologist Hebb after consid-
ering some of the observations made on biological neurons

[Hebb 49]: Inputs from
other neurons

synapses

Output to

“When an axon of cell A is near enough to excite a cell B
other neurons

and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or

both cells such that A's efficiency, as one of the cells firing
B, is increased.” FIG 2. Hopfield neuron

Sum + threshold

Of course, there are a lot of things not accounted for in thd Ne following symbols are used throughout the text:

classical model. To name but the most obvious: . .
S (1) O-11 State of neurom at timet.

1. The different variations of neuron types, for example the
differences between the so-called stellate and pyramidical
neurons, and the asymmetry between the properties of ex- ! )
citatory and inhibitory neurons. Basket neurons, the main neuroni.
type of inhibitory neurons, only account for 25% of all
neurons. Their axons are much shorter and their synapses %

also tend to terminate at the cell body rather than the den- ) . o
drites. The state corresponds to the biological concept of activity:
. . o . means it's firing rapidly, -1 means it's fully quiescent. As we
2. The typical low neural activity found in biological systems shall see, some types of neurons may only assume the -1 o

(only 4 to 7% of all neurons at a time actually show anygates while others may assume states in the full [-1,1] range
activity), the spiking rather than continuous nature of neu-

ral activity, and the different frequencies at which neuronstg pe able to determine the state of a neuron, the action pote
typically fire. tial equation has to be determined first. Often used are one

3. Different signal delays, synaptic transfer characteristicsthe two following equations: the discrete [Hopfield 82] and the
and effects of the different neurotransmitters. continuous [Hopfield & Tank 85] action potential equation:

4. The possibility of more complex signal processing being N

done within the individual neuron. h (t) = Z 3;S (1) -8 (discrete)

Weight of synapse from neurdnto

Threshold of neuron

j=1
There are many more largely unexplained phenomena. In other

words, just about anything is possible. Sometimes this fact is _ N h

needed as the ‘poetic license’ to extrapolate from biological — = Z J;S (1) -6, —— (continuous)
reality to make neural systems work in practice. dt i=1 !

The last term in the continuous equation is called dbeay

2.1 Hopfield model term with decay delayt

In a Hopfield network, associative recall and other forms ofrq giate js usually determined from the action potential i
computation are achieved by feeding back the neurons activig o of two ways: either as a continuous function (in continu

ties to each other through their synaptic connections during Bus time) or as a stochastic function (in discrete time).
certain amount of time. After a while, the network settles

down in some kind of (hopefully) meaningful final state. One 01 with probability = f. (t)
usually determines the weights of the synapses beforehand and s (t+1) = O _ o ! (stochastic)
it is these that determine the computational meaning of the (-1 with probability = 1~f; (1)

network.
10 -
. . S(t) = 25 (1) -2 continuous
There are two types of network: discrete and continuous. A (O i (0 20 ( )
continuous network is described in continuous time and has
neurons with potentials that change continuously according to  with f, (t) thetransfer function
differential equations. A discrete network evolves in discrete

time steps, and a summation is used to determine the neurormphe function used to determine the state is calledathizva-
potentials at each time step. First, a number of individuakion function The transfer function that is most often used is
equations will be given to get an idea of the possibilities,the sigmoid function:

while ways to integrate these to specify network dynamics will

be discussed in chapter 2.1.3. 1,1

f(1) = 5 2tamh(Bhi (1),
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with B thegain parameter. Ny Number of neurons within layédr

When - « ,f (1) degenerates into tiséep functionwhich & = Eisl; #ﬁng State vector of layek
e Sy,

results. for both the stochastic and continuous case, in the
most basic type of activation function, namely, #ign func- . . L
tion. Note that for both the sign and the stochastic activatiorl’ there is only one layer, we simply writ¢ instead ofN, ,
functions, the neurons may only assume one of two states, i.e, 45 instead ofs .

S O{-11} instead ofs O[-11]
2.1.3 Network dynamics
Neurons with this property are calleslo-state neurons
One of the basic types of Hopfield network is ftfiscrete
mode| which operates in discrete time, being easily simulabl
on computer systems. It uses the discrete potential functic
e@ﬁd the stochastic or sign activation function. Networks the

2.1.1.1 ‘Biased’ neuron states

It is also possible to use a more general form of neuron stat

[Perez Vicente & Amit 89]; use the stochastic activation function, like B@&tzmann ma-
chine (see for example [Lenting 95]), are callstbchastic
b neural nets. Networks that use the sign activation function w
Vi =§-b (EQ18) il call standardneural nets.

with bO[-1,1], so thatvib O[-1-b1-b] . Note that we have not specified yet which of the  variable

should be updated each time step. Two often-used choices 1
Depending on the application, choosing the right valué of this aresynchronous updatingndasynchronous updating
may lead to more natural representations. This shift in stat

values effectively means that the action potential changes to: 1 Asynchronous updating (the Hopfield model [Hopfield

82]): each time step, one randomly chosen neuron is upds
ed.

2. Synchronous updating (the Little model [Little & Shaw
78]): each time step, all neurons are updated.

h (1) = ZJ”—VJ.b (t) -6,
J

= 3351 -8-b%
) ! With asynchronous update, each state change is immediate
In particular, whenb=0 (the default case), the neurons are taken into account to determine the next state change. O
called polar, and whenb=-1, they are calledbinary. Usually, could say that the signals travel infinitely fast. In the case c
binary neurons are also scaled by a factor 1/2, so that theynchronous update, neurons update according to the state

states are neatly within the range [0,1], instead of [0,2]: the network one time step ago, which means the r_eaction |
the neurons may be ‘out-of-date’ by exactly one time stey

This sometimes results in oscillations, as we shall see in ti

Vi = next section.

NI

(§-1)

When trans|ating the neural net from one valud td anoth- Next to these, there is tle®ntinuous modelt uses the contin-

er, one can preserve the computational behaviour by suitabléous potential and activation functions, which together forn

modification of the thresh0|dsl and in the case of binary neuthe differential equations that determine its time evolutior
rons, of the synapses as well. [Hopfield 84]. In order to simulate these, a numerical approxi

mation of these equations is needed that allows the system
be effectively reduced to a discrete-time system. Usually, th
2.1.2 Network structure 1st order Euler approximation method is used.

The neurons in a Hopfield network are usually fully connect-
ed, which means each neuron has a synapse with every othr
neuron with arbitrary weight. But, just as some biological sys- . .

tems are composed of multiple columns, a Hopfield networ T'\?e”exzt;nc_ehofdaggpu_novf functlon_dL(seg for gxanr"n]ple
may be designed so as to be composed of multiple subney}_—{ uter enhar t ) is of great aid to e_termlne ow .a
works. Each subnetwork is typically fully connected within, opfield network will behave. It has the following properties:

but has synapses with a limited number of other subnetworkg. It is a function from system state configurations to the dc
only. If two subnetworks are connected, the connection is usu- main of real numberg, : SO O

ally full and reciprocal. We will call each such subnetwork a
layer.

1.3.1 Energy function

2. It is bounded below.

n Number of layers
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3. As the system evolves, the function always decreases witin the case of synchronous update, a monotonously decre:

increasin time'd—|‘<0 In practice. this constraint often ing function still exists, which is however nonlocal in time
9 “dt ’ P ' [Muller and Reinhardt 90]. it includes botls (t) and
appears in a ‘softened’ forrrS"dlt-so ) S (t—1) terms. An equilibrium is therefore a function of the

last two time steps. This means that the network may conver

These properties guarantee that the function will, eventuallyto a cycle of period 2.
reach a minimum. The system states that correspond to local

minima of the function can be said to be equilibrium states©Omputation using Hopfield networks is often accomplishe

Local minima are those states that have a higher function vall the following way: First, the states of the variables the com
ue as compared to all neighbouring states in the configuratioRUtation is concerned with are mapped onto combinations
space. Neighbouring states are those states that are immediafi£Uron states. Then, an energy function that is a function

ly reachable from the current state. The function is called arfil€® neuron states and of the above form is designed in suct
energy functionif it is a function of the system state at one way that its minima correspond to solutions of the problem.

moment in time only. Finding a good problem representation and function is nc

To illustrate the use of a Lyapunov function, we will consider €aSY- One usually works with several terms, each standing f

the most basic case we will encounter: the energy function for®Me specific computational demand which requires an ene

a network with discrete action potential, asynchronous updat8Y minimum. These are then added together. However, in tt
ing, and the step activation function [Bruck 90]: adding process, various kinds of spurious minima may be ir
’ troduced. For specific classes of problems, both the nature

N N N these minima and the kind of network architectures that mat

H(t) = 1 Z Z J.S (S (1) + Z 8.S (t) (EQ 1b) age to avoid convergence to them, have been analysed in mq
2 e u ! et H detail
i=1j= i= .

Each time step, the value (t) either decreases or stays thﬁ
same. The function is an energy function only for symmetri-

cal synapsesJ; = J; . By toggling or not toggling specific

S, one at a time, the network effectively minimisest) 2.2.1 Activity constraints
during a run and will settle down as soon as a local minimu
is reached. Here, the neighbouring states are those which OZE
differ from the current state with respect to ahe  variable.

.2 Variations on the Hopfield model

ne modification that is sometimes used to avoid undesirab
ehaviour is imposing a global activity constraint, see for ex
ample [Amit et al 87]. This means that the total neural activity
of a network or a layer is ‘artificially’ kept at a constant level.
As for the more general types of Hopfield net, the function istne state space the neural net is able to wander through is
still a Lyapunov function after some modifications [Van den g,ced drastically, which may be useful for making it behave
Berg 96]. but which may also limit some of its computational potentials.

With continuous neurons, an integral term is added to therpe constraint is given by the following formula:
function, which causes the minima to be displaced towards the
interior of thg state space. The effect vanisheg if is large 1251 -a (EQ 2a)
enough [Hopfield & Tank 85]. NZ

In the case of stochastic networks, the function can still besffectively, a is the total mean activity the network is con-
used as well: the chance that the function decreases is greatsttained to. In the specific case that the neurons are two-sta
than the chance that it increases. For a more exact treatment @fis means that, at all times:

the network behaviour, theory from statistical mechanics, in-
cluding mean-field approximation theory, is needed [Hertz &
Krogh & Palmer 91]. It has been shown that noise tends to
destabilise local minima. In particular, in large systems, there )
is a critical noise level above which certain minima are sud-1here are several ways to enforce the constraints (EQ 2a)
denly unstable. This makes it possible to remove undesire§EQ 2b)-

stable states from the system dynamics, as long as these states

are less stable than the desired stable states. However, for the2 1.1 Hard activity constraint

system to settle down completely,  will have to be increased

eventually. Starting with a lo8  and increasing it slowly dur- Assuming two-state neurons, (EQ 2b) can be enforced by sir

ing a system run is callesimulated annealingThe theory is ply activating thelN(a+ 1) neurons that have the highest po
highly involved, but we will not dwell upon it further because 2

the Systems that will actua”y be examined more Close'y W|||'[entla| This rule is a replacement of the activation function
be argued to work best without noise. and is actually a generalisation of the Winner-Takes-All sys

tem (originally used for Kohonen feature maps [Hertz &

number of neurons active %N (a+1) (EQ 2b)
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Krogh & Palmer 91] but also successfully applied in Hopfield Note that this is equivalent to:
networks see for example [Takefuji 92]), but for more than
i i 1

one winner neuron. If several_neurons have the same action hiC (1) = _Z (=0) Vja(t) (EQ 2¢)
potential so it is not clear which ones should be active, the N ;
winners are chosen randomly. This is calladdom tie break-
ing [Takefuji 92]. cr e

9l Ji 92] 2.2.2 Modifications to allow temporal sequences
For a basic Winners-Take-All network, updating asynchro-

nously can be achieved by updating in two steps at a time:  AS regards network dynamics, we have already noted that tl
network typically settles down into a stationary state. It migh

' also be useful to be able to make it settle down into some kir
2. deactivate the active neuron that has the lowest potential. of well-behaveddynamicalpattern.

1. activate the inactive neuron that has the highest potential

Assuming that the right number of neurons were active al-‘Attempts to include such dynamical behaviour into the Hop
ready, the number of neurons that is active will remain correcfield network can be found as early as [Hopfield 82]. Thes
after applying these steps. The energy function is still validusually involve the cyclic activation of a fixed number of sta-
when using this update rule; see appendix A.1. tionary patterns in a fixed order.

Note that, in this type of network, only tliéfferencesin po- We have already seen the possibility of cycles of length tw
tentials between neurons are relevant. Because of this, synapgsing an synchronous network. It is also possible to obtain c
es between layers that have separate activity constraints can bes up to length 4 by using asymmetrical (antisymmetrical
changed, in some ways, without changing the behaviour of theynapses [Bruck 90]. However, this kind of system has its lim
system. In particular, the weight of a synapse going into a neutations: only cycles of length 1, 2, or 4 are possible, and th
ron may be changed as long as one also adds the amount thgtterns that are cycled through cannot be arbitrary patterns
it has increased to all weights of synapses coming from th@rbitrary order. So, other schemes have been proposed.

same layer as that synapse. ) ) ) )
A particularly robust scheme is the one described in [Sompc

This activation rule can also be generalised to obtain one thdinsky & Kanter 86], where standard Hopfield synapses ar
allows neurons’ states to assume all values in the range [-1,KJhosen so as to form a number of static attractors, while tra
while keeping the total activity normalised to satisfy (EQ 2a).Sitions between successive attractors can be accomplished
A B value controls the ‘sharpness’ of the neuron states i.eSynapses with a time delay. The signal transmitted throug
how close the neuron states should be to their extrema -1 arffi€S€ Synapses cause the transition of one activity pattern
1, analogous to continuous networks. Neural networks that us&1€ next as soon as they arrive. Such mapping synapses
this kind of rule arepotts networkgPhilipsen 95]. Another calledpointers

technique, which is similar, iSinkhorn normalisationwhich

involves normalisation of both layers and neurons across Iay[—Horn & Usher 89] achieve the transitions between attractor

ers [Rangarajan et al 97]. These will however not be discusse using dyn‘.”‘m'cal thresholds instead of slow synapses. Wh
in detail here, because it will be shown that neurons with con.I € neurons 1s in one state for too long, th? t_hreshold chgng
tinuous states are not desirable for a CO network. in suqh away Fhat it forces the neuron to f.“p Its s_tate. This re
sults in transitions between attractors. This particular mech:
nism is interesting to consider, since it looks much like the

2.2.1.2 Soft activity constraint oscillating systems we will encounter later on.

Instead of replacing the activation rule, (EQ 2a) may also bén order to make this system be able to cycle through mor
weakly enforced by suitable modification of the synapses andhan two patterns, the patterns were chosen to be asymme
thresholds [Amit et al 87]. The constraint can be described byal, that is, containing very few ‘on’ neurons. The thresholc

an energy function: dynamics were adapted to reflect this asymmetry by only re
acting when the neuron is in the ‘on’ state. The results the

HC (1) = _QDZSI 0 _Naf were ob'tained were random alterngtions between attractors. l
2ND< O introducing pointers with small weights, the transitions coulc

be made to be limited between more specific patterns, thout
exact transitions could not be enforced. The performance
the network was measured by counting the number of subs
quent time steps the network stayed in one of its desired &
with C the network-size-independent enforcement strengthtractors within a given time window.

For finite C, the network is still allowed to deviate from the
bias. For each neuron, this amounts to:

- %Z ZS' 1§ ® —aCZ § (t) + constant
T |

This system already has some of the features we will encou
ter later on, though both its main behaviour and its objectiv
c 1 are different. The following sections will describe the basic
hi (1) = NZ (-0)§ (1) +aC method to ‘store’ attractor patterns (associative memory), in

J cluding asymmetrical ones (these are also cabieded pat-
terns).
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30 Applications Of the Hopfleld Either is 1 when the state of the neuron is the same as the ¢

d | responding pattern component, and -1 otherwise. The facto
modade are then multiplied with each other to get a ternHgf)

Lire's = g's

3.1 Associative memory ) 5
SES 0550 = 0
The attractors we mentioned in section 2.2.2 are of the most 0
basic kind: a number of specific activity patterns can be

‘stored’ using a kind of Hebbian synapse rule. This particular_l_he lobal minimum is reached if all terms a2 This
application of the Hopfield network is called associative mem- 9 . )

ory, because it is often considered analogous to the associati\y@ppens i e|the_r all states are equal to, or all the reverse (.
nature of human memory and its ability to work with incom- their corresponding pattern components. Here we see that w

plete data. When the network states are initialised to a patter%laCh pa‘itjern sltlored, 'tcsj complement (the pattern in inverse)
that is similar enough to one of the stored patterns, the nef!So accidentally stored.

work will converge to that stored pattern. The network is thenIn order to store more than one pattern, the synapse valu

said to retrieve, or emphasise, a stored pattern. Such a Starti?@und for each pattern are simply added up:

pattern that is supposed to lead to a pattern retrieval is some-

times called aetrieval cue Let us give some symbol defini- "

tions first: Jj = > 9
RO {H g

2
1. .u H
E'f &S =S (Y

o} Number of patterns stored ] o ) ) ) )
However, spurious minima will be introduced in the basic en

ergy function, depending on the form and the number of th

u
§O0{-11} Component of patterny . patterns stored. It is also possible that the desired minima w

no longer be global, or that the desired patterns are no long
M= E&T Eﬁ% Patternu , which has si¢ minima at all.

The most basic kind of associative memory is a fully connect3 1 1 Stability analvsis
ed Hopfield network. The basic idea behind the rule used to y y

store patterns can be explained as follows: Assume that thgne way to analyse the performance of the memory is to col
neural activitiess ~ are initialised to the values of the compo-sider the input one neuron receives when the network sta

nentszi“ of a patterp  that we want to store. Now, if we viewequals one of the stored patterns, say, paitern

the Hebb rule as a correlation rule, pairs of neurons with equal vy 1 L oo .
states should grow positive synapses. Generalising this idea, N = ) %& =& *5 D & D & (stability)
we can also make neurons with opposite states grow negative J w=Ev

synapses. Multiple patterns can be stored by simply accuMmupne Jast term is called thaosstalk In the case of one pattern

lating the synapse weights. This rule can indeed be shown tg’tored, the crosstalk for that pattern is zero, and the input ea

resu!t 'in the patterns becoming attractors of the system. Thﬁeuron receives does not change its state: the pattern is a

rule is: cally stable attractor, as we have already seen. A pattern r

mains stable as long as the magnitude of the crosstalk term

ijl = Ei“Ej“ less than that of the pattern term (which equals 1), so patter

should be chosen in such a way that the crosstalk for ea

The thresholds are set to zero. In the single-pattern case, omeuron remains as close to zero as possible. When the cro

can easily prove that the pattgun  thus stored is a global mirtalks between patterns are exactly zero, the patterns are cal
imum in the energy function. Consider the energy function oforthogonal

a basic discrete-type network: ) )
Consider the case of a purely random choice of pattern

where each individual pattern component is chosen randomly

N N
HO =35 'S s

Tt PEE = 10= 3 (EQ 2d)
For each term in the summation, consider the facifes(t) In this case, the crosstalk averages to zero because each tt
and S (1) Ej“ . Both are of the form EJ.“E}' is zero on average. This is why random patterns are ofte
chosen for: it is a straightforward coding method which result
o if & = S () in small average crosstalk between patterns. Next to that, ra
Etsk(t) =0 k dom coding is often relatively easy to analyse mathematically

Laifelzs (1) '
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Patterns that do not have zero average crosstalk are caled be shown here in detail, though we will show some of its im
related If the stored patterns are too much correlated, the replications.
trieval performance degrades drastically, because the basic

Hebbian rule is not able to store the small differences well. .
3.1.3 Storing correlated patterns

Next to the inverses, there is one type of spurious minimum ) )
that will emerge even for a small number of stored patterndOr correlated patterns, a somewhat different rule is neede

g«N. These are the symmetric mixture states: not just thd O' €xample, [van Hemmen et al. 90] use a Hebbian unlear
stored patterns, including their inverses, are minima, but if"9 rule after having stored a number of patterns. They initia
fact any combin’ation that satisfies: ' ' iIse the network with random activity, and then unlearn the

pattern that emerges spontaneously, because the pattern
most likely to be a spurious pattern. This is repeated a numb
& =sgnE¥;  +...+& T O of times, and has been shown to improve the network’s rece
of correlated patterns. An analogy is laid with dreams, whicl
are hypothesised to have an analogous function in the hum

. i H
with eachmix O {1, ...,q} different, brain.

andm an odd number. Another solution is simply to pre-randomise the patterns be

These states are stable attractors, because each neuron statfeofg storing them. The pseudo-inverse method [Muller & Re

equal to a majority of the components of the patterns thatnhardt 90] is an example of this.
comprise the mixture state. Using the stability function,
3.1.3.1 Storing biased patterns

mix

& _ mix _ 1 Hg Mg mix
hy = zJijEj B NZ ; & EJ' ‘Ei +crosstalk In biological systems, the average neural activity is much low
] ] p O mix . . . .
er than in Hopfield networks. This effectively makes the
amount of information per pattern decrease, and should allo
_1 HeHo ] s
= N2 2 &igjsong ; §; g+ crosstalk the network to store a larger amount of patterns.
] pOmix mix
When the average value of patterns’ components is not eqL
In the term ; Ei“Ej“Sgn% E}’B , the factors to 0, the patterns are necessarily correlated, although in a ve
p Omix v Omix simple manner: most components have the same value. Su
sgnd EJVD are equal to the majority of factof$1 . there- patterns are callebiased pattgrnsThe.averagé)ias aof any
O, i 'O set of patterns can be determined using:
fore the term satisfies the following bounds:
qg N
1 H
1 Hehsgnd 5 £'00 b =2 256 (EQ 2¢)
m= ;.Eizisgnﬂ ;.EJDS ;.Ei qNu=1i=1
p Omix v I'mix ' mix

Llater in the text, we shall deal with random low-activity pat-
ferns @<0 ). For such patterns, the chance for each comp
nent of the pattern to be ‘on’ (1) is:

and therefore the mixture state is stable. Note that the potenti
may be closer to zero for larger. It has indeed been shown
[Amit et al 85] that the mixture states have a lower critical
noise level than the pure states, and that the mixture state at- Ou .0 a+l _
tractors can effectively be removed by choosing a proper noise  Pr§j =10= =5~ Wwith -1<a<1. (EQ 2f)
level.

There have been several articles on how patterns with low a

3.1.2 Storage performance: load and capacity tivity (a=-1) can be stored efficiently:

é)sing the asynchronous stochastic model as a basis, [Amit
al] proposed a generalised storage rule that improves capac
for biased patterns:

Load means the amount of patterns stored relative to th
number of neurons:

Q
1l
Zlo

3y = & B -ar —af (EQ 29)
J

Capacity,a” , is the maximum load the network can handlerhis allows the crosstalks to shift their means back to zerc
before the stored patterns are no longer local minima in thejowever, it is shown that the capacity is only improved wher
energy function. the activity of the network is artificially kept at the proper

o ) i (low) level by adding an activity constraint to the system. Oth
Determining the memory capacity of the network in the casgyise, the network tends to converge to the much higher-a
of random patterns requires an elaborate proof, which will notjye symmetric mixture states. However, even with the activit
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constraint, the network’s memory capacity remains limited.happens when the state vector is near the complement of t
For low activity, the capacity of the model is about 1. pattern.

Both [Tsodyks & Feigelman 88] and [Buhmann & Divko & . .
Schulten 89] then showed that a much better capacity could b§'2 SOIVmg CompUtat'onal problems
achieved by simply changing the thresholds. There was a reply

article to these findings [Perez Vicente & Amit 89], in which

this idea is incorporated and generalised. Instead of the usual?"z'1 What is a Constraint Satisfaction

Problem?
h = ZJ--S . . . .
i J i~ A constraint satisfaction problem (CSP) [Tsang 93] is a 2-tu
ple (X,p) .
one uses:
X is a vector oh variables, each with its own, finite, domain:
b
h =S5J.V. -U,
! JZ i X, 0Dy, ..., X, 0D,
with U =—aff1—a’H the same for all neurons. (EQ 2h) P is & vector ofL constraints,p,, ...,p,  on these variables.

) ) ] Each constraint is a subset of a subdomaix of . The numb
The article shows that, when using the generalised storage rug-f dimensions in the subdomain is called the arity of the cor
as was already given by (EQ 2g), the optimal value for the P aint. Eor example, theary constrain, has:
rameterb is the biasa. This results in a network with very ' ' i '
high storage capacity,
p; U Ddlx X de ,

1-a with k; the arity,d,, ...,d, O{1,...n} andd, #...#d,

It is also shown that the threshdldis important, because if ) ) )
A candidate solution of the CSR,p) is a veotor

U=0, a® -0 asa— 1. The network was found to perform
best with zero noise, i. - o . X = (X ...,X;) With xOD,,...,D,

3.1.4 Measuring the retrieval quality using xis a solution if and only if

overlap g, Xg HO Py

For both analytical and simulation purposes, it would be use- .
ful to have an indication of how close the current state of thd®r all constraintsp,

network is to a given patteqm . An overlap functimp(t) is

often used for this purpose. Intuitively, this function should
have the following properties:

A CSP is calledight if the number of solutions as relative to
the total size of the problem domdnis small. Otherwise, it
is calledloose
¢ |f the activity pattern of the neural network is uncorrelat-

ed with the pattern (i.e. random) then the overlap is 0. 3.2.1.1 Binary CSP

¢ If and only if the activity pattern is exactly the same as the

. . A constraint is calledinary if its arity is 2. A CSP is called
patternpu , the overlap reaches its maximum, usually 1.

binary if the arity of all its constraints is 2.

Note that the term ‘uncorrelated’ depends on the kind of patr

terns the network will typically assume. Normally, uncorrelat- the CSP to be binary, as will be explained below. It is, howey

ed means random according to (EQ 2d). For networks meargr, possible to convert any CSP to an equivalent binary CS
for biased patterns, the overlap should have zero average f%

h di h lised (EQ 2f 5/ adding a new variable corresponding for each non-binar
state vectors chosen according to the generalisec (EQ onstraint [Tsang 93]. Each element in the domain of this var
There are several possible choices of overlap functions, but Bple corresponds to each element in that constraint. Bina

well-used overlap function [Perez Vicente & Amit 89] is: constraints between each element in the new variable wil
N each of the variables in the original constraint can then enforc
10 b ; the original constraint.
m() =33 -ay, (EQ 2i) 9
=1 Note, though, that the conversion may require many new var

Note that the parameteesandb need not be the same for the ables with _Iarge domains to be added. Therefore, it is not &
conditions to hold. The overlap may also be negative: thigvays practical. There are also ways to represent more gene

he architecture of classical CSP-solving neural nets require
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CSPs [Van den Berg 96], but detailed discussion of these falls o q . .

outside the scope of this thesis. Ho =A ]Z VJpV » With (EQ 2))
(1.k) Opy

3.2.1.2 Constraint Satisfaction Optimisation

Problems A some positive constant, and

A more general class of computational problems may be ob- Vjp and VE respectively thigh neuron of layep and the

tained by adding &ost function Fto a given CSP. This func-  th neuron of layeq.
tion may be an arbitrary function of all variables, and should

be defined for all solutions to the CSP: This corresponds to adding a negative synapse between e:
pair of neurons that are not allowed to be active at the san
FOD,xD,x..xD -0 time.

Each solution now has a cost attributed to it. A proper solutionfhere is one more requirement left: Each variable shoul
to the problem, apart from satisfying the constraints, now re{eventually) only have one state. For each layesrrespond-
quires the cost to be minimised as well. This is the most gening to each variable; , the following term is added:
eral case of Constraint Satisfaction Optimisation Problems
(CSOP) [Tsang 93], called optimisation problems for short. X; PP »

H'= BZ \/;Vk, with B some positive constant.
A solution which has the smallest cost function possible is )
called anoptimal solution. Usually, it is not really necessary to
find an optimal solution, but rather a suboptimal one that isthis amounts to adding negative synapses between all neurc
good enough. Because of this, the requirement of having tQ,ithin a layer.
minimise the cost function is sometimes calledsddt con-
straint, as opposed to the constraints of the CSP part, whicRow, we have to ensure that, if no neurons are active, neuro
are calledhard constraints. A well-known CSOP that will be will activate spontaneously:
used here is the Traveling Salesman Problem (see appendix

C.3). C_cOvV _n® wi
H _CDJZVL nZ’, with

j#zk

3.2.2 Solving CSOP with a Hopfield network C some positive constant, and

Hopfield-like nets that solve CSP and CSOP are calpiini- n the number of variables in the CSP.

sation networks The original optimisation network as pro-

posed by [Hopfield & Tank 85] is of the continuous, binary The global activity constraint (winner-takes-all) can be used &
kind. The method they used to construct a neural net, and de-
termine the synapse values can, for the case of CSP, be genéf! &
alised as follows:

X
lternative to the terms ' amd with good effect.

The constant#\, B andC have to be ‘tweaked’ to achieve op-
First, we allocate one layer for each variable, with as manyimal results, and the parameteis often chosen as to be a lit-
neurons in it as the size of the variable’s domain: each neuroft€ larger than the actual number of variables, and is decreas
in the layer corresponds to one state in the domain of the cofowards its proper vaIue_ during a run to make sure the syste
responding variable. When the neuron is active, the variabl§loesn’t converge too quickly.
assumes that specific state. There is no compulsory rule for-
bidding that several neurons may be active at one time. In thig 2 2.1 \Weighted CSP: a subset of CSOP
case, the layer does not represent a valid variable state, but the
ability of the network to wander more freely through its stateThe most naive way to add the cost function on top of the cor
space before settling down to a valid state, may perhaps be agtraints is to define the energy function in such a way that, i
vantageous, for example, by enabling the system to considefach minimum that represents a solution, it has the same val
several possible variable states at once. as the cost associated with the solution.

The computational constraints are added by defining terms afonsidering the requirements on the form of the energy func
the form H(t) , adding them together, and deriving the syn-tion, it is apparent that not all cost functions can be describe
apse values from the resulting function. Since the ferg) It will be shown that a certain subclassn be described: this
allows only pairs of states, only binary constraints can be exclass shall be calledreighted CSP

pressed in the energy function. Therefore, the CSP needs to

binary. q’%e main idea is that each elementf each (binary) con-

straintp, of a CSP now has a weight valwg  attributed to it

For every binary constraing,  between two variabl%s andThe total cost function of any solutioncan then be defined

X4, there is the following term in the energy function: as:
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_ In binding models, an internal layer (theading laye) is able
F(x) = % g W, ¢ o . 2 > o
pfTp efmp, 0 lay associationsb{ndingg between specific combinations
e = subvectof X of patterns found in a number of other layers (ti@ut lay-

ers). To achieve this, couplings between input layers and th

In a regular CSP, the weight values can be thought of as beinlginding layer exist. It achieves binding by allocating a randon

zero. Also, the combinations of variables that are not allowednternal pattern for every pattern combination to be learnt

(i.e. are not part of the corresponding constraint) can bend then using a Hebb-like rule to determine the interlaye

thought of as actually being part of the constraint, but havingsynapse values.

an infinite weight to assert that they are hard constraints. Now,

constraints are no longer subsets of subdomaing bfit sim- Once combinations of patterns have been bound, the bindi

ply subdomains oK. layer is able to reconstruct incomplete patterns in some of tt
input layers with help of the patterns found in other layers

This representation provides an intermediate step betweefhe couplings between the binding layer and the input layel

CSOP and synapse weights, and shows what kinds of CSO#&re two-way, in analogy with the reciprocal couplings founc

can easily be mapped onto classical optimisation networksbhetween neuronal columns. This provides the feedback nece

However, since infinite values are generally not desired, angary for the reconstruction process. More recent observatiol

are not possible in the energy function in particular, each inficoncerning lesions in the hippocampus and activity patterr

nite weights can be replaced by a large but finite valueRsay, found in the rat’s hippocampus [McClelland & Mcnaughton

This also shows a deficiency of optimisation networks: all94] support this model of binding, and point to the hippocam

constraints are necessarily soft. In nature, which inspired neupus as a possible candidate of a binding layer.

ral networks, this may be acceptable. In life, the aforemen-

tioned traveling salesman may perhaps get away with simply binding layer

skipping a particularly inconvenient city.

A weighted CSP which is described in this way can be trans- full .
lated into synapse weights immediately, if we assume that all synaptic
values of the cost function fall within the rangeMp,or can connections
otherwise be scaled to fit within that range. Each tHrJin as

found in the energy function described in the previous section COS0OOCCORO  @OCOOOCOBOD  OOCOOORCOR0
is simply replaced by:
input layers
H =AY WV o
P ofro e’j kK’ FIG 3. Example of binding
Assume that the binding layer has learnt a combina-
. ; ; tion of three input patterns across the three input lay-
with A, v/ andV, as in (EQ 2j). put p ) put 'ay
ers. When two of these are applied to their
corresponding layers (black neurons), the binding pat-
tern (ghosted neurons) will activate, and the third pat-
tern (ghosted neurons) can be reconstructed.

This is actually a generalisation of the formula used in [Hop-
field & Tank 85].

There are some problems with this representation. The new ) . ,
parametelR needs to be tweaked for optimal results. Often, Assqme that layep is the binding layer, and an input layer.

is chosen to be only a little larger thih so the network does Binding can be seen as the storage of a global patterrg say
not converge too quickly to a valid but highly suboptimal so-Which extends across all layers. The synaptic contribution be
lution. This however means that the cost values of the softween neuroi in layerp and neurork in layerq is:

constraints of intermediate states of the network which do not
represent valid solutions may now have a significant effect on J
the behaviour. In other words, the convergence of the network
becomes more complicated, and spurious global minima may
even be introduced.

g inter(] HN H|
Siqk= C T —amEy - an (EQ 2Kk)

with &° the (random) binding subpattern,

q . .
3.3 Binding and&" the subpattern found in input layger
Since the only restriction imposed on the patterns used in tt
The concept of binding originates from neurobiology binding layer is that they are distinguishable from each othe
[Damasio 89] but has more recently taken a more concretghey are often chosen so as to achieve a high memory capac

form in various mathematical and simulation models [Rotter &in the binding layer. Typically, biased patterns are used to th
Dorffner 90] [van Hemmen & Ritz 94] [Moll & Miikkulainen  end.

95].
Next to that, the patterns may be stored in each individual lay
er also, using the usual Hebbian rule:
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g 3 intraller _[r _0O The problems observed in case of an unconstrained state sp
3 =3, =C K -amk.—a EQ 2 . e :
ri.rk rk.1j ! k™ol (EQ2) may be attributed to at least one specific cause, which we w

The two C constants may be chosen so as to provide a propg Il thecollision problem simulation results show that, in case

level of total input for each neuron, depending on the situa® multiple states per variable, the constraints that have to |

tion. For instance, [van Hemmen & Ritz 94] use considered cannot be separated sufficiently to handle the prc
' ' lem. They ‘collide’ with each other, and many spurious effect:

inter  _intra 1. _ are introduced. As an example, simulations of a network sol\
C, =C, = -7 withnthe number of input layers,  ing the N-queen-problem (for a description of this problem

see appendix C.1) show, that the network effectively tends f

ointer _ gintra _ 1 ¢ input layersy. rule out the possibility of p!acing gueens in the middle tc
q q 2 solve the problem early during its convergence, because,

any chess player will know, queens placed in the middle chec
This choice prevents the neurons to receive too much total inagainst more chess pieces than they would at the sides of 1
put from the different layers. An activity constraint could also chessboardon average If the specific solution requires a

be used to achieve this. gueen to be placed in the middle, it has only a small chance
be found.
3.3.1 Binding and solving CSP Another reason why the winner-takes-all system may wor

o _ . better that the continuous one is that it allows the system to t
Binding can be seen as being analogous to CSP-solving, iSome random variations before it has to settle down into its f
case the binding architecture may be arbitrary rather than reng| state. Exactly because the continuous network is of a co

stricted to a single binding layer. A binding of two specific tinuous nature, it is not well able to retrace its steps once
patterns found in two specific layers can be seen as analogodpecific configuration has formed.

to the learning of a binary constraint between the given activi-

ty states of the layers involved. Finding a proper global statéMaybe what we need is a system that can treat several st:
that fits all the partial configurations corresponds to finding aconfigurations simultaneously without colliding with each oth-
solution of the learnt CSP. Input layers which receive stimulier. Also, being able to handle several solutions at once may |
from outside the system may actually exist as well, with thea means to keep several possible options open while the ni
external stimulus becoming part of the constraint system. work is converging, and decrease the chance of the netwo

converging prematurely to a suboptimal configuration.
As such, a binding system may be seen as a more feasible

model of more general forms of computation in biological sys-

tems. Basically, the architecture is the same as an optimis ;

tion network, but with positive synapses between distributegzl"o_ th_erature on COherent
activity patterns, rather than negative ones between single@SCillation

neuron patterns. For layer patterns with only one active neuron

and an activity constraint, this system coincides with an opti- . . T .
misation network with Winner-Takes-All-type layers. 4.1 Neur0b|0|og|cal flndlngs and theories.

) ) Coherent oscillation has been identified as a possibly impo
3.4 Problems with neural nets solving CSP tant phenomenon long ago, and there has already been a th
ry about its meaning or usage within the brain: the amount c
In general, the [Hopfield & Tank 85] kind of optimisation net- temporal coincidence codes the mutual relevance of inform:
work cannot just be applied to any CSP without ‘tweaking’ tion [von der Malsburg 81]. A more concrete interpretation o
them first. Otherwise, the network will typically converge to thijs is given in [Sporns et al. 89]: neurons firing in synchrony
an |||ega| Conﬁguration, in which some of the variables are nor(that iS, f|r|ng with the same frequency), and in particu]ar' ir
assigned a state. This especially happens when the constraifase(which means firing with the same frequency as well :
are tight. The parameters B, C andn can be ‘balanced’ but \ith temporally coiciding firing moments), signal that they are
as [Wilson & Pawley 88] showed, this may not be enough topart of the same pattern, while neurons firing out of synchron
provide all the necessary balancing. or out of phase are unrelated. We will call this ipaase-link-

) ) . ing. The phenomenon that neurons achieve in-phase oscillatic
Applying Winner-Takes-All works relatively well, and one of \iih each other, by whatever method and for whatever pui
the few systems that is made to solve arbitrary CSP [Tsang 9?;0% will be callegphase-locking

is a Winner-Takes-All system. This shows that the idea of un-

constrained walks through the state space is not really effecfhis general idea of the meaning of oscillations can be foun
tive. However, Winner-Takes-All has problems with the morein [Baird 86]. This paper addresses oscillations as found in tt
general class of weighted CSP: it tends to settle down as soQf}factory system. The observations show transitions betwee
as a solution is reached, whether it is a good one or not. Xdhaotic dynamics and oscillatory dynamics, apparently in
course, this problem may perhaps be solved by adding noise.duced by the respiration cycle of the animal. Baird characteri:
es these global state transitions kepf bifurcations Hopf
bifurcations are sudden transitions of dynamical behaviour c
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chaotic systems, and are usually a result of a change in thEhey also state that coherent oscillation could be a mechanis
global ‘excitation’ of the system. In this case, the ‘excitation’ to link local features that correspond to each other in som
is hypothesised to be induced by the respiratory cycle. way. Their basic idea is that there amd coding levels

He proposes that a clearly oscillatory state signals good re- Thefegturelevel: the features .Of t'he external stimulus are

trieval, and that chaotic behaviour is actuated from outside, in coded in the amplitude of excitation of neural groups.

order to ‘reset’ the network’s state and make retrieval of the Thelinking level: phase locking establishes relations

next pattern easier. This idea is in fact much like simulated an- among these groups.

nealing, where a high noise level allows the network to find a , )

more optimal configuration because it doesn't get trapped inf N€Y argue that there has to be some separate kind of sign

local minima easily, while the noise is lowered eventually so'nd in order to achieve phase-locking. They argue again:

the network is able to settle down in a definite state. The difPhase-locking by regular excitatory signals between the ne

ference is that it is repeated each time a new stimulus arrives'oNS t0 be phase-locked, because this way, information fro
one level may interfere with the other because the signals a

Next to regular oscillations and chaos, irregular oscillationsthe same.

were found. These were characterised as superpositions of sev-

eral pscillatory states with different periods which compete for4 2 Neural network models

dominance of the dynamics.

Although Baird is less specific about the possible purposes 0}'he observations and theory mentioned above form the ba
of a lot of CO research: a large part of the proposed ideas a

oscillations, the general idea is already there. Several other ob- . .

! : o .models refer to some of these theories and observations. Th
servations made on the visual cortex lead more specifically in .
this direction are often modeled after some part of the visual cortex or tt

olfactory system, and try to explain or reproduce some of th
A lot of neurobiological research, including research on coher®Pserved phenomena. The ideas of phase-linking and the t
ent oscillation, regards the visual cortex. It has proven to bd€Vels of processing are often found back as well.
quite hard to reproduce or even understand the visual proceslgfowever, there are several different theories about the actu

ing abilities of animals. In particular, it is not clear how they mechanism that establishes CO. The different ideas abo

are able to recognise particular objects in the kind of comple>f1OW CO works and what it may achieve is perhaps best illus

and' varied visual scenes t'hat.are part. of everyday life. The fOItrated by discussing the neural network models that these the
lowing general theory exists: after visual stimuli have been . . :

. : ries spawned. Not all existing models are described here, b
preprocessed by the retinal area, they are projected onto spe- .
- . . rather, a subset was chosen so as to cover as many differ
cific, approximately topological, cortex areas. These areas, to-

gether called the visual cortex, apparently play an importan'[deas as possible without having to discuss all proposed mo

o ; . . ?Is. Within each description will be given: its biological inspi-
role in visual scene processing. In particular, specific neura

assemblies have been found that react to local visual stimu iatlon, purpose, summary of its architecture, plus an

having specific orientation angles and motion direction [GrayImportant details, along with some comparisons and notes.

et al. 89]. It is however not clear how this kind of local infor-

mation is brought together in order to arrive at high-level per4.3 Neurons as oscillator units

ception, like the recognition of an object. Some theories

propose that coherent oscillation plays a role in this. The first three models described here assume that the beh:
iour of neurons or, more often, groups of neurons, can be d

[Gray et al. 89] found that groups of neurons in separate areagribed by phase-locking harmonic oscillator units. For eac

of the visual cortex would display coherent oscillations amongof these models, the way these units are built up and are at

each other, usually with zero phase difference. More specifito synchronise is similar. They are different from the Hopfield-

caIIy, when the visual stimulus was continuous, the neighbourtype neurons we have discussed, and fall outside the ust

ing areas that received the stimulus would synchronise, and ¥opfield theory. However, a complete introduction to harmon

two separate stimuli with the same orientation and movemenjc oscillators is not really necessary for us to be able to reas
direction were applied, the more distant receptive areas wouldpout them as we will.

still synchronise. Apparently, some kind of perceptual group-
ing was taking place by means of synchronisation. Usually, each unit has only one parameter: its phage . It is

[Eckhorn et al. 88] find similar in-phase oscillation in the visu- determined by the differential equation

al cortex under similar conditions. They hypothesise that

phase coherence could be achieved either through a centralised do; (1) -
oscillator or by direct mutual phase-locking. They go in favour dt

of the latter because no centralised oscillator is as yet appar-

ent, and this could also explain the direct mutual connections , the basis oscillation frequency,
between the areas in question.

N
w= 3 Fysin(® (t-1) - (1)) , with
ji=1

Fii the phase-locking strength,
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1T atime delay (optional) 4.3.1 Synchronization in an oscillator neural

_ _ , network
The terms in the summation can be thought of as ‘oscillatory’

equivalents of the standard Hopfield synaptic potential termsrhis paper, [Luzyanina 95], illustrates the idea of the existenc
(see chapter 2.1.1). For positivg, , the sign of the factofof a central oscillator which is able to synchronise a number
peripheral oscillators. Each peripheral oscillator is feedback
. _ ) o connected to the central oscillator only, and can be in synchr
difference between neuranand neuron, soi will tend 10 v \ith it nor not: the central oscillator determines in effect
phase-lock withy, if both neurons have about the same basisy e tocus of attention’. It is proposed that the septo-hippoc
frequency. For negativé; , the neuron will tend to synchro-gmpys may play the role of a central oscillator within a part o
nise to the antiphase of neurpnThis behaviour can also be the cortical system. Viewed in this light, the central oscillatol
illustrated with a phase response graph, showing the resultinig in fact a kind of ‘binding’ subsystem. This architecture,
relative phase shift as a function of the phase of a positively owhere all phase-locking is mediated by the central oscillato
negatively coupled neuron: also makes the system more tractable to analysis.

—F;sin(®; (t) -, (1)) will be exactly opposite to the phase

positive F ' ] It continues with previous work on systems of oscillators
which explored the possibilities of coupling delays. They ar
gue that signal delays, which definitely exist in biological sys
tems, may play an important role in the behaviour of the
system.

The theory simply assumes that groups of neurons can |
modeled with a single oscillator each. The phase-couplitri]gs

are constant weight factors. The paper analyses the effect d
ferent coupling weights and delays have on system dynar
ics. In each case that is considered, all weights and delays «
the same among oscillators, though the frequencjes may

resulting phase shift of i
o

L %o, &
.
o,
%o,

o"‘ .
e NEgative F

-3 -2 -1 0 1 2 3
phase difference between i and j be different.

FIG 4. phase response of oscillator It is shown that longer delays enables unstable (partially

locked) as well as stable solutions with several different fre

guencies to exist. They propose that, by adding or changing

external stimulus, attention switching can be effected by thi

The main reason for reducing a system to a system of oscillSystem: it would be able to switch between different full or

tors satisfying this particular formula is tractability; systems ofpartlal Iockmg states. H_owever, Itis npt clear how this can ac
harmonic oscillators have been used extensively to modeliuaIIy be applied to achieve any practical purpose.

many physical systems as well. Sometimes, it is first shown

under which circumstances formally-described neurons o4 3.2 A model for neuronal oscillations in the
groups of neurons can be modeled as oscillators. In other cagisual cortex

es, a more high-level phenomenological view is taken: because

it is observed that neurons oscillate, it is simply assumed thafnhis model is described in two companion papers, [Schuster

somehow, neurons behave like harmonic oscillators, and CaWagner 90]. It is an attempt to explain the observed CO ph
be faithfully modeled as such. In this case, it is less clear as tomena in the visual cortex. First. a group of ‘regular’ neu

which extent the model is accurate, as many, perhaps impofyns is modeled as an oscillator. Then, several different phas
tant, details in biological observations are not accounted for. coupling schemes between oscillators are compared.

The total phase shift of an oscillator as relative to its basis fre
quency is the total of all phase response terms.

Also, describing a whole group of neurons by a single unit, aspe first paper shows that a group of inhibitory and excitator
is done by some models, obviously means reducing theyrons of the continuous type can form a special kind of o
number of system variables enormously. This implies that &;jjator. Because the neurons are chosen so as to have eit
great deal of local structure found in biological systems is ig-g| positive or all negative synapses, the synaptic couplings a

nored. This assumes that either this local structure is not relg;o; symmetrical. This causes oscillations in the dynamics ir
vant for the theory and serves another function, or thatiead of the usual relaxation.

biological systems simply do not operate efficiently.
In order to analyse their behaviour, the two types of neuror
are grouped into an excitatory and an inhibitory cluster witt
appropriate connections. By applying mean-field theory, thi
system can be approximated by a system of only two differer
tial equations. Note that this simplification assumes that the ir
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ternal details of the neurons’ firing patterns do not containindividual bars, with separate bars each having separate ph:
information, since these are replaced by a single variable. es.

This system is shown to have a stationary solution for low exLocal phase-locking proves to be a problem when the phas
ternal stimuli (‘passive’), and, through a Hopf bifurcation, os- locking has to be achieved over long distances. Apparentl
cillatory activity for higher external stimuli (‘active’), the phase-locking effect is too weak to carry far enough. Sorm
increasing in amplitude and frequency with the amount ofdisadvantages of working with a central oscillator are also aj
stimulus. It is shown that, when two of these simplified sys-parent. There are only two possibilities for each oscillator: ei
tems are coupled, they show in-phase synchronisation onlther in or out of phase. This means that no patter
when both are active. Also, it is shown that there is little dif-segmentation can be achieved, unless there is more than c
ference as compared to the full-detail system. central oscillator. Adding more than one central oscillatol

would however introduce the problem of determining whick
The second paper continues with this basic model. The modejne should lock with which units.

of two coupled systems is simplified even further by approxi-

mating them by oscillators with explicit passive-active statesThe two levels of processing have been explicitly separated
and phase-couplings which mimic the derived behaviour. Theyhis system: they can be found in, respectively, the oscillator:
are like the basic oscillators described earlier, exceptRpat state (active or passive) and their phase.

is always zero when one or both oscillators are passive, and

w, is either a constant value, or again zero if the oscillator i4, 3.3 Cooperative dynamics in visual processing

passive. ) )
This paper, [Sompolinsky et al 91], shows how a system c

A one-dimensional array of oscillators, is then tested with dif-neural oscillators can be used to phase-link local visual stimu
ferent kinds of couplings and stimuli. Two different kinds of into a coherent global object, and is able to segment multip
stimuli are tested, which are chosen to be analogous to visuabjects. In this model, each oscillator models a single neurc
stimuli, but in only one dimension. These are two shortinstead of a group of neurons.

‘bars’, and one long ‘bar’: o o S ) .
The criteria for linking the local stimuli into objects are, in ac-

one long bar cordance with the experimental observations described earli
O O topological closeness and orientation. Moving stimuli are ad
dressed later on in this paper, but these do not reveal any p
ticular new system properties.
two short bars

OO0OO0O00O The oscillators used here are a little more complicated the

standard oscillators. They have two parameters: phase and a

plitude. The amplitude is determined by the stimulus only, an

FIG 5. Schematic illustration of the two different stimuli the phase is determined as with standard oscillators. The fur

The circles denote units, and the arrows denote positive tion F; now depends on both the value of the coupling
stimulus, causing the corresponding units to become strength and the amplitude of both neurérendj. The fre-
active. Couplings between the units are not shown here. quencies are the same for all neurons. Finally, a noise ter

n (t) is added to the equation.
Three different couplings were tested with these stimuli:

short-range couplings: each oscillator is positively coupled The network has the following structure (see FIG 6.):
with its two neighbours.

central oscillator: all oscillators are positively connected
to one single oscillator only, similar to the previous model
we have examined. These connections are two-way.

long-range sparse couplings: each oscillator is positively
coupled with several others, which are randomly selected
with a probability distribution that decreases with dis-
tance. Note that the couplings thus obtained are not neces-
sarily symmetrical.

The short-range system fails to reach phase-locking, probably
because the phase-coupling over long distances is too indirect
for the phase-locking to be established properly. The central-
oscillator system succeeds in locking the phases of the active
neurons, but in the case of two short bars, the bars are phase-
locked with each other as well, contradicting experimental re-
sults. Only the long-range system succeeds in phase-locking
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means to solve the desynchronisation problem here, but tt
has not been shown. The two coding levels express themsel
Yo in the existence of a separate phase and amplitude.

receptive fields . . .
4.4 Neurons with emergent oscillation

The following models describe each neuron in more detail. /
variety of neuron types are used. Oscillatory behaviour i
emergent, and is usually caused by local inhibition or a refrac
tory period (that is, a period in which the neuron is temporari
ly disabled, or ‘tired’ as a result of having fired) contained
within the specifications of each neuron. As opposed to the o
cillator systems, there is the issue of how phase-lockin

neural clusters

emerges.
strong synapse
weak synapsesyjithin clusters L . ,
between clusters 4.4.1 Synchronization of integrate-and-fire
neurons

FIG 6. Network architecture

The orientations of the receptive fields are shown as The paper [Smith et al. 94], shows how two mutually inhibito-
oriented bars. Each neuron is sensitive to one specific ry integrate-and-fire neurons may oscillate in phase or in ar
orientation only. The synapses between the clusters are tiphase according to the delay in their inhibition signals. I
of the phase-coupling kind. continues on previous work which discusses excitatory syr
apses. What is interesting is the way the system can be ar
It consists of an array of local receptive fields. Each has onlyysed analogous to oscillators, using an analogy of phase, a
one parameter: orientation. Each neuron receives input frora corresponding phase response diagram.
exactly one receptive field. A group of neurons that receive in-
put from the same receptive field is called a cluster. The synAn integrate-and-fire neuron is like a continuous neuron, onl
apses are chosen so as to be able to reflect the phase-linkingth a positive constant added to its action potential, making
behaviour found in the visual cortex: Within clusters, cou-fire spontaneously in the absence of any stimulus. Howeve
plings are strong so clusters will phase-lock independent othe second difference is that, after it has fired, its action pote
orientation preference. Between clusters, couplings are weak@l is reset to zero. Assuming that the firing threshold is abov
and decrease with the difference of orientation preference bezero, the neuron will oscillate with a fixed period. The phas
tween the coupled neurons, so clusters will only phase-loclef such a neuron can be defined as its stage in its oscillatic
with each other when the orientation of their stimuli is the period.

same.
It was already shown in earlier work that two integrate-and

Both analytical and simulation results show neat coupling befire neurons will synchronise in-phase when they are mutuall
haviour, but they also uncover some problems: The simplesgxcitatory when there is no signal delay. In the inhibitory case

choice of F; , which is a basic ‘tent’ function, results in poor they will normally fire in antiphase, but when an appropriate
(small) delay is added, they can be made to fire in phase.

discrimination. A nonlineaf;, , as well as a careful choice of
synaptic couplings were needed to obtain proper behavioutn all cases, the phase-locking can be analysed using a pha
Another problem that had to be ‘engineered’ was the slow+esponse function. This function shows how much the phase
ness of desynchronisation: oscillators which have the same b& neuron is slowed or sped up by a spike from another neur:
sis frequency do not desynchronise spontaneously. Previoughen it arrives at a specified phase within its firing cycle. Th
work has shown that a simple local noise term is not sufficieneffect is strongest just before the neuron spikes.

to effect desynchronisation. Therefore the noise term that was

chosen here is correlated with other neurons. Finally, the prob- E
lem that negative couplings do not ‘inhibit’ synchronisation, % 1
but tend to synchronise neurons in antiphase instead shows up g 8'2 i
here: using negative couplings proved to be disruptive to prop- & 0'4
r behaviour. = :
er behaviou 2 02}
The units we have seen here are like those in the previous 3 Oo 0.2 0'4 0'6 0'8 1
model, but with graded activity instead of an active/passive £ ' i ‘ y

phase of i at which spike arrives
state. The difference is, that the oscillators do not halt when in

passive mode: they continue oscillating at their basis frequen- FIG 7. Phase response of integrate-and-fire neuron for
cy, even though their signals do not have any effect on other arrival of a inhibitory spike
neurons. Halting the oscillators as well might have been a
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Note that the response is different from that found in oscillatorels the visual cortex in detail: there are orientation-sensitiv

models: the effect is strongest when there is little phase differgroups and motion-direction-sensitive groups. Each group |

ence between the neuron and the signal. What can also be nsensitive to one aspect of the visual stimulus only, like a spe

ed is that the frequency of a neuron increases with highecific orientation or motion direction. Groups which have over-

excitatory stimulus. Both these phenomena are typical for théapping receptive fields, similar orientation, or similar motion

emergent models discussed below. direction are mutually connected to effect the phase-lockin
behaviour found in the visual cortex.

4.4.2 Bifurcation and category learning in They argue against substituting a group by a single oscillato
network models of oscillating cortex To demonstrate their argument, they compared the behavio
of a group with that of a oscillator standing for the group, an
This paper, [Baird 91], discusses a model based on neurobideund that the single oscillator is more brittle with respect tc
logical theory stated earlier [Baird 86]. The model is set up toperturbations.
show how periodic sequences and chaotic attractors can be
stored to mimic the complex dynamics found in the olfactoryWithin the scope of the modeigentrancyeffectively means
bulb. the existence of specific reciprocal connections. These are al
to become ‘active’. This means that the weights of the synap
In this model, there are separate excitatory and inhibitory neues between two groups increase rapidly as soon as the grot
rons. The inhibitory neurons have a separate purpose: theéxcite simultaneously. The weights return to normal after .
signals do not carry information to other neurons, but ratheshort time.
they periodically inhibit their close excitatory neighbours, thus
causing the oscillatory effects. This also corresponds nicely td/ariability in the oscillation characteristics between the group:
the fact that ‘real’ inhibitory neurons typically only signal are used to prevent accidental phase locking. The possibili
across very short distances, and have synapses that terminate interference between the two levels of processing is ac
on cell bodies instead of dendrites, already suggesting such dressed, and it is shown by simulation that the dynamical syl
difference in function. aptic growth prevent groups from accidentally activating
other groups that do not receive stimuli. The dynamical synr
This idea of local inhibition is taken to the extreme: each exci-apses add in effect a kind of hysteresis, below which only th
tatory neuron has exactly one inhibitory partner, which is conexternal stimuli pass unmodified, while stimuli from other
nected to that neuron only. The neurons are all of thegroups have little effect. Only after a group is activated by a
continuous kind, and there is no delay between signals. Highexternal stimulus, it becomes sensitive to signals from othe
er-order synapses are then added to enable the network tpoups, so it is able to synchronise with them.
store arbitrary patterns more effectively. It is shown that, thus,
N/2 periodic attractors may be stored. The system achieves phase-linking, figure-background se
mentation, figure-figure segmentation, and figure-figure sec
One objection that can be stated is that the model trigsnn mentation of more complex figures made up of multiple bar
ic the behaviour of biological systems, without explaining why of different orientations. Segmentation of more than two fig:
they should exhibit the behaviour in the first place. No feature-ures is not shown.
linking or segmenting is achieved.

. _ 4.4.4 Synchronization and computation in a
4.4.3 Active reentrant connections chaotic neural network

This model is described in two papers, [Sporn§ et al. 89} angl, this paper, [Hansel & Sompolinsky 92], a model is set up t
[Sporns et al. 91]. The model uses neurons with dynamicallyshow how synchronisation and rapid desynchronisation mig
changing synaptic weights. It is shown that a system of sucle achieved using chaotically oscillating neurons. Especiall

neurons, modeled after visual cortex architecture, is able t9apid desynchronisation was identified as a problem in earli
achieve phase-linking and segmentation. The architecture igystems.

based on a theory which is calleduronal group theoryBasi-
cally, a neuronal group is a set of densely interconnected neurhis model uses the Hindmarsh-Rose neuron, the typical firin
rons. Oscillation occurring within a group is always patterns of which mimic those of a real neuron at a phenom
synchronous, while between groups, it is usually not synchronological level. The states of this neuron are binary, and th
nous. These neuronal groups are believed to emerge during thetivation function is the step function. The interneuron cou
learning phase of the organism. pling terms in the action potential are exactly the same as
the continuous Hopfield model. However, the action potentic
In their system however, the groups are determined beforgy aiso determined by some additional, nonlinear, terms

hand. The existence of refractory periods and inhibitory neuwhich are in part determined by two more internal variables
rons effect oscillation, though this behaviour is not treatedine recovery variable and the adaptation current. The total i

analytically. The neurons themselves are like basic neurongernal state of the neuron is described by three relatively cor
but with an extra term that makes their activity decay only(jﬂex differential equations.

slowly after a stimulus has disappeared. The architecture mo
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An external stimulus can also be applied. The behaviour of théhe neurons in this group will be necessarily phase-lockec
neuron to an external excitatory stimulus is determined experiThe paper does not address the computational possibilities
mentally. It can be summarised as follows: Co.

Low stimulus: no activity

Medium stimulus: periodic bursts 4.4.6 LEGION

High stimulus: chaotic bursts .

The paper [Wang & Terman 95] describes the LEGION (Lo-

Synchronisation of a fully-connected network with excitatory cally Excitatory Globally Inhibitory Oscillator Network) sys-
synapses and randomly distributed external stimuli is observetem. It shows how a grid of neurons, stimulated by a numbe
experimentally for different synaptic weight values. For large©f joined segments in a two-dimensional map of on-off pixel
enough weights, the neurons synchronise their bursting. Witin other words, a representation of a visual scene) may I
very large weights, bursting is chaotic, but the firing momentsphase-linked, while the different segments are mutually out c
still occur in synchrony with those of other neurons. phase.

A network is set up, made up out of positive|y interacting The bU|Id|ng block of the system is an oscillator, made up o
clusters of neurons, each consisting of neurons which are sefo continuous-type neurons, one excitatory, receiving input
sitive to differently oriented bars found at each receptivefrom other neurons, and one inhibitory, receiving input frorm
field, much like [Sompolinsky et al 91]. Synchronisation is itS excitatory partner only. The potential equation of the exci
shown under the proper conditions and desynchronisation i&tory neurons is slightly non-standard: it includes a nonlinee

fast (3-5 bursts) due to the chaoticness of the bursting. decay term. It is probably engineered for maximum perform
ance.

However, no segmentation is achieved. For the case of seg-

mentation, the system runs into the problem of how to separateXcitatory connections exist between each oscillator and it
the two levels of coding: the transitions of a neuron betweerfour neighbours. This allows the activity of neurons to propa
periodic and chaotic bursting is determined by the total inpugate, and hence enable phase-locking of neighbouring acti
only. If several patterns are to be segmented, the neurons &€urons. The global inhibitor, receiving input from all oscilla-
the different patterns should each be in a specific burstingors, adds a competitive element to the activity of neuron:
mode. However, an arbitrary difference in total input mayWhich is needed to desynchronise the different segments. T

cause neurons to switch mode, independent of the pattern th@jobal inhibitor only becomes stimulated when any oscillator’:
belong to. activity is above a certain threshold. Its activity will increase

as long as the stimulus remains.

4.4.5 _O_scﬂlatlons and low firing rates in o~ o~ all units excite
associative memory neural networks inhibitory neuron

This model, described in [Buhmann 89], uses regular neurons
to form a regular associative memory to store low-activity pat-
terns. Like [Baird 91], inhibitory neurons are locally-connect-
ed, as found in biological systems. In this system, they
eliminate the need for negative synapse weights between exci-
tatory neurons and a special learning and update rule to deal Grid of oscillating units.
with biased patterns. They also introduce oscillations in the Each has positive couplings
dynamics. The main idea of this system is to bring the overall With its direct neighbours.
ar_chltecture _closer to biological reality than traditional associ- FIG 8. LEGION architecture
ative memories.

inhibitory neuron
inhibits all units equally

) o ) . The system shows good phase-linking, and is shown
In this model, each inhibitory neuron is connected to multiple;chieve clean segmentation of four visual segments on

excitatory neurons within a certain neighbourhood. Un“k620x20-pixel grid. After applying the stimulus, the dynamics
most of the systems described here, the network is updateghoy an immediate excitation of all neurons to which the
asynchronously. Within this update system, time, and time deggimyjus is applied, which is however soon inhibited by the
lays, can be measured Monte Carlo StepgMCS): the pas-  gigpal inhibitor. The activity peaks emerge again later, thi
sage of one MCS means tfatrandomly determined neurons {ime with the neurons of the different segments slightly out o

have been updated. phase, while the neurons within each segment remain ir
: - o L hase. This process continues until the groups of neurons tt
This model is interesting in that it is an example of an asyn-p P group

A . . correspond to the different segments each fire in turn.
chronous oscillating system, since asynchrony may vyield better

computational' re.sults, especially in optimisation prOblemS-Segmentation is achieved by the network making the differer
Coh.erent oscillations are also found. These may l?e, at 'ea%gments fire in synchrony, but out of phase with respect
partially, a result of the areas of effect of the inhibitory neu-g4ch other. In effect, a ‘cycle’ is established, within which the

rons: each will inhibit a whole group of neurons at a time, so,anwork cycles through all the different segments, activatin
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each one in turn. An intuitive analysis of this behaviour can beesral superimposed patterns. This is even shown to function
given as follows: within each segment, neurons excite eacla multilayer binding architecture.
other, and therefore phase-lock. There is no relation between
the neurons of different segments, therefore the different segthe SRM tries to model the properties of individual neuron:
ments’ oscillations are, in principle, independent. When twoOf a biological neural network faithfully, while at the same
segments’ activation times happen to over|ap, the |nh|b|toﬁ|me remaining tractable to mathematical treatment. The ne
will be more active, so that, during the overlap period, bothrons are ‘spiking’ neurons, which means that the excitation c
segments’ activities are decreased. The segments therefofeneuron results in short ‘blips’ of activity rather than a pro-
tend to shift their phases away from each other, so that eadanged period of activity. The inhibitory neurons are modelec
will take its own niche within the available time in the total @s in [Baird 91]: there is one inhibitory neuron for each excita
cycle. Note that, in order to keep the different segments froniory neuron that is connected to that neuron only. Howeve
running out of their niches again, the oscillation frequencies ofhe SRM attains the delay that causes neurons to fire in bur:
the different segments should be about the same. by means of a delay between the excitation of a neuron ai
the response of its inhibitory partner, rather than by means
The system works with excitatory connections which are localusing continuous inhibitory neurons.
only, in contrast with [Schuster & Wagner 90], who found
that, in similar circumstances, units with local connectionsBecause of the locality of the inhibitory neurons’ connections
0n|y would not Synchronise proper|y_ Apparenﬂy, the phase.tne effects of each inhibitory neuron can be incorporated int
locking in this system, which is achieved by a sort of chain rethe specifications of its excitatory partner, thus effectively
action of excitation, works better than the phase-locking agnapping a pair of neurons onto one ‘super’ neuron.
achieved by oscillator units.

Interference between the two levels of processing is prevented
by a proper choice of synapse weights, external stimuli, and inputs fro
thresholds, so that neurons will not accidentally activate others Other neurons
which do not receive a stimulus.

neuron i inhibitory
output of ~ neuron
neuron i

FIG 9. A pair of SRM neurons

external

4.4.7 The Spike Response Model (SRM) stimulus

The spike-response model (SRM) is described in several pa-
pers, [Gerstner & Ritz & van Hemmen 93] and [Ritz et al. 94].In the following descriptions, the tineis a discrete variable.
A summary is also given in [van Hemmen & Ritz 94]. The More specifically, the time step size chosen is 1 milliseconc
SRM was the main inspiration for this research, and it will bewhich is argued to be a high enough resolution for the purpos
shown in chapter 5 that, of the systems described, it is still thef modeling biological reality. The membrane- (or action-) po-
closest to the kind of system that we want. Because it will beentialh of a ‘super’ neurom consists of the following terms:
referred to in more detail later on, it is described here in more

detail than the other systems. h () = h?xternal(t) + hirefractory(t) + h:nhlbltory(t) +hiSynaptlc(t)

In the SRM, like in [Baird 91], there is a separation between

excitatory neurons connected over long ranges and inhibitory '€ Néurons used in the model are binary (0/1) neurons. Tl

neurons, which are only locally connected. The inhibitory neu_activation function used is the stochastic one. We shall no

rons may be stimulated by any of their close excitatory neighd€scribe the different terms bf

bours, to which they reply with what is basically a long, strong

inhibitory echo of the stimulation they have received. Be-h"*"*""*' is the external stimulus, an arbitrary signal that car
cause of this, the excitatory neurons only fire in short burstspe applied to the network from outside.

which are intermitted by longer periods of quiescence.

. . . . refractory
Unlike the others we have seen, this model is concerned Wltii?i

segmentation of low-activity random patterns in a traditionalneuron has fired, it is blocked completely for a fixed amoun
Hopfield-type associative memory, rather than visual patternsf time Trefractory - This is what causes the neuron to spike
in a visual system. An important difference with the standard._ihar than remain active when it is excited.

Hopfield memory is, however, that the retrieval cues are ap-

plied as external stimuli rather than internal activity patterns. . OR for (t.<ts<t.+1
When the external stimulus disappears, the activity of the net- hire raCtory(t) =0 F F
work should also cease.

models the absolute refractory period. Just after th

refractory) with
0 0 otherwise

In this system, the ‘features’ that have to be feature-linked are t the last time the neuron fired, and

the individual neurons that make up each stored pattern. The
model achieves clean phase-linking and segmentation of sev- R large.
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inhibitory 4.4.7.1 Network layout and learning function

: models the effect of the inhibitory part of the ‘su-

per’ neuron. After the excitatory part has spiked, a signal travin the network, each neuroh has individual constants
els to the inhibitory part, exciting it unconditionally and innibitory axon
making it send back an inhibitory spike. The total delay be-i and 4,
tween the spiking of the excitatory part and the start of the inJimited range of integer values. Several different ranges ai
hi)r)hibitory inhibitory tried with different results, as will be discussed below.

I I

, Which are chosen randomly within a

hibitory membrane response is given

will then increase very quickly after which it decays exponen-The refractory period is chosen to be 1 ms, which i:

refractor
tially. The.shape of this curve is described by the functionequal to one time step. Effgctively, this means that the max
n(t) , as given in FIG 10. mum firing rate of a neuron when it is uninhibited is once eve
o o o ry two time steps.
h:nh|b|t0ry(t) - Jimh|b|toryn%_A:nhlbnory_rg with

The synaptic learning function is asymmetrical and is modele
after biological reality. Also, it can be shown that this rule re-

1 the moment of thenost recenspike in the period be- X o
sults in efficient storage. Assume th@tpatterns are stored.

] inhibitory[
tweenTo < T<t—A, . . .
rest ! [ Each patterre” contributes the following term to the synaps

from neuronj to neuroni:;

1
5 ol Nt
% 0.4} a the average bias across all patterns, as determined
= ozl (EQ 2e)
0 ) ) . . i . . As usual, adding up these terms yields the total synapt
0 5 10 15 20 25 30 35 40 45 50 weight. The thresholds, are optimised using the results ¢

time from start of inhibition (in ms)
the mathematical analysis of stationary retrieval states.

FIG 10. Responsen (t)  of inhibitory neuron.

Instead of accumulating the results of all spikes that occurre&"‘l'?'2 Mathematical analysis of network behaviour

inhibi . L. . .
beforet-a""""" , only the most recent spike that occurredThe (heuristic) proofs that will be discussed shortly make us

before that time contributes, effectively modeling a sort of satof equations of network dynamics which were derived in :
uration effect. previous article [Gerstner & van Hemmen 92]. The derivatior
is based on mean-field approximation, and is exact only fc

h*Y"*P! is the input received as a result of spikes emitted bythe limit of infinite neurons and low Ioa%, -0

the other neurons. The delay between the sending and the ar-

rival of a spike is given bp®°" . When a spike has arrived, it To obtain these equations, the neurons are grouped into ‘cla
' es’. A property of a whole class can then be described by ju

results. in a membrane potential that increases quickly for ¥ne term in the equations. To achieve this, the classes are cl
short time and then decays slowly. The shape of the curve 'Sen in such a way that each class contains neurons with t

described by the functioa(t) , given in FIG 11. same synaptic weights, axonal delay, momentary inhibitio
strength, and momentary refractory field. The idea behind th

synaptic N z O axon] is that, in the limit of infinite neurons, the number of classe
hiy " = Z Ji Z eM§T-1-4 0 will remain finite, while the law of large numbers can then be
j=1 1=0 applied for each class. However, this grouping techniqu
would not work for loads any higher than zero, because tr
= 1 — T — T — number of classes would then be infinite as well: all neuron
g 0.8 | would have a different set of synaptic weights.
()
[&]
e 06 I Using these equations, the stationary retrieval behaviour is d
§ 0.4 ] rived, that is, the amount of overlap the network has with eac
3 trained pattern when a specific stimulus is applied. Once th
o 02t . ..
X is known, the threshold values can be optimised.
O " " " " " " " "
0 5 10 15 20 25 30 35 40 45 50 Then, a condition of stable oscillation is derived. This is base
time from start of excitation (in ms) on the assumption that the network has already been oscill:
] ) ) ing in the past, and is shown to be stable when, for each ne
FIG 11. Membrane potential e (t) for a received spike ron, the slope of its excitation is positive (i.e. the excitation i
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increasing) when firing starts (i.e. when the potential passeseveral previously-trained patterns, is able to separate the
the threshold value). Also important for this condition are thepatterns. This stimulus simply consists of a superposition of
general shapes of the excitatory and inhibitory response funaumber of stationary patterns. During the first 50 microsec
tions: onds or so, the network responds chaotically. After that, osci
The inhibitory response should be delayed, and should latory b(_ahaylour emerges: the neurons that make up ol
pattern fire in phase, and the neurons that belong to differe

decay slowly afterwards. A :
. _ patterns fire out of phase, but still synchronously: the networ
The synaptic response should also increase and decrease.cycles, through the patterns in a fixed order, activating eac
smoothly. one in turn. This behaviour is very much like that found in

Note that the absolute refractory period does not seem to havLeEG|ON'

any function within the system. Effectively, all it does is halve 1¢ total cycle frequency is about 50Hz, and becomes slow
the excitatory output of a neuron, especially when one considyhen more patterns are concerned, although the rate at whi
ers the smooth synaptic response to a neuron’s spikes, whigiig gifferent patterns succeed each other becomes quicker. T
easily smooths out the signal peaks. maximum number of patterns that can be separated with tl
basic model is four, but it is shown that this maximum can b
increased by increasing the inhibitory strength and duratior
The network starts off in a quiescent state, and will stay therrg'] ?r\:\;e}/:rﬁc;nléuzlgrsgiﬁgg/tmt;)?egr(\j/vek:elrr\] m;'c:u::ge‘:a;;egg?té?:

until one applies an external stimulus. If the stimulus corre- i 4 . .
: . ecome too large: sometimes two patterns swap their relati
sponds with a stored pattern, the network may react in several ~.. )
ositions in the cycle.

different ways, depending on the excitatory delays, as id’
shown in the SRM papers. Three situations are d'St'”gu'Shed:Interestingly, this more or less random swapping of position

1. Long delays: the excitatory stimulus causes the network tavould imply that, for large amounts of patterns, patterns clas
react with a coherent oscillatory response, which contin-every now and then. Apparently, these clashes can be r
ues even after the stimulus is removed. The synaptic delaysolved very quickly once the main positioning of the pattern:
are so large that the effect of the collective spikes of ondn the cycle has been established.

burst arrive a whole oscillation period later, just as the in-

hibition caused by the same spikes has decayed. The Syll1J_nIike _LEGION, no global inhibitor is m.aed.eq to achieve seg
aptic excitation is so large, that it can maintain thementation. Apparently, the existence of inhibitory synapses b

oscillatory activity of the network even after the stimulus is tWeen many of the neurons, which are part of the energ
removed. function constraints in a standard associative memory, is suff

) o cient to replace the competitive effect of the global inhibitor.
2. Medium delays: the network responds with incoherent ac-

tivity, which ceases when the stimulus is removed. This isan important comment that was given is that, during one cor
because the delayed excitatory signals arrive when inhibipjete cycle, each neuron shows only one burst of activity. /
tion is still high. possible disadvantage of this is that the patterns, which typ

3. Short delays: A coherent oscillatory response, like situatiorf@lly overlap, will be less distinct, and the number of pattern
1, but it ends when the stimulus is removed. The delays arthat can be distinguished will be limited by the availability of
so short that all neurons of a pattern are immediately stim-fresh’ neurons. This is remedied partially by using low-activi-
ulated by the first active neurons before these neurons entéf Patterns, so that the overlap between patterns is small
their inhibitory period. The locking takes place in the average.
short time window between activation and the setting in of _ L .
inhibition. In this scheme, continued activity after removal The separe_mon of the two levels of processing is achieved by
of the stimulus is impossible because no trace of any synproper choice of thresholds.

aptic response remains after the inhibitory period has se . . -
in Multlple layers: Pattern binding

The effect of different excitatory delays

The network also proves to be capable of segmentation ai

Since the third situation results in the most desirable kind oh_ di t th . Th work i ble of linki
behaviour, and corresponds best to the observed delays in bi inding at the same ime. 1he network is capable of 1INKIN{
nd segmenting patterns across layers. First, each input le

logical systems, short delays are chosen for in the rest of th@ . > . : )
experiment. ers, which receives a stimulus, tries to make sense of the stil

ulus by segmenting in into known patterns. Then, the bindin
layer mediates synchronisation between the input layers by r
4.4.7.3 Simulation of network behaviour acting to known pattern combinations. The binding layer it:

self oscillates between the combinations it recognises.
Multiple patterns in a single layer: Pattern segmenta-

tion

The simulations described in the SRM papers show that the
network, when stimulated with a ‘jumbled’ signal containing

Literature on coherent oscillation 6 December 1997 27



50 App|y|ng coherent oscillation ingful temporally-coherent objects. Ambject will from now

on be defined as a subset of neurons that fire simultaneously

In se(_:tion 5.1, we wiII_compare t_he different systems we h_avqn most systems, an object is formed as soon as enough po
examined, and try to find out which aspects of their ber]a\lloulfively-coupled neurons all receive a stimulus. In the SRM, thi
may be seen as desirable for our computational goals. In sec; ; '

. . . . : bjects can be more general attractors. In fact, the attractc
tion 5.2, we will determine the basic properties of the neura .

. . : .-are the same as those the system would be attracted to if 1
network classes that we will examine. In section 5.3 we will

neurons didn't oscillate. The external stimulus is used as
a&. . . ¢ ) ‘
emerae when trving to aoply CO to new kinds of computation- ind of retrieval cue: only the attractors that have ‘on’ neuron

9 y g. PPy . . P . within the subset of neurons that receive an external stimult
al problems. In section 5.4 we will describe how these issUeg o considered

will be addressed.

5.1 Comparison of the different systems 5.1.2 Oscillation mechanisms

We will try to summarise the essential properties of the sys—In most systems we have examined, some kind of basic osc

tems reviewed in chapter 4, and try to find out which one lating mechanism is present at what is primarily the neuro

; . . ﬁevel. There are two cases:
have the more desireable properties, until we have a reasona-

ble framework left, which will be described in detail in 5.2. 1. It is built into the units themselves, directly in the case o
oscillators, or as a kind of refractory period in emergen

models.

5.1.1 The computation that is achieved _ _ N
2. It is achieved by means of locally-connected inhibitory

In order to be able to map CSP onto a neural architecture, we neurons, either connected only within a group of excitator
will have to look at the nature of the computation being done Neurons that function as a unit of coherent oscillation, or t
in the various systems described in chapter 4 first. This can be @ few neurons in a local neighbourhood only.

summarised as follows: L . .
If each inhibitory neuron is connected to one excitatory neuro

Two of the systems are concerned with storing and recallin@nly. the latter case can be seen as an instance of the former

patterns only. Feature linking or segmentation are not consideach inhibitory neuron is connected to a specific local group «
ered. neurons, then the inhibitory neurons also synchronise neuro

in their neighbourhood, effectively turning a whole group into
Six systems are concerned with visual processing, having visuan oscillator.
al orientation, brightness, or motion direction as input. The
processing that is being done is grouping multiple local visuail here are two ways a neuron can act: either it is always osc
areas into objects according to their nearness combined witlting, because it has been argued previously that there is
the similarity of their local stimuli. To represent this, the net- €xternal stimulus that is always present, or it is normally qui
work is divided into a number of groups or units, each repre£scent and will only start oscillating when the total stimulus
senting, and receiving input from, a specific area in the visuaP@sses a certain threshold. This distinction can be made f
field. In LEGION for example, there is only one unit in each both the oscillator and emergent models, but the behaviour
group, standing for image intensity. In other systems, differenglifferent: When oscillators are in quiescent mode, the phas
units in each group may represent different aspects of the vishifting stops, while in emergent models, the phase is effe
al field the group represents. Coherent visual objects aréiVely resetto zero as well.

formed by phase-locking of the units or groups representin
y P g group P gn emergent models, the refractory inhibition is usually madt

0 set in slowly or to start after some delay after the neuro
has excited. Because it eventually becomes stronger than a
excitatory signal, it will eventually cause the neuron to ceas

The SRM recognises previously-stored stationary patterns ififing for some period of time. After that, it decays slowly
any external stimulus that is applied, and phase-links and segd&in. This way, the neuron is made to fire in periodic burst
ments them. The network also achieves binding by phase-lock3€€ing the burst of activity and the refractory period that fol
ing the different input layers with the binding layer, using alows as phases in the neuron’s oscillatory cycle, the behavio
standard binding architecture with intralayer couplings. of emergent models can be viewed in analogy with, and can |
effectively compared with, the oscillator models.

Unlike most traditional neural nets, nearly all of the systems

are designed to react to an external pattern which comes in thghere is one more aspect of the oscillation which is onl
form of one external excitatory stimulus for each neuron, eacfiound in some of the emergent models: a higher constant lev
of which can be chosen arbitrarily. The neuron should react t@f input results in a higher frequency of oscillation. This car
this stimulus by starting to oscillate in order to indicate that ab® Seen as a ‘graded’ version of the quiescent/active mode c
stimulus is present. The actual computation is done by sortin§cribed earlier.

the precise firing times of the neurons so that they form mean-

the areas that make up the object. Multiple non-overlappin
objects should fire in turn or with independent frequencies t
achieve segmentation.
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cur at about the right time. Effectively, each neuron is

. T - interna PO .
input ; /’ inhibition N periodic-signal detector and improver.
' e . oo _interndl oo
~ \\, ~_ input ! v~ inhibition ! . o0
excitation ' S ' N /
output
on

H ﬂ F ’ excitation
output
off _ on
time— ’_‘
off

FIG 12. Response of emergent-model neuron to constant

positive net input time—=
Here_, the neuron becorr'les. ?C.“"e as soon as the. excita- FIG 13. Response of emergent-model neuron to variable
tion is greater than the inhibition. Note that, for higher stimulus
excitation levels, the neuron would activate earlier and
the inhibitory cycle would set in earlier as well, result- Note that the phase-locking behaviour is different from that o
ing in a higher oscillation frequency. an oscillator: the phase-locking is the strongest when the pha

difference between the signal and the neuron is very small. |

We cannot decide for one preferred system yet, as we donascillator models, we have seen that it is strongest when i
know what is to be done with the oscillators. We will try to phase difference is 1/4 of a total cycle, because the sine fun
find out below. tion has its maximum values there. This means the reaction
emergent neurons is more profound: they phase-lock strong

) . when their own phase is close to the signal’s phase, while the

5.1.3 Coherence in oscillation do not react at all if the signal and the neuron are very muc

, ) out of phase.
In most models, CO appears in the form of phase-locking. In

the different systems, there are generally three ways to achiev&t us now consider how phase-locking might emerge amor
this: a group of neurons. For a group of neurons with uniformly
1. In the oscillator models, it is explicitly built into the units. distributed random phase, their effective firing thresholds ar

uniformly distributed between the neuron’s threshold and th

2. In emergent models, it is usually achieved by mutual exCiy5yimum inhibition intensity (which is usually somewhere
tation, either with or without delay, between the neurons

above the maximum possible intensity of any excitatory sig

to be phase-locked. nal). This means that the amount of neurons that will start fir
3. In some emergent models, each inhibitory neuron inhibits dng due to the stimulus is higher for steeper rising edges in tt
group of neurons, achieving CO within the group. Howev-global signal, because the signal will then pass more thres
er, the phase-locking thus attained doesn’t achieve any us®lds and cause more neurons to fire. Therefore, neurol
ful computation, since this system makes the neuronsvhich were not synchronised in the first place tend to start fi
phase-lock always, rather than under specific conditions. ing at the steepest point of any rising edge in any globally-ay

plied signal.
For the emergent models, the mechanism of phase-locking de-
mands a little more explanation. In both SRM and the inte- inhibitory levels of neurons
grate-and-fire system, it is analysed by means of shifts in the with uniformly distributed phases

phase of a neuron caused by a peak in the stimulus coming
from one or more other neurons. It is the relative nature of the

inhibition that makes the bursting moment more flexible: any input

excitatory peak signals that happen at about the time the inhi- : - -
bition is low again, will have a great chance to pass the neu- 1/ fime——
ron’s effective threshold, and hence would cause the firing start times

oscillation cycle to restart early. If, on the other hand, the ris- maximum firing density

ing edge of a peak signal fails to pass the threshold, the falling ) ) o
edge that follows will never excite the neuron, assuming that FIG 14. Respons% of neurons.wnhl umfﬁrmly distributed
the decrease of the neurons’ inhibition over time is slower phases to a signal pea

than that of the falling edge. This way, the neuron will tend tonow consider the case that the neurons are positively couple
synchronise the beginning of its own activity with the begin-there s a constant positive background stimulus (for exampl
ning of peaks in its input signal, but only when the peaks ocyz external stimulus), and the neurons’ oscillation characteri:
tics are about the same. Assume that the neurons have syna
delays which are chosen in such a way, that they are slight
smaller than the basis oscillation period of the fastest neurc
for the given background stimulus. Now assume that the nel
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rons’ firing start times already fall within a small enough in- effect simply starts a little earlier, and the locking is still com-
terval (see FIG 15.: firing distribution). pletely stable. The weakness of the locking as was found |
the SRM simulations may well be an effect of the relatively
The first of the delayed excitatory signals from the synapsefong excitatory delays they chose in their simulations. The
between the neurons will arrive at each neuron just before thehosen delays were so long that too many neurons will ent
first of the neurons is about to fire (see FIG 15.: synaptic detheir inhibitory period before the avalanche effect has ende
lay). It causes an rising edge of a duration that is the same akus making the peak signal decline before all relevant net
the size of the interval of the neurons’ previous firing startrons have fired. This means that some of the late neurons w
times. The new interval within which the signals now pass theail to pick up the signal. Their simulation plots do show tha
neurons’ thresholds, causing the neurons to start firing, ishe neurons which failed to lock sometimes were typically
smaller than before (see FIG 15.: new firing distribution). So,neurons that tend to fitate within the collective firing period,
the locking is stable. The edge will gradually become steeperather tharearly, as should have been expected from their the
until it is nearly vertical, in which case the locking is still sta- ory.
ble because the excitation still passes the inhibitory levels of
the neurons within the rising edge of the excitation. Among the different models, intensity of the inhibition does o
does not depend on the intensity of the pulse. The disadva
tage of the former may be that the signal enhancement of tl
—= inhibitory level of slowest neuron neuron is weaker, since the neurons’ refractory periods a
excitatory signal received by all neurons not constant, while the disadvantage of the latter may be that
small, irrelevant peak signal may trigger the neuron’s com
plete inhibitory cycle accidentally.

inhibitory level of fastest neuron

Especially within a complex multilayer system, external stimu-

SIS - R DN N time—— li may change quickly and the network has to keep up with th
v u changes. Models with oscillators, and some emergent mode
firing distribution = new firing distribution as well, have desynchronisation problems with changing stin
uli: they fail to desynchronise within an acceptable amount ©

N time after the stimulus has disappeared. This is usually solve
synaptic delay by either making sure the neurons have two different state

FIG 15. Stability of locking active (oscillating) or inactive (not oscillating), so they can

shut down as soon as the stimulus disappears, or by addi
noise, or by randomly varying oscillation characteristics
among units.

Dashed line: inhibition of neuron that has fired earliest.
Dotted line: inhibition of neuron that has fired last.

A more detailed analysis of the precise conditions of locking

stability is given in append|>_< A.2. Basically, ﬂ.“s S|tuat|on_|s ibition should decrease slowly, and, in the case of delayle:
the same as the long-synaptic-delay case that is analysed in the . . : ‘
... _couplings, the reaction of the neurons to inputs should be
SRM papers. The other case they analyse assume positively . . .
. ; uick as possible. Continuous neurons are probably less su
coupled neurons with a very small synaptic delay only. The o : A
. ed for this kind of high sensitivity in local temporal patterns,
rest of the assumptions are the same. : . ; : .
unless they have very quick reactions, in which case their b

lhaviour is close to that of two-state neurons.

Summarising, the following requirements were found: the in

In this case, the rising edge of the excitatory signal will star
just after the first neuron passes its threshold, since each neu-

ron's output arrives at the other neurons almost immediatelyg 1 4 Segmentation mechanisms

The increase in the signal will make the next neurons fire ear-

ly, which will cause a further increase in signal; in other Fewer of the described systems achieve some kind of segme
words, an avalanche effect occurs. However, tiem small  tation. None have any mathematical analysis of this behaviol
time interval between the first neuron that fires and the start ofywo of them are interesting: LEGION and SRM, because
the rising edge. Any neurons that pass their threshold withiRhese models are both simple and efficient, and achieve cle
this small interval are not phase—|OCked, i.e. their f|r|ng timeSSegmentation with more than two patterns_ The other mode
do not occur closer to each other than before. In the SRM pagere also typically more complex, that is, it is less clear whe
pers, this situation is callegeak locking However, the ava-  causes their specific behaviour. Next to that, it is doubtfu
lanche effect is not considered in their analysis, as theifyhether all systems are in principle capable of segmentatio
conclusions are extrapolated from their analysis of the case afome of the inherent problems can be stated:

synaptic delays. . .
1. A system with a central oscillator can handle only one ob

In order to verify the validity of their analysis, consider the ject at a time.

worst case, which is the early neurons having a slightly higho | oscillation is achieved by neurons that inhibit whole
er effective frequency than the others. In this case, they will groups of regular neurons, segmentation within the grou
tend to fire even earlier next time round, thus tending to s harder or not possible.

dephase with respect to the rest. However, then the avalanche
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3. The behaviour of models using complex internal feedbackhere are more overlapping objects. This causes the intens
or changing synapse weights are harder to understand araf the signal, and hence the frequency, to be decreased, as
control. have seen in 5.1.2. This can be seen as desirable behavic

because this way the system is able to adapt, to a certain ¢

Segmentation could be achieved by simply not having anyent, to varying amounts of objects. Delayless couplings ar

positive couplings between the separate objects, so their freserhaps best suited to this: contrary to the delayed-synaps

quencies, and hence their firing moments, are not dependeghse, there is no delay that has to be adjusted to make the s

upon each other. However, they might still fire at the sam&em work, which may become a problem when the frequencie

time accidentally. Especially when the basis frequencies ofre not known beforehand and may even vary while the sy
the different neurons are about the same, this might make okem is running.

jects indistinguishable during longer periods.

To explain how objects are segmented, consider the case

To make sure the objects’ phases do diverge, noise is SOM@EGION, which is in fact simpler than the SRM, because th

times added: either by varying unit characteristics or by corregbjects are not mutually coupled, either positively or negative

lated noise (random noise is not good enough, since it§, and are driven apart by the global inhibitor only. Assume
desynchronisation effect tends to have zero mean). A bettahat two objects activate at nearly the same time. The inhib

option is to make objects fire strictly out of phase, as the LEtion over these objects will cause the object that fires last 1

GION, SRM, and some of the oscillator models do. In thishave a rising edge that is less steep, therefore the firing of tl

case, there has to be some kind of ‘competition’ between thesgecond object will be slowed a little, and will fire later the

groups so their firing times are driven apart. Three differentyext time round. With mutual inhibition between the neurons
ways to achieve this can be distinguished: a similar process will occur. This is probably what makes eac

negative couplings between different objects. The disad—I it t to furth lain the ob q tati
vantage is that problems occur with more than two pat—n an attempt 1o further expiain thé observed segmentation

terns: then, the patterns should not fire in antiphase, b ttractors as found in the SRM, recall that a neuron’s effectiv

rather with smaller phase differences. Consider the follow—; reshold is equa_lll to orthlg:i::er .thziﬂ its basic thrgtsholdl.dTgern
ing multipattern example, which illustrates how this meth- '0'¢: @ heuron will react either in the same way it would hav

od might result in undesirable behaviour: given that patterndone in a non-oscillating network, or it will stay quiescent

A is negatively coupled with object B and C, while B is while it wouldn’t have done this in a non-oscillating network.
less strongly negatively-coupled with C thar; with A A This means that any object is either an attractor of a tradition

will effectively phase-lock B and C, because it tries to at_neural nefcwork, or an attractor in case se_vergl of its neurol
tain antiphase with both. are effectively disabled. The energy function is the same e;
cept for the constantly changing effective thresholds.
2. A global inhibitor, as found in LEGION.

3. Mutual inhibition between neurons that belong to different
objects, as found in the SRM. This inhibition is, in fact, a
natural part of the attractors of the associative memory.

As we have seen in regular Hopfield networks, an attractor
stable because all its active neurons receive positive inpt
while its inactive neurons receive negative input. This mear
that the neurons of an already existing object are phas

In LEGION and the SRM, simulation shows that the competi-locked to each other, since they tend to stimulate each oth
tion results in the different objects firing neatly in turn, so thatWhile the object is forming. When an object deactivates, th

one may speak of a total cycle in which each object activate§eurons that were not part of the object are now free to form
exactly once. new attractor, since they are no longer inhibited.

In LEGION, and most of the visual systems, objects are typi-Summarising, the following requirements were found: it seem
cally non-overlapping because that is one of their inherenP€st to use emergent models with some form of inhibition t
properties. The SRM does work with overlapping objects,achieve segmentation. For the kinds of applications we have
since the active neurons of the stored patterns may overlaﬁ‘.‘i”d, namely those that involve traditional forms of computa
Corresponding to what was experimentally observed in thdion @ LEGION-type global inhibitor will probably not be

SRM, the neurons that are supposed to participate in mump@eeded, because the necessary mutual inhibition is already p
objects will on average be recruited by only one of the objectsof the attractors.

For the rest of the duration of the cycle, the refractory level is

too highf ffr)]r_ tT'e neuron to pargCipate if:j ar":Othef gbjeCt- Be-5.2 Main architectural decisions: forming

cause of this limitation, it can be argued that it's best to use .

objects that overlap little, and to make sure that the missinc_?n architectural framework

active neurons in objects have little effect on the coherence 0|£| i d ibe th . hitect that i d
the remaining part of the object. ere, we will describe the main architecture that is used as

framework for further analysis.

Interesting is the observation, as made in the SRM papers, that
the period of a total cycle increases with the amount of seg-
mented patterns within the cycle. This may be explained by
the fact that the amount of neurons in an object decrease when
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5.2.1 General neuron equation 5.2.3 Refractory inhibition functions

In the rest of the text, we will only be concerned with emer-The inhibitory potential may either depend on the intensity o
gently oscillating neurons. We have argued that these havthe last burst, or on the moment the most recent spike occurr
better properties in several cases. Also, the models that havefore some specified point in time as relative to the preser
experimentally shown the best behaviour are emergent model&or the former, we can use a standard convolution:

Basically, the system we will arrive at looks much like the . w o

SRM. This is no surprise, since this is the most powerful mod-  h"">"*¥ (1) = 3! )3 VPH - APt B (1) (EQ 3d)
el we have described. As a nice spin-off, some of the qualita- 1=0

tive results already obtained there may be carried over to our
considerations. The architecture is chosen for simplicity, so the
analysis is more tractable and the experiments are more con- .
trollable. Properties of existing architectures are chosen for aghe latter case is the same as the one used by the SRM:

much as possible. The following decisions are made:

with € (t) the convolution kernel.

h:nhibitory(t) _ J_S_Iil\rflngt_Ainhibitory_TB (EQ 3e)

ii i
Noiseless neurons are chosen for, because:
1. Simple noise does not prove to be useful for CO with T the moment of thenost recenspike in the period
. o . . . inhibitory(
2. Biased associative memories work best without noise. between}-oo STSt=4 [ -
3. A noiseless system is more tractable, as no statistical m

chanics is needed to analyse the effect of noise levels. “he precise shape of the inhibitory functions will be chosel

according to our specific computational needs. In order to b

Two-state neurons rather than continuous neurons are used, a8le to compare them, we want the shape of the two inhibitio
we have argued in 5.1.3. functions to be approximately the same under the same ¢

cumstances. To achieve this, the shape ¢f gy or:
The inhibitory effects are incorporated into the neuron equabe chosen so as to be equal. However, when the neuron w
tions. The membrane potenttabf each neuronis: active for several time steps, the resulting kernel inhibition is

superposition of a number of kernel values at slightly differen
(t) +h;sxcitatory(t) (EQ 3a) time steps, resulting in a much higher a_mplitud_e. If we assur
the neuron manages to stay active for its maximum amount

) . i time, until the inhibition sets in, the approximate amplitude
Generalised state representatlclﬁ’s will be used. The paramyn pe scaled using:

external inhibitory

h(t) = h (t) +h,

eterb will be chosen as appropriate to the situation.
SRM

Jkernel _ ‘]i,inh

5.2.2 Excitatory response functions hinh - pinhibitory

We have argued that quick response is the best. There are tvl'i(?nally

nossible cases: the inhibition functionn (t) should be zero ft10,

and immediately commence at its maximum value as soon

1. Quick, asynchronous response. Time is measured in Mon=0, similar to the function used in the SRM. Otherwise, the
te Carlo Steps, as in [Buhmann 89]. Each MCS, we seresulting inhibition would stay low as long as the neuron man
quentially updateN neurons’ excitatory input and its state ages to stay active, and will only continue to increase to it
according to: maximumafter the neuron has deactivated.

N
excitatory _ b
h, ® =y yVH-
j=1

%E (EQ3b) 5.2.4 Transfer functions

2. ‘Smooth’ response, as found in the SRM: The transfer function is simply the step function

excitator N > b[] axon] Vib (t+At) = STEP( h(t)) (EQ 3f)
h; ity = Y% S emvia-1-47"g  (EQ3¢)

=1 =0 5.3 Computational requirements: ideas,

with the shape of the response chosen according to a functio'gromems and questions.
similar to FIG 11. but making sure the total function area

equals 1. We have tried to capture the essence of oscillation, coherenc

and segmentation, as found in previous systems. We have
termined a framework that tries to reflect this essence. We c:
now look at how it can be applied to other forms of computa
tion.
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5.3.1 How to map CSP to a neural network with 1. Can segmentation be improved by enabling neurons to pe
coherent oscillation ticipate in several patterns during a complete cycle, for ex

ample by choosing an appropriate inhibitory function? The
Assuming specific groups or layers of neurons represent one ability to have overlapping objects is probably not neces
variable each, as in the optimisation networks we have seen, sary or even desirable for biased associative memory but
we may distinguish two possible ways to map CSP onto a CO Mmay be essential for optimisation networks.

neural network: 2. Storage in the SRM is not shown to be efficient: most o
1. use a standard optimisation network architecture using the theory assumes (near-)zero load, and in the simulatiol
standard synapse values. only few patterns were stored. How does the system rea

- . . to higher loads?
2. Use a binding architecture, as was also applied successful- g

ly in the SRM in the case of simple binding. 3. The amount of patterns that can be separated is limite
and its order is not fixed for larger amounts of patterns. /

What possibilities and properties do either of these ways have? fixed order may be useful because it allows the system 1
converge more gradually. Perhaps this may be achieved |

Standard choosing the inhibition function in such a way that the neu
rons’ frequencies are only able to change slowly, or, un
Phase-locking exists at interlayer (global) level only. The abil-  |ike the SRM, by not allowing varying oscillation

ity of the network to converge gradually is probably required  characteristics among neurons, so the objects’ collectiv
in order to arrive at a good solution, just like traditional con-  frequencies are not too different.
tinuous optimisation networks. The activity of each single
neuron is important. . .
P 5.3.2.1 Choice of external stimulus
Bindin . . : i -
9 The external stimulus is not found in traditional associative
gnemories. Then again, the goal of the type of associativ
memory considered here is different: the stimulus is used as
retrieval cue. It should be so large that it is able to activate tf

1. Separating features in input layers. Each state is represenizyrons spontaneously, and make it retrieve one of its stor
ed by a pattern consisting of multiple neurons. The pattern@attems_

will be segmented.

As could be observed from the SRM simulations, there are i
effect two levels of processing:

The other requirement on the external stimulus is that it shoul
be as small as possible. Otherwise, it may interfere with th

The binding scheme may also be more robust because fgtrieval quality of the stored patterns, since a decrease

doesn't matter if a single neuron drops out of the oscillationthresholds will decrease the memory capacity, as was me

since each variable state consists of mu|tip|e neurons. tioned in section 3.1.3.1. This means that the external stimull
will have to be chosen so as to be slightly larger than the ne

In both schemes, an activity constraint may be added. In theons’ thresholds.

standard scheme, it may either be added at the global level or

at the variable level.

2. Synchronisation of layers with respect to each other.

5.3.3 Communication between layers

5.3.2 Segmentation & memory capacity in an Starting from a single-layer associative memory, we can try t

associative memory extend the possibilities of the network by using a binding ar
chitecture, which, in the most general case, may lead to a s\

We will first look at the functioning as a basic associativetem for solving general CSP. In order to achieve a mapping ¢

memory, because this case is most similar to the SRM, so weSP onto a binding architecture, we can distinguish the fo

can still compare its behaviour with known results, and somdowing options:

idea of how well our system works or how it may be improved ] o )

may be obtained. Hopefully, some of the results found herd "€ Most obvious choice is to have input layers assume

will extrapolate to the other systems, especially to the bindind©!€ Of variables, while mutual couplings between the layer
system. Impose the constraints. How strong should these mutual co

plings be to get proper behaviour?
The type of memory we will use is a biased (low-activity) as-
sociative memory, using the modified storage rule (EQ 2g)
and usingo=a.

In the classical binding architecture, there aw® kinds of

layers: input layers and binding layers. The difference is thz
binding layers do not receive any external stimulus. This suc
Considering the behaviour of the SRM, there are still someJests using a separate binding layer for each constraint tf

limitations that are subject to improvement. In particular: has to be enforced. A binding layer would only react if it finds
combinations of input patterns that it recognises. How soo

should it react; in other words: how strong should the cou
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plings with its input layers be? Does this system have advanway, the effective threshold is the same as before for as lor
tages or disadvantages over the other choice? as the inhibition is in its early stages. Now, if neurons ar

heavily inhibited, they will still be able to activate, but their
Unlike associative memory, the stimulus an input layer re-frequency will decrease instead.

ceives should stimulate all patterns, rather than just a very spe-
cific subset. Since the amount of patterns stored is very largén the systems we have seen before, all neurons that recei
it will probably not be able to segment all patterns, but ratheexternal stimulus will activate eventually. In an optimisation
only a specific subset, perhaps chosen according to signatgetwork, this would mean thall neurons may activate even-
coming from other layers. What will happen when the layertually within a cycle. This is very different from the normal
tries to segment too many patterns? What will the influence ofunctioning of an optimisation network, since most combina.
other layers be on this process? tions of neurons represent wrong solutions or meaningle:
states. What may actually happen is that either some neuro
The behaviour and robustness of indirect locking across diswill not activate after all, because they are constantly inhibite
tant layers is unknown. The SRM simulations show that it ispy the different objects, or that the neurons that do not belor
possible, but it has not been tested with more binding layersn any coherent object will fire incoherently within time inter-

Proper distant locking probably requires the network to beyals within which no coherent object is active.
able to converge gradually, so the different layers are able to

synchronise with each other. )
5.3.5 Reading out the network state

5.3.4 Behaviour of the network with different How does one interpret the state of a CO network? The syste

kinds of constraints within the layer does not converge to a stationary state, as with traditional ne
works. If we are just exploring, this can be done by hand, fc

As an alternative to using binding on top of associative-memoexample by looking at some overlap function. However, if

ry layers, we can try to implement a classical optimisation netdata has to be systematically gathered, a function which do

work architecture directly, thus imposing constraints of athis automatically is needed.

different nature than we have seen before at a more direct lev-

el. Generally, consider finding solutions in optimisation net-In an attempt to determine such a function, consider the fo

works as analogous to finding coherent objects or previouslylowing: since we are interested in objects, consider the prope

stored patterns. The external stimulus needed to activate alles of an object:

neurons spontaneously can then be seen as analogous to the |t coincides with a peak of activity.

existence of negative thresholds of the neurons of the optimi-

sation network. Since neurons of optimisation networks nor2- During the activity period of the object, the network state
should be stable, i.e. only few neurons should change the

mally already have negative thresholds, no extra stimulus is
needed. state.

When we consider using a standard optimisation-network arOn the other hand, we are interested in how well the network
chitecture in conjunction with CO, several things come tolransient stationary states coincide with desirable states.

mind: measure this, the following functions could be used:

. _ _ _ 1. In case of an associative memory, correct retrieval could t
the case where a single neuron represents a variable state, theq 1

activity of every neuron is important. However, even if over- L .
lapping objects are not allowed, the existence of multiple ob2: N case of an optimisation network, checking whether th
jects may still be useful, since it means that several totally [nhibitory inputs are smaller than the hard constraints’ inhi
different candidate solutions may be considered at once, and Pition level,R, coincides with a valid solution.

the network does not suffer from early suboptimal CONVET™ 1 hoth cases, it can be argued that an object is active whi

gence, as traditional optimisation networks do. However, the - .
! o one of the conditions 1. or 2. holds for several time steps. S
requirement that remains is that, eventually, at least one of the

objects that is formed is a complete solution to the CSP. we can measure the performance by measuring if the netwo
retains any desirable state for several time steps.

In traditional optimisation networks, tight CSP are a problem

because the large amount of inhibition caused by the tightnes5,3.5.1 Associative memory

of the constraints results in too few neurons becoming active.

Hence, a solution is never found. This is one of the situationg®\ssuming that the state in which all objects will eventually
where a winner-takes-all network shows much improved befire within a complete cycle is a desirable one, proper segme
haviour because it ensures th&ime neurons will activate, tation behaviour of an associative memory can be verified b
even if their activation effectively violates a constraint. Con-checking whether all the patterns occur at least once withi
sidering our CO model, a similar feat might be achieved byone complete cycle. A cycle will not take longer than the max
lowering the thresholds by some amount and increasing theamum span of the relative inhibition. To test this, a modifiec
amplitude of the inhibitory function by the same amount. Thisoverlap function can be used: this function should be 1 in ca:
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the objects matches the pattern perfectly, while it should b&he basic idea is to use an iterative cycle: starting with th
near or below zero as soon as neurons are active that do nibieories and questions we have already described, run sol
belong in the pattern. It is because of this last requirement thatxploratory experiments to verify or address them. Qualitativ
the standard overlap function needs to be modified. The newesults should be given, which should lead to further exper
overlap function is: ments. This way, some understanding of the systems’ beha

iour in practical situations should emerge.

M _1 ul

Mmodified = NIZEi E(S' *1) We will examine the systems described below, each in turi
Only after we have adequate results with one system, we co
A ‘time window’ method may be applied to determine the oc-Sider ourselves ready to tackle the next. Since it is not clear
currence of proper objects: the overlap for several consecutive/hat extent each part will succeed, we must clearly state wh
time steps added together may be used as a measure for thas been achieved and where problems still lie. Important ol
quality of retrieval of a particular pattern. To check whether aservations made during the exploratory simulations will be
pattern occurs at least once within a certain period, the maxiverified by larger runs, and the results of these will be summ:e
mum of all time windows that fall within the period may be rised in comparative graphs at the end of each section, whit

taken. should clearly show the relative performance.
overlap function /\\\,_/J“\/A\/- 5.4.1 What kind of systems to analyse?
calculate : .
M cumulative We have chosen for several different approaches, in order
timewindows” — \%g!ﬁpeach explore the different aspects of CO. Systems

[ L timewindow . . :
_ It is important how we choose our systems in order to obtai

take the maximum understanding of CO. Experiments were chosen using the fc
. . . lowing ideas:
FIG 16. Calculation of the separation function for an ¢
associative memory 1. If possible, the behaviour of the network without CO
should be tested, in order to validate the general archite
5.3.5.2 Optimisation network ture and to be able to compare it with the case with CO.

) o 2. Different approaches will be addressed and chosen betwe
Even though the solutions of a optimisation network may not a4t each step.

be known beforehand, and may be many more than the retriev-

al states of an associative memory, a clear distinction betweenhe systems that will be analysed are the following, as corre
a solution and a nonsolution can still be made by looking asponding to the questions in chapter 5.3:

the network state alone. The amount of time the network stay.
within solutions, and the quality of the solutions, which is also
directly readable from the network state by calculating the en2. A binding system
ergy function, can be used as a measure for performance.

1. An associative memory

3. A classical optimisation network

Next to this, we want to be able to know how many different
solutions are found within a given time period. To this end, a5.4,2 How to gather data
simple database can be maintained which contains the active

neuron number for each layer, for each of the solutions found .
after the start of the period. 5.4.2.1 Software requirements

Finally, coherence and cyclicity of the solution objects can be/Vhat we need for these experiments are the following:

tested by determining the amount of time steps each solution. The ability to test a lot of different systems, parameter var

persists, and testing for repeated occurrence of the same solu- jations and layer architectures easily.

tion within a period of time that is equal to twice the largest . . L

possible cycle length. 2. Ways to know what is going on inside the network.
3. Ways to reproduce results.

5.4 About the simulation method used 4. The ability to collect performance results automatically.

The next chapter will deal with a number of simulation runs The software tries to meet these requirements in the followin
that should help to support some of our theories or answe¥ays:

some of our questions. Also, there are several parameters that |t uses a command-line language to define network arch
may be varied which may have some effect on performance, tectures and configure layer and neuron types.

and some understanding may be obtained as to why some p

rameter values work better than others. 3 It uses realtime network visualisation and function plotting
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3. A deterministic random generator (with good spectral abili-
ties and long period) is used, which can be initialised with o
a seed by hand, so patterns and runs can be reproduc8§ Zero for SRM-type inhibition.
without needing a variable dump and read function.

As was already argued in section 5.2.3, the vaf{[&™ mu:

Two different ways of initialising the neurons may be distin-
4. Automatic read-out functions are implemented that are ablguished:

to write their output to a disk file. o o

* zero activity and zero inhibition phase
In this case, all neurons will tend to fire at once at the
moment the network starts running. After a few cycles, the
neurons that participate in different patterns should
dephase.

5.4.2.2 The test patterns to use

The test cases should be chosen so as to test a variety of as-
pects:

: .. *random activity and phase.
In order to test the proper behaviour of the CO associative

memory, the following patterns are tested with different
amounts of patterns:

In this case, neurons will fire at uncorrelated moments at
first. After enough iteration steps, they should synchronise

o with each other to form objects.
1. superpositions of stored patterns,

The following experiments are run to see whether the networ
N ~achieves CO and segmentation of the trained patterns at &
3. superpositions of stored and non-stored patterns combinethng what choices influences its behaviour in this respect. |

| d he CO optimisati K il ch _each of the following experiments, 400 neurons and only
n order to test the optimisation networks, we will choose:¢., \ t-oin g patterns were used.

2. superpositions of non-stored patterns,

1. aloose CSP (the-queens problems),
The first exploratory experiments show that some species

coherent oscillation is easily obtained, but that the objects th
3. an optimisation problem (a classical ‘benchmark’, theare formed usually do not neatly correspond to the objects th
TSP). are desired for proper behaviour. The bias that seemed to wc
best is aboua = -0.9 (5% activity), which seems to be a good
These problems and their representations are described in dgade-off between too few active neurons in each pattern (sin
tail in appendix C. the network size is only finite) and too much overlap betwee
the patterns. More desireable results may perhaps be obtair
after choosing a proper inhibition function.

2. atight CSP (a crossword puzzle-type problem), and

6.0 Simulation

Little difference in overall behaviour was found between the
basic and the kernel inhibition functions. This may be attribut
6.1 A single auto-associative layer ed to another phenomenon that was observed, namely, that 1
relevant neurons tend to fire constantly during their uninhibit
] ed periods. This implies that, in practice, both functions hav
6.1.1 Exploratory experiments almost the same shape (see also section 5.2.3).

The first experiments uses two-state neurons with generalisetrying some different parameters values for the inhibitior
states, using either synchronous, smoothed, or monte-carlo ufunction shows that the slope of this function should be nearl
date. The inhibition function was chosen to have the generdhorizontal, which can be achieved by choosing a low releas
shape and parameters as given in FIG 17. amplitude. If this parameter is too high, both locking and de

, synchronisation of patterns that should be separated tend

I happen too slowly. This can be attributed to the increased se
sitivity for small signals that is a result of the less steep slop

K of the inhibition decay. The inhibition function that proved to
2 work best in these circumstances Inelease amplitude 0.2,
[=% delay _ total _
£ ton = 8, andt, .~ = 100 .
3
E - T T T X However, even after these modifications, the performance w:
g . delay » attack Jecay:  release still not ideal. The observed problems can be qualitatively de
. inh . inh . tinh inh I scribed as follows:
X total X o
< tioh : 1. In case of zero initialisation, some of the patterns the
should activate separately fail to dephase, and stay togett
FIG 17. General form of inhibition function in one object instead.
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2. In case of random initialisation, neurons tend to accumu- e variable inhibition functions across neurons
late into partial objects, which refuse to join together to
form the desired complete objects. It was usually observed
that these partial objects were temporally separated from
their counterparts by other objects.

This way, each neuron has slightly different parameters fol
this function, causing neurons to dephase automatically an
causing the rising excitatory edge to be less steep, but
becoming steeper with stronger mutual stimulus.

used by the SRM, resulted in the following effects: for smal
total duration (5 steps) and larger total duration (10 steps), tt
performance did not improve. In case of random initialisation
the problem of split objects occurred more often, especiall
with larger release amplitudes. The overall performance we
fffff ' " less than when using simple instant response, and only beca
1 | 1 I) worse for larger total duration.
S

I) Using smoothed synaptic response, with a shape similar to th
£

Changing the inhibition delay to 6 or even 3 seemed to hav
no effect. Introducing a small variance (up to + or -5 time

77777 I | I L e steps) in the total inhibition length did not have any effect

while using a large variation (up to + or -15 time steps) cause

.. C neurons to desynchronise too quickly, so no proper objec

overlap activity of individual neurons were formed at all. However, introducing a variation in inhibi-

FIG 18. lllustration of the two segmentation problems tion delay (+3 to -3 time steps) actually solved the problem

Overlap and firing history of individual neurons for ini- most of the time, in both the zero and random initialisatior

tialisation with zero phases (above) and random phas- Case. Apparently, the difference in burst lengths, while havin

es (below). Network has 200 neurons, SRM-type relatively little effect on the basis frequency of each neuror
did cause the different objects to have slightly different tota

. e delay _ . apee . _ ) . .
inhibition. ;™" = 8, inhibition amplitude=4, release duration, which allowed them to separate more easily.

. _ attack _ decay _ release _
amplitude=2, ;"= 0, ;" =9, i, =63, 4 Tests with different initial states and patterns sets showed th

patterns trained/stimulated, strength of external stimu-  failure of two or more patterns to dephase still occurred some
lus=0.2 (which a little larger than the thresh- times. A closer look at these patterns shows that they ofte
old(=0.17)) overlap by 1 or 2 neurons, while the others usually didn’
overlap at all. Apparently, the network is very sensitive tc
The different potential functions or update rules only made lit-overlap.
tle difference, and did not solve the problem. Neither did in-
creasing or decreasing the inhibition delay or total duration. . . .
What appears to go wrong in both cases is that objects that a?e‘l'l'1 Behaviour with high load
superlmposed or only partial do not slow doyvn as they ShOUIdThe behaviour of the network with higher loads may be re
If they did, they would dephase more easily with other pat-

q - by f | bi ; vealing, considering what problems overlapping patterns a
terns and get ‘eaten’ by faster, more complete objects aiter ?eady pose at lower loads. The first experiments show th

while, so their neurons get the chance to be assimilated by Alifferent objects tend to phase-lock with each other, at lea
other part of the object. partially. This happens almost immediately, in both the ran
dom and the zero initialisation case. Looking at some individ
ual neurons reveals that even when neurons participate

slow for low stimulus. Instead, it was observed that the dura_s_eve_ral superimposed ObJeCtS.’. each neuron stil receives po
e input. Normally, the positive threshold, as found in bi-

tion of the complete avalanche effect was very short, taking{éiv

about one or two cycles, apparently depending too little on th sed ilssocr?ltlve metr;:orle?, prlevte_ntsl SpUI’IOUSI {T]Ct'\;;:y |
quality of the object being formed. occur. Now, however, the external stimulus cancels the thres

old. This may have caused the pattern overlap problems v
A way to achieve this might be to use: have encountered before as well.

In other words, the ‘avalanche effect’ that occurs during
phase-locking will have to be quick for high stimulus, and

* smoothed synaptic response (EQ 3c)

This way, each neuron’s input will increase only gradually 6.1.2 Adding an activity constraint

during the formation of an object, which will slow down

L ne w ircumvent this problem i n ivi n
the speed of synchronisation. One way to circumvent this problem is to use an activity co

straint. This way, activity patterns that are superpositions c
¢ shorter inhibition delays the stored patterns are forcibly removed from the state spac

This way, the activity bursts are shorter, and would have g However, this may introduce other kinds of undesired behay

harder time to synchronise. Neurons would more easily fail 'OU"-
to lock to an undesired object.
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1. At all times,someneurons will have to be active. This may 6.1.3 Stimulation of untrained patterns
imply that non-stimulated patterns may accidentally acti-
vate if all stimulated patterns are in their inhibitory cycle, Next to segmentation of trained patterns, some account will k
or if no neurons are stimulated. given of what happens when an external stimulus contains u

2. Patterns which do not have exactly the same number of aé[ained patterns. Applying one or more untrained patterns

tive neurons as the average pattern can never be recallér%'mums and |n|t_|a_1llsmg with zero sFates_ results |n.th<.a neuror
perfectly. of the patterns firing at the same time in the beginning of th

simulation run. After that, the neurons desynchronise slowly.

As a trade-off, a soft activity constraint, as explained in

2.2.1.2 may be used instead. In our case, any positive Vald%ppl){ing a stimulus which i? composed OT .b.Oth trgined an
for the constraint enforcemeft results in the activity of the untrained patterns and starting W'th. zero |n|t|aI|s§1t|on show
network going towards the bias However, the activity of the that, after several cycles of dephasing, the untrained patter
network is still able to fluctuate away from the exact bias val-t€nd to collect at the end of the cycle. So, the neurons of t

ue. In particular, neurons which do not receive any externaf.IntraInEBd pafterns do become active, and even coherently :

stimulus will not easily activate spontaneously, if ofyis tive, though not much so. This is apparently because all stim
taken small enough. There is a valueCothat satis'fies this re- lated neurons will activate at least once, and the neurons tt
quirement, because the thresholds of these neurons are stﬂ[? ntc:t locked htgve t?te slcn/ve;t freqt{[tency, ﬁnd Wl;” therefolr
positive. For a precise description of the effects of, and uppe,?hny Ecome active after all other patterns have been cycl
bound onC, see appendix A.3. rougn.

Adding a hard constraint actually improved the behaviour for
low loads, but it did not work for higher loads. Adding a soft
constraint withC=0.QS yields_likewise results, but manages to The initial experiments have been done mostly by hand; this
enhance the behaviour for higher loads as well. not acceptable for collecting larger amounts of data. The met|
ods for calculating overlap and separation that were propost
in chapter 5.3.5 will be examined in practical situations.

6.1.4 Automated interpretation of behaviour

legend: 1 —  2----- 3— 4.__
pattern 9,10 9— 10--- FIG 21. Standard overlap versus modified overlap
FIG 19. example of segmentation for low load Top: standard overlap function. Bottom: own overlap

function. Note that, in the standard function, the over-
lap between, for example, pattern 1 and 3 hardly affects
the overlap value of the individual patterns.

As has been argued before, the standard overlap doesn’t qu
meet our requirements: it does not reflect the undesirability c
superpositions of patterns. The proposed new overlap functic
works better in this respect. However, as FIG 21. shows, th
overlap tends to become highly negative when a pattern oth
than the measured pattern is active, making it less readab
For use with the separation function, though, this is not reall

pattern 4,5 4— 5---

FIG 20. Example of segmentation for high (0.15) load
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an issue: the separation function only regards the maximum
values of the overlap.

FIG 22. Example of separation function

Top: overlap graph of a network trying to separate four
patterns. Bottom: separation quality with time window
size 4 and total history 100 time steps. Note the ‘dip’ at
the end which signals the temporary conflict between
patterns 1 and 2.

FIG 22. illustrates the separation function. Note that the sepa-
ration does not always increase monotonously over time, even
though it was observed that it usually does. However, this may
become a problem with more complex architectures, as simply
reading out the separation at the end of the simulation run may
give an incorrect impression of the network’s behaviour. To
overcome this problem, the minimum or average over a large
enough number of iteration steps at the end of the simulation
run can be used instead.

6.1.5 Summary and graphs

Summarising, the parameters we’ve found to work best are:

SRM-type inhibition,release amplitude0.2, ¢ =150, vari-

ance in inhibition delay=-3...+3 time steps, and a soft con-
straint. To see how the modifications made as relative to the
system we started with affect performance, and to see the

overall performance of the system, some data was gathered=
that is displayed in the graphs below. The graphs are the resultZ
of the system after 1000 time steps. Each data point is an aver-§

separation quality (worst)

2 4 6 8 10 12
number of patterns stimulated
FIG 24. low load, worst separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

separation quality (average)

2 3 4 5 6 7 8 9 10
number of patterns stimulated
FIG 25. high load (0.15), average separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

g

ty (worst)

separal

2 3 4 5 6 7 8 9 10
number of patterns stimulated
FIG 26. high load (0.15), worst separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

age over 5 runs.
m 1
g
E 0.8}
< os}
2
a 0.4}
(o
5 0.2}
©
® o}
o
(<)
o 0.2} . . . . E
2 4 6 8 10 12

number of patterns stimulated

FIG 23. low load, average separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

Simulation

The graphs show that the useful segmentation behaviour of t
system degrades for more than 10 patterns for low load cas
and 8 patterns in the higher loads. Loads of 0.3 and high
showed worse behaviour.

A more qualitative look at the system with the best perform
ance also shows that individual neurons are actually capable
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activating more than once within a complete cycle if they are6.2.1.2 Complex binding

part of more than one pattern, and the cycle, once formed, is

very stable. In the case of more complex binding, there are different choic
es as how to map a CSP to an architecture. Two general pos

_ o & o a ESP 10
6.2 A system with several layers: binding. bilities can be distinguished

¢ direct couplings between layers

This architecture is the closest to a traditional optimisation
network: constraints are enforced by direct connections
between the layers involved.

6.2.1 Exploratory experiments

Interlayer couplings are chosen to be slightly different from
couplings within layers: Between layers, neurons are consid- ® indirect couplings through intermediate binding layers

ered as binary neurons. This means both the interlayer synapse g, each constraint, there is a binding layer coupling the
training rule and synaptic potential calculation are different: layers involved. No external stimulus is applied to any

\ binding layer.
k
35 Y = i andj in different 'ayersﬁ' > %F’“l%})*lg Experiments with three layers and two constraints showe
k=1 that indirect coupling yields better results. Apparently, this i
_ because the input layers are then given the time to separ:
O ; 3,V (t-1) their input patterns, and are only occasionally influenced b
j in other layer the binding layers, which only activate when they find a nea

. L .. .. optimal combination. The problem and results found are illus
This way, the mutual excitation between layers is similar Nt rated in FIG 27. and FIG 28.

nature to the external stimulus: when a trained pattern acti-
vates in one layer, it effectively applies a stimulus to the other
layers that is a superposition of the patterns that are elements

of the constraint that contain that pattern. variable layers

Each pattern isavariable state

Again, the parameteC is the intensity of the mutual coupling; 1 2 ‘ 1 2 ‘ ‘ 1 2 ‘
how this parameter should be chosen will be explored below.

6.2.1.1 Binding with one binding layer

‘{1,2} {2,1}‘ ‘{1,1} {2,2}‘
A basic binding architecture, with one binding layer and three
input layers, standard inhibition, and synchronous update is constraint (binding) layers
tested, using the optimal parameters as determined in chapter Each pattern is a constraint
6.1. The three input layers are trained with 4 patterns each, a Solution space Solutions
selection of which are applied as an external stimulus, and a [ (111),(112),(121),(122), (122,221}

selection of which are used as binding combinations. This case (2.1.1),(212).(2.2.1).(2.2.2) }

is similar to the one as described in the SRM's simulations. In T

their system, the binding patterns always consisted of disjoini|G 27. Example of a multiple-constraint binding problem
combinations of components. They chose the con§&dntbe The symbols given inside the blocks are the patterns

1ith’ W'IIEEiMi thel nutrr?be\:/r ?f o;t::etr ilayersdeiictfrw] Iay;:r Ifinioﬂrt]efﬁ ‘ stored in them. The lines between the blocks are synap-
ec 10. ThiS IS also the value that IS use € experiments that e connections between the layers, in which specific as-

follow. e
ollo sociations between layers are stored.

The easiest case, binding only disjoint combinations, shows
that the binding layer is quiescent at first, and reacts only after
about two of the three patterns are active. This sensitivity can
be adjusted using th@ parameter. The input layers then syn-
chronise to the activity of the binding layer, and binding is
achieved.

Trying to bind combinations consisting of correlated patterns

still works, though multiple overlapping combinations cannot

all be represented within one cycle, sometimes causing one
combination to be replaced by one of its overlapping rivals af-
ter some cycles. Apart from that, the behaviour was still sta-
ble.
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6.3 An optimisation network

V. HH cLR L i { i 6.3.1 Exploratory experiments

o . i : ) : As was done with the other systems, a simple problem, in th

(1018 [ I [ 3 case the 4-queen problem, is chosen first in order to explo

V L YHdE - [ — ! [ | the systems’s possibilities. The first architecture that is exan

1| ' | | 1) ined is a standard synchronous network with two-state binat

neurons and no inhibition. The dynamics proved to be highl

unstable: the network typically oscillated quickly between

states with very high and low activity. Updating asynchronous

ly or using smoothed response yielded better results. In the

cases, the network converged rather quickly to an optimal o
more often than not, a suboptimal solution.

overlap in each layer

However, incorporating inhibition did not provide the desired
result: it caused the neurons to activate in an apparently ra
| dom fashion, and no convergence whatsoever was attaine
C Ll [ u This was tried for several inhibition functions, but no im-

1 1 Lt _ provement on the results could be attained. This ill behaviot

may ba attributed to several causes:
time — . .
1. The constraints between the neurons are too restrictive

FIG 28. A result of the two-constraint binding problem allow any pattern to form.

This result was obtained with C=1 and bias=-0.9 2. The couplings between the neurons are not continuou

Studying individual neurons, it was observed that a neuro
usually receives a synaptic stimulus that is either 0, -1 or
6.2.2 Adding interlayer saturation 2. This means that there is no ‘smooth’ increase in synapt
potential a neuron can lock to.
Trying the network on a more serious problem, the 4-queen
problem, only provided limited success. Solution were onlyThe first problem may be overcome by allowing suboptima
sometimes found, and did usually not return periodically. Ob-patterns to activate. This could be achieved by either:
ject clashes within layers kept occurring; the network did not
stabilise properly. This may be attributed to the fact that pro-
jections created by multiple superimposed patterns within a e lowering the thresholds

layer have large int(_ansity, because the excitations of the pat- This last option was already explained and proposed in
terns add up. Superimposed patterns appear to occur more of- panier 5 as an alternative to using an activity constraint.
ten with more complex interactions, and hence the interlayer

couplings sometimes have too high intensity. This may be owering the thresholds, and increasing the inhibition accorc
what causes the network not to be able to separate objecfiggly, did not have the desired effect: more neurons did act
properly. vate, but still no coherence or convergence was achieved.

* using an activity constraint

This problem may be averted by simply adding a saturation efysing an activity constraint actually proved to provide an al
fect in the couplings between layers: if the total intensity of allmost desirable result:

input from one specific layer to one specific neuron is above a

certain threshold, then that value is simply clipped. The

threshold is chosen equal to the intensity of the external stimu-

lus of input layers.

This actually provides better results for the 4-queen, 3-letter
crossword, and 5-city TSP problems, though generally, not all
solutions were found, and solutions sometimes disappeared
again after a few cycles.

For larger problems, like the 6-queen and 4-letter crossword
problem, the system usually didn’t find solutions. Those that
were found typically did not return. The binding approach, or
at least binding the way it is used here, is not quite up to ex-
pectations.
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This amounts to the following: in (EQ 3d), each past neuro
state history for snapshot of stateV, (1) is replaced by:
each of thefour layers  network state

If K"y > T,

- h;ynaptic(T) T
modified 0
Otherwise,
Vimodified(T) - 0.

T is some negative threshold value.

FIG 29. First positive results on the 4-queen problem This causes the inhibition level to increase seriously only if :

The convergence to the indicated cycle took less than neuron is both active and unconstrained for a prolonged pel
150 iteration cycles. After that, the cycle remained sta- od. This way, a group of neurons are inhibited only if the)
ble. The figure shows the transition from unstable into  form a good patrtial solution. The inhibition will increase until
stable behaviour. it exceeds the constraints imposed upon the inactive neuror
As soon as that happens, the (sub)object will disappear to |

The network managed to converge quite rapidly and consistreplaced by another. Since the neurons were inhibited durir
ently to a stable cycle. The cycle contains both solutions to théhe same period, the shape and amplitude of their inhibitio
problem, but also contains two nonsolutions. This can be atfunctions will be about the same, so they will come out of th
tributed to the aforementioned hypothesis that all neurons tenghhibition at about the same time, and thus tend to lock to eac
to activate at least once at some time during a cycle, and thether again as soon as the inhibition runs out. This way, goc
neurons that are not part of either solution thus arranged thensubobjects will persist, and the rest of the neurons will hav
selves in suboptimal configurations. time to adjust to the subobject. Partial subsolutions can be r

tained and improved upon in time.

However, our original idea of being able to work without us-
ing an activity constraint is lost. It must be seen whether thd=or the n-queen problems, the valuB=-1.5 seems to work
network is still able to find good solutions to optimisation best. The new rule results in greatly improved coherence ¢
problems with soft constraints. objects. Testing again with the 6-queen problem, synchronot
groups were clearly formed, some of them were solutions
though many were suboptimal. These groups established the
selves quickly, though they were sometimes gone after a fe
The results of testing this network on a larger problem, the 69yc|es as W.el.l' More often than not, the n.etwork sta'bil'ised to

; . X cycle containing at least two, and sometimes consisting of a
queen problem, were disappointing. Often, neurons just réour solutions
fused to synchronise, and objects that were formed did not re- '
turn at a later time at all. Apparently, the increased complexity

of the problem is too much for the network.

6.3.2 Adding a graded state

This may be attributed to the second problem that was men-
tioned in 6.3.1. In more complex situations, the limited quality
of the locking mechanism is more relevant, since the network
needs more time to converge.

Using a smoothed synaptic response, which might have been
one way to overcome this problem by providing a smooth ris-
ing edge to lock to, did not produce the desired result. Instead
of this, an alternative scheme was tried, which consists of in-
hibiting more selectively. In this scheme, the standard kernel
inhibition is used, but with the difference that the inhibition
only adds up under the following conditions:

1. the neuron is a winner.

2. the neurons has high absolute, rather than relative, synaptic
input.
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state history of the 6 layers
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snapshot of neuron states

persistence of solutions

best —
mean —— |
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number of queens
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FIG 31. Quality, coherence, persistence results for the n-

gueen problem

Taken from 25 runs for each problem instance

FIG 30. Successful application to 6-queen problem
These results were obtained after 1000 iteration steps.

Inhibition used:
attack _ decay _
Gnn =0y by 7=

sawtooth shape).

release _ delay

45, G =0, iy

6.3.3 Performance with the three problems

Finally, the system will be tested with the various problems to

inhibition amplitude=20, T=-1.5,
=15 (a

vergence quality

see how well it behaves. The parameters are the same as founc§
in 6.3.2. No modifications are made to these, in order to see
how robustly the system works with parameters which are rea-
sonable but which are not individually optimised to suit every

instance of each problem.
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same states to some variables. The end results obtained
still limited to small problems, and some practical limitations

c 1 on the number of patterns that can be segmented at once
8 main also.
=) 0.8}
o
0
g O6p 7.1.1 Some future directions
2\ 04t 1 The problems that were encountered in this research rai
I new questions:
£ 02}
s The biological feasibility of CO as part of the traditional mod-
0 . . : . * y . el of biased associative memory model or binding models i
4 5 6 7 8 9 10 11 12 . . . R .
number of cities guestionable. Most biological theories imply a very high mem
ory capacity, which has already been achieved by the san
FIG 32. Quality, coherence, persistence and optimality kind of model without CO, but which, in our case, degrade
results for the n-city TSP when a CO mechanism is incorporated. Also, binding in cor
Taken from 25 runs for each problem instance junction with CO proves to be too brittle to be of use. Perhag

re-examining some of the biological premises or data ma
Unfortunately, the system did not work well with the cross-Yield some additional insight.

word problem. Proper behaviour was only found for problem - . .
sizes 2 and 3. Obviously, this problem is too tight for the net—HOW can the inability of the network to work with overlapping
work. An obvious solutior,1 for this would be to use a different patterns be remedied? The simulations of the associative me

T value to allow unsatisfied subsolutions to phase-lock as weII(,)ry did show that nheurons that belong to mu|t|_p|_e segmente
but this did not achieve improved behaviour. patterns are able to activate more than once within a comple

cycle. This is possible because these neurons, while inhibite

Viewing the results in a qualitative way, it can be seen that th@'e still sensitive to stimuli, as long as these are specific (
system works fine for problem sizes up to about 6 or 7 varia®ther words, strong) enough. However, with optimisatior
bles, after which both the persistence and occurrence of soliRroblems, the stimulus each individual neuron receives is n
tions degrade. Looking more closely at the results, it was ofte§Pecific enough; the information whether a global solution i
seen that parts of objects actually persist until the next cycle? 900d one is not locally available. Perhaps a global detectic
but, since most are not solutions at first, they keep shiftingNechanism may stimulate each neuron that is part of a go
their individual neuron states so quickly they do not persistSolution more specifically.

longer. Next to that, it was observed that the constant shiftin
of the neuron activities of the nonsolutions often pushed th
already established solutions out of the cycle as well.

ow can the limitations on the amount of solutions a networ
can generate be removed? Of course, it would be highly des
able if a segmentation mechanism would be able to genera
all solutions of a problem, regardless of how many there ar
. This problem can be seen as related to the previously-me

7.0 Conclu5|ons tioned one; it is in part caused by it. The ability to separatel
consider multiple solutions is tied to the individual neurons

7.1 Discussion on the main results obtained that make up each solution. Again, maybe a inhibition metho
' that inhibits only specificcombinationsof neuron activities

We have achieved some computation using CO, and as sch,OUId solve the problem.

have satisfied at Igast some'of the research objgctives: it h?\?ext to these questions, many of the properties and paramet
proven to be possible o achieve neat segmentation of severg* the systems encountered in this research are still in need

patterns in an associative memory, and generate multiple SOllfﬁore rigorous analysis. In fact, it can be said that the math

tions for optimisation problems. The successful architecture i:?natic theory is much underdeveloped. Immediately, the fol
a variant of the traditional optimisation network, with some lowing points can be named: ' ’

special modifications to its dynamical rules. The other ap-

proach that was tried, the binding approach, did not proverhe precise mechanism of segmentation has never been a
fr'wtf.ul for problems of any Serious S|ze..The' reason why theysed rigorously. Only some hypothetical statements are give

because it is very hard to properly balance the signals thathanges in the effective thresholds as caused by coherent

of the oscillatory input each layer receives becomes too com-
plex, resulting in chaotic behaviour. The newly-introduced activation rule for the optimisation net-
work has not been analysed formally at all, nor have the col

formance degrades for high loads, and the optimisation system

is not able to work with multiple solutions if they assign the
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Appendices A.2 Conditions of stable locking for the case of

delayed synaptic response

Assume continuous time, and a large number of regular Hoj
A Derivations field neurons,N - « , which all receive the same externa

stimulus h®*®™ all have the same thresh@ld , and are a

A.1 Validity of energy function for networks with positively coupled with the other neurons with the same cou

activity constraint pling strength% . Assume that the neurons have a synaptic d
Here we will only consider the no-threshold case to simplifylay A**°", which simply delays the arrival of each neuron’s
the expressions. A threshold may be added afterwards by addutput to other neurons. Assume the neurons’ inhibition func
ing a special neuron, which starts off in the ‘on’ state, and altions are of the SRM-type (EQ 3e), which makes sure the a
ways remains in that state because it is never updatedual shapes of the inhibition functions are all the same
Thresholds may be added by adding synapses with suitabl&ssume that the general form given in FIG 17. is used, witl
weights originating this neuron. all parameters the same among the different neurons.

Consider the fully asynchronous update described in sectiodssume that the neurons have already participated in a bur
2.2.1.1: First, activate neuron x, which is the inactive neuronwhich started at=0, and that the firing start moments of all

that receives most input. Then, deactivate neuron y, which I8 eurons fall within a specific time intervéf®™® . Furthermore,

the active neuron which receives the least input. From t-1 10t o\ o ihat the distribution of the firing start moments withil

2. that interval is uniform.
1 1 . T .
t-3 -5 1 1 Finally, we assume that the inhibition triggered by the burs
AH'=-S °SJ.s “+s 'Sy S
x T T lZ X% IZ X was strong enough and lasted long enough to make sure
neurons have stopped firing after the excitation that caused t
. 1 . firing has ended. This could have been achieved by choosil
t—=
=5 2+S;_1BZJX§:_1 high enough values for the inhibition amplitude, andtfgf
I
and/or t°°%
From t-1/2 to t,
Under these assumptions, we can show the conditions unc
.0 30 t-3 which the next firing interval will still be uniform, and equal
AH, = H-s +S, “Hy 38 or smaller than the last.
I
First, we require that the inhibition will not start until the fir-
o, t—%l:l:l 1 t—%D ing start period is over, to make sure no neuron actually stoj
= B—Sﬁ% % IS TS % firing within that period. To make sure we are only concerne:
HEX with the release phase of the inhibition function, we deman
1 1 for the value of the release amplitude™{?®*® ) that
2 t—1 -1 2 -1
hy _hX = . ‘inS| +‘]yx§< _zJXiSI arelease> hexternal'
1£X I
. . For the sake of brevity, assume that 0 and that the ne:
= AHy +AH, rons have binary states. This does not detract from the gent
ality of the equations, as some constant shifts in excitatio
Now, it only remains to show that level and synaptic strength transforms this model into th
more general model, while these do not pose any problems f
t-3 any of the following statements.
t—1 2
he “2h, °,

1

which is straightforward: If, at time—z , there is no active

neuron y with potential less thetrf(l , then at least there is al-

ways one with equal potential, namely, neuron x itself, since
the potential of neuron x has not changed by its own activa-
tion, assuming that it has no synapse to itself.
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the distribution of these firing moments remains uniform. We
shall consider this situation first.

=0 If all firing moments occur before or after the rising edge of

is obviously the

same as the old period. If, however, all firing moments fal

neatly within the rising edge of the excitation, the period be
: comes smaller while the distribution remains uniform. To se

N = . this, we compare the aforementioned intersection points

. (1a) :(2) . the first neuron that fires and the other neurons.

. ©) ' (1c)

the excitation, the new firing start perigif,,

[
o LR I N
i

Say, the first neurok started firing att, , somewhere within

axon axon start

<t<A +1

. . . - start
i, which originally fired att;

following holds:

FIG 33. Inhibition and excitation functions
The numbers between brackets indicate intervals of
specific sizes: (1)1**" , (2)t , (3)A*™°" . The

thick line indicates the excitation level each neuron re- ' ‘
ceives. The bounds within which the inhibition levels of pexeitatory _ excitatory  ny J

the periodA . Then, for any other neuron

, and now fires gf+At , the
start

new

. . t=1t0
the neurons should stay to attain proper phase locking gt
are given by the thin dashed lines. An example of a pos-
s_|ple inhibition mterval_ anq its resulting new interval of inhibitory __ inhibitory , O stara"e'e2se
firing start moments is given by respectively the thin [ = Nt=ro ~ T OAL-, release
solid lines and (2). inh

The excitatory stimulus received by any neuron at any moSinceh®*caiory — pinhibitory o jyexcitatory _inhibitory

. . . i i t=t0 k t=1t0 !
ment In time Is:
release
excitatory _ , external J - 0 _ startCa
hi =h + ‘]Vj At start DAt ti T release
j O active neurons t inh
Within the time interval we are interested, this means the fol- ctart release cart grelease
lowing: So, At = t; =t
I release J release ! C+ arelease
) inh start

First, h?ulescent= hexternal for tsAaxon. Then, att = Aaxon , t

the excitatory stimuli start arriving. Since the firing start mo- C is constant within our time interval, ar@>0. Therefore,

start start start

ments were uniformly distributed within<t<t and we At>t ", and At is linearly dependent on, , SO
assume a large amount of neurons, the number of stimuli that,, , ... o o ) .
start arriving within any finite time intervalst  within thew <t @nd the firing distribution remains uniform.

start
axon axon

A <t<A +1

start . Nt
|
S At

linearly until it

. This means that the stimu- Now, we have to show that, given these properties, the firin
) . start moments of all neurons in the next burst still fall within
IS Maximum he rising edge of the excitation caused by our just-calculate
+t°?™" . This is illustrated by burst. This is easy to see if we consider that the moment of
rival of the excitatory signal of a neuron corresponds to a spt
cific level in the inhibition of that neuron at that moment,
because both were triggered by the activation of the neuro
Now consider both the earliest and the latest neuron, their fi
decay ing start times result in the start and the end of the next risir
inh edge. At the start at the new rising edge, the first neuron’s it
hibition level is higher than the excitation level, because it wa
at the start of the previous rising edge. Likewise, at the end
the new rising edge, the last neuron’s inhibition level is lowe
release L
*+ton than the excitation level.

lus increases reaches

external

i +Jatt=A
the thick line in FIG 33.

max axon
h -

For each neuron, the inhibition starts its release phase at:

attack
inh

release start , .dela
: = At ey

tl i inh

+t +t

From then on, the inhibition decays linearly to zero until:

tiend - irelease
The intersection of a neuron’s inhibition and excitation func-Summarising, we can say that we just have to choose the rig

tions determines the point at which it starts firing. If all firing value for A%**°" . This is not as easy as it looks, because tt
moments occur entirely within a linear part of the excitation,
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proper choice also depends b5°™ | which may vary durB Algorithms
ing the evolution of the network.

A more surprising result is that the optimal locking is in fact B-1 Synchronous update

. release H H
achieved whera = 0 . However, this would mean the in- | order to be able to calculate the inhibition functions, a his

h?bition Ieve! after the neurons started flrlng is permz_inentlytory Containing the neuron’s activities for a |arge enougr
higher than it was the moment the neurons are first triggereamount of time in the past is maintained for each neuron i
Next to that, the firing times become completely inflexible, aseach layer. The other data fields required for each neuron &

they depend om™°" only. This means neurons are no longepretty straightforward: these are the neuron’s current extern

sensitive to signals with phases close to their own, and cann&imulus, inhibitory input, synaptic input, and resulting new
synchronise with such signals. state. The algorithm is:

For each neuron in each layer, do:

A.3 The effect of adding a soft constraint « Advance history and place new state in it

In our case, the soft activity constraint, as described in section e Calculate inhibitory input according to history

2.2.1.2, is used to enhance desynchronisation by making sure o )
neurons no longer receive positive total input when too many * SUM synaptic inputs from all other neurons according to
neurons are active. Normally, this is not a problem because the !ast state in history

neurons have positive uniform thresholds but in our case, e petermine new state according to synaptic inputs and inhi
the neurons receive an external stimulus which causes the ef- .

fective thresholds to be slightly less than zero.

To achieve this, the consta@tshould be chosen to be so high B.2 Monte Carlo update

that, when the activity of the network consists of a superposi-

tion of two or more stored patterns, the mutual inhibition be-The Monte Carlo algorithm for multiple layers should activate
tween the neurons should result in an decrease of stimulusne totally randomly chosen neuron from the whole set o
which should be equal or greater than the original thresholdavailable neurons each time step. The data structures are |
U. First, assume that there afd&active neurons (the equiva- same as in appendix B.1. The algorithm is:

lent of approximately two patterns), all of which receive a

positive external stimulus. C should be chosen so that: For each neuron in each layer, do:

¢ Advance history and place new state in it

¢ Calculate inhibitory input according to history

From (EQ 2c),
(EQ 2¢) For N = N, +N,+... +N_, neurons, randomly chosen from the

complete set of neurons, do:
he :—%ZNa(l—a)+E(N—2Na) (-1-a) P
* Sum synaptic inputs from all other neurons connected to

this neuron

CH oNa+2Na?—N + 2Na— Na+ 2Na2H S
N * Subtract the already calculated inhibitory input and deter-

mine new state according to activation function

CE,— l-a+ 4a2E

From (EQ 2h), B.3 Read-out algorithm

0 o0 O o For the read-out algorithm for associative memory, a history ¢

Cho-latd4apgs-afl-anQ all overlaps of each pattern is maintained. The algorithm fo
one pattern in one layer is:

Equality is reached for .
* Calculate overlap or total activity

C = —aHl—azH ¢ Advance history and place new overlap in it
=
—-l-a+4a * Calculate the cumulative overlap of all time windows that
fall within the specified time interval, and determine the

while all greater values of C should result in a more negative
input.

maximum.

The read-out algorithm for an optimisation network requires
large enough array of network states that can be filled whe
solutions occur. We start measuring after we are reasonak
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certain that the network has had time to converge, and continc.?2 Crossword puzzle
ue on for two maximum cycle lengths. The algorithm is:

If the current state is a solution, then
* Increment relative quality value

¢ |f not found in database, store it in database

¢ If the state is the same as the last time step, the coherenc

value of this occurrence is incremented
The quality of convergence can be measured using

. relative quality
uality = ————
q y total time

The coherence of objects can be measured using

1

coherence= —————
nr. objects foung

coherencg
[J objects found

The persistence of objects can be measured using

persistence=

nr. of differentobjects that occurred more than once

This range of problems involves the placement of letters in a
mxm square, in such a way that all rows and columns forn
valid words out of a specific vocabulary. The alphabet and vc
cabulary are chosen as follows: The alphabetrhdetters, so
as to be large enough for the problem size. The vocabulary
chosen in such a way, that a solution always exists. This
Bone by working backwards from a specific solution: first, the
mxm square is filled with random letters. Then, the words tha
can be read horizontally and vertically determine the vocabt
lary. Therefore, the vocabulary size is.2

Given the vocabulary, the solution, or a solution, has to be re
constructed by the network. Actually, there are always at lea
two solutions: the solution we started with, and this solutior
rotated. As long as the alphabet is large enough, there is ve
little chance there are any more solutions, therefore this CS
is tight.

The problem can be mapped to a binary CSP definition b
means of three sets of variables:

C Problem representations

C.1 N-queen problems

total nr. of different objects that occurred

L;0{1....,m} the variables corresponding to each letter

placed in column and rowj, where each letter is assigned
a different number.

C,0{1,...,2m} the binary transformation into variables

of the mary constraints placed on each column, namely
that the letter combinations found in each column shoul
correspond to a word in the vocabulary af @ords.

In this range of problems queens are to be placed omxan

chess board in such a way that no queen checks against any R 0 {1,...,2m} the binary transformation of theary

other queen. constraints placed on each row.

It is easy to see that no two queens may be placed on any oR§e 5 priori solution is given by:
row or column, implying that the solution must have exactly

one queen in each row and column. Using this property, a _ . solution
slightly pre-simplified problem representation may be used i = L
[Takefuji 92]. In this representation, each variable represents o
one column of the chessboard. Each variable may assume of@€ vocabulanwis given by:
of n states, representing the vertical position of the queen to be

foralli,jOo{1,...,m} .

: i
places on the corresponding column. Wi = L Uion for 1<ksm
Theoretically, solutions exist for alh=4 . Far=4 , there i

y = 1 SOMUOM for m+ 1<k<2m

are two solutions in a problem space of 16x15x14x13 ele- ki ki

ments. With the simplified representation, the problem space is , , _
reduced to 4x4x4x4 elements. For smallthe problem is | € constraints can then be defined as follows:
tight, but becomes looser asncreases.

- Hp, rows+ Hp, columns

HP ~with

The problem may be represented by the following energy

function: p, rows Liy R
H = ZZEZVK]VW
0 ol W T 7 and
HE= 2222V W, #k
ki 1j ,
k#1 p, columns _ '—u Cj
H = V, 'V
i=j ori—k=j—l or i+k=j+l %Z.zjzk "
Wwiik
with i,j,k,1 0{1,...,n} . '
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C.3TSP [Baird 91] B. Baird (1991)Bifurcation and category learning
in network models of oscillating corteEmergent Computa-

The n-city Traveling Salesman Problem involves finding a tion, S.Forrest (ed), pp 365-384

shortest tour visiting all of a number of given locations. In the

planar TSPthese locations are given by coordinates on a two{van den Berg 96], J. van den Berg (1998gural Relaxation

dimensional map, with the distances between each pair dPynamics: Mathematics and Physics of Recurrent Neural Ne

points given by their Hamming distance. In the more generaWorks with Applications in the Field of Combinatorial Optimi-

case, the distances between any pair of locations may be an &ation,Ph.D. thesis, Erasmus University Rotterdam.

bitrary value. Assume the distances between locaficrsl |

are given by valuesij [Borisyuk et al. 94], R. Borisyuk & A. Casaleggio & Y. Ka-

zanovich & G.Morgavi,Some results on Correlation Dimen-

. L ion of Time Series Generated by a Network of Phas
A straightforward way to represent the TSP, which is also use%scillators ICANN 94, pp 755-758 y

in [Hopfield & Tank 85], is to represent each of theteps in

the tour by a variable, which may assumelifferent values,  [gryck 90], J. Bruck,On the Convergence Properties of the

each standing for one of thecities to be visited in that step. Hopfield Model Proc. IEEE vol.78 no.10, pp 1579-1585
Obviously, all cities must be visited exactly once. This hard

constraint can be given by: [Buhmann 89] J. Buhmann (198%)scillations and low firing
rates in associative memory neural networkhysical Re-
P _ I i -
HP = Rzz Z Z \)i‘vj view A Volume 40 number 7, pp 4145-4148
ki L] [Buhmann & Divko & Schulten 89] J. Buhmann & R. Divko
k#1 & K. Schulten (1989)Associative memory with high informa-

i=j tion content Physical Review A 39-5, pp 2689-2692

The soft constraints are given by the distances between tH®amasio 89] A.R. Damasio (1989), The Brain Binds Entities
neighbouring cities. These result in weighted constraints beand Events by Multiregional Activation from Convergence
tween neighbouring layers with weights Zones, Neural Computation 1, pp 123-132

W,

Wiy = d; fori#j, and [Eckhorn et al. 88] R. Eckhorn & R. Bauer & W. Jordan & M.

Brosch & W. Kruse & M. Munk & H.J. Reitboeck (198&)p-
herent Oscillations: A Mechanism of Feature Linking in the

W, =0fori=j. . . .
o Visual Cortex? Biological Cybernetics 60, pp 121-130
resulting in the energy contribution [Gerstner & van Hemmen 92] W. Gerstner & J.L. van Hem:
distance o men (1992),Associative memory in a network of ‘spiking’
H =AY S S D> WiV neurons Network 3, pp 139-164
ki1 [Gerstner & Ritz & van Hemmen 93] W. Gerstner & R. Ritz &
‘(k_')_mf’d m =1 J.L. van Hemmen (1993} biologically motivated and analyt-

1 7] ically soluble model of collective oscillations in the cortex, .

] . . Theory of weak lockingiological Cybernetic 68, pp 363-374
The distances will be chosen randomly, and in such a way that

the maximum distance is less than one. [Gray et al. 89] C.M. Gray & P. Konig & A.K. Engel & W.
Singer (1989),Oscillatory responses in cat visual cortex ex-
hibit inter-columnar synchronization which reflects global
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