
Solving computational
problems using coherent

oscillation
B. W. van Schooten

M.Sc. Thesis,
September 1997

Software Engineering and Theoretical Computer Science (SETI),
Department of Computer Science,
University of Twente.

Committee:

prof.dr.ir. Anton Nijholt
dr.ir. Jan van den Berg
dr. Marc Drossaers
dr. Mannes Poel

Samenvatting 6 December 1997 3

Samenvatting

Coherente oscillatie is een opvallend fenomeen, dat geobserveerd is in verscheidene
neurobiologische experimentele onderzoeken, en daardoor tegenwoordig de nodige
aandacht krijgt. In de eerste plaats was er al geobserveerd, dat de activiteit van biolo-
gische neuronen vaak zeer duidelijke oscillaties vertoont. Wat echter nog opvallender
is, is dat neuronen, zelfs uit verschillende gebieden van de hersenen, soms synchroon
met elkaar oscilleren. Dit laatste noemt men coherente oscillatie.

De meest geopperde theorie over de betekenis van coherente oscillatie is, dat het de
mogelijkheid tot het samenvoegen en uit elkaar houden van gegevens geeft, doordat de
vuurmomenten van de neuronen al dan niet precies tegelijk optreden. Zo kunnen extra
veel gegevens tegelijk verwerkt worden zonder dat deze verward raken. Er bestaan
ondertussen een aantal concrete modellen die proberen een dergelijke verbetering met
behulp van coherente oscillatie te bewerkstelligen.

Het is interessant om te kijken in hoeverre met behulp van deze modellen een systeem
gemaakt kan worden dat ook toepasbaar is voor het oplossen van willekeurigere com-
putationele problemen, met name optimalisatieproblemen, zoals deze al opgelost
worden met behulp van klassieke Hopfield-netwerken. Hier wordt beargumenteerd dat
coherente oscillatie misschien in staat kan zijn om een aantal problemen van deze
klassieke systemen te verbeteren, en om meerdere oplossingen tegelijk te genereren.

Er wordt een model opgesteld aan de hand van de bestaande modellen, die daartoe
eerst geanalyseerd worden op bruikbaarheid. Het zo ontstane model lijkt het meest op
het Spike Response Model. Het model wordt vervolgens getoetst en bijgeschaafd door
middel van simulaties.

Het resultaat van dit onderzoek is, dat het mogelijk blijkt te zijn om meerdere oplossin-
gen van een optimalisatieprobleem tegelijk te genereren, na de juiste architectuur te
hebben gekozen en de juiste aanpassingen aan de dynamische regels van het systeem te
maken. Echter, een aantal beperkingen blijven: de oplossingen mogen onderling geen
overlappende variabelentoekenning hebben, het aantal oplossingen dat tegelijk gegene-
reerd kan worden is beperkt, en het netwerk is niet goed schaalbaar naar grotere proble-
men.

Abstract 6 December 1997 4

Abstract

Coherent oscillation is a remarkable phenomenon which has been observed in several
neurobiological experimental studies, and, as a result, has lately received substantial
interest. It has already been observed that the activity levels of biological neurons often
show distinct oscillations. What is more striking however, is that different neurons,
even from separate areas in the brain, are sometimes found to oscillate in synchrony
with each other. It is this last phenomenon that is called coherent oscillation.

The most often-stated theory on the meaning of coherent oscillation is that it gives the
brain the ability to separate or link together information, according to the simultaneity
or nonsimultaneity of neurons’ firing moments. This way, larger amounts of data may
be processed simultaneously without getting jumbled. By now, some concrete models
exist which try to enhance neural computation in this way by using coherent oscilla-
tion.

It is interesting to consider to what extent ideas from these models can be used to create
a system that is also applicable to more arbitrary computational problems, in particular
optimisation problems, to which classical Hopfield networks have already been
applied. It will be argued that coherent oscillation may be able to solve some of the
problems these classical systems have, and to generate multiple solutions simultane-
ously.

A model will be formed, based on the existing models, which have to be analysed for
applicability first. The model that is thus obtained can best be compared to the Spike
Response Model. The model will then be tested and improved by means of simulation.

The results of this study show that it is indeed possible to generate multiple solutions of
a optimisation problem simultaneously, after choosing the right architecture and mak-
ing some suitable modifications to the dynamical rules of the system. However, some
limitations remain: the solutions may not have mutually overlapping variable assign-
ments, the number of solutions that may be generated is limited, and the system does
not scale well to larger problems.

6 December 1997 5

1.0 Introduction .. 7
1.1 Object of this thesis... 7

1.2 Methods... 7

1.3 Overview of results ... 7

1.4 Structure of this thesis... 8
1.4.1 The target audience ..8
1.4.2 The chapters ...8

2.0 Classical neural networks... 8
2.1 Hopfield model.. 9

2.1.1 A neuron...9
2.1.1.1 ‘Biased’ neuron states.. 10

2.1.2 Network structure...10
2.1.3 Network dynamics ...10

2.1.3.1 Energy function ... 10

2.2 Variations on the Hopfield model..11
2.2.1 Activity constraints ..11

2.2.1.1 Hard activity constraint ... 11
2.2.1.2 Soft activity constraint... 12

2.2.2 Modifications to allow temporal sequences...12

3.0 Applications of the Hopfield model ... 13
3.1 Associative memory.. 13

3.1.1 Stability analysis ..13
3.1.2 Storage performance: load and capacity ..14
3.1.3 Storing correlated patterns ...14

3.1.3.1 Storing biased patterns .. 14
3.1.4 Measuring the retrieval quality using overlap ...15

3.2 Solving computational problems .. 15
3.2.1 What is a Constraint Satisfaction Problem?...15

3.2.1.1 Binary CSP .. 15
3.2.1.2 Constraint Satisfaction Optimisation Problems... 16

3.2.2 Solving CSOP with a Hopfield network ..16
3.2.2.1 Weighted CSP: a subset of CSOP ... 16

3.3 Binding.. 17
3.3.1 Binding and solving CSP...18

3.4 Problems with neural nets solving CSP .. 18

4.0 Literature on coherent oscillation... 18
4.1 Neurobiological findings and theories. ... 18

4.2 Neural network models ... 19

4.3 Neurons as oscillator units .. 19
4.3.1 Synchronization in an oscillator neural network ...20
4.3.2 A model for neuronal oscillations in the visual cortex ..20
4.3.3 Cooperative dynamics in visual processing...21

4.4 Neurons with emergent oscillation.. 22
4.4.1 Synchronization of integrate-and-fire neurons...22
4.4.2 Bifurcation and category learning in network models of oscillating cortex..23
4.4.3 Active reentrant connections..23
4.4.4 Synchronization and computation in a chaotic neural network ...23
4.4.5 Oscillations and low firing rates in associative memory neural networks...24
4.4.6 LEGION...24
4.4.7 The Spike Response Model (SRM) ...25

4.4.7.1 Network layout and learning function... 26
4.4.7.2 Mathematical analysis of network behaviour.. 26
4.4.7.3 Simulation of network behaviour .. 27

5.0 Applying coherent oscillation .. 28
5.1 Comparison of the different systems... 28

5.1.1 The computation that is achieved ..28
5.1.2 Oscillation mechanisms ...28
5.1.3 Coherence in oscillation...29

6 December 1997 6

5.1.4 Segmentation mechanisms...30

5.2 Main architectural decisions: forming an architectural framework ..31
5.2.1 General neuron equation ..32
5.2.2 Excitatory response functions ..32
5.2.3 Refractory inhibition functions ..32
5.2.4 Transfer functions ..32

5.3 Computational requirements: ideas, problems and questions. .. 32
5.3.1 How to map CSP to a neural network with coherent oscillation ...33
5.3.2 Segmentation & memory capacity in an associative memory ...33

5.3.2.1 Choice of external stimulus ... 33
5.3.3 Communication between layers...33
5.3.4 Behaviour of the network with different kinds of constraints within the layer ...34
5.3.5 Reading out the network state..34

5.3.5.1 Associative memory .. 34
5.3.5.2 Optimisation network .. 35

5.4 About the simulation method used.. 35
5.4.1 What kind of systems to analyse?...35
5.4.2 How to gather data ...35

5.4.2.1 Software requirements... 35
5.4.2.2 The test patterns to use .. 36

6.0 Simulation .. 36
6.1 A single auto-associative layer ... 36

6.1.1 Exploratory experiments..36
6.1.1.1 Behaviour with high load .. 37

6.1.2 Adding an activity constraint ...37
6.1.3 Stimulation of untrained patterns...38
6.1.4 Automated interpretation of behaviour..38
6.1.5 Summary and graphs..39

6.2 A system with several layers: binding. ... 40
6.2.1 Exploratory experiments..40

6.2.1.1 Binding with one binding layer ... 40
6.2.1.2 Complex binding ... 40

6.2.2 Adding interlayer saturation ..41

6.3 An optimisation network... 41
6.3.1 Exploratory experiments..41
6.3.2 Adding a graded state...42
6.3.3 Performance with the three problems ..43

7.0 Conclusions .. 44
7.1 Discussion on the main results obtained ... 44

7.1.1 Some future directions ...44

Appendices...45

A Derivations ... 45
A.1 Validity of energy function for networks with activity constraint.. 45

A.2 Conditions of stable locking for the case of delayed synaptic response... 45

A.3 The effect of adding a soft constraint.. 47

B Algorithms.. 47
B.1 Synchronous update .. 47

B.2 Monte Carlo update... 47

B.3 Read-out algorithm ... 47

C Problem representations ... 48
C.1 N-queen problems ... 48

C.2 Crossword puzzle.. 48

C.3 TSP.. 49

D References .. 49

Introduction 6 December 1997 7

1.0 Introduction

In neurobiology, there has been an increased interest in neural
network models which exhibitcollective oscillation, also
called coherent oscillation (which will from now on be re-
ferred to as ‘CO’). CO means that specific groups of neurons
are found oscillating (that is, firing and not firing in regular
succession) in synchrony (that is, all oscillating with the same
frequency or in phase with each other).

This phenomenon has been identified in the cortex and is be-
lieved to have a specific function: neurons that fire at exactly
the same time (or oscillate in phase) belong to the same pat-
tern, while neurons that fire at slightly different times (or os-
cillate out of phase or with a different frequency) belong to
separate patterns.

This contrasts with the idea of only considering stationary ac-
tivation patterns in biological neural systems, in which the
main matter of interest is the mean firing rate rather than the
precise moments of firing. It is more complex than the station-
ary model, but it may also be computationally more powerful.

1.1 Object of this thesis

With this thesis, I wish to do research on the possibility of
making CO useful for computation, in particular for Constraint
Satisfaction Optimisation Problems (CSOP). CO may be inter-
esting as a computational principle because it may offer a so-
lution to some of the problems of traditional CSOP-solving
neural nets. It will be argued that CO may enable a neural net-
work to:

1. handle single solutions separately rather than having to av-
erage over multiple solutions, which may jumble the con-
straints that have to be considered, and thus drive the
network towards a suboptimal solution.

2. keep several options open at once, so the network does not
converge too quickly to a suboptimal solution. This can be
seen as an interesting alternative to more simplistic meth-
ods that achieve this, like simulated annealing.

3. find multiple, or perhaps all, solutions.

I have arrived at this idea because neurobiology identifies two
problems, which will be argued to be analogous to the issues
mentioned above, by illustrating the analogy of the biological-
ly more feasible ‘binding’ systems with classical optimisation
networks. These problems are:

1. the feature linking problem: how is the brain able to link
together signals from many separate areas and deal with
them as a whole?

2. thesegmentation problem: how is the brain able to separate
signals that arrive simultaneously but should be dealt with
separately?

A often-stated theory is that CO offers a solution to these
problems: it is a means to code how features are linked or sep-
arated, in the following manner: neurons or groups of neurons

that fire precisely in synchrony or in phase belong together,
otherwise they are considered separate within the system.

The question that I wish to address now is: how does CO
work, and how well does it lend itself for use in neural nets
analogous to existing neural nets, with the goal of improving
their performance in some respects? In particular, I wish to:

1. examine the computational possibilities of existing systems
incorporating coherent oscillation,

2. create a neural network model based on these systems, and

3. verify it analytically and using simulation where possible.

1.2 Methods

This research program can roughly be divided into the follow-
ing phases:

1. Study of the existing literature: Examine existing theories
and systems which incorporate CO.

2. After a review of existing systems, examine which aspects
are most essential to a possibly useful computational appli-
cation of CO.

3. Identify the general issues and problems that have to be ad-
dressed in order to arrive at the thesis objective. The order
in which they will be addressed will start from the known
(aspects of existing systems) and will proceed step by step
into the unknown (possible applications to computation).

4. Address the identified issues. First, a theory will be formed
about them. Where needed, the theory will be tested or ad-
justed by simulation experiments until it is acceptable to
proceed to the next step. Where simulation is used, objec-
tive, data and conclusions should be stated.

5. State the conclusions and the problems that still remain.

In fact, it is not quite true that these processes actually pro-
ceeded in a linear order. It is often very hard to explain the
precise processes that lead to typical research results, but some
effort has been made here to document the underlying intuitive
inspirations and reasoning, both in the case of the discussed
literature, and in the case of any new results found here.

1.3 Overview of results

This thesis establishes a theory of CO, based on existing mod-
els, by separating it into three different aspects: oscillation, co-
herence and stability of oscillation, and mechanisms
achieving segmentation.

The framework that is obtained by adding together the most
desirable properties from existing systems can perhaps best be
compared to the Spike Response Model, which is indeed
shown to be the most powerful model. Some positive practi-
cal results have been obtained, the most profound of which are
clear segmentation of many patterns in an associative memory,
and the ability to generate multiple solutions in optimisation
problems. In order to make the system able to solve optimisa-

Classical neural networks 6 December 1997 8

tion problems, a special activation rule, which includes a hard
activity constraint, has been introduced.

It is shown that some issues in CO still remain. In the first
place, a CO system is apparently not able to work with multi-
ple overlapping patterns, which is the most problematic when
trying to generate solutions for optimisation problems. Sec-
ondly, the performance of a CO associative memory degrades
for higher loads, posing some questions as to CO’s biological
feasibility. Also, several of the properties and parameters of
the systems introduced are still in need of a more rigorous
analysis. These include the precise mechanism of segmenta-
tion, especially that of the optimisation network, and the ef-
fects of several of the introduced parameters.

1.4 Structure of this thesis

1.4.1 The target audience

This thesis is supposed to be largely self-contained: formulae
and concepts that are used will also be explained. However,
when the material is more or less basic knowledge, it will only
be explained tersely. The following is considered basic knowl-
edge:

• constraint satisfaction problems

• standard Hopfield network architecture & theory, including
optimisation networks

A good starting point for neural networks may be [Hertz &
Krogh & Palmer 91] or [Muller & Reinhardt 90]. An introduc-
tion to constraint satisfaction problems may be found in
[Tsang 93]. Some nice examples of the application of optimi-
sation networks can be found in [Takefuji 92].

1.4.2 The chapters

Chapter 2 and 3 describes some basic Hopfield-type architec-
tures and some of their possible applications, as well as the in-
spirations from neurobiology that originally led to them.

Chapter 4 discusses the existing CO theories. This is done
mostly by examining actual neural nets that are based on, and
hence illustrate, these theories.

In chapter 5, a general architectural framework, based on pre-
vious models, is presented and analysed.

In chapter 6, the CO framework will be tested in practice us-
ing simulation, and improved where necessary or possible.

Chapter 7 summarises the main results and some of their rami-
fications, and shows some possible future research directions.

2.0 Classical neural networks

The architecture of Hopfield networks, the type of neural net-
works that will be discussed here, is partially inspired by neu-

robiology. A short account of the relevant biological findings
will be given, which will be expanded upon later, when theo-
ries about CO are discussed. Any biological origins of actual
applications of Hopfield nets will be discussed in chapter 3.

The original Hopfield neural network model uses a much sim-
plified model of biological neurons, which can be summarised
as follows:

FIG 1. Schematic illustration of biological neurons

Each neuron has an axon through which it outputs its signal,
and dendrites, where incoming signals are received. A neuron
is either quiet or active. When it’s active, it will fire an electri-
cal signal through its axon. The axon leads to the dendrites of
many other neurons, where it connects by means of synapses.
These are able to transfer the signal in only one direction.

The signals collected by the dendrites of any neuron add up in
an approximately linear fashion. The cumulative effect of the
signals is called theaction potential. This, in turn, determines
the activity of a neuron: if the action potential exceeds a cer-
tain threshold value, the neuron will become active. In reality,
neurons tend to be active only during very short periods of
time: the neuron is said to emitspikes. In many models, only
the mean frequency of these spikes, which is positively related
to the action potential, is considered.

The amount of effect a signal has on the action potential of the
receiving neuron is determined by properties of the synapse
that transfers it: each synapse is assumed to have a weight,
which is directly related to the amount it adds to the action po-
tential. There are also specific types of neurons which have
synapses that decrease the action potential. Such neurons are
called inhibitory. The other neurons are calledexcitatory.

The most common type of Hopfield network isfully connect-
ed. This means that every neuron is connected to every other
neuron, in analogy with the dense connectedness within a neu-
ronal column. The column (which typically consists of about
4000 neurons) is believed to be some sort of functional unit
within the brain, since columns can easily be identified by the
dense connections of the neurons within a column as opposed
to the lower density of connections between columns.

A notable architectural feature is that the synaptic connections
between columns are reciprocal. What happens between these
columns is not dealt with in the original Hopfield model, but
some other models exist which do address some of the possi-
bilities. Among the most biologically feasible of these are
models ofbinding, discussed in chapter 3.

It is believed that the knowledge contained within any neural
net is largely determined by the weights of the synapses. A

Classical neural networks 6 December 1997 9

possible mechanism for learning can be obtained by assuming
that some simple, fixed rule is applied to change individual
synapse weights. The best-known such rule is the Hebb rule,
which was proposed by the neurobiologist Hebb after consid-
ering some of the observations made on biological neurons
[Hebb 49]:

“When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing
B, is increased.”

Of course, there are a lot of things not accounted for in the
classical model. To name but the most obvious:

1. The different variations of neuron types, for example the
differences between the so-called stellate and pyramidical
neurons, and the asymmetry between the properties of ex-
citatory and inhibitory neurons. Basket neurons, the main
type of inhibitory neurons, only account for 25% of all
neurons. Their axons are much shorter and their synapses
also tend to terminate at the cell body rather than the den-
drites.

2. The typical low neural activity found in biological systems
(only 4 to 7% of all neurons at a time actually show any
activity), the spiking rather than continuous nature of neu-
ral activity, and the different frequencies at which neurons
typically fire.

3. Different signal delays, synaptic transfer characteristics,
and effects of the different neurotransmitters.

4. The possibility of more complex signal processing being
done within the individual neuron.

There are many more largely unexplained phenomena. In other
words, just about anything is possible. Sometimes this fact is
needed as the ‘poetic license’ to extrapolate from biological
reality to make neural systems work in practice.

2.1 Hopfield model

In a Hopfield network, associative recall and other forms of
computation are achieved by feeding back the neurons’ activi-
ties to each other through their synaptic connections during a
certain amount of time. After a while, the network settles
down in some kind of (hopefully) meaningful final state. One
usually determines the weights of the synapses beforehand and
it is these that determine the computational meaning of the
network.

There are two types of network: discrete and continuous. A
continuous network is described in continuous time and has
neurons with potentials that change continuously according to
differential equations. A discrete network evolves in discrete
time steps, and a summation is used to determine the neurons’
potentials at each time step. First, a number of individual
equations will be given to get an idea of the possibilities,
while ways to integrate these to specify network dynamics will
be discussed in chapter 2.1.3.

2.1.1 A neuron

FIG 2. Hopfield neuron

The following symbols are used throughout the text:

State of neuroni at timet.

Weight of synapse from neuronj to

neuroni.

Threshold of neuroni.

The state corresponds to the biological concept of activity: 1
means it’s firing rapidly, -1 means it’s fully quiescent. As we
shall see, some types of neurons may only assume the -1 or 1
states, while others may assume states in the full [-1,1] range.

To be able to determine the state of a neuron, the action poten-
tial equation has to be determined first. Often used are one of
the two following equations: the discrete [Hopfield 82] and the
continuous [Hopfield & Tank 85] action potential equation:

(discrete)

(continuous)

The last term in the continuous equation is called thedecay
term, with decay delay .

The state is usually determined from the action potential in
one of two ways: either as a continuous function (in continu-
ous time) or as a stochastic function (in discrete time).

(stochastic)

(continuous)

with the transfer function.

The function used to determine the state is called theactiva-
tion function. The transfer function that is most often used is
the sigmoid function:

,

. . .

Sum + threshold

Inputs from
other neurons Output to

other neurons

. . .
. . .

synapses

Si t() 1– 1[,]∈

Jij

θi

hi t() Jij Sj t()
j 1=

N

∑ θi–=

dhi

dt
------- Jij Sj t()

j 1=

N

∑ θi–
hi

τ
----–=

τ

Si t 1+()
1 with probability fi t()=

1– with probability 1 fi t()–=



=

Si t() 2 fi t() 1
2
---– 

 =

fi t()

fi t() 1
2

1
2
--- βhi t()()tanh+=

Classical neural networks 6 December 1997 10

with thegain parameter.

When , degenerates into thestep function, which

results. for both the stochastic and continuous case, in the
most basic type of activation function, namely, thesign func-
tion. Note that for both the sign and the stochastic activation
functions, the neurons may only assume one of two states, i.e.

 instead of .

Neurons with this property are calledtwo-state neurons.

2.1.1.1 ‘Biased’ neuron states

It is also possible to use a more general form of neuron states
[Perez Vicente & Amit 89]:

(EQ 1a)

with , so that .

Depending on the application, choosing the right value ofb
may lead to more natural representations. This shift in state
values effectively means that the action potential changes to:

In particular, whenb=0 (the default case), the neurons are
called polar, and whenb=-1, they are calledbinary. Usually,
binary neurons are also scaled by a factor 1/2, so that the
states are neatly within the range [0,1], instead of [0,2]:

When translating the neural net from one value ofb to anoth-
er, one can preserve the computational behaviour by suitable
modification of the thresholds, and in the case of binary neu-
rons, of the synapses as well.

2.1.2 Network structure

The neurons in a Hopfield network are usually fully connect-
ed, which means each neuron has a synapse with every other
neuron with arbitrary weight. But, just as some biological sys-
tems are composed of multiple columns, a Hopfield network
may be designed so as to be composed of multiple subnet-
works. Each subnetwork is typically fully connected within,
but has synapses with a limited number of other subnetworks
only. If two subnetworks are connected, the connection is usu-
ally full and reciprocal. We will call each such subnetwork a
layer.

n Number of layers

β

β ∞→ fi t()

Si 1– 1,{ }∈ Si 1– 1[,]∈

Vi
b

Si b–=

b 1– 1[,]∈ Vi
b

1– b– 1 b–[,]∈

hi t() Jij Vj
b

t()
j

∑ θi–=

Jij Sj t() θi– b Jij
j

∑–
j

∑=

Vi
1
2
--- Si 1–()=

Number of neurons within layerk

State vector of layerk

If there is only one layer, we simply writeN instead of ,

andS instead of .

2.1.3 Network dynamics

One of the basic types of Hopfield network is thediscrete
model, which operates in discrete time, being easily simulable
on computer systems. It uses the discrete potential function
and the stochastic or sign activation function. Networks that
use the stochastic activation function, like theBoltzmann ma-
chine (see for example [Lenting 95]), are calledstochastic
neural nets. Networks that use the sign activation function we
will call standard neural nets.

Note that we have not specified yet which of the variables

should be updated each time step. Two often-used choices for
this aresynchronous updating andasynchronous updating.

1. Asynchronous updating (the Hopfield model [Hopfield
82]): each time step, one randomly chosen neuron is updat-
ed.

2. Synchronous updating (the Little model [Little & Shaw
78]): each time step, all neurons are updated.

With asynchronous update, each state change is immediately
taken into account to determine the next state change. One
could say that the signals travel infinitely fast. In the case of
synchronous update, neurons update according to the state of
the network one time step ago, which means the reaction of
the neurons may be ‘out-of-date’ by exactly one time step.
This sometimes results in oscillations, as we shall see in the
next section.

Next to these, there is thecontinuous model. It uses the contin-
uous potential and activation functions, which together form
the differential equations that determine its time evolution
[Hopfield 84]. In order to simulate these, a numerical approxi-
mation of these equations is needed that allows the system to
be effectively reduced to a discrete-time system. Usually, the
1st order Euler approximation method is used.

2.1.3.1 Energy function

The existence of aLyapunov function L (see for example
[Muller & Reinhardt 90]) is of great aid to determine how a
Hopfield network will behave. It has the following properties:

1. It is a function from system state configurations to the do-
main of real numbers, .

2. It is bounded below.

Nk

S
k

S1
k … SNk

k, , 
 =

Nk

S
k

Si

L : S ℜ⇒

Classical neural networks 6 December 1997 11

3. As the system evolves, the function always decreases with

increasing time: . In practice, this constraint often

appears in a ‘softened’ form, .

These properties guarantee that the function will, eventually,
reach a minimum. The system states that correspond to local
minima of the function can be said to be equilibrium states.
Local minima are those states that have a higher function val-
ue as compared to all neighbouring states in the configuration
space. Neighbouring states are those states that are immediate-
ly reachable from the current state. The function is called an
energy function if it is a function of the system state at one
moment in time only.

To illustrate the use of a Lyapunov function, we will consider
the most basic case we will encounter: the energy function for
a network with discrete action potential, asynchronous updat-
ing, and the step activation function [Bruck 90]:

(EQ 1b)

Each time step, the value either decreases or stays the
same. The function is an energy function only for symmetri-
cal synapses, . By toggling or not toggling specific

s, one at a time, the network effectively minimises

during a run and will settle down as soon as a local minimum
is reached. Here, the neighbouring states are those which only
differ from the current state with respect to one variable.

As for the more general types of Hopfield net, the function is
still a Lyapunov function after some modifications [Van den
Berg 96].

With continuous neurons, an integral term is added to the
function, which causes the minima to be displaced towards the
interior of the state space. The effect vanishes if is large
enough [Hopfield & Tank 85].

In the case of stochastic networks, the function can still be
used as well: the chance that the function decreases is greater
than the chance that it increases. For a more exact treatment of
the network behaviour, theory from statistical mechanics, in-
cluding mean-field approximation theory, is needed [Hertz &
Krogh & Palmer 91]. It has been shown that noise tends to
destabilise local minima. In particular, in large systems, there
is a critical noise level above which certain minima are sud-
denly unstable. This makes it possible to remove undesired
stable states from the system dynamics, as long as these states
are less stable than the desired stable states. However, for the
system to settle down completely, will have to be increased

eventually. Starting with a low and increasing it slowly dur-
ing a system run is calledsimulated annealing. The theory is
highly involved, but we will not dwell upon it further because
the systems that will actually be examined more closely will
be argued to work best without noise.

dL
dt
------ 0<

dL
dt
------ 0≤

H t() 1
2
--- Jij Si t() Sj t() θiSi t()

i 1=

N

∑+
j 1=

N

∑
i 1=

N

∑–=

H t()

Jij Jji=

Si H t()

Si

β

β
β

In the case of synchronous update, a monotonously decreas-
ing function still exists, which is however nonlocal in time
[Muller and Reinhardt 90]: it includes both and

 terms. An equilibrium is therefore a function of the

last two time steps. This means that the network may converge
to a cycle of period 2.

Computation using Hopfield networks is often accomplished
in the following way: First, the states of the variables the com-
putation is concerned with are mapped onto combinations of
neuron states. Then, an energy function that is a function of
the neuron states and of the above form is designed in such a
way that its minima correspond to solutions of the problem.

Finding a good problem representation and function is not
easy. One usually works with several terms, each standing for
some specific computational demand which requires an ener-
gy minimum. These are then added together. However, in the
adding process, various kinds of spurious minima may be in-
troduced. For specific classes of problems, both the nature of
these minima and the kind of network architectures that man-
age to avoid convergence to them, have been analysed in more
detail.

2.2 Variations on the Hopfield model

2.2.1 Activity constraints

One modification that is sometimes used to avoid undesirable
behaviour is imposing a global activity constraint, see for ex-
ample [Amit et al 87]. This means that the total neural activity
of a network or a layer is ‘artificially’ kept at a constant level.
The state space the neural net is able to wander through is re-
duced drastically, which may be useful for making it behave,
but which may also limit some of its computational potentials.

The constraint is given by the following formula:

(EQ 2a)

Effectively, a is the total mean activity the network is con-
strained to. In the specific case that the neurons are two-state,
this means that, at all times:

(EQ 2b)

There are several ways to enforce the constraints (EQ 2a) or
(EQ 2b).

2.2.1.1 Hard activity constraint

Assuming two-state neurons, (EQ 2b) can be enforced by sim-

ply activating the neurons that have the highest po-

tential. This rule is a replacement of the activation function,
and is actually a generalisation of the Winner-Takes-All sys-
tem (originally used for Kohonen feature maps [Hertz &

Si t()

Si t 1–()

1
N
---- Si

i
∑ a=

number of neurons active
1
2
---N a 1+()=

1
2
---N a 1+()

Classical neural networks 6 December 1997 12

Krogh & Palmer 91] but also successfully applied in Hopfield
networks see for example [Takefuji 92]), but for more than
one winner neuron. If several neurons have the same action
potential so it is not clear which ones should be active, the
winners are chosen randomly. This is calledrandom tie break-
ing [Takefuji 92].

For a basic Winners-Take-All network, updating asynchro-
nously can be achieved by updating in two steps at a time:

1. activate the inactive neuron that has the highest potential,

2. deactivate the active neuron that has the lowest potential.

Assuming that the right number of neurons were active al-
ready, the number of neurons that is active will remain correct
after applying these steps. The energy function is still valid
when using this update rule; see appendix A.1.

Note that, in this type of network, only thedifferences in po-
tentials between neurons are relevant. Because of this, synaps-
es between layers that have separate activity constraints can be
changed, in some ways, without changing the behaviour of the
system. In particular, the weight of a synapse going into a neu-
ron may be changed as long as one also adds the amount that
it has increased to all weights of synapses coming from the
same layer as that synapse.

This activation rule can also be generalised to obtain one that
allows neurons’ states to assume all values in the range [-1,1]
while keeping the total activity normalised to satisfy (EQ 2a).
A value controls the ‘sharpness’ of the neuron states i.e.
how close the neuron states should be to their extrema -1 and
1, analogous to continuous networks. Neural networks that use
this kind of rule arepotts networks [Philipsen 95]. Another
technique, which is similar, isSinkhorn normalisation, which
involves normalisation of both layers and neurons across lay-
ers [Rangarajan et al 97]. These will however not be discussed
in detail here, because it will be shown that neurons with con-
tinuous states are not desirable for a CO network.

2.2.1.2 Soft activity constraint

Instead of replacing the activation rule, (EQ 2a) may also be
weakly enforced by suitable modification of the synapses and
thresholds [Amit et al 87]. The constraint can be described by
an energy function:

,

with C the network-size-independent enforcement strength.
For finite C, the network is still allowed to deviate from the
bias. For each neuron, this amounts to:

β

H
C

t() C
2N
------- Si t() Na–

i
∑ 

  2
=

C
2N
------- Si t() Sj t()

j
∑

i
∑= aC Si t()

i
∑– constant+

hi
C

t() 1
N
---- C–() Sj t()

j
∑ aC+=

Note that this is equivalent to:

(EQ 2c)

2.2.2 Modifications to allow temporal sequences

As regards network dynamics, we have already noted that the
network typically settles down into a stationary state. It might
also be useful to be able to make it settle down into some kind
of well-behaveddynamical pattern.

Attempts to include such dynamical behaviour into the Hop-
field network can be found as early as [Hopfield 82]. These
usually involve the cyclic activation of a fixed number of sta-
tionary patterns in a fixed order.

We have already seen the possibility of cycles of length two
using an synchronous network. It is also possible to obtain cy-
cles up to length 4 by using asymmetrical (antisymmetrical)
synapses [Bruck 90]. However, this kind of system has its lim-
itations: only cycles of length 1, 2, or 4 are possible, and the
patterns that are cycled through cannot be arbitrary patterns in
arbitrary order. So, other schemes have been proposed.

A particularly robust scheme is the one described in [Sompo-
linsky & Kanter 86], where standard Hopfield synapses are
chosen so as to form a number of static attractors, while tran-
sitions between successive attractors can be accomplished by
synapses with a time delay. The signal transmitted through
these synapses cause the transition of one activity pattern to
the next as soon as they arrive. Such mapping synapses are
calledpointers.

[Horn & Usher 89] achieve the transitions between attractors
by using dynamical thresholds instead of slow synapses. When
the neurons is in one state for too long, the threshold changes
in such a way that it forces the neuron to flip its state. This re-
sults in transitions between attractors. This particular mecha-
nism is interesting to consider, since it looks much like the
oscillating systems we will encounter later on.

In order to make this system be able to cycle through more
than two patterns, the patterns were chosen to be asymmetri-
cal, that is, containing very few ‘on’ neurons. The threshold
dynamics were adapted to reflect this asymmetry by only re-
acting when the neuron is in the ‘on’ state. The results that
were obtained were random alternations between attractors. By
introducing pointers with small weights, the transitions could
be made to be limited between more specific patterns, though
exact transitions could not be enforced. The performance of
the network was measured by counting the number of subse-
quent time steps the network stayed in one of its desired at-
tractors within a given time window.

This system already has some of the features we will encoun-
ter later on, though both its main behaviour and its objective
are different. The following sections will describe the basic
method to ‘store’ attractor patterns (associative memory), in-
cluding asymmetrical ones (these are also calledbiased pat-
terns).

hi
C

t() 1
N
---- C–() Vj

a
t()

j
∑=

Applications of the Hopfield model 6 December 1997 13

3.0 Applications of the Hopfield
model

3.1 Associative memory

The attractors we mentioned in section 2.2.2 are of the most
basic kind: a number of specific activity patterns can be
‘stored’ using a kind of Hebbian synapse rule. This particular
application of the Hopfield network is called associative mem-
ory, because it is often considered analogous to the associative
nature of human memory and its ability to work with incom-
plete data. When the network states are initialised to a pattern
that is similar enough to one of the stored patterns, the net-
work will converge to that stored pattern. The network is then
said to retrieve, or emphasise, a stored pattern. Such a starting
pattern that is supposed to lead to a pattern retrieval is some-
times called aretrieval cue. Let us give some symbol defini-
tions first:

q Number of patterns stored

Componenti of pattern .

Pattern , which has sizeN

The most basic kind of associative memory is a fully connect-
ed Hopfield network. The basic idea behind the rule used to
store patterns can be explained as follows: Assume that the
neural activities are initialised to the values of the compo-

nents of a pattern that we want to store. Now, if we view

the Hebb rule as a correlation rule, pairs of neurons with equal
states should grow positive synapses. Generalising this idea,
we can also make neurons with opposite states grow negative
synapses. Multiple patterns can be stored by simply accumu-
lating the synapse weights. This rule can indeed be shown to
result in the patterns becoming attractors of the system. The
rule is:

The thresholds are set to zero. In the single-pattern case, one
can easily prove that the pattern thus stored is a global min-
imum in the energy function. Consider the energy function of
a basic discrete-type network:

For each term in the summation, consider the factors

and . Both are of the form

.

ξi
µ

1 1,–{ }∈ µ

ξµ ξ1
µ … ξN

µ, , 
 

= µ

Si

ξi
µ µ

Jij
µ ξi

µξj
µ

=

µ

H t() 1
2
--- ξi

µξj
µ
Si t() Sj t()

j 1=

N

∑
i 1=

N

∑–=

ξi
µ
Si t()

Sj t() ξj
µ

ξk
µ
Sk t()

1 if ξk
µ

Sk t()=

1– if ξk
µ

Sk t()≠



=

Either is 1 when the state of the neuron is the same as the cor-
responding pattern component, and -1 otherwise. The factors
are then multiplied with each other to get a term of :

The global minimum is reached if all terms are . This
happens if either all states are equal to, or all the reverse of,
their corresponding pattern components. Here we see that with
each pattern stored, its complement (the pattern in inverse) is
also accidentally stored.

In order to store more than one pattern, the synapse values
found for each pattern are simply added up:

However, spurious minima will be introduced in the basic en-
ergy function, depending on the form and the number of the
patterns stored. It is also possible that the desired minima will
no longer be global, or that the desired patterns are no longer
minima at all.

3.1.1 Stability analysis

One way to analyse the performance of the memory is to con-
sider the input one neuron receives when the network state
equals one of the stored patterns, say, pattern :

 (stability)

The last term is called thecrosstalk. In the case of one pattern
stored, the crosstalk for that pattern is zero, and the input each
neuron receives does not change its state: the pattern is a lo-
cally stable attractor, as we have already seen. A pattern re-
mains stable as long as the magnitude of the crosstalk term is
less than that of the pattern term (which equals 1), so patterns
should be chosen in such a way that the crosstalk for each
neuron remains as close to zero as possible. When the cross-
talks between patterns are exactly zero, the patterns are called
orthogonal.

Consider the case of a purely random choice of patterns,
where each individual pattern component is chosen randomly:

(EQ 2d)

In this case, the crosstalk averages to zero because each term

 is zero on average. This is why random patterns are often

chosen for: it is a straightforward coding method which results
in small average crosstalk between patterns. Next to that, ran-
dom coding is often relatively easy to analyse mathematically.

H t()

1
2
---ξi

µ
Si t() ξj

µ
Sj t()–

1
2
---– if ξi

µ
Si t() ξj

µ
Sj t()=

1
2
--- if ξi

µ
Si t() ξj

µ
Sj t()≠






=

1 2⁄–

Jij Jij
µ

µ µ1 … µq, ,{ }∈
∑=

ν

hi
ξν

Jij ξj
ν

j
∑ ξi

ν 1
N
---- ξi

µ ξj
µξj

v

j
∑

µ ν≠
∑+= =

P ξi
µ

1= 
  1

2
---=

ξj
µξj

v

Applications of the Hopfield model 6 December 1997 14

Patterns that do not have zero average crosstalk are calledcor-
related. If the stored patterns are too much correlated, the re-
trieval performance degrades drastically, because the basic
Hebbian rule is not able to store the small differences well.

Next to the inverses, there is one type of spurious minimum
that will emerge even for a small number of stored patterns

. These are the symmetric mixture states: not just the
stored patterns, including their inverses, are minima, but in
fact any combination that satisfies:

,

with each different,

andm an odd number.

These states are stable attractors, because each neuron state is
equal to a majority of the components of the patterns that
comprise the mixture state. Using the stability function,

In the term , the factors

 are equal to the majority of factors , there-

fore the term satisfies the following bounds:

and therefore the mixture state is stable. Note that the potential
may be closer to zero for largerm. It has indeed been shown
[Amit et al 85] that the mixture states have a lower critical
noise level than the pure states, and that the mixture state at-
tractors can effectively be removed by choosing a proper noise
level.

3.1.2 Storage performance: load and capacity

Load means the amount of patterns stored relative to the
number of neurons:

Capacity, , is the maximum load the network can handle
before the stored patterns are no longer local minima in the
energy function.

Determining the memory capacity of the network in the case
of random patterns requires an elaborate proof, which will not

q N«

ξi
mix ξi

mix
1

… ξi
mix

m

+ + 
 

sgn=

mix
i

1 … q, ,{ }∈

hi
ξmix

Jij ξj
mix

j
∑ 1

N
---- ξi

µξj
µξj

mix

µ mix∈
∑

j
∑ crosstalk+= =

1
N
---- ξi

µξj
µ ξj

ν

ν mix∈
∑ 

 sgn
µ mix∈
∑

j
∑= crosstalk+

ξi
µξj

µ ξj
ν

ν mix∈
∑ 

 sgn
µ mix∈
∑

ξj
ν

ν mix∈
∑ 

 sgn ξj
µ

1
m
---- ξi

µξj
µ ξj

ν

ν mix∈
∑ 

 sgn
µ mix∈
∑ ξi

µ

µ mix∈
∑≤ ≤

α q
N
----=

αC

be shown here in detail, though we will show some of its im-
plications.

3.1.3 Storing correlated patterns

For correlated patterns, a somewhat different rule is needed.
For example, [van Hemmen et al. 90] use a Hebbian unlearn-
ing rule after having stored a number of patterns. They initial-
ise the network with random activity, and then unlearn the
pattern that emerges spontaneously, because the pattern is
most likely to be a spurious pattern. This is repeated a number
of times, and has been shown to improve the network’s recall
of correlated patterns. An analogy is laid with dreams, which
are hypothesised to have an analogous function in the human
brain.

Another solution is simply to pre-randomise the patterns be-
fore storing them. The pseudo-inverse method [Muller & Re-
inhardt 90] is an example of this.

3.1.3.1 Storing biased patterns

In biological systems, the average neural activity is much low-
er than in Hopfield networks. This effectively makes the
amount of information per pattern decrease, and should allow
the network to store a larger amount of patterns.

When the average value of patterns’ components is not equal
to 0, the patterns are necessarily correlated, although in a very
simple manner: most components have the same value. Such
patterns are calledbiased patterns. The averagebias a of any
set of patterns can be determined using:

(EQ 2e)

Later in the text, we shall deal with random low-activity pat-
terns (). For such patterns, the chance for each compo-
nent of the pattern to be ‘on’ (1) is:

 with . (EQ 2f)

There have been several articles on how patterns with low ac-
tivity () can be stored efficiently:

Using the asynchronous stochastic model as a basis, [Amit et
al] proposed a generalised storage rule that improves capacity
for biased patterns:

(EQ 2g)

This allows the crosstalks to shift their means back to zero.
However, it is shown that the capacity is only improved when
the activity of the network is artificially kept at the proper
(low) level by adding an activity constraint to the system. Oth-
erwise, the network tends to converge to the much higher-ac-
tive symmetric mixture states. However, even with the activity

a
1

qN
------- ξi

µ

i 1=

N

∑
µ 1=

q

∑=

a 0<

P ξi
µ

1= 
  a 1+

2
------------= 1– a 1< <

a 1–≈

Jij
1
N
---- ξi

µ
a– 

  ξj
µ

a– 
 

j
∑=

Applications of the Hopfield model 6 December 1997 15

constraint, the network’s memory capacity remains limited.
For low activity, the capacity of the model is about 1.

Both [Tsodyks & Feigelman 88] and [Buhmann & Divko &
Schulten 89] then showed that a much better capacity could be
achieved by simply changing the thresholds. There was a reply
article to these findings [Perez Vicente & Amit 89], in which
this idea is incorporated and generalised. Instead of the usual

one uses:

,

with the same for all neurons. (EQ 2h)

The article shows that, when using the generalised storage rule
as was already given by (EQ 2g), the optimal value for the pa-
rameterb is the biasa. This results in a network with very
high storage capacity,

It is also shown that the thresholdU is important, because if

U=0, as . The network was found to perform

best with zero noise, i.e. .

3.1.4 Measuring the retrieval quality using
overlap

For both analytical and simulation purposes, it would be use-
ful to have an indication of how close the current state of the
network is to a given pattern . An overlap function is

often used for this purpose. Intuitively, this function should
have the following properties:

• If the activity pattern of the neural network is uncorrelat-
ed with the pattern (i.e. random) then the overlap is 0.

• If and only if the activity pattern is exactly the same as the
pattern , the overlap reaches its maximum, usually 1.

Note that the term ‘uncorrelated’ depends on the kind of pat-
terns the network will typically assume. Normally, uncorrelat-
ed means random according to (EQ 2d). For networks meant
for biased patterns, the overlap should have zero average for
state vectors chosen according to the generalised (EQ 2f).
There are several possible choices of overlap functions, but a
well-used overlap function [Perez Vicente & Amit 89] is:

(EQ 2i)

Note that the parametersa andb need not be the same for the
conditions to hold. The overlap may also be negative: this

hi Jij Sj
j

∑=

hi Jij Vj
b

j
∑ U–=

U a 1 a
2

– 
 

–≈

αC 1

1 a
2

–
--------------≈

αC
0→ a 1→

β ∞→

µ mµ t()

µ

m
µ

t() 1
N
---- ξi

µ
a– 

 
Vi

b

i 1=

N

∑=

happens when the state vector is near the complement of the
pattern.

3.2 Solving computational problems

3.2.1 What is a Constraint Satisfaction
Problem?

A constraint satisfaction problem (CSP) [Tsang 93] is a 2-tu-
ple .

 is a vector ofn variables, each with its own, finite, domain:

 is a vector ofL constraints, on these variables.

Each constraint is a subset of a subdomain of . The number
of dimensions in the subdomain is called the arity of the con-
straint. For example, thek-ary constraint has:

,

with the arity, and

A candidate solution of the CSP is a vectorx:

 with

x is a solution if and only if:

for all constraints .

A CSP is calledtight if the number of solutions as relative to
the total size of the problem domainD is small. Otherwise, it
is calledloose.

3.2.1.1 Binary CSP

A constraint is calledbinary if its arity is 2. A CSP is called
binary if the arity of all its constraints is 2.

The architecture of classical CSP-solving neural nets requires
the CSP to be binary, as will be explained below. It is, howev-
er, possible to convert any CSP to an equivalent binary CSP
by adding a new variable corresponding for each non-binary
constraint [Tsang 93]. Each element in the domain of this vari-
able corresponds to each element in that constraint. Binary
constraints between each element in the new variable with
each of the variables in the original constraint can then enforce
the original constraint.

Note, though, that the conversion may require many new vari-
ables with large domains to be added. Therefore, it is not al-
ways practical. There are also ways to represent more general

X ρ(,)

X

X1 D1 … Xn Dn∈, ,∈

ρ ρ1 … ρL, ,

X

ρi

ρi Dd1
… Ddki

××⊂

ki d1 … dki
1 … n, ,{ }∈, , d1 … dki

≠ ≠

X ρ(,)

x x1 … xn, ,()= x D1 … Dn, ,∈

xd1
… xdk

, , 
  ρi∈

ρi

Applications of the Hopfield model 6 December 1997 16

CSPs [Van den Berg 96], but detailed discussion of these falls
outside the scope of this thesis.

3.2.1.2 Constraint Satisfaction Optimisation
Problems

A more general class of computational problems may be ob-
tained by adding acost function F to a given CSP. This func-
tion may be an arbitrary function of all variables, and should
be defined for all solutions to the CSP:

Each solution now has a cost attributed to it. A proper solution
to the problem, apart from satisfying the constraints, now re-
quires the cost to be minimised as well. This is the most gen-
eral case of Constraint Satisfaction Optimisation Problems
(CSOP) [Tsang 93], called optimisation problems for short.

A solution which has the smallest cost function possible is
called anoptimal solution. Usually, it is not really necessary to
find an optimal solution, but rather a suboptimal one that is
good enough. Because of this, the requirement of having to
minimise the cost function is sometimes called asoft con-
straint, as opposed to the constraints of the CSP part, which
are calledhard constraints. A well-known CSOP that will be
used here is the Traveling Salesman Problem (see appendix
C.3).

3.2.2 Solving CSOP with a Hopfield network

Hopfield-like nets that solve CSP and CSOP are calledoptimi-
sation networks. The original optimisation network as pro-
posed by [Hopfield & Tank 85] is of the continuous, binary
kind. The method they used to construct a neural net, and de-
termine the synapse values can, for the case of CSP, be gener-
alised as follows:

First, we allocate one layer for each variable, with as many
neurons in it as the size of the variable’s domain: each neuron
in the layer corresponds to one state in the domain of the cor-
responding variable. When the neuron is active, the variable
assumes that specific state. There is no compulsory rule for-
bidding that several neurons may be active at one time. In this
case, the layer does not represent a valid variable state, but the
ability of the network to wander more freely through its state
space before settling down to a valid state, may perhaps be ad-
vantageous, for example, by enabling the system to consider
several possible variable states at once.

The computational constraints are added by defining terms of
the form , adding them together, and deriving the syn-

apse values from the resulting function. Since the form
allows only pairs of states, only binary constraints can be ex-
pressed in the energy function. Therefore, the CSP needs to be
binary.

For every binary constraint between two variables and

, there is the following term in the energy function:

F D1 D2 … Dn××× ℜ→∈

H t()
H t()

ρi Xp

Xq

, with (EQ 2j)

A some positive constant, and

 and respectively thejth neuron of layerp and the

kth neuron of layerq.

This corresponds to adding a negative synapse between each
pair of neurons that are not allowed to be active at the same
time.

There is one more requirement left: Each variable should
(eventually) only have one state. For each layeri correspond-
ing to each variable , the following term is added:

, with B some positive constant.

This amounts to adding negative synapses between all neurons
within a layer.

Now, we have to ensure that, if no neurons are active, neurons
will activate spontaneously:

, with

C some positive constant, and

n the number of variables in the CSP.

The global activity constraint (winner-takes-all) can be used as

an alternative to the terms and with good effect.

The constantsA, B andC have to be ‘tweaked’ to achieve op-
timal results, and the parametern is often chosen as to be a lit-
tle larger than the actual number of variables, and is decreased
towards its proper value during a run to make sure the system
doesn’t converge too quickly.

3.2.2.1 Weighted CSP: a subset of CSOP

The most naive way to add the cost function on top of the con-
straints is to define the energy function in such a way that, in
each minimum that represents a solution, it has the same value
as the cost associated with the solution.

Considering the requirements on the form of the energy func-
tion, it is apparent that not all cost functions can be described.
It will be shown that a certain subclasscan be described: this
class shall be calledweighted CSP.

The main idea is that each elemente of each (binary) con-
straint of a CSP now has a weight value attributed to it.

The total cost function of any solutionx can then be defined
as:

H
ρi

A Vj
p
Vk

q

j k,
j k,() ρi∉

∑=

Vj
p

Vk
q

Xi

H
Xi

B Vj
i
Vk

i

j k,
j k≠

∑=

H
C

C Vk
j

n–
j k,
∑ 

  2
=

H
Xi

H
C

ρi We

Applications of the Hopfield model 6 December 1997 17

In a regular CSP, the weight values can be thought of as being
zero. Also, the combinations of variables that are not allowed
(i.e. are not part of the corresponding constraint) can be
thought of as actually being part of the constraint, but having
an infinite weight to assert that they are hard constraints. Now,
constraints are no longer subsets of subdomains ofX, but sim-
ply subdomains ofX.

This representation provides an intermediate step between
CSOP and synapse weights, and shows what kinds of CSOP
can easily be mapped onto classical optimisation networks.
However, since infinite values are generally not desired, and
are not possible in the energy function in particular, each infi-
nite weights can be replaced by a large but finite value, say,R.
This also shows a deficiency of optimisation networks: all
constraints are necessarily soft. In nature, which inspired neu-
ral networks, this may be acceptable. In life, the aforemen-
tioned traveling salesman may perhaps get away with simply
skipping a particularly inconvenient city.

A weighted CSP which is described in this way can be trans-
lated into synapse weights immediately, if we assume that all
values of the cost function fall within the range [0,M] or can
otherwise be scaled to fit within that range. Each term as

found in the energy function described in the previous section
is simply replaced by:

,

with A, and as in (EQ 2j).

This is actually a generalisation of the formula used in [Hop-
field & Tank 85].

There are some problems with this representation. The new
parameterR needs to be tweaked for optimal results. Often,R
is chosen to be only a little larger thanM, so the network does
not converge too quickly to a valid but highly suboptimal so-
lution. This however means that the cost values of the soft
constraints of intermediate states of the network which do not
represent valid solutions may now have a significant effect on
the behaviour. In other words, the convergence of the network
becomes more complicated, and spurious global minima may
even be introduced.

3.3 Binding

The concept of binding originates from neurobiology
[Damasio 89] but has more recently taken a more concrete
form in various mathematical and simulation models [Rotter &
Dorffner 90] [van Hemmen & Ritz 94] [Moll & Miikkulainen
95].

F x() We
e ρi∈

e subvector x()=

∑
ρi ρ∈
∑=

Hρi

Hρi
A WeV

j

p
Vk

q

e ρi∈
∑=

Vj
p

Vk
q

In binding models, an internal layer (thebinding layer) is able
to lay associations (bindings) between specific combinations
of patterns found in a number of other layers (theinput lay-
ers). To achieve this, couplings between input layers and the
binding layer exist. It achieves binding by allocating a random
internal pattern for every pattern combination to be learnt,
and then using a Hebb-like rule to determine the interlayer
synapse values.

Once combinations of patterns have been bound, the binding
layer is able to reconstruct incomplete patterns in some of the
input layers with help of the patterns found in other layers.
The couplings between the binding layer and the input layers
are two-way, in analogy with the reciprocal couplings found
between neuronal columns. This provides the feedback neces-
sary for the reconstruction process. More recent observations
concerning lesions in the hippocampus and activity patterns
found in the rat’s hippocampus [McClelland & Mcnaughton
94] support this model of binding, and point to the hippocam-
pus as a possible candidate of a binding layer.

FIG 3. Example of binding

Assume that the binding layer has learnt a combina-
tion of three input patterns across the three input lay-
ers. When two of these are applied to their
corresponding layers (black neurons), the binding pat-
tern (ghosted neurons) will activate, and the third pat-
tern (ghosted neurons) can be reconstructed.

Assume that layerp is the binding layer, andq an input layer.
Binding can be seen as the storage of a global pattern, say ,
which extends across all layers. The synaptic contribution be-
tween neuronj in layerp and neuronk in layerq is:

(EQ 2k)

with the (random) binding subpattern,

and the subpattern found in input layerq.

Since the only restriction imposed on the patterns used in the
binding layer is that they are distinguishable from each other,
they are often chosen so as to achieve a high memory capacity
in the binding layer. Typically, biased patterns are used to this
end.

Next to that, the patterns may be stored in each individual lay-
er also, using the usual Hebbian rule:

input layers

binding layer

full
synaptic

connections

ξ

Jpj qk,
ξ

C
inter ξj

p
a– 

  ξk
q

a– 
 

=

ξp

ξq

Literature on coherent oscillation 6 December 1997 18

(EQ 2l)

The two C constants may be chosen so as to provide a proper
level of total input for each neuron, depending on the situa-
tion. For instance, [van Hemmen & Ritz 94] use

 with n the number of input layers,

 for all input layersq.

This choice prevents the neurons to receive too much total in-
put from the different layers. An activity constraint could also
be used to achieve this.

3.3.1 Binding and solving CSP

Binding can be seen as being analogous to CSP-solving, in
case the binding architecture may be arbitrary rather than re-
stricted to a single binding layer. A binding of two specific
patterns found in two specific layers can be seen as analogous
to the learning of a binary constraint between the given activi-
ty states of the layers involved. Finding a proper global state
that fits all the partial configurations corresponds to finding a
solution of the learnt CSP. Input layers which receive stimuli
from outside the system may actually exist as well, with the
external stimulus becoming part of the constraint system.

As such, a binding system may be seen as a more feasible
model of more general forms of computation in biological sys-
tems. Basically, the architecture is the same as an optimisa-
tion network, but with positive synapses between distributed
activity patterns, rather than negative ones between single-
neuron patterns. For layer patterns with only one active neuron
and an activity constraint, this system coincides with an opti-
misation network with Winner-Takes-All-type layers.

3.4 Problems with neural nets solving CSP

In general, the [Hopfield & Tank 85] kind of optimisation net-
work cannot just be applied to any CSP without ‘tweaking’
them first. Otherwise, the network will typically converge to
an illegal configuration, in which some of the variables are not
assigned a state. This especially happens when the constraints
are tight. The parametersA, B, C andn can be ‘balanced’ but
as [Wilson & Pawley 88] showed, this may not be enough to
provide all the necessary balancing.

Applying Winner-Takes-All works relatively well, and one of
the few systems that is made to solve arbitrary CSP [Tsang 93]
is a Winner-Takes-All system. This shows that the idea of un-
constrained walks through the state space is not really effec-
tive. However, Winner-Takes-All has problems with the more
general class of weighted CSP: it tends to settle down as soon
as a solution is reached, whether it is a good one or not. Of
course, this problem may perhaps be solved by adding noise.

Jrj rk,
ξ

Jrk rj,
ξ

C
intra ξj

r
a– 

  ξk
r

a– 
 

= =

Cp
inter

Cp
intra 1

n 1+
------------= =

Cq
inter

Cq
intra 1

2
---= =

The problems observed in case of an unconstrained state space
may be attributed to at least one specific cause, which we will
call thecollision problem: simulation results show that, in case
of multiple states per variable, the constraints that have to be
considered cannot be separated sufficiently to handle the prob-
lem. They ‘collide’ with each other, and many spurious effects
are introduced. As an example, simulations of a network solv-
ing the N-queen-problem (for a description of this problem,
see appendix C.1) show, that the network effectively tends to
rule out the possibility of placing queens in the middle to
solve the problem early during its convergence, because, as
any chess player will know, queens placed in the middle check
against more chess pieces than they would at the sides of the
chessboard,on average. If the specific solution requires a
queen to be placed in the middle, it has only a small chance to
be found.

Another reason why the winner-takes-all system may work
better that the continuous one is that it allows the system to try
some random variations before it has to settle down into its fi-
nal state. Exactly because the continuous network is of a con-
tinuous nature, it is not well able to retrace its steps once a
specific configuration has formed.

Maybe what we need is a system that can treat several state
configurations simultaneously without colliding with each oth-
er. Also, being able to handle several solutions at once may be
a means to keep several possible options open while the net-
work is converging, and decrease the chance of the network
converging prematurely to a suboptimal configuration.

4.0 Literature on coherent
oscillation

4.1 Neurobiological findings and theories.

Coherent oscillation has been identified as a possibly impor-
tant phenomenon long ago, and there has already been a theo-
ry about its meaning or usage within the brain: the amount of
temporal coincidence codes the mutual relevance of informa-
tion [von der Malsburg 81]. A more concrete interpretation of
this is given in [Sporns et al. 89]: neurons firing in synchrony
(that is, firing with the same frequency), and in particular, in
phase(which means firing with the same frequency as well as
with temporally coiciding firing moments), signal that they are
part of the same pattern, while neurons firing out of synchrony
or out of phase are unrelated. We will call this ideaphase-link-
ing. The phenomenon that neurons achieve in-phase oscillation
with each other, by whatever method and for whatever pur-
pose, will be calledphase-locking.

This general idea of the meaning of oscillations can be found
in [Baird 86]. This paper addresses oscillations as found in the
olfactory system. The observations show transitions between
chaotic dynamics and oscillatory dynamics, apparently in-
duced by the respiration cycle of the animal. Baird characteris-
es these global state transitions asHopf bifurcations. Hopf
bifurcations are sudden transitions of dynamical behaviour of

Literature on coherent oscillation 6 December 1997 19

chaotic systems, and are usually a result of a change in the
global ‘excitation’ of the system. In this case, the ‘excitation’
is hypothesised to be induced by the respiratory cycle.

He proposes that a clearly oscillatory state signals good re-
trieval, and that chaotic behaviour is actuated from outside, in
order to ‘reset’ the network’s state and make retrieval of the
next pattern easier. This idea is in fact much like simulated an-
nealing, where a high noise level allows the network to find a
more optimal configuration because it doesn’t get trapped in
local minima easily, while the noise is lowered eventually so
the network is able to settle down in a definite state. The dif-
ference is that it is repeated each time a new stimulus arrives.

Next to regular oscillations and chaos, irregular oscillations
were found. These were characterised as superpositions of sev-
eral oscillatory states with different periods which compete for
dominance of the dynamics.

Although Baird is less specific about the possible purposes of
oscillations, the general idea is already there. Several other ob-
servations made on the visual cortex lead more specifically in
this direction.

A lot of neurobiological research, including research on coher-
ent oscillation, regards the visual cortex. It has proven to be
quite hard to reproduce or even understand the visual process-
ing abilities of animals. In particular, it is not clear how they
are able to recognise particular objects in the kind of complex
and varied visual scenes that are part of everyday life. The fol-
lowing general theory exists: after visual stimuli have been
preprocessed by the retinal area, they are projected onto spe-
cific, approximately topological, cortex areas. These areas, to-
gether called the visual cortex, apparently play an important
role in visual scene processing. In particular, specific neural
assemblies have been found that react to local visual stimuli
having specific orientation angles and motion direction [Gray
et al. 89]. It is however not clear how this kind of local infor-
mation is brought together in order to arrive at high-level per-
ception, like the recognition of an object. Some theories
propose that coherent oscillation plays a role in this.

[Gray et al. 89] found that groups of neurons in separate areas
of the visual cortex would display coherent oscillations among
each other, usually with zero phase difference. More specifi-
cally, when the visual stimulus was continuous, the neighbour-
ing areas that received the stimulus would synchronise, and if
two separate stimuli with the same orientation and movement
direction were applied, the more distant receptive areas would
still synchronise. Apparently, some kind of perceptual group-
ing was taking place by means of synchronisation.

[Eckhorn et al. 88] find similar in-phase oscillation in the visu-
al cortex under similar conditions. They hypothesise that
phase coherence could be achieved either through a centralised
oscillator or by direct mutual phase-locking. They go in favour
of the latter because no centralised oscillator is as yet appar-
ent, and this could also explain the direct mutual connections
between the areas in question.

They also state that coherent oscillation could be a mechanism
to link local features that correspond to each other in some
way. Their basic idea is that there aretwo coding levels:

The feature level: the features of the external stimulus are
coded in the amplitude of excitation of neural groups.

The linking level: phase locking establishes relations
among these groups.

They argue that there has to be some separate kind of signal-
ing in order to achieve phase-locking. They argue against
phase-locking by regular excitatory signals between the neu-
rons to be phase-locked, because this way, information from
one level may interfere with the other because the signals are
the same.

4.2 Neural network models

The observations and theory mentioned above form the basis
of a lot of CO research: a large part of the proposed ideas and
models refer to some of these theories and observations. They
are often modeled after some part of the visual cortex or the
olfactory system, and try to explain or reproduce some of the
observed phenomena. The ideas of phase-linking and the two
levels of processing are often found back as well.

However, there are several different theories about the actual
mechanism that establishes CO. The different ideas about
how CO works and what it may achieve is perhaps best illus-
trated by discussing the neural network models that these theo-
ries spawned. Not all existing models are described here, but
rather, a subset was chosen so as to cover as many different
ideas as possible without having to discuss all proposed mod-
els. Within each description will be given: its biological inspi-
ration, purpose, summary of its architecture, plus any
important details, along with some comparisons and notes.

4.3 Neurons as oscillator units

The first three models described here assume that the behav-
iour of neurons or, more often, groups of neurons, can be de-
scribed by phase-locking harmonic oscillator units. For each
of these models, the way these units are built up and are able
to synchronise is similar. They are different from the Hopfield-
type neurons we have discussed, and fall outside the usual
Hopfield theory. However, a complete introduction to harmon-
ic oscillators is not really necessary for us to be able to reason
about them as we will.

Usually, each uniti has only one parameter: its phase . It is

determined by the differential equation

, with

 the basis oscillation frequency,

 the phase-locking strength,

Φi

dΦi t()
dt

------------------ ω Fij Φi t τ–() Φj t()–()sin
j 1=

N

∑–=

ω

Fij

Literature on coherent oscillation 6 December 1997 20

 a time delay (optional)

The terms in the summation can be thought of as ‘oscillatory’
equivalents of the standard Hopfield synaptic potential terms
(see chapter 2.1.1). For positive , the sign of the factor

 will be exactly opposite to the phase

difference between neuroni and neuronj, so i will tend to
phase-lock withj, if both neurons have about the same basis
frequency. For negative , the neuron will tend to synchro-

nise to the antiphase of neuronj. This behaviour can also be
illustrated with a phase response graph, showing the resulting
relative phase shift as a function of the phase of a positively or
negatively coupled neuron:

FIG 4. phase response of oscillator

The total phase shift of an oscillator as relative to its basis fre-
quency is the total of all phase response terms.

The main reason for reducing a system to a system of oscilla-
tors satisfying this particular formula is tractability; systems of
harmonic oscillators have been used extensively to model
many physical systems as well. Sometimes, it is first shown
under which circumstances formally-described neurons or
groups of neurons can be modeled as oscillators. In other cas-
es, a more high-level phenomenological view is taken: because
it is observed that neurons oscillate, it is simply assumed that
somehow, neurons behave like harmonic oscillators, and can
be faithfully modeled as such. In this case, it is less clear as to
which extent the model is accurate, as many, perhaps impor-
tant, details in biological observations are not accounted for.

Also, describing a whole group of neurons by a single unit, as
is done by some models, obviously means reducing the
number of system variables enormously. This implies that a
great deal of local structure found in biological systems is ig-
nored. This assumes that either this local structure is not rele-
vant for the theory and serves another function, or that
biological systems simply do not operate efficiently.

τ

Fij

Fij Φi t() Φj t()–()sin–

Fij

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

re
su

lti
ng

 p
ha

se
 s

hi
ft

of
 i

phase difference between i and j

positive F

negative F

4.3.1 Synchronization in an oscillator neural
network

This paper, [Luzyanina 95], illustrates the idea of the existence
of a central oscillator which is able to synchronise a number of
peripheral oscillators. Each peripheral oscillator is feedback-
connected to the central oscillator only, and can be in synchro-
ny with it nor not: the central oscillator determines in effect
the ‘focus of attention’. It is proposed that the septo-hippoc-
ampus may play the role of a central oscillator within a part of
the cortical system. Viewed in this light, the central oscillator
is in fact a kind of ‘binding’ subsystem. This architecture,
where all phase-locking is mediated by the central oscillator,
also makes the system more tractable to analysis.

It continues with previous work on systems of oscillators
which explored the possibilities of coupling delays. They ar-
gue that signal delays, which definitely exist in biological sys-
tems, may play an important role in the behaviour of the
system.

The theory simply assumes that groups of neurons can be
modeled with a single oscillator each. The phase-couplings

are constant weight factors. The paper analyses the effect dif-
ferent coupling weights and delays have on system dynam-
ics. In each case that is considered, all weights and delays are
the same among oscillators, though the frequencies may all

be different.

It is shown that longer delays enables unstable (partially-
locked) as well as stable solutions with several different fre-
quencies to exist. They propose that, by adding or changing an
external stimulus, attention switching can be effected by this
system: it would be able to switch between different full or
partial locking states. However, it is not clear how this can ac-
tually be applied to achieve any practical purpose.

4.3.2 A model for neuronal oscillations in the
visual cortex

This model is described in two companion papers, [Schuster &
Wagner 90]. It is an attempt to explain the observed CO phe-
nomena in the visual cortex. First, a group of ‘regular’ neu-
rons is modeled as an oscillator. Then, several different phase-
coupling schemes between oscillators are compared.

The first paper shows that a group of inhibitory and excitatory
neurons of the continuous type can form a special kind of os-
cillator. Because the neurons are chosen so as to have either
all positive or all negative synapses, the synaptic couplings are
not symmetrical. This causes oscillations in the dynamics in-
stead of the usual relaxation.

In order to analyse their behaviour, the two types of neurons
are grouped into an excitatory and an inhibitory cluster with
appropriate connections. By applying mean-field theory, this
system can be approximated by a system of only two differen-
tial equations. Note that this simplification assumes that the in-

Fij

τ

ωi

Literature on coherent oscillation 6 December 1997 21

ternal details of the neurons’ firing patterns do not contain
information, since these are replaced by a single variable.

This system is shown to have a stationary solution for low ex-
ternal stimuli (‘passive’), and, through a Hopf bifurcation, os-
cillatory activity for higher external stimuli (‘active’),
increasing in amplitude and frequency with the amount of
stimulus. It is shown that, when two of these simplified sys-
tems are coupled, they show in-phase synchronisation only
when both are active. Also, it is shown that there is little dif-
ference as compared to the full-detail system.

The second paper continues with this basic model. The model
of two coupled systems is simplified even further by approxi-
mating them by oscillators with explicit passive-active states
and phase-couplings which mimic the derived behaviour. They
are like the basic oscillators described earlier, except that

is always zero when one or both oscillators are passive, and
 is either a constant value, or again zero if the oscillator is

passive.

A one-dimensional array of oscillators, is then tested with dif-
ferent kinds of couplings and stimuli. Two different kinds of
stimuli are tested, which are chosen to be analogous to visual
stimuli, but in only one dimension. These are two short
‘bars’, and one long ‘bar’:

FIG 5. Schematic illustration of the two different stimuli

The circles denote units, and the arrows denote positive
stimulus, causing the corresponding units to become
active. Couplings between the units are not shown here.

Three different couplings were tested with these stimuli:

short-range couplings: each oscillator is positively coupled
with its two neighbours.

central oscillator: all oscillators are positively connected
to one single oscillator only, similar to the previous model
we have examined. These connections are two-way.

long-range sparse couplings: each oscillator is positively
coupled with several others, which are randomly selected
with a probability distribution that decreases with dis-
tance. Note that the couplings thus obtained are not neces-
sarily symmetrical.

The short-range system fails to reach phase-locking, probably
because the phase-coupling over long distances is too indirect
for the phase-locking to be established properly. The central-
oscillator system succeeds in locking the phases of the active
neurons, but in the case of two short bars, the bars are phase-
locked with each other as well, contradicting experimental re-
sults. Only the long-range system succeeds in phase-locking

Fij

ωi

one long bar

two short bars

individual bars, with separate bars each having separate phas-
es.

Local phase-locking proves to be a problem when the phase-
locking has to be achieved over long distances. Apparently,
the phase-locking effect is too weak to carry far enough. Some
disadvantages of working with a central oscillator are also ap-
parent. There are only two possibilities for each oscillator: ei-
ther in or out of phase. This means that no pattern
segmentation can be achieved, unless there is more than one
central oscillator. Adding more than one central oscillator
would however introduce the problem of determining which
one should lock with which units.

The two levels of processing have been explicitly separated in
this system: they can be found in, respectively, the oscillators’
state (active or passive) and their phase.

4.3.3 Cooperative dynamics in visual processing

This paper, [Sompolinsky et al 91], shows how a system of
neural oscillators can be used to phase-link local visual stimuli
into a coherent global object, and is able to segment multiple
objects. In this model, each oscillator models a single neuron
instead of a group of neurons.

The criteria for linking the local stimuli into objects are, in ac-
cordance with the experimental observations described earlier,
topological closeness and orientation. Moving stimuli are ad-
dressed later on in this paper, but these do not reveal any par-
ticular new system properties.

The oscillators used here are a little more complicated than
standard oscillators. They have two parameters: phase and am-
plitude. The amplitude is determined by the stimulus only, and
the phase is determined as with standard oscillators. The func-
tion now depends on both the value of the coupling

strength and the amplitude of both neuronsi and j. The fre-
quencies are the same for all neurons. Finally, a noise term

 is added to the equation.

The network has the following structure (see FIG 6.):

Fij

η t()

Literature on coherent oscillation 6 December 1997 22

FIG 6. Network architecture

The orientations of the receptive fields are shown as
oriented bars. Each neuron is sensitive to one specific
orientation only. The synapses between the clusters are
of the phase-coupling kind.

It consists of an array of local receptive fields. Each has only
one parameter: orientation. Each neuron receives input from
exactly one receptive field. A group of neurons that receive in-
put from the same receptive field is called a cluster. The syn-
apses are chosen so as to be able to reflect the phase-linking
behaviour found in the visual cortex: Within clusters, cou-
plings are strong so clusters will phase-lock independent of
orientation preference. Between clusters, couplings are weak
and decrease with the difference of orientation preference be-
tween the coupled neurons, so clusters will only phase-lock
with each other when the orientation of their stimuli is the
same.

Both analytical and simulation results show neat coupling be-
haviour, but they also uncover some problems: The simplest
choice of , which is a basic ‘tent’ function, results in poor

discrimination. A nonlinear , as well as a careful choice of

synaptic couplings were needed to obtain proper behaviour.
Another problem that had to be ‘engineered’ was the slow-
ness of desynchronisation: oscillators which have the same ba-
sis frequency do not desynchronise spontaneously. Previous
work has shown that a simple local noise term is not sufficient
to effect desynchronisation. Therefore the noise term that was
chosen here is correlated with other neurons. Finally, the prob-
lem that negative couplings do not ‘inhibit’ synchronisation,
but tend to synchronise neurons in antiphase instead shows up
here: using negative couplings proved to be disruptive to prop-
er behaviour.

The units we have seen here are like those in the previous
model, but with graded activity instead of an active/passive
state. The difference is, that the oscillators do not halt when in
passive mode: they continue oscillating at their basis frequen-
cy, even though their signals do not have any effect on other
neurons. Halting the oscillators as well might have been a

receptive fields

neural clusters

weak synapses

between clusters

strong synapses

within clusters

Fij

Fij

means to solve the desynchronisation problem here, but this
has not been shown. The two coding levels express themselves
in the existence of a separate phase and amplitude.

4.4 Neurons with emergent oscillation

The following models describe each neuron in more detail. A
variety of neuron types are used. Oscillatory behaviour is
emergent, and is usually caused by local inhibition or a refrac-
tory period (that is, a period in which the neuron is temporari-
ly disabled, or ‘tired’ as a result of having fired) contained
within the specifications of each neuron. As opposed to the os-
cillator systems, there is the issue of how phase-locking
emerges.

4.4.1 Synchronization of integrate-and-fire
neurons

The paper [Smith et al. 94], shows how two mutually inhibito-
ry integrate-and-fire neurons may oscillate in phase or in an-
tiphase according to the delay in their inhibition signals. It
continues on previous work which discusses excitatory syn-
apses. What is interesting is the way the system can be ana-
lysed analogous to oscillators, using an analogy of phase, and
a corresponding phase response diagram.

An integrate-and-fire neuron is like a continuous neuron, only
with a positive constant added to its action potential, making it
fire spontaneously in the absence of any stimulus. However,
the second difference is that, after it has fired, its action poten-
tial is reset to zero. Assuming that the firing threshold is above
zero, the neuron will oscillate with a fixed period. The phase
of such a neuron can be defined as its stage in its oscillation
period.

It was already shown in earlier work that two integrate-and-
fire neurons will synchronise in-phase when they are mutually
excitatory when there is no signal delay. In the inhibitory case,
they will normally fire in antiphase, but when an appropriate
(small) delay is added, they can be made to fire in phase.

In all cases, the phase-locking can be analysed using a phase-
response function. This function shows how much the phase of
a neuron is slowed or sped up by a spike from another neuron
when it arrives at a specified phase within its firing cycle. The
effect is strongest just before the neuron spikes.

FIG 7. Phase response of integrate-and-fire neuron for
arrival of a inhibitory spike

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

re
su

lti
ng

 p
ha

se
 s

hi
ft

of
 i

phase of i at which spike arrives

Literature on coherent oscillation 6 December 1997 23

Note that the response is different from that found in oscillator
models: the effect is strongest when there is little phase differ-
ence between the neuron and the signal. What can also be not-
ed is that the frequency of a neuron increases with higher
excitatory stimulus. Both these phenomena are typical for the
emergent models discussed below.

4.4.2 Bifurcation and category learning in
network models of oscillating cortex

This paper, [Baird 91], discusses a model based on neurobio-
logical theory stated earlier [Baird 86]. The model is set up to
show how periodic sequences and chaotic attractors can be
stored to mimic the complex dynamics found in the olfactory
bulb.

In this model, there are separate excitatory and inhibitory neu-
rons. The inhibitory neurons have a separate purpose: their
signals do not carry information to other neurons, but rather
they periodically inhibit their close excitatory neighbours, thus
causing the oscillatory effects. This also corresponds nicely to
the fact that ‘real’ inhibitory neurons typically only signal
across very short distances, and have synapses that terminate
on cell bodies instead of dendrites, already suggesting such a
difference in function.

This idea of local inhibition is taken to the extreme: each exci-
tatory neuron has exactly one inhibitory partner, which is con-
nected to that neuron only. The neurons are all of the
continuous kind, and there is no delay between signals. High-
er-order synapses are then added to enable the network to
store arbitrary patterns more effectively. It is shown that, thus,
N/2 periodic attractors may be stored.

One objection that can be stated is that the model tries tomim-
ic the behaviour of biological systems, without explaining why
they should exhibit the behaviour in the first place. No feature-
linking or segmenting is achieved.

4.4.3 Active reentrant connections

This model is described in two papers, [Sporns et al. 89] and
[Sporns et al. 91]. The model uses neurons with dynamically
changing synaptic weights. It is shown that a system of such
neurons, modeled after visual cortex architecture, is able to
achieve phase-linking and segmentation. The architecture is
based on a theory which is calledneuronal group theory. Basi-
cally, a neuronal group is a set of densely interconnected neu-
rons. Oscillation occurring within a group is always
synchronous, while between groups, it is usually not synchro-
nous. These neuronal groups are believed to emerge during the
learning phase of the organism.

In their system however, the groups are determined before-
hand. The existence of refractory periods and inhibitory neu-
rons effect oscillation, though this behaviour is not treated
analytically. The neurons themselves are like basic neurons,
but with an extra term that makes their activity decay only
slowly after a stimulus has disappeared. The architecture mod-

els the visual cortex in detail: there are orientation-sensitive
groups and motion-direction-sensitive groups. Each group is
sensitive to one aspect of the visual stimulus only, like a spe-
cific orientation or motion direction. Groups which have over-
lapping receptive fields, similar orientation, or similar motion
direction are mutually connected to effect the phase-locking
behaviour found in the visual cortex.

They argue against substituting a group by a single oscillator.
To demonstrate their argument, they compared the behaviour
of a group with that of a oscillator standing for the group, and
found that the single oscillator is more brittle with respect to
perturbations.

Within the scope of the model,reentrancy effectively means
the existence of specific reciprocal connections. These are able
to become ‘active’. This means that the weights of the synaps-
es between two groups increase rapidly as soon as the groups
excite simultaneously. The weights return to normal after a
short time.

Variability in the oscillation characteristics between the groups
are used to prevent accidental phase locking. The possibility
of interference between the two levels of processing is ad-
dressed, and it is shown by simulation that the dynamical syn-
aptic growth prevent groups from accidentally activating
other groups that do not receive stimuli. The dynamical syn-
apses add in effect a kind of hysteresis, below which only the
external stimuli pass unmodified, while stimuli from other
groups have little effect. Only after a group is activated by an
external stimulus, it becomes sensitive to signals from other
groups, so it is able to synchronise with them.

The system achieves phase-linking, figure-background seg-
mentation, figure-figure segmentation, and figure-figure seg-
mentation of more complex figures made up of multiple bars
of different orientations. Segmentation of more than two fig-
ures is not shown.

4.4.4 Synchronization and computation in a
chaotic neural network

In this paper, [Hansel & Sompolinsky 92], a model is set up to
show how synchronisation and rapid desynchronisation might
be achieved using chaotically oscillating neurons. Especially
rapid desynchronisation was identified as a problem in earlier
systems.

This model uses the Hindmarsh-Rose neuron, the typical firing
patterns of which mimic those of a real neuron at a phenome-
nological level. The states of this neuron are binary, and the
activation function is the step function. The interneuron cou-
pling terms in the action potential are exactly the same as in
the continuous Hopfield model. However, the action potential
is also determined by some additional, nonlinear, terms,
which are in part determined by two more internal variables:
the recovery variable and the adaptation current. The total in-
ternal state of the neuron is described by three relatively com-
plex differential equations.

Literature on coherent oscillation 6 December 1997 24

An external stimulus can also be applied. The behaviour of the
neuron to an external excitatory stimulus is determined experi-
mentally. It can be summarised as follows:

Low stimulus: no activity

Medium stimulus: periodic bursts

High stimulus: chaotic bursts

Synchronisation of a fully-connected network with excitatory
synapses and randomly distributed external stimuli is observed
experimentally for different synaptic weight values. For large
enough weights, the neurons synchronise their bursting. With
very large weights, bursting is chaotic, but the firing moments
still occur in synchrony with those of other neurons.

A network is set up, made up out of positively interacting
clusters of neurons, each consisting of neurons which are sen-
sitive to differently oriented bars found at each receptive
field, much like [Sompolinsky et al 91]. Synchronisation is
shown under the proper conditions and desynchronisation is
fast (3-5 bursts) due to the chaoticness of the bursting.

However, no segmentation is achieved. For the case of seg-
mentation, the system runs into the problem of how to separate
the two levels of coding: the transitions of a neuron between
periodic and chaotic bursting is determined by the total input
only. If several patterns are to be segmented, the neurons of
the different patterns should each be in a specific bursting
mode. However, an arbitrary difference in total input may
cause neurons to switch mode, independent of the pattern they
belong to.

4.4.5 Oscillations and low firing rates in
associative memory neural networks

This model, described in [Buhmann 89], uses regular neurons
to form a regular associative memory to store low-activity pat-
terns. Like [Baird 91], inhibitory neurons are locally-connect-
ed, as found in biological systems. In this system, they
eliminate the need for negative synapse weights between exci-
tatory neurons and a special learning and update rule to deal
with biased patterns. They also introduce oscillations in the
dynamics. The main idea of this system is to bring the overall
architecture closer to biological reality than traditional associ-
ative memories.

In this model, each inhibitory neuron is connected to multiple
excitatory neurons within a certain neighbourhood. Unlike
most of the systems described here, the network is updated
asynchronously. Within this update system, time, and time de-
lays, can be measured inMonte Carlo Steps (MCS): the pas-
sage of one MCS means thatN randomly determined neurons
have been updated.

This model is interesting in that it is an example of an asyn-
chronous oscillating system, since asynchrony may yield better
computational results, especially in optimisation problems.
Coherent oscillations are also found. These may be, at least
partially, a result of the areas of effect of the inhibitory neu-
rons: each will inhibit a whole group of neurons at a time, so

the neurons in this group will be necessarily phase-locked.
The paper does not address the computational possibilities of
CO.

4.4.6 LEGION

The paper [Wang & Terman 95] describes the LEGION (Lo-
cally Excitatory Globally Inhibitory Oscillator Network) sys-
tem. It shows how a grid of neurons, stimulated by a number
of joined segments in a two-dimensional map of on-off pixels
(in other words, a representation of a visual scene) may be
phase-linked, while the different segments are mutually out of
phase.

The building block of the system is an oscillator, made up of
two continuous-type neurons, one excitatory, receiving inputs
from other neurons, and one inhibitory, receiving input from
its excitatory partner only. The potential equation of the exci-
tatory neurons is slightly non-standard: it includes a nonlinear
decay term. It is probably engineered for maximum perform-
ance.

Excitatory connections exist between each oscillator and its
four neighbours. This allows the activity of neurons to propa-
gate, and hence enable phase-locking of neighbouring active
neurons. The global inhibitor, receiving input from all oscilla-
tors, adds a competitive element to the activity of neurons,
which is needed to desynchronise the different segments. The
global inhibitor only becomes stimulated when any oscillator’s
activity is above a certain threshold. Its activity will increase
as long as the stimulus remains.

FIG 8. LEGION architecture

The system shows good phase-linking, and is shown to
achieve clean segmentation of four visual segments on a
20x20-pixel grid. After applying the stimulus, the dynamics
show an immediate excitation of all neurons to which the
stimulus is applied, which is however soon inhibited by the
global inhibitor. The activity peaks emerge again later, this
time with the neurons of the different segments slightly out of
phase, while the neurons within each segment remain in-
phase. This process continues until the groups of neurons that
correspond to the different segments each fire in turn.

Segmentation is achieved by the network making the different
segments fire in synchrony, but out of phase with respect to
each other. In effect, a ‘cycle’ is established, within which the
network cycles through all the different segments, activating

all units excite
inhibitory neuron

inhibitory neuron
inhibits all units equally

Grid of oscillating units.
Each has positive couplings
with its direct neighbours.

Literature on coherent oscillation 6 December 1997 25

each one in turn. An intuitive analysis of this behaviour can be
given as follows: within each segment, neurons excite each
other, and therefore phase-lock. There is no relation between
the neurons of different segments, therefore the different seg-
ments’ oscillations are, in principle, independent. When two
segments’ activation times happen to overlap, the inhibitor
will be more active, so that, during the overlap period, both
segments’ activities are decreased. The segments therefore
tend to shift their phases away from each other, so that each
will take its own niche within the available time in the total
cycle. Note that, in order to keep the different segments from
running out of their niches again, the oscillation frequencies of
the different segments should be about the same.

The system works with excitatory connections which are local
only, in contrast with [Schuster & Wagner 90], who found
that, in similar circumstances, units with local connections
only would not synchronise properly. Apparently, the phase-
locking in this system, which is achieved by a sort of chain re-
action of excitation, works better than the phase-locking as
achieved by oscillator units.

Interference between the two levels of processing is prevented
by a proper choice of synapse weights, external stimuli, and
thresholds, so that neurons will not accidentally activate others
which do not receive a stimulus.

4.4.7 The Spike Response Model (SRM)

The spike-response model (SRM) is described in several pa-
pers, [Gerstner & Ritz & van Hemmen 93] and [Ritz et al. 94].
A summary is also given in [van Hemmen & Ritz 94]. The
SRM was the main inspiration for this research, and it will be
shown in chapter 5 that, of the systems described, it is still the
closest to the kind of system that we want. Because it will be
referred to in more detail later on, it is described here in more
detail than the other systems.

In the SRM, like in [Baird 91], there is a separation between
excitatory neurons connected over long ranges and inhibitory
neurons, which are only locally connected. The inhibitory neu-
rons may be stimulated by any of their close excitatory neigh-
bours, to which they reply with what is basically a long, strong
inhibitory echo of the stimulation they have received. Be-
cause of this, the excitatory neurons only fire in short bursts,
which are intermitted by longer periods of quiescence.

Unlike the others we have seen, this model is concerned with
segmentation of low-activity random patterns in a traditional
Hopfield-type associative memory, rather than visual patterns
in a visual system. An important difference with the standard
Hopfield memory is, however, that the retrieval cues are ap-
plied as external stimuli rather than internal activity patterns.
When the external stimulus disappears, the activity of the net-
work should also cease.

In this system, the ‘features’ that have to be feature-linked are
the individual neurons that make up each stored pattern. The
model achieves clean phase-linking and segmentation of sev-

eral superimposed patterns. This is even shown to function in
a multilayer binding architecture.

The SRM tries to model the properties of individual neurons
of a biological neural network faithfully, while at the same
time remaining tractable to mathematical treatment. The neu-
rons are ‘spiking’ neurons, which means that the excitation of
a neuron results in short ‘blips’ of activity rather than a pro-
longed period of activity. The inhibitory neurons are modeled
as in [Baird 91]: there is one inhibitory neuron for each excita-
tory neuron that is connected to that neuron only. However,
the SRM attains the delay that causes neurons to fire in bursts
by means of a delay between the excitation of a neuron and
the response of its inhibitory partner, rather than by means of
using continuous inhibitory neurons.

Because of the locality of the inhibitory neurons’ connections,
the effects of each inhibitory neuron can be incorporated into
the specifications of its excitatory partner, thus effectively
mapping a pair of neurons onto one ‘super’ neuron.

FIG 9. A pair of SRM neurons

In the following descriptions, the timet is a discrete variable.
More specifically, the time step size chosen is 1 millisecond,
which is argued to be a high enough resolution for the purpose
of modeling biological reality. The membrane- (or action-) po-
tential h of a ‘super’ neuroni consists of the following terms:

The neurons used in the model are binary (0/1) neurons. The
activation function used is the stochastic one. We shall now
describe the different terms ofh.

 is the external stimulus, an arbitrary signal that can

be applied to the network from outside.

 models the absolute refractory period. Just after the

neuron has fired, it is blocked completely for a fixed amount
of time . This is what causes the neuron to spike

rather than remain active when it is excited.

 with

 the last time the neuron fired, and

R large.

inhibitory
neuronexternal

stimulus

neuron i
output of
neuron i

inputs from
other neurons

hi t() hi
external

t() hi
refractory

t() hi
inhibitory

t() hi
synaptic

t()+ + +=

hi
external

hi
refractory

τrefractory

hi
refractory

t()
R for tF t tF τrefractory+≤ ≤()–

0 otherwise



=

tF

Literature on coherent oscillation 6 December 1997 26

 models the effect of the inhibitory part of the ‘su-

per’ neuron. After the excitatory part has spiked, a signal trav-
els to the inhibitory part, exciting it unconditionally and
making it send back an inhibitory spike. The total delay be-
tween the spiking of the excitatory part and the start of the in-

hibitory membrane response is given by .

will then increase very quickly after which it decays exponen-
tially. The shape of this curve is described by the function

, as given in FIG 10.

 with

 the moment of themost recent spike in the period be-

tween .

FIG 10. Response of inhibitory neuron.

Instead of accumulating the results of all spikes that occurred

before , only the most recent spike that occurred

before that time contributes, effectively modeling a sort of sat-
uration effect.

 is the input received as a result of spikes emitted by

the other neurons. The delay between the sending and the ar-

rival of a spike is given by . When a spike has arrived, it

results in a membrane potential that increases quickly for a
short time and then decays slowly. The shape of the curve is
described by the function , given in FIG 11.

FIG 11. Membrane potential for a received spike

hi
inhibitory

∆i
inhibitory

hi
inhibitory

η t()

hi
inhibitory

t() Ji
inhibitoryη t ∆i

inhibitory
– τ– 

 
=

τ

∞– τ t ∆i
inhibitory

–≤ ≤ 
 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

in
hi

bi
tio

n

time from start of inhibition (in ms)

η t()

t ∆i
inhibitory

–

hi
synaptic

∆i
axon

ε t()

hi
synaptic

t() Jij ε t() Sj t τ– ∆i
axon

– 
 

τ 0=

∞

∑
j 1=

N

∑=

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

ex
ci

ta
tio

n
re

ce
iv

ed

time from start of excitation (in ms)

ε t()

4.4.7.1 Network layout and learning function

In the network, each neuroni has individual constants

 and , which are chosen randomly within a

limited range of integer values. Several different ranges are
tried with different results, as will be discussed below.

The refractory period is chosen to be 1 ms, which is

equal to one time step. Effectively, this means that the maxi-
mum firing rate of a neuron when it is uninhibited is once eve-
ry two time steps.

The synaptic learning function is asymmetrical and is modeled
after biological reality. Also, it can be shown that this rule re-
sults in efficient storage. Assume thatq patterns are stored.

Each pattern contributes the following term to the synapse
from neuronj to neuroni:

, with

a the average bias across all patterns, as determined by
(EQ 2e)

As usual, adding up these terms yields the total synaptic
weight. The thresholds are optimised using the results of

the mathematical analysis of stationary retrieval states.

4.4.7.2 Mathematical analysis of network behaviour

The (heuristic) proofs that will be discussed shortly make use
of equations of network dynamics which were derived in a
previous article [Gerstner & van Hemmen 92]. The derivation
is based on mean-field approximation, and is exact only for

the limit of infinite neurons and low load, .

To obtain these equations, the neurons are grouped into ‘class-
es’. A property of a whole class can then be described by just
one term in the equations. To achieve this, the classes are cho-
sen in such a way that each class contains neurons with the
same synaptic weights, axonal delay, momentary inhibition
strength, and momentary refractory field. The idea behind this
is that, in the limit of infinite neurons, the number of classes
will remain finite, while the law of large numbers can then be
applied for each class. However, this grouping technique
would not work for loads any higher than zero, because the
number of classes would then be infinite as well: all neurons
would have a different set of synaptic weights.

Using these equations, the stationary retrieval behaviour is de-
rived, that is, the amount of overlap the network has with each
trained pattern when a specific stimulus is applied. Once this
is known, the threshold values can be optimised.

Then, a condition of stable oscillation is derived. This is based
on the assumption that the network has already been oscillat-
ing in the past, and is shown to be stable when, for each neu-
ron, the slope of its excitation is positive (i.e. the excitation is

∆i
inhibitory ∆i

axon

τrefractory

ξµ

Jij
µ 2

N 1 a2–()
-------------------------ξi

µ ξj
µ

a– 
 

=

θi

q
N
---- 0→

Literature on coherent oscillation 6 December 1997 27

increasing) when firing starts (i.e. when the potential passes
the threshold value). Also important for this condition are the
general shapes of the excitatory and inhibitory response func-
tions:

The inhibitory response should be delayed, and should
decay slowly afterwards.

The synaptic response should also increase and decrease
smoothly.

Note that the absolute refractory period does not seem to have
any function within the system. Effectively, all it does is halve
the excitatory output of a neuron, especially when one consid-
ers the smooth synaptic response to a neuron’s spikes, which
easily smooths out the signal peaks.

The effect of different excitatory delays

The network starts off in a quiescent state, and will stay there
until one applies an external stimulus. If the stimulus corre-
sponds with a stored pattern, the network may react in several
different ways, depending on the excitatory delays, as is
shown in the SRM papers. Three situations are distinguished:

1. Long delays: the excitatory stimulus causes the network to
react with a coherent oscillatory response, which contin-
ues even after the stimulus is removed. The synaptic delays
are so large that the effect of the collective spikes of one
burst arrive a whole oscillation period later, just as the in-
hibition caused by the same spikes has decayed. The syn-
aptic excitation is so large, that it can maintain the
oscillatory activity of the network even after the stimulus is
removed.

2. Medium delays: the network responds with incoherent ac-
tivity, which ceases when the stimulus is removed. This is
because the delayed excitatory signals arrive when inhibi-
tion is still high.

3. Short delays: A coherent oscillatory response, like situation
1, but it ends when the stimulus is removed. The delays are
so short that all neurons of a pattern are immediately stim-
ulated by the first active neurons before these neurons enter
their inhibitory period. The locking takes place in the
short time window between activation and the setting in of
inhibition. In this scheme, continued activity after removal
of the stimulus is impossible because no trace of any syn-
aptic response remains after the inhibitory period has set
in.

Since the third situation results in the most desirable kind of
behaviour, and corresponds best to the observed delays in bio-
logical systems, short delays are chosen for in the rest of the
experiment.

4.4.7.3 Simulation of network behaviour

Multiple patterns in a single layer: Pattern segmenta-
tion

The simulations described in the SRM papers show that the
network, when stimulated with a ‘jumbled’ signal containing

several previously-trained patterns, is able to separate these
patterns. This stimulus simply consists of a superposition of a
number of stationary patterns. During the first 50 microsec-
onds or so, the network responds chaotically. After that, oscil-
latory behaviour emerges: the neurons that make up one
pattern fire in phase, and the neurons that belong to different
patterns fire out of phase, but still synchronously: the network
‘cycles’ through the patterns in a fixed order, activating each
one in turn. This behaviour is very much like that found in
LEGION.

The total cycle frequency is about 50Hz, and becomes slower
when more patterns are concerned, although the rate at which
the different patterns succeed each other becomes quicker. The
maximum number of patterns that can be separated with the
basic model is four, but it is shown that this maximum can be
increased by increasing the inhibitory strength and duration.
However, in their system, the order in which the patterns take
turns is no longer entirely fixed when the number of patterns
become too large: sometimes two patterns swap their relative
positions in the cycle.

Interestingly, this more or less random swapping of positions
would imply that, for large amounts of patterns, patterns clash
every now and then. Apparently, these clashes can be re-
solved very quickly once the main positioning of the patterns
in the cycle has been established.

Unlike LEGION, no global inhibitor is needed to achieve seg-
mentation. Apparently, the existence of inhibitory synapses be-
tween many of the neurons, which are part of the energy
function constraints in a standard associative memory, is suffi-
cient to replace the competitive effect of the global inhibitor.

An important comment that was given is that, during one com-
plete cycle, each neuron shows only one burst of activity. A
possible disadvantage of this is that the patterns, which typi-
cally overlap, will be less distinct, and the number of patterns
that can be distinguished will be limited by the availability of
‘fresh’ neurons. This is remedied partially by using low-activi-
ty patterns, so that the overlap between patterns is small on
average.

The separation of the two levels of processing is achieved by a
proper choice of thresholds.

Multiple layers: Pattern binding

The network also proves to be capable of segmentation and
binding at the same time. The network is capable of linking
and segmenting patterns across layers. First, each input lay-
ers, which receives a stimulus, tries to make sense of the stim-
ulus by segmenting in into known patterns. Then, the binding
layer mediates synchronisation between the input layers by re-
acting to known pattern combinations. The binding layer it-
self oscillates between the combinations it recognises.

Applying coherent oscillation 6 December 1997 28

5.0 Applying coherent oscillation

In section 5.1, we will compare the different systems we have
examined, and try to find out which aspects of their behaviour
may be seen as desirable for our computational goals. In sec-
tion 5.2, we will determine the basic properties of the neural
network classes that we will examine. In section 5.3 we will
look at the as yet unsolved problems and unknowns that
emerge when trying to apply CO to new kinds of computation-
al problems. In section 5.4 we will describe how these issues
will be addressed.

5.1 Comparison of the different systems

We will try to summarise the essential properties of the sys-
tems reviewed in chapter 4, and try to find out which ones
have the more desireable properties, until we have a reasona-
ble framework left, which will be described in detail in 5.2.

5.1.1 The computation that is achieved

In order to be able to map CSP onto a neural architecture, we
will have to look at the nature of the computation being done
in the various systems described in chapter 4 first. This can be
summarised as follows:

Two of the systems are concerned with storing and recalling
patterns only. Feature linking or segmentation are not consid-
ered.

Six systems are concerned with visual processing, having visu-
al orientation, brightness, or motion direction as input. The
processing that is being done is grouping multiple local visual
areas into objects according to their nearness combined with
the similarity of their local stimuli. To represent this, the net-
work is divided into a number of groups or units, each repre-
senting, and receiving input from, a specific area in the visual
field. In LEGION for example, there is only one unit in each
group, standing for image intensity. In other systems, different
units in each group may represent different aspects of the visu-
al field the group represents. Coherent visual objects are
formed by phase-locking of the units or groups representing
the areas that make up the object. Multiple non-overlapping
objects should fire in turn or with independent frequencies to
achieve segmentation.

The SRM recognises previously-stored stationary patterns in
any external stimulus that is applied, and phase-links and seg-
ments them. The network also achieves binding by phase-lock-
ing the different input layers with the binding layer, using a
standard binding architecture with intralayer couplings.

Unlike most traditional neural nets, nearly all of the systems
are designed to react to an external pattern which comes in the
form of one external excitatory stimulus for each neuron, each
of which can be chosen arbitrarily. The neuron should react to
this stimulus by starting to oscillate in order to indicate that a
stimulus is present. The actual computation is done by sorting
the precise firing times of the neurons so that they form mean-

ingful temporally-coherent objects. Anobject will from now
on be defined as a subset of neurons that fire simultaneously.

In most systems, an object is formed as soon as enough posi-
tively-coupled neurons all receive a stimulus. In the SRM, the
objects can be more general attractors. In fact, the attractors
are the same as those the system would be attracted to if the
neurons didn’t oscillate. The external stimulus is used as a
kind of retrieval cue: only the attractors that have ‘on’ neurons
within the subset of neurons that receive an external stimulus
are considered.

5.1.2 Oscillation mechanisms

In most systems we have examined, some kind of basic oscil-
lating mechanism is present at what is primarily the neuron
level. There are two cases:

1. It is built into the units themselves, directly in the case of
oscillators, or as a kind of refractory period in emergent
models.

2. It is achieved by means of locally-connected inhibitory
neurons, either connected only within a group of excitatory
neurons that function as a unit of coherent oscillation, or to
a few neurons in a local neighbourhood only.

If each inhibitory neuron is connected to one excitatory neuron
only, the latter case can be seen as an instance of the former. If
each inhibitory neuron is connected to a specific local group of
neurons, then the inhibitory neurons also synchronise neurons
in their neighbourhood, effectively turning a whole group into
an oscillator.

There are two ways a neuron can act: either it is always oscil-
lating, because it has been argued previously that there is an
external stimulus that is always present, or it is normally qui-
escent and will only start oscillating when the total stimulus
passes a certain threshold. This distinction can be made for
both the oscillator and emergent models, but the behaviour is
different: When oscillators are in quiescent mode, the phase-
shifting stops, while in emergent models, the phase is effec-
tively reset to zero as well.

In emergent models, the refractory inhibition is usually made
to set in slowly or to start after some delay after the neuron
has excited. Because it eventually becomes stronger than any
excitatory signal, it will eventually cause the neuron to cease
firing for some period of time. After that, it decays slowly
again. This way, the neuron is made to fire in periodic bursts.
Seeing the burst of activity and the refractory period that fol-
lows as phases in the neuron’s oscillatory cycle, the behaviour
of emergent models can be viewed in analogy with, and can be
effectively compared with, the oscillator models.

There is one more aspect of the oscillation which is only
found in some of the emergent models: a higher constant level
of input results in a higher frequency of oscillation. This can
be seen as a ‘graded’ version of the quiescent/active mode de-
scribed earlier.

Applying coherent oscillation 6 December 1997 29

FIG 12. Response of emergent-model neuron to constant
positive net input

Here, the neuron becomes active as soon as the excita-
tion is greater than the inhibition. Note that, for higher
excitation levels, the neuron would activate earlier and
the inhibitory cycle would set in earlier as well, result-
ing in a higher oscillation frequency.

We cannot decide for one preferred system yet, as we don’t
know what is to be done with the oscillators. We will try to
find out below.

5.1.3 Coherence in oscillation

In most models, CO appears in the form of phase-locking. In
the different systems, there are generally three ways to achieve
this:

1. In the oscillator models, it is explicitly built into the units.

2. In emergent models, it is usually achieved by mutual exci-
tation, either with or without delay, between the neurons
to be phase-locked.

3. In some emergent models, each inhibitory neuron inhibits a
group of neurons, achieving CO within the group. Howev-
er, the phase-locking thus attained doesn’t achieve any use-
ful computation, since this system makes the neurons
phase-lock always, rather than under specific conditions.

For the emergent models, the mechanism of phase-locking de-
mands a little more explanation. In both SRM and the inte-
grate-and-fire system, it is analysed by means of shifts in the
phase of a neuron caused by a peak in the stimulus coming
from one or more other neurons. It is the relative nature of the
inhibition that makes the bursting moment more flexible: any
excitatory peak signals that happen at about the time the inhi-
bition is low again, will have a great chance to pass the neu-
ron’s effective threshold, and hence would cause the
oscillation cycle to restart early. If, on the other hand, the ris-
ing edge of a peak signal fails to pass the threshold, the falling
edge that follows will never excite the neuron, assuming that
the decrease of the neurons’ inhibition over time is slower
than that of the falling edge. This way, the neuron will tend to
synchronise the beginning of its own activity with the begin-
ning of peaks in its input signal, but only when the peaks oc-

excitation

time

on

off

inhibition
internal

output

input

cur at about the right time. Effectively, each neuron is a
periodic-signal detector and improver.

FIG 13. Response of emergent-model neuron to variable
stimulus

Note that the phase-locking behaviour is different from that of
an oscillator: the phase-locking is the strongest when the phase
difference between the signal and the neuron is very small. In
oscillator models, we have seen that it is strongest when the
phase difference is 1/4 of a total cycle, because the sine func-
tion has its maximum values there. This means the reaction of
emergent neurons is more profound: they phase-lock strongly
when their own phase is close to the signal’s phase, while they
do not react at all if the signal and the neuron are very much
out of phase.

Let us now consider how phase-locking might emerge among
a group of neurons. For a group of neurons with uniformly
distributed random phase, their effective firing thresholds are
uniformly distributed between the neuron’s threshold and the
maximum inhibition intensity (which is usually somewhere
above the maximum possible intensity of any excitatory sig-
nal). This means that the amount of neurons that will start fir-
ing due to the stimulus is higher for steeper rising edges in the
global signal, because the signal will then pass more thresh-
olds and cause more neurons to fire. Therefore, neurons
which were not synchronised in the first place tend to start fir-
ing at the steepest point of any rising edge in any globally-ap-
plied signal.

FIG 14. Response of neurons with uniformly distributed
phases to a signal peak

Now consider the case that the neurons are positively coupled,
there is a constant positive background stimulus (for example,
an external stimulus), and the neurons’ oscillation characteris-
tics are about the same. Assume that the neurons have synaptic
delays which are chosen in such a way, that they are slightly
smaller than the basis oscillation period of the fastest neuron
for the given background stimulus. Now assume that the neu-

excitation

on

off

output

input

time

internal
inhibition

inhibitory levels of neurons
with uniformly distributed phases

input

time
firing start times

maximum firing density

Applying coherent oscillation 6 December 1997 30

rons’ firing start times already fall within a small enough in-
terval (see FIG 15.: firing distribution).

The first of the delayed excitatory signals from the synapses
between the neurons will arrive at each neuron just before the
first of the neurons is about to fire (see FIG 15.: synaptic de-
lay). It causes an rising edge of a duration that is the same as
the size of the interval of the neurons’ previous firing start
times. The new interval within which the signals now pass the
neurons’ thresholds, causing the neurons to start firing, is
smaller than before (see FIG 15.: new firing distribution). So,
the locking is stable. The edge will gradually become steeper
until it is nearly vertical, in which case the locking is still sta-
ble because the excitation still passes the inhibitory levels of
the neurons within the rising edge of the excitation.

FIG 15. Stability of locking

Dashed line: inhibition of neuron that has fired earliest.
Dotted line: inhibition of neuron that has fired last.

A more detailed analysis of the precise conditions of locking
stability is given in appendix A.2. Basically, this situation is
the same as the long-synaptic-delay case that is analysed in the
SRM papers. The other case they analyse assume positively
coupled neurons with a very small synaptic delay only. The
rest of the assumptions are the same.

In this case, the rising edge of the excitatory signal will start
just after the first neuron passes its threshold, since each neu-
ron’s output arrives at the other neurons almost immediately.
The increase in the signal will make the next neurons fire ear-
ly, which will cause a further increase in signal; in other
words, an avalanche effect occurs. However, thereis a small
time interval between the first neuron that fires and the start of
the rising edge. Any neurons that pass their threshold within
this small interval are not phase-locked, i.e. their firing times
do not occur closer to each other than before. In the SRM pa-
pers, this situation is calledweak locking. However, the ava-
lanche effect is not considered in their analysis, as their
conclusions are extrapolated from their analysis of the case of
synaptic delays.

In order to verify the validity of their analysis, consider the
worst case, which is the early neurons having a slightly high-
er effective frequency than the others. In this case, they will
tend to fire even earlier next time round, thus tending to
dephase with respect to the rest. However, then the avalanche

firing distribution

synaptic delay

new firing distribution

time

inhibitory level of fastest neuron

inhibitory level of slowest neuron

excitatory signal received by all neurons

effect simply starts a little earlier, and the locking is still com-
pletely stable. The weakness of the locking as was found in
the SRM simulations may well be an effect of the relatively
long excitatory delays they chose in their simulations. The
chosen delays were so long that too many neurons will enter
their inhibitory period before the avalanche effect has ended,
thus making the peak signal decline before all relevant neu-
rons have fired. This means that some of the late neurons will
fail to pick up the signal. Their simulation plots do show that
the neurons which failed to lock sometimes were typically
neurons that tend to firelate within the collective firing period,
rather thanearly, as should have been expected from their the-
ory.

Among the different models, intensity of the inhibition does or
does not depend on the intensity of the pulse. The disadvan-
tage of the former may be that the signal enhancement of the
neuron is weaker, since the neurons’ refractory periods are
not constant, while the disadvantage of the latter may be that a
small, irrelevant peak signal may trigger the neuron’s com-
plete inhibitory cycle accidentally.

Especially within a complex multilayer system, external stimu-
li may change quickly and the network has to keep up with the
changes. Models with oscillators, and some emergent models
as well, have desynchronisation problems with changing stim-
uli: they fail to desynchronise within an acceptable amount of
time after the stimulus has disappeared. This is usually solved
by either making sure the neurons have two different states,
active (oscillating) or inactive (not oscillating), so they can
shut down as soon as the stimulus disappears, or by adding
noise, or by randomly varying oscillation characteristics
among units.

Summarising, the following requirements were found: the in-
hibition should decrease slowly, and, in the case of delayless
couplings, the reaction of the neurons to inputs should be as
quick as possible. Continuous neurons are probably less suit-
ed for this kind of high sensitivity in local temporal patterns,
unless they have very quick reactions, in which case their be-
haviour is close to that of two-state neurons.

5.1.4 Segmentation mechanisms

Fewer of the described systems achieve some kind of segmen-
tation. None have any mathematical analysis of this behaviour.
Two of them are interesting: LEGION and SRM, because
these models are both simple and efficient, and achieve clean
segmentation with more than two patterns. The other models
were also typically more complex, that is, it is less clear what
causes their specific behaviour. Next to that, it is doubtful
whether all systems are in principle capable of segmentation.
Some of the inherent problems can be stated:

1. A system with a central oscillator can handle only one ob-
ject at a time.

2. If oscillation is achieved by neurons that inhibit whole
groups of regular neurons, segmentation within the group
is harder or not possible.

Applying coherent oscillation 6 December 1997 31

3. The behaviour of models using complex internal feedback
or changing synapse weights are harder to understand and
control.

Segmentation could be achieved by simply not having any
positive couplings between the separate objects, so their fre-
quencies, and hence their firing moments, are not dependent
upon each other. However, they might still fire at the same
time accidentally. Especially when the basis frequencies of
the different neurons are about the same, this might make ob-
jects indistinguishable during longer periods.

To make sure the objects’ phases do diverge, noise is some-
times added: either by varying unit characteristics or by corre-
lated noise (random noise is not good enough, since its
desynchronisation effect tends to have zero mean). A better
option is to make objects fire strictly out of phase, as the LE-
GION, SRM, and some of the oscillator models do. In this
case, there has to be some kind of ‘competition’ between these
groups so their firing times are driven apart. Three different
ways to achieve this can be distinguished:

1. Explicitly forcing antiphase, like oscillators do by using
negative couplings between different objects. The disad-
vantage is that problems occur with more than two pat-
terns: then, the patterns should not fire in antiphase, but
rather with smaller phase differences. Consider the follow-
ing multipattern example, which illustrates how this meth-
od might result in undesirable behaviour: given that pattern
A is negatively coupled with object B and C, while B is
less strongly negatively-coupled with C than with A, A
will effectively phase-lock B and C, because it tries to at-
tain antiphase with both.

2. A global inhibitor, as found in LEGION.

3. Mutual inhibition between neurons that belong to different
objects, as found in the SRM. This inhibition is, in fact, a
natural part of the attractors of the associative memory.

In LEGION and the SRM, simulation shows that the competi-
tion results in the different objects firing neatly in turn, so that
one may speak of a total cycle in which each object activates
exactly once.

In LEGION, and most of the visual systems, objects are typi-
cally non-overlapping because that is one of their inherent
properties. The SRM does work with overlapping objects,
since the active neurons of the stored patterns may overlap.
Corresponding to what was experimentally observed in the
SRM, the neurons that are supposed to participate in multiple
objects will on average be recruited by only one of the objects.
For the rest of the duration of the cycle, the refractory level is
too high for the neuron to participate in another object. Be-
cause of this limitation, it can be argued that it’s best to use
objects that overlap little, and to make sure that the missing
active neurons in objects have little effect on the coherence of
the remaining part of the object.

Interesting is the observation, as made in the SRM papers, that
the period of a total cycle increases with the amount of seg-
mented patterns within the cycle. This may be explained by
the fact that the amount of neurons in an object decrease when

there are more overlapping objects. This causes the intensity
of the signal, and hence the frequency, to be decreased, as we
have seen in 5.1.2. This can be seen as desirable behaviour,
because this way the system is able to adapt, to a certain ex-
tent, to varying amounts of objects. Delayless couplings are
perhaps best suited to this: contrary to the delayed-synapses
case, there is no delay that has to be adjusted to make the sys-
tem work, which may become a problem when the frequencies
are not known beforehand and may even vary while the sys-
tem is running.

To explain how objects are segmented, consider the case of
LEGION, which is in fact simpler than the SRM, because the
objects are not mutually coupled, either positively or negative-
ly, and are driven apart by the global inhibitor only. Assume
that two objects activate at nearly the same time. The inhibi-
tion over these objects will cause the object that fires last to
have a rising edge that is less steep, therefore the firing of the
second object will be slowed a little, and will fire later the
next time round. With mutual inhibition between the neurons,
a similar process will occur. This is probably what makes each
object find its niche within the total cycle and remain there.

In an attempt to further explain the observed segmentation of
attractors as found in the SRM, recall that a neuron’s effective
threshold is equal to or higher than its basic threshold. There-
fore, a neuron will react either in the same way it would have
done in a non-oscillating network, or it will stay quiescent
while it wouldn’t have done this in a non-oscillating network.
This means that any object is either an attractor of a traditional
neural network, or an attractor in case several of its neurons
are effectively disabled. The energy function is the same ex-
cept for the constantly changing effective thresholds.

As we have seen in regular Hopfield networks, an attractor is
stable because all its active neurons receive positive input,
while its inactive neurons receive negative input. This means
that the neurons of an already existing object are phase-
locked to each other, since they tend to stimulate each other
while the object is forming. When an object deactivates, the
neurons that were not part of the object are now free to form a
new attractor, since they are no longer inhibited.

Summarising, the following requirements were found: it seems
best to use emergent models with some form of inhibition to
achieve segmentation. For the kinds of applications we have in
mind, namely those that involve traditional forms of computa-
tion a LEGION-type global inhibitor will probably not be
needed, because the necessary mutual inhibition is already part
of the attractors.

5.2 Main architectural decisions: forming
an architectural framework

Here, we will describe the main architecture that is used as a
framework for further analysis.

Applying coherent oscillation 6 December 1997 32

5.2.1 General neuron equation

In the rest of the text, we will only be concerned with emer-
gently oscillating neurons. We have argued that these have
better properties in several cases. Also, the models that have
experimentally shown the best behaviour are emergent models.

Basically, the system we will arrive at looks much like the
SRM. This is no surprise, since this is the most powerful mod-
el we have described. As a nice spin-off, some of the qualita-
tive results already obtained there may be carried over to our
considerations. The architecture is chosen for simplicity, so the
analysis is more tractable and the experiments are more con-
trollable. Properties of existing architectures are chosen for as
much as possible. The following decisions are made:

Noiseless neurons are chosen for, because:

1. Simple noise does not prove to be useful for CO.

2. Biased associative memories work best without noise.

3. A noiseless system is more tractable, as no statistical me-
chanics is needed to analyse the effect of noise levels.

Two-state neurons rather than continuous neurons are used, as
we have argued in 5.1.3.

The inhibitory effects are incorporated into the neuron equa-
tions. The membrane potentialh of each neuroni is:

(EQ 3a)

Generalised state representations will be used. The param-

eterb will be chosen as appropriate to the situation.

5.2.2 Excitatory response functions

We have argued that quick response is the best. There are two
possible cases:

1. Quick, asynchronous response. Time is measured in Mon-
te Carlo Steps, as in [Buhmann 89]. Each MCS, we se-
quentially updateN neurons’ excitatory input and its state
according to:

(EQ 3b)

2. ‘Smooth’ response, as found in the SRM:

(EQ 3c)

with the shape of the response chosen according to a function
similar to FIG 11. but making sure the total function area
equals 1.

hi t() hi
external

t() hi
inhibitory

t() hi
excitatory

t()+ +=

Vi
b

hi
excitatory

t() Jij Vj
b

t
1
N
----– 

 

j 1=

N

∑=

hi
excitatory

t() Jij ε t() Vj
b

t τ– ∆i
axon

– 
 

τ 0=

∞

∑
j 1=

N

∑=

5.2.3 Refractory inhibition functions

The inhibitory potential may either depend on the intensity of
the last burst, or on the moment the most recent spike occurred
before some specified point in time as relative to the present.
For the former, we can use a standard convolution:

(EQ 3d)

with the convolution kernel.

The latter case is the same as the one used by the SRM:

(EQ 3e)

with the moment of themost recent spike in the period

between .

The precise shape of the inhibitory functions will be chosen
according to our specific computational needs. In order to be
able to compare them, we want the shape of the two inhibition
functions to be approximately the same under the same cir-
cumstances. To achieve this, the shape of and can
be chosen so as to be equal. However, when the neuron was
active for several time steps, the resulting kernel inhibition is a
superposition of a number of kernel values at slightly different
time steps, resulting in a much higher amplitude. If we assume
the neuron manages to stay active for its maximum amount of
time, until the inhibition sets in, the approximate amplitude
can be scaled using:

Finally, the inhibition function should be zero fort<0,
and immediately commence at its maximum value as soon as
t=0, similar to the function used in the SRM. Otherwise, the
resulting inhibition would stay low as long as the neuron man-
ages to stay active, and will only continue to increase to its
maximumafter the neuron has deactivated.

5.2.4 Transfer functions

The transfer function is simply the step function

(EQ 3f)

5.3 Computational requirements: ideas,
problems and questions.

We have tried to capture the essence of oscillation, coherence,
and segmentation, as found in previous systems. We have de-
termined a framework that tries to reflect this essence. We can
now look at how it can be applied to other forms of computa-
tion.

hi
inhibitory

t() Ji inh,
kernel

Vi
b

t ∆i
inhibitory

– τ– 
  ε t()

τ 0=

∞

∑=

ε t()

hi
inhibitory

t() Ji inh,
SRMη t ∆i

inhibitory
– τ– 

 
=

τ

∞– τ t ∆i
inhibitory

–≤ ≤ 
 

η t() ε t()

Ji inh,
kernel Ji inh,

SRM

∆i
inhibitory

-------------------------=

η t()

Vi
b

t ∆t+() STEP hi t()()=

Applying coherent oscillation 6 December 1997 33

5.3.1 How to map CSP to a neural network with
coherent oscillation

Assuming specific groups or layers of neurons represent one
variable each, as in the optimisation networks we have seen,
we may distinguish two possible ways to map CSP onto a CO
neural network:

1. use a standard optimisation network architecture using
standard synapse values.

2. Use a binding architecture, as was also applied successful-
ly in the SRM in the case of simple binding.

What possibilities and properties do either of these ways have?

Standard

Phase-locking exists at interlayer (global) level only. The abil-
ity of the network to converge gradually is probably required
in order to arrive at a good solution, just like traditional con-
tinuous optimisation networks. The activity of each single
neuron is important.

Binding

As could be observed from the SRM simulations, there are in
effect two levels of processing:

1. Separating features in input layers. Each state is represent-
ed by a pattern consisting of multiple neurons. The patterns
will be segmented.

2. Synchronisation of layers with respect to each other.

The binding scheme may also be more robust because it
doesn’t matter if a single neuron drops out of the oscillation,
since each variable state consists of multiple neurons.

In both schemes, an activity constraint may be added. In the
standard scheme, it may either be added at the global level or
at the variable level.

5.3.2 Segmentation & memory capacity in an
associative memory

We will first look at the functioning as a basic associative
memory, because this case is most similar to the SRM, so we
can still compare its behaviour with known results, and some
idea of how well our system works or how it may be improved
may be obtained. Hopefully, some of the results found here
will extrapolate to the other systems, especially to the binding
system.

The type of memory we will use is a biased (low-activity) as-
sociative memory, using the modified storage rule (EQ 2g),
and usingb=a.

Considering the behaviour of the SRM, there are still some
limitations that are subject to improvement. In particular:

1. Can segmentation be improved by enabling neurons to par-
ticipate in several patterns during a complete cycle, for ex-
ample by choosing an appropriate inhibitory function? The
ability to have overlapping objects is probably not neces-
sary or even desirable for biased associative memory but it
may be essential for optimisation networks.

2. Storage in the SRM is not shown to be efficient: most of
the theory assumes (near-)zero load, and in the simulations
only few patterns were stored. How does the system react
to higher loads?

3. The amount of patterns that can be separated is limited,
and its order is not fixed for larger amounts of patterns. A
fixed order may be useful because it allows the system to
converge more gradually. Perhaps this may be achieved by
choosing the inhibition function in such a way that the neu-
rons’ frequencies are only able to change slowly, or, un-
like the SRM, by not allowing varying oscillation
characteristics among neurons, so the objects’ collective
frequencies are not too different.

5.3.2.1 Choice of external stimulus

The external stimulus is not found in traditional associative
memories. Then again, the goal of the type of associative
memory considered here is different: the stimulus is used as a
retrieval cue. It should be so large that it is able to activate the
neurons spontaneously, and make it retrieve one of its stored
patterns.

The other requirement on the external stimulus is that it should
be as small as possible. Otherwise, it may interfere with the
retrieval quality of the stored patterns, since a decrease of
thresholds will decrease the memory capacity, as was men-
tioned in section 3.1.3.1. This means that the external stimulus
will have to be chosen so as to be slightly larger than the neu-
rons’ thresholds.

5.3.3 Communication between layers

Starting from a single-layer associative memory, we can try to
extend the possibilities of the network by using a binding ar-
chitecture, which, in the most general case, may lead to a sys-
tem for solving general CSP. In order to achieve a mapping of
CSP onto a binding architecture, we can distinguish the fol-
lowing options:

The most obvious choice is to have input layers assume the
role of variables, while mutual couplings between the layers
impose the constraints. How strong should these mutual cou-
plings be to get proper behaviour?

In the classical binding architecture, there aretwo kinds of
layers: input layers and binding layers. The difference is that
binding layers do not receive any external stimulus. This sug-
gests using a separate binding layer for each constraint that
has to be enforced. A binding layer would only react if it finds
combinations of input patterns that it recognises. How soon
should it react; in other words: how strong should the cou-

Applying coherent oscillation 6 December 1997 34

plings with its input layers be? Does this system have advan-
tages or disadvantages over the other choice?

Unlike associative memory, the stimulus an input layer re-
ceives should stimulate all patterns, rather than just a very spe-
cific subset. Since the amount of patterns stored is very large,
it will probably not be able to segment all patterns, but rather
only a specific subset, perhaps chosen according to signals
coming from other layers. What will happen when the layer
tries to segment too many patterns? What will the influence of
other layers be on this process?

The behaviour and robustness of indirect locking across dis-
tant layers is unknown. The SRM simulations show that it is
possible, but it has not been tested with more binding layers.
Proper distant locking probably requires the network to be
able to converge gradually, so the different layers are able to
synchronise with each other.

5.3.4 Behaviour of the network with different
kinds of constraints within the layer

As an alternative to using binding on top of associative-memo-
ry layers, we can try to implement a classical optimisation net-
work architecture directly, thus imposing constraints of a
different nature than we have seen before at a more direct lev-
el. Generally, consider finding solutions in optimisation net-
works as analogous to finding coherent objects or previously-
stored patterns. The external stimulus needed to activate all
neurons spontaneously can then be seen as analogous to the
existence of negative thresholds of the neurons of the optimi-
sation network. Since neurons of optimisation networks nor-
mally already have negative thresholds, no extra stimulus is
needed.

When we consider using a standard optimisation-network ar-
chitecture in conjunction with CO, several things come to
mind:

How can overlapping solutions exist as separate objects? In
the case where a single neuron represents a variable state, the
activity of every neuron is important. However, even if over-
lapping objects are not allowed, the existence of multiple ob-
jects may still be useful, since it means that several totally
different candidate solutions may be considered at once, and
the network does not suffer from early suboptimal conver-
gence, as traditional optimisation networks do. However, the
requirement that remains is that, eventually, at least one of the
objects that is formed is a complete solution to the CSP.

In traditional optimisation networks, tight CSP are a problem
because the large amount of inhibition caused by the tightness
of the constraints results in too few neurons becoming active.
Hence, a solution is never found. This is one of the situations
where a winner-takes-all network shows much improved be-
haviour because it ensures thatsome neurons will activate,
even if their activation effectively violates a constraint. Con-
sidering our CO model, a similar feat might be achieved by
lowering the thresholds by some amount and increasing the
amplitude of the inhibitory function by the same amount. This

way, the effective threshold is the same as before for as long
as the inhibition is in its early stages. Now, if neurons are
heavily inhibited, they will still be able to activate, but their
frequency will decrease instead.

In the systems we have seen before, all neurons that receive
external stimulus will activate eventually. In an optimisation
network, this would mean thatall neurons may activate even-
tually within a cycle. This is very different from the normal
functioning of an optimisation network, since most combina-
tions of neurons represent wrong solutions or meaningless
states. What may actually happen is that either some neurons
will not activate after all, because they are constantly inhibited
by the different objects, or that the neurons that do not belong
in any coherent object will fire incoherently within time inter-
vals within which no coherent object is active.

5.3.5 Reading out the network state

How does one interpret the state of a CO network? The system
does not converge to a stationary state, as with traditional net-
works. If we are just exploring, this can be done by hand, for
example by looking at some overlap function. However, if
data has to be systematically gathered, a function which does
this automatically is needed.

In an attempt to determine such a function, consider the fol-
lowing: since we are interested in objects, consider the proper-
ties of an object:

1. It coincides with a peak of activity.

2. During the activity period of the object, the network state
should be stable, i.e. only few neurons should change their
state.

On the other hand, we are interested in how well the network’s
transient stationary states coincide with desirable states. To
measure this, the following functions could be used:

1. In case of an associative memory, correct retrieval could be
signaled by an overlap function reaching some value close
to 1.

2. In case of an optimisation network, checking whether the
inhibitory inputs are smaller than the hard constraints’ inhi-
bition level,R, coincides with a valid solution.

In both cases, it can be argued that an object is active when
one of the conditions 1. or 2. holds for several time steps. So,
we can measure the performance by measuring if the network
retains any desirable state for several time steps.

5.3.5.1 Associative memory

Assuming that the state in which all objects will eventually
fire within a complete cycle is a desirable one, proper segmen-
tation behaviour of an associative memory can be verified by
checking whether all the patterns occur at least once within
one complete cycle. A cycle will not take longer than the max-
imum span of the relative inhibition. To test this, a modified
overlap function can be used: this function should be 1 in case

Applying coherent oscillation 6 December 1997 35

the objects matches the pattern perfectly, while it should be
near or below zero as soon as neurons are active that do not
belong in the pattern. It is because of this last requirement that
the standard overlap function needs to be modified. The new
overlap function is:

A ‘time window’ method may be applied to determine the oc-
currence of proper objects: the overlap for several consecutive
time steps added together may be used as a measure for the
quality of retrieval of a particular pattern. To check whether a
pattern occurs at least once within a certain period, the maxi-
mum of all time windows that fall within the period may be
taken.

FIG 16. Calculation of the separation function for an
associative memory

5.3.5.2 Optimisation network

Even though the solutions of a optimisation network may not
be known beforehand, and may be many more than the retriev-
al states of an associative memory, a clear distinction between
a solution and a nonsolution can still be made by looking at
the network state alone. The amount of time the network stays
within solutions, and the quality of the solutions, which is also
directly readable from the network state by calculating the en-
ergy function, can be used as a measure for performance.

Next to this, we want to be able to know how many different
solutions are found within a given time period. To this end, a
simple database can be maintained which contains the active
neuron number for each layer, for each of the solutions found
after the start of the period.

Finally, coherence and cyclicity of the solution objects can be
tested by determining the amount of time steps each solution
persists, and testing for repeated occurrence of the same solu-
tion within a period of time that is equal to twice the largest
possible cycle length.

5.4 About the simulation method used

The next chapter will deal with a number of simulation runs
that should help to support some of our theories or answer
some of our questions. Also, there are several parameters that
may be varied which may have some effect on performance,
and some understanding may be obtained as to why some pa-
rameter values work better than others.

mmodified
µ 1

N
---- ξi

µ1
2
--- Si 1+()

i
∑=

.
time windows

overlap function

time window
within each
overlap
cumulative
calculate

take the maximum

The basic idea is to use an iterative cycle: starting with the
theories and questions we have already described, run some
exploratory experiments to verify or address them. Qualitative
results should be given, which should lead to further experi-
ments. This way, some understanding of the systems’ behav-
iour in practical situations should emerge.

We will examine the systems described below, each in turn.
Only after we have adequate results with one system, we con-
sider ourselves ready to tackle the next. Since it is not clear to
what extent each part will succeed, we must clearly state what
has been achieved and where problems still lie. Important ob-
servations made during the exploratory simulations will be
verified by larger runs, and the results of these will be summa-
rised in comparative graphs at the end of each section, which
should clearly show the relative performance.

5.4.1 What kind of systems to analyse?

We have chosen for several different approaches, in order to
explore the different aspects of CO. Systems

It is important how we choose our systems in order to obtain
understanding of CO. Experiments were chosen using the fol-
lowing ideas:

1. If possible, the behaviour of the network without CO
should be tested, in order to validate the general architec-
ture and to be able to compare it with the case with CO.

2. Different approaches will be addressed and chosen between
at each step.

The systems that will be analysed are the following, as corre-
sponding to the questions in chapter 5.3:

1. An associative memory

2. A binding system

3. A classical optimisation network

5.4.2 How to gather data

5.4.2.1 Software requirements

What we need for these experiments are the following:

1. The ability to test a lot of different systems, parameter var-
iations and layer architectures easily.

2. Ways to know what is going on inside the network.

3. Ways to reproduce results.

4. The ability to collect performance results automatically.

The software tries to meet these requirements in the following
ways:

1. It uses a command-line language to define network archi-
tectures and configure layer and neuron types.

2. It uses realtime network visualisation and function plotting.

Simulation 6 December 1997 36

3. A deterministic random generator (with good spectral abili-
ties and long period) is used, which can be initialised with
a seed by hand, so patterns and runs can be reproduced
without needing a variable dump and read function.

4. Automatic read-out functions are implemented that are able
to write their output to a disk file.

5.4.2.2 The test patterns to use

The test cases should be chosen so as to test a variety of as-
pects:

In order to test the proper behaviour of the CO associative
memory, the following patterns are tested with different
amounts of patterns:

1. superpositions of stored patterns,

2. superpositions of non-stored patterns,

3. superpositions of stored and non-stored patterns combined.

In order to test the CO optimisation networks, we will choose:

1. a loose CSP (then-queens problems),

2. a tight CSP (a crossword puzzle-type problem), and

3. an optimisation problem (a classical ‘benchmark’, the
TSP).

These problems and their representations are described in de-
tail in appendix C.

6.0 Simulation

6.1 A single auto-associative layer

6.1.1 Exploratory experiments

The first experiments uses two-state neurons with generalised
states, using either synchronous, smoothed, or monte-carlo up-
date. The inhibition function was chosen to have the general
shape and parameters as given in FIG 17.

FIG 17. General form of inhibition function

t

total

attack decay

inh
delay

t t
inhinh

inh
t

am
pl

itu
de

t
release
inh

re
le

as
e

am
pl

itu
de

As was already argued in section 5.2.3, the value must

be zero for SRM-type inhibition.

Two different ways of initialising the neurons may be distin-
guished:

• zero activity and zero inhibition phase

In this case, all neurons will tend to fire at once at the
moment the network starts running. After a few cycles, the
neurons that participate in different patterns should
dephase.

• random activity and phase.

 In this case, neurons will fire at uncorrelated moments at
first. After enough iteration steps, they should synchronise
with each other to form objects.

The following experiments are run to see whether the network
achieves CO and segmentation of the trained patterns at all,
and what choices influences its behaviour in this respect. In
each of the following experiments, 400 neurons and only a
few trained patterns were used.

The first exploratory experiments show that some species of
coherent oscillation is easily obtained, but that the objects that
are formed usually do not neatly correspond to the objects that
are desired for proper behaviour. The bias that seemed to work
best is abouta = -0.9 (5% activity), which seems to be a good
trade-off between too few active neurons in each pattern (since
the network size is only finite) and too much overlap between
the patterns. More desireable results may perhaps be obtained
after choosing a proper inhibition function.

Little difference in overall behaviour was found between the
basic and the kernel inhibition functions. This may be attribut-
ed to another phenomenon that was observed, namely, that the
relevant neurons tend to fire constantly during their uninhibit-
ed periods. This implies that, in practice, both functions have
almost the same shape (see also section 5.2.3).

Trying some different parameters values for the inhibition
function shows that the slope of this function should be nearly
horizontal, which can be achieved by choosing a low release
amplitude. If this parameter is too high, both locking and de-
synchronisation of patterns that should be separated tend to
happen too slowly. This can be attributed to the increased sen-
sitivity for small signals that is a result of the less steep slope
of the inhibition decay. The inhibition function that proved to
work best in these circumstances hasrelease amplitude= 0.2,

, and .

However, even after these modifications, the performance was
still not ideal. The observed problems can be qualitatively de-
scribed as follows:

1. In case of zero initialisation, some of the patterns that
should activate separately fail to dephase, and stay together
in one object instead.

tinh
attack

tinh
delay

8= tinh
total

100=

Simulation 6 December 1997 37

2. In case of random initialisation, neurons tend to accumu-
late into partial objects, which refuse to join together to
form the desired complete objects. It was usually observed
that these partial objects were temporally separated from
their counterparts by other objects.

FIG 18. Illustration of the two segmentation problems

Overlap and firing history of individual neurons for ini-
tialisation with zero phases (above) and random phas-
es (below). Network has 200 neurons, SRM-type

inhibition. , inhibition amplitude=4, release

amplitude=2, , , , 4

patterns trained/stimulated, strength of external stimu-
lus=0.2 (which a little larger than the thresh-
old(=0.17))

The different potential functions or update rules only made lit-
tle difference, and did not solve the problem. Neither did in-
creasing or decreasing the inhibition delay or total duration.
What appears to go wrong in both cases is that objects that are
superimposed or only partial do not slow down as they should.
If they did, they would dephase more easily with other pat-
terns and get ‘eaten’ by faster, more complete objects after a
while, so their neurons get the chance to be assimilated by an-
other part of the object.

In other words, the ‘avalanche effect’ that occurs during
phase-locking will have to be quick for high stimulus, and
slow for low stimulus. Instead, it was observed that the dura-
tion of the complete avalanche effect was very short, taking
about one or two cycles, apparently depending too little on the
quality of the object being formed.

A way to achieve this might be to use:

• smoothed synaptic response (EQ 3c)

This way, each neuron’s input will increase only gradually
during the formation of an object, which will slow down
the speed of synchronisation.

• shorter inhibition delays

This way, the activity bursts are shorter, and would have a
harder time to synchronise. Neurons would more easily fail
to lock to an undesired object.

time

tim
e

tim
e

overlap activity of individual neurons

tinh
delay

8=

tinh
attack

0= tinh
decay

9= tinh
release

63=

• variable inhibition functions across neurons

This way, each neuron has slightly different parameters for
this function, causing neurons to dephase automatically and
causing the rising excitatory edge to be less steep, but
becoming steeper with stronger mutual stimulus.

Using smoothed synaptic response, with a shape similar to that
used by the SRM, resulted in the following effects: for small
total duration (5 steps) and larger total duration (10 steps), the
performance did not improve. In case of random initialisation,
the problem of split objects occurred more often, especially
with larger release amplitudes. The overall performance was
less than when using simple instant response, and only became
worse for larger total duration.

Changing the inhibition delay to 6 or even 3 seemed to have
no effect. Introducing a small variance (up to + or -5 time
steps) in the total inhibition length did not have any effect,
while using a large variation (up to + or -15 time steps) caused
neurons to desynchronise too quickly, so no proper objects
were formed at all. However, introducing a variation in inhibi-
tion delay (+3 to -3 time steps) actually solved the problems
most of the time, in both the zero and random initialisation
case. Apparently, the difference in burst lengths, while having
relatively little effect on the basis frequency of each neuron,
did cause the different objects to have slightly different total
duration, which allowed them to separate more easily.

Tests with different initial states and patterns sets showed that
failure of two or more patterns to dephase still occurred some-
times. A closer look at these patterns shows that they often
overlap by 1 or 2 neurons, while the others usually didn’t
overlap at all. Apparently, the network is very sensitive to
overlap.

6.1.1.1 Behaviour with high load

The behaviour of the network with higher loads may be re-
vealing, considering what problems overlapping patterns al-
ready pose at lower loads. The first experiments show that
different objects tend to phase-lock with each other, at least
partially. This happens almost immediately, in both the ran-
dom and the zero initialisation case. Looking at some individ-
ual neurons reveals that even when neurons participate in
several superimposed objects, each neuron still receives posi-
tive input. Normally, the positive threshold, as found in bi-
ased associative memories, prevents spurious activity to
occur. Now, however, the external stimulus cancels the thresh-
old. This may have caused the pattern overlap problems we
have encountered before as well.

6.1.2 Adding an activity constraint

One way to circumvent this problem is to use an activity con-
straint. This way, activity patterns that are superpositions of
the stored patterns are forcibly removed from the state space.
However, this may introduce other kinds of undesired behav-
iour:

Simulation 6 December 1997 38

1. At all times,some neurons will have to be active. This may
imply that non-stimulated patterns may accidentally acti-
vate if all stimulated patterns are in their inhibitory cycle,
or if no neurons are stimulated.

2. Patterns which do not have exactly the same number of ac-
tive neurons as the average pattern can never be recalled
perfectly.

As a trade-off, a soft activity constraint, as explained in
2.2.1.2 may be used instead. In our case, any positive value
for the constraint enforcementC results in the activity of the
network going towards the biasa. However, the activity of the
network is still able to fluctuate away from the exact bias val-
ue. In particular, neurons which do not receive any external
stimulus will not easily activate spontaneously, if onlyC is
taken small enough. There is a value ofC that satisfies this re-
quirement, because the thresholds of these neurons are still
positive. For a precise description of the effects of, and upper
bound onC, see appendix A.3.

Adding a hard constraint actually improved the behaviour for
low loads, but it did not work for higher loads. Adding a soft
constraint withC=0.05 yields likewise results, but manages to
enhance the behaviour for higher loads as well.

FIG 19. example of segmentation for low load

FIG 20. Example of segmentation for high (0.15) load

2 31 4pattern 1,2,3,4

5 7 8

10pattern 9,10

pattern 5,6,7,8

9

6

pattern 1,2,3 2 3

pattern 4,5 4 5

1

6.1.3 Stimulation of untrained patterns

Next to segmentation of trained patterns, some account will be
given of what happens when an external stimulus contains un-
trained patterns. Applying one or more untrained patterns as
stimulus and initialising with zero states results in the neurons
of the patterns firing at the same time in the beginning of the
simulation run. After that, the neurons desynchronise slowly.

Applying a stimulus which is composed of both trained and
untrained patterns and starting with zero initialisation shows
that, after several cycles of dephasing, the untrained patterns
tend to collect at the end of the cycle. So, the neurons of the
untrained patterns do become active, and even coherently ac-
tive, though not much so. This is apparently because all stimu-
lated neurons will activate at least once, and the neurons that
are not locked have the slowest frequency, and will therefore
only become active after all other patterns have been cycled
through.

6.1.4 Automated interpretation of behaviour

The initial experiments have been done mostly by hand; this is
not acceptable for collecting larger amounts of data. The meth-
ods for calculating overlap and separation that were proposed
in chapter 5.3.5 will be examined in practical situations.

FIG 21. Standard overlap versus modified overlap

Top: standard overlap function. Bottom: own overlap
function. Note that, in the standard function, the over-
lap between, for example, pattern 1 and 3 hardly affects
the overlap value of the individual patterns.

As has been argued before, the standard overlap doesn’t quite
meet our requirements: it does not reflect the undesirability of
superpositions of patterns. The proposed new overlap function
works better in this respect. However, as FIG 21. shows, this
overlap tends to become highly negative when a pattern other
than the measured pattern is active, making it less readable.
For use with the separation function, though, this is not really

1 2 3 4legend:

Simulation 6 December 1997 39

an issue: the separation function only regards the maximum
values of the overlap.

FIG 22. Example of separation function

Top: overlap graph of a network trying to separate four
patterns. Bottom: separation quality with time window
size 4 and total history 100 time steps. Note the ‘dip’ at
the end which signals the temporary conflict between
patterns 1 and 2.

FIG 22. illustrates the separation function. Note that the sepa-
ration does not always increase monotonously over time, even
though it was observed that it usually does. However, this may
become a problem with more complex architectures, as simply
reading out the separation at the end of the simulation run may
give an incorrect impression of the network’s behaviour. To
overcome this problem, the minimum or average over a large
enough number of iteration steps at the end of the simulation
run can be used instead.

6.1.5 Summary and graphs

Summarising, the parameters we’ve found to work best are:

SRM-type inhibition,release amplitude=0.2, =150, vari-

ance in inhibition delay=-3...+3 time steps, and a soft con-
straint. To see how the modifications made as relative to the
system we started with affect performance, and to see the
overall performance of the system, some data was gathered
that is displayed in the graphs below. The graphs are the result
of the system after 1000 time steps. Each data point is an aver-
age over 5 runs.

FIG 23. low load, average separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

3

4

1

2

ttotal
inh

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

se
pa

ra
tio

n
qu

al
ity

 (
av

er
ag

e)

number of patterns stimulated

FIG 24. low load, worst separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

FIG 25. high load (0.15), average separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

FIG 26. high load (0.15), worst separation quality

Legend: c=no soft constraint; k=kernel inhibition,
n=normal, v=no variance in inhibition delay.

The graphs show that the useful segmentation behaviour of the
system degrades for more than 10 patterns for low load case,
and 8 patterns in the higher loads. Loads of 0.3 and higher
showed worse behaviour.

A more qualitative look at the system with the best perform-
ance also shows that individual neurons are actually capable of

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

se
pa

ra
tio

n
qu

al
ity

 (
w

or
st

)

number of patterns stimulated

-0.2

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

se
pa

ra
tio

n
qu

al
ity

 (
av

er
ag

e)

number of patterns stimulated

c
k
n
v

-0.2

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

se
pa

ra
tio

n
qu

al
ity

 (
w

or
st

)

number of patterns stimulated

c
k
n
v

Simulation 6 December 1997 40

activating more than once within a complete cycle if they are
part of more than one pattern, and the cycle, once formed, is
very stable.

6.2 A system with several layers: binding.

6.2.1 Exploratory experiments

Interlayer couplings are chosen to be slightly different from
couplings within layers: Between layers, neurons are consid-
ered as binary neurons. This means both the interlayer synapse
training rule and synaptic potential calculation are different:

This way, the mutual excitation between layers is similar in
nature to the external stimulus: when a trained pattern acti-
vates in one layer, it effectively applies a stimulus to the other
layers that is a superposition of the patterns that are elements
of the constraint that contain that pattern.

Again, the parameterC is the intensity of the mutual coupling;
how this parameter should be chosen will be explored below.

6.2.1.1 Binding with one binding layer

A basic binding architecture, with one binding layer and three
input layers, standard inhibition, and synchronous update is
tested, using the optimal parameters as determined in chapter
6.1. The three input layers are trained with 4 patterns each, a
selection of which are applied as an external stimulus, and a
selection of which are used as binding combinations. This case
is similar to the one as described in the SRM’s simulations. In
their system, the binding patterns always consisted of disjoint
combinations of components. They chose the constantC to be
1/M, with M the number of other layers each layer is connect-
ed to. This is also the value that is used in the experiments that
follow.

The easiest case, binding only disjoint combinations, shows
that the binding layer is quiescent at first, and reacts only after
about two of the three patterns are active. This sensitivity can
be adjusted using theC parameter. The input layers then syn-
chronise to the activity of the binding layer, and binding is
achieved.

Trying to bind combinations consisting of correlated patterns
still works, though multiple overlapping combinations cannot
all be represented within one cycle, sometimes causing one
combination to be replaced by one of its overlapping rivals af-
ter some cycles. Apart from that, the behaviour was still sta-
ble.

Jij
µ andν

i and j in different layers
C
Nk
------ ξi

µ
1+ 

  ξj
ν

1+ 
 

j 1=

Nk

∑=

hi
interlayer

t() Jij Vj t 1–()
j in other layer

∑=

6.2.1.2 Complex binding

In the case of more complex binding, there are different choic-
es as how to map a CSP to an architecture. Two general possi-
bilities can be distinguished:

• direct couplings between layers

This architecture is the closest to a traditional optimisation
network: constraints are enforced by direct connections
between the layers involved.

• indirect couplings through intermediate binding layers

For each constraint, there is a binding layer coupling the
layers involved. No external stimulus is applied to any
binding layer.

Experiments with three layers and two constraints showed
that indirect coupling yields better results. Apparently, this is
because the input layers are then given the time to separate
their input patterns, and are only occasionally influenced by
the binding layers, which only activate when they find a near-
optimal combination. The problem and results found are illus-
trated in FIG 27. and FIG 28.

FIG 27. Example of a multiple-constraint binding problem

The symbols given inside the blocks are the patterns
stored in them. The lines between the blocks are synap-
tic connections between the layers, in which specific as-
sociations between layers are stored.

{1,1} {2,2}{2,1}{1,2}

constraint (binding) layers
Each pattern is a constraint

Each pattern is a variable state
variable layers

Solution space

1 2 1 1 22

{ (1,1,1),(1,1,2),(1,2,1),(1,2,2),
(2,1,1),(2,1,2),(2,2,1),(2,2,2) }

Solutions

{ (1,2,2),(2,2,1) }

Simulation 6 December 1997 41

FIG 28. A result of the two-constraint binding problem

This result was obtained with C=1 and bias=-0.9

6.2.2 Adding interlayer saturation

Trying the network on a more serious problem, the 4-queen
problem, only provided limited success. Solution were only
sometimes found, and did usually not return periodically. Ob-
ject clashes within layers kept occurring; the network did not
stabilise properly. This may be attributed to the fact that pro-
jections created by multiple superimposed patterns within a
layer have large intensity, because the excitations of the pat-
terns add up. Superimposed patterns appear to occur more of-
ten with more complex interactions, and hence the interlayer
couplings sometimes have too high intensity. This may be
what causes the network not to be able to separate objects
properly.

This problem may be averted by simply adding a saturation ef-
fect in the couplings between layers: if the total intensity of all
input from one specific layer to one specific neuron is above a
certain threshold, then that value is simply clipped. The
threshold is chosen equal to the intensity of the external stimu-
lus of input layers.

This actually provides better results for the 4-queen, 3-letter
crossword, and 5-city TSP problems, though generally, not all
solutions were found, and solutions sometimes disappeared
again after a few cycles.

For larger problems, like the 6-queen and 4-letter crossword
problem, the system usually didn’t find solutions. Those that
were found typically did not return. The binding approach, or
at least binding the way it is used here, is not quite up to ex-
pectations.

V1

C
1

C0

V2

0V

ov
er

la
p

in
 e

ac
h

la
ye

r

time

6.3 An optimisation network

6.3.1 Exploratory experiments

As was done with the other systems, a simple problem, in this
case the 4-queen problem, is chosen first in order to explore
the systems’s possibilities. The first architecture that is exam-
ined is a standard synchronous network with two-state binary
neurons and no inhibition. The dynamics proved to be highly
unstable: the network typically oscillated quickly between
states with very high and low activity. Updating asynchronous-
ly or using smoothed response yielded better results. In these
cases, the network converged rather quickly to an optimal or,
more often than not, a suboptimal solution.

However, incorporating inhibition did not provide the desired
result: it caused the neurons to activate in an apparently ran-
dom fashion, and no convergence whatsoever was attained.
This was tried for several inhibition functions, but no im-
provement on the results could be attained. This ill behaviour
may ba attributed to several causes:

1. The constraints between the neurons are too restrictive to
allow any pattern to form.

2. The couplings between the neurons are not continuous.
Studying individual neurons, it was observed that a neuron
usually receives a synaptic stimulus that is either 0, -1 or -
2. This means that there is no ‘smooth’ increase in synaptic
potential a neuron can lock to.

The first problem may be overcome by allowing suboptimal
patterns to activate. This could be achieved by either:

• using an activity constraint

• lowering the thresholds

This last option was already explained and proposed in
chapter 5 as an alternative to using an activity constraint.

Lowering the thresholds, and increasing the inhibition accord-
ingly, did not have the desired effect: more neurons did acti-
vate, but still no coherence or convergence was achieved.

Using an activity constraint actually proved to provide an al-
most desirable result:

Simulation 6 December 1997 42

FIG 29. First positive results on the 4-queen problem

The convergence to the indicated cycle took less than
150 iteration cycles. After that, the cycle remained sta-
ble. The figure shows the transition from unstable into
stable behaviour.

The network managed to converge quite rapidly and consist-
ently to a stable cycle. The cycle contains both solutions to the
problem, but also contains two nonsolutions. This can be at-
tributed to the aforementioned hypothesis that all neurons tend
to activate at least once at some time during a cycle, and the
neurons that are not part of either solution thus arranged them-
selves in suboptimal configurations.

However, our original idea of being able to work without us-
ing an activity constraint is lost. It must be seen whether the
network is still able to find good solutions to optimisation
problems with soft constraints.

6.3.2 Adding a graded state

The results of testing this network on a larger problem, the 6-
queen problem, were disappointing. Often, neurons just re-
fused to synchronise, and objects that were formed did not re-
turn at a later time at all. Apparently, the increased complexity
of the problem is too much for the network.

This may be attributed to the second problem that was men-
tioned in 6.3.1. In more complex situations, the limited quality
of the locking mechanism is more relevant, since the network
needs more time to converge.

Using a smoothed synaptic response, which might have been
one way to overcome this problem by providing a smooth ris-
ing edge to lock to, did not produce the desired result. Instead
of this, an alternative scheme was tried, which consists of in-
hibiting more selectively. In this scheme, the standard kernel
inhibition is used, but with the difference that the inhibition
only adds up under the following conditions:

1. the neuron is a winner.

2. the neurons has high absolute, rather than relative, synaptic
input.

state history for snapshot of
each of the four layers network state

1 2 3 4

t=100

t=180

time

This amounts to the following: in (EQ 3d), each past neuron
state is replaced by:

If ,

.

Otherwise,

.

T is some negative threshold value.

This causes the inhibition level to increase seriously only if a
neuron is both active and unconstrained for a prolonged peri-
od. This way, a group of neurons are inhibited only if they
form a good partial solution. The inhibition will increase until
it exceeds the constraints imposed upon the inactive neurons.
As soon as that happens, the (sub)object will disappear to be
replaced by another. Since the neurons were inhibited during
the same period, the shape and amplitude of their inhibition
functions will be about the same, so they will come out of the
inhibition at about the same time, and thus tend to lock to each
other again as soon as the inhibition runs out. This way, good
subobjects will persist, and the rest of the neurons will have
time to adjust to the subobject. Partial subsolutions can be re-
tained and improved upon in time.

For the n-queen problems, the valueT=-1.5 seems to work
best. The new rule results in greatly improved coherence of
objects. Testing again with the 6-queen problem, synchronous
groups were clearly formed, some of them were solutions,
though many were suboptimal. These groups established them-
selves quickly, though they were sometimes gone after a few
cycles as well. More often than not, the network stabilised to a
cycle containing at least two, and sometimes consisting of all
four solutions.

Vi τ()

hi
synaptic τ() T≥

Vi
modified τ()

hi
synaptic τ() T–

T–
--=

Vi
modified τ() 0=

Simulation 6 December 1997 43

FIG 30. Successful application to 6-queen problem

These results were obtained after 1000 iteration steps.
Inhibition used: inhibition amplitude=20, T=-1.5,

, , , (a

sawtooth shape).

6.3.3 Performance with the three problems

Finally, the system will be tested with the various problems to
see how well it behaves. The parameters are the same as found
in 6.3.2. No modifications are made to these, in order to see
how robustly the system works with parameters which are rea-
sonable but which are not individually optimised to suit every
instance of each problem.

time

1 3 4 5 62

state history of the 6 layers snapshot of neuron states

tinh
attack

0= tinh
decay

45= tinh
release

0= tinh
delay

15=

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12

co
nv

er
ge

nc
e

qu
al

ity

number of queens

best
mean
worst

0

5

10

15

20

4 5 6 7 8 9 10 11 12

co
he

re
nc

e
of

 s
ol

ut
io

ns

number of queens

best
mean
worst

FIG 31. Quality, coherence, persistence results for the n-
queen problem

Taken from 25 runs for each problem instance

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12

pe
rs

is
te

nc
e

of
 s

ol
ut

io
ns

number of queens

best
mean
worst

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12

co
nv

er
ge

nc
e

qu
al

ity

number of cities

best
mean
worst

0

5

10

15

20

4 5 6 7 8 9 10 11 12

co
he

re
nc

e
of

 s
ol

ut
io

ns

number of cities

best
mean
worst

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12

pe
rs

is
te

nc
e

of
 s

ol
ut

io
ns

number of cities

best
mean
worst

Conclusions 6 December 1997 44

FIG 32. Quality, coherence, persistence and optimality
results for the n-city TSP

Taken from 25 runs for each problem instance

Unfortunately, the system did not work well with the cross-
word problem. Proper behaviour was only found for problem
sizes 2 and 3. Obviously, this problem is too tight for the net-
work. An obvious solution for this would be to use a different
T value to allow unsatisfied subsolutions to phase-lock as well,
but this did not achieve improved behaviour.

Viewing the results in a qualitative way, it can be seen that the
system works fine for problem sizes up to about 6 or 7 varia-
bles, after which both the persistence and occurrence of solu-
tions degrade. Looking more closely at the results, it was often
seen that parts of objects actually persist until the next cycle,
but, since most are not solutions at first, they keep shifting
their individual neuron states so quickly they do not persist
longer. Next to that, it was observed that the constant shifting
of the neuron activities of the nonsolutions often pushed the
already established solutions out of the cycle as well.

7.0 Conclusions

7.1 Discussion on the main results obtained

We have achieved some computation using CO, and as such,
have satisfied at least some of the research objectives: it has
proven to be possible to achieve neat segmentation of several
patterns in an associative memory, and generate multiple solu-
tions for optimisation problems. The successful architecture is
a variant of the traditional optimisation network, with some
special modifications to its dynamical rules. The other ap-
proach that was tried, the binding approach, did not prove
fruitful for problems of any serious size. The reason why the
binding system failed to function as desired is most probably
because it is very hard to properly balance the signals that
come in from the different layers, also because the total effect
of the oscillatory input each layer receives becomes too com-
plex, resulting in chaotic behaviour.

Some problems still remain: the associative memory’s per-
formance degrades for high loads, and the optimisation system
is not able to work with multiple solutions if they assign the

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12

op
tim

al
ity

 o
f b

es
t s

ol
ut

io
n

number of cities

best
mean
worst

same states to some variables. The end results obtained are
still limited to small problems, and some practical limitations
on the number of patterns that can be segmented at once re-
main also.

7.1.1 Some future directions

The problems that were encountered in this research raise
new questions:

The biological feasibility of CO as part of the traditional mod-
el of biased associative memory model or binding models is
questionable. Most biological theories imply a very high mem-
ory capacity, which has already been achieved by the same
kind of model without CO, but which, in our case, degrades
when a CO mechanism is incorporated. Also, binding in con-
junction with CO proves to be too brittle to be of use. Perhaps
re-examining some of the biological premises or data may
yield some additional insight.

How can the inability of the network to work with overlapping
patterns be remedied? The simulations of the associative mem-
ory did show that neurons that belong to multiple segmented
patterns are able to activate more than once within a complete
cycle. This is possible because these neurons, while inhibited,
are still sensitive to stimuli, as long as these are specific (in
other words, strong) enough. However, with optimisation
problems, the stimulus each individual neuron receives is not
specific enough; the information whether a global solution is
a good one is not locally available. Perhaps a global detection
mechanism may stimulate each neuron that is part of a good
solution more specifically.

How can the limitations on the amount of solutions a network
can generate be removed? Of course, it would be highly desir-
able if a segmentation mechanism would be able to generate
all solutions of a problem, regardless of how many there are.
This problem can be seen as related to the previously-men-
tioned one; it is in part caused by it. The ability to separately
consider multiple solutions is tied to the individual neurons
that make up each solution. Again, maybe a inhibition method
that inhibits only specificcombinations of neuron activities
would solve the problem.

Next to these questions, many of the properties and parameters
of the systems encountered in this research are still in need of
more rigorous analysis. In fact, it can be said that the mathe-
matic theory is much underdeveloped. Immediately, the fol-
lowing points can be named:

The precise mechanism of segmentation has never been ana-
lysed rigorously. Only some hypothetical statements are given
here: perhaps it may be analysed by incorporating the constant
changes in the effective thresholds as caused by coherent os-
cillation into a temporal version of an energy function.

The newly-introduced activation rule for the optimisation net-
work has not been analysed formally at all, nor have the con-
ditions on its parameters been analysed properly.

Conclusions 6 December 1997 45

Appendices

A Derivations

A.1 Validity of energy function for networks with
activity constraint

Here we will only consider the no-threshold case to simplify
the expressions. A threshold may be added afterwards by add-
ing a special neuron, which starts off in the ‘on’ state, and al-
ways remains in that state because it is never updated.
Thresholds may be added by adding synapses with suitable
weights originating this neuron.

Consider the fully asynchronous update described in section
2.2.1.1: First, activate neuron x, which is the inactive neuron
that receives most input. Then, deactivate neuron y, which is
the active neuron which receives the least input. From t-1 to t-
1/2:

From t-1/2 to t,

Now, it only remains to show that

,

which is straightforward: If, at time , there is no active

neuron y with potential less than , then at least there is al-

ways one with equal potential, namely, neuron x itself, since
the potential of neuron x has not changed by its own activa-
tion, assuming that it has no synapse to itself.

∆Hx
t

Sx

t
1
2
---–

JxiSi

t
1
2
---–

i
∑– Sx

t 1–
JxiSi

t 1–

i
∑+=

Sx

t
1
2
---–

– Sx
t 1–

+ 
 
 

JxiSi

t 1–

i
∑=

∆Hy
t

Sy
t

– Sy

t
1
2
---–

+ 
 
 

JyiSi

t
1
2
---–

i
∑=

Sy
t

– Sy

t
1
2
---–

+ 
 
 

JyiSi

t 1–

i x≠
∑ JyxSx

t
1
2
---–

+ 
 
 

=

hy

t
1
2
---–

hx
t 1–

– JyiSi
t 1–

i x≠
∑ JyxSx

t
1
2
---–

JxiSi
t 1–

i
∑–+=

∆Hy
t ∆Hx

t
+=

hx
t 1–

hy

t
1
2
---–

≥

t
1
2
---–

hx
t 1–

A.2 Conditions of stable locking for the case of
delayed synaptic response

Assume continuous time, and a large number of regular Hop-
field neurons, , which all receive the same external

stimulus , all have the same threshold , and are all
positively coupled with the other neurons with the same cou-

pling strength . Assume that the neurons have a synaptic de-

lay , which simply delays the arrival of each neuron’s
output to other neurons. Assume the neurons’ inhibition func-
tions are of the SRM-type (EQ 3e), which makes sure the ac-
tual shapes of the inhibition functions are all the same.
Assume that the general form given in FIG 17. is used, with
all parameters the same among the different neurons.

Assume that the neurons have already participated in a burst,
which started att=0, and that the firing start moments of all

neurons fall within a specific time interval . Furthermore,
assume that the distribution of the firing start moments within
that interval is uniform.

Finally, we assume that the inhibition triggered by the burst
was strong enough and lasted long enough to make sure all
neurons have stopped firing after the excitation that caused the
firing has ended. This could have been achieved by choosing

high enough values for the inhibition amplitude, and for

and/or .

Under these assumptions, we can show the conditions under
which the next firing interval will still be uniform, and equal
or smaller than the last.

First, we require that the inhibition will not start until the fir-
ing start period is over, to make sure no neuron actually stops
firing within that period. To make sure we are only concerned
with the release phase of the inhibition function, we demand

for the value of the release amplitude () that

.

For the sake of brevity, assume that and that the neu-
rons have binary states. This does not detract from the gener-
ality of the equations, as some constant shifts in excitation
level and synaptic strength transforms this model into the
more general model, while these do not pose any problems for
any of the following statements.

N ∞→

h
external θ

J
N

∆axon

t
start

tinh
attack

tinh
decay

a
release

a
release

h
external>

θ 0=

Conclusions 6 December 1997 46

FIG 33. Inhibition and excitation functions

The numbers between brackets indicate intervals of

specific sizes: (1): , (2): , (3): . The

thick line indicates the excitation level each neuron re-
ceives. The bounds within which the inhibition levels of
the neurons should stay to attain proper phase locking
are given by the thin dashed lines. An example of a pos-
sible inhibition interval and its resulting new interval of
firing start moments is given by respectively the thin
solid lines and (2).

The excitatory stimulus received by any neuron at any mo-
ment in time is:

Within the time interval we are interested, this means the fol-
lowing:

First, for . Then, at ,

the excitatory stimuli start arriving. Since the firing start mo-

ments were uniformly distributed within and we
assume a large amount of neurons, the number of stimuli that
start arriving within any finite time interval within

 is . This means that the stimu-

lus increases linearly until it reaches its maximum

 at . This is illustrated by

the thick line in FIG 33.

For each neuron, the inhibition starts its release phase at:

From then on, the inhibition decays linearly to zero until:

The intersection of a neuron’s inhibition and excitation func-
tions determines the point at which it starts firing. If all firing
moments occur entirely within a linear part of the excitation,

(1a)

(1c)

(1b)

(2)

(3)

t=0

t
start

tnew
start ∆axon

hi
excitatory

h
external

JVj
j active neurons∈

∑+=

hi
quiescent

h
external

= t ∆axon≤ t ∆axon
=

0 t t
start< <

∆t

∆axon
t ∆axon

t
start

+≤ ≤ Nt
start

∆t

hi
max

h
external

J+= t ∆axon
t
start

+=

ti
release

ti
start

tinh
delay

tinh
attack

tinh
decay

+ + +=

ti
end

ti
release

tinh
release

+=

the distribution of these firing moments remains uniform. We
shall consider this situation first.

If all firing moments occur before or after the rising edge of

the excitation, the new firing start period is obviously the

same as the old period. If, however, all firing moments fall
neatly within the rising edge of the excitation, the period be-
comes smaller while the distribution remains uniform. To see
this, we compare the aforementioned intersection points of
the first neuron that fires and the other neurons.

Say, the first neuronk started firing at , somewhere within

the period . Then, for any other neuron

i, which originally fired at , and now fires at , the

following holds:

Since , and ,

So,

C is constant within our time interval, andC>0. Therefore,

, and is linearly dependent on , so

, and the firing distribution remains uniform.

Now, we have to show that, given these properties, the firing
start moments of all neurons in the next burst still fall within
the rising edge of the excitation caused by our just-calculated
burst. This is easy to see if we consider that the moment of ar-
rival of the excitatory signal of a neuron corresponds to a spe-
cific level in the inhibition of that neuron at that moment,
because both were triggered by the activation of the neuron.
Now consider both the earliest and the latest neuron, their fir-
ing start times result in the start and the end of the next rising
edge. At the start at the new rising edge, the first neuron’s in-
hibition level is higher than the excitation level, because it was
at the start of the previous rising edge. Likewise, at the end of
the new rising edge, the last neuron’s inhibition level is lower
than the excitation level.

Summarising, we can say that we just have to choose the right

value for . This is not as easy as it looks, because the

tnew
start

t0

∆axon
t ∆axon

t
start

+≤ ≤

ti
start

t0 ∆t+

h
excitatory

ht t0=
excitatory ∆t

J

t
start

-----------+=

hi
inhibitory

hk t, t0=
inhibitory ∆t ti

start
– 

  a–
release

tinh
release

----------------------+=

hi
excitatory

hi
inhibitory

= ht t0=
excitatory

hk t, t0=
inhibitory

=

∆t
J

t
start

----------- ∆t ti
start

– 
  a–

release

tinh
release

----------------------=

∆t ti
start a

release

tinh
release J

t
start

----------- a
release

+
--- ti

start a
release

C a
release

+
-----------------------------= =

∆t ti
start> ∆t ti

start

tnew
start

t
start<

∆axon

Conclusions 6 December 1997 47

proper choice also depends on , which may vary dur-
ing the evolution of the network.

A more surprising result is that the optimal locking is in fact

achieved when . However, this would mean the in-
hibition level after the neurons started firing is permanently
higher than it was the moment the neurons are first triggered.
Next to that, the firing times become completely inflexible, as

they depend on only. This means neurons are no longer
sensitive to signals with phases close to their own, and cannot
synchronise with such signals.

A.3 The effect of adding a soft constraint

In our case, the soft activity constraint, as described in section
2.2.1.2, is used to enhance desynchronisation by making sure
neurons no longer receive positive total input when too many
neurons are active. Normally, this is not a problem because the
neurons have positive uniform thresholdsU, but in our case,
the neurons receive an external stimulus which causes the ef-
fective thresholds to be slightly less than zero.

To achieve this, the constantC should be chosen to be so high
that, when the activity of the network consists of a superposi-
tion of two or more stored patterns, the mutual inhibition be-
tween the neurons should result in an decrease of stimulus
which should be equal or greater than the original thresholds
U. First, assume that there are 2Na active neurons (the equiva-
lent of approximately two patterns), all of which receive a
positive external stimulus. C should be chosen so that:

.

From (EQ 2c),

From (EQ 2h),

Equality is reached for

,

while all greater values of C should result in a more negative
input.

h
external

a
release

0=

∆axon

hi
C

U–≤

hi
C C

N
----2Na 1 a–()–

C
N
---- N 2Na–() 1– a–()+=

C
N
---- 2– Na 2Na

2
N– 2Na Na– 2Na

2
+ + + 

 
=

C 1 a–– 4a
2

+ 
 

=

C 1 a–– 4a
2

+ 
 

a 1 a
2

– 
 

–≤

C
a 1 a

2
– 

 
–

1 a–– 4a
2

+
-----------------------------=

B Algorithms

B.1 Synchronous update

In order to be able to calculate the inhibition functions, a his-
tory containing the neuron’s activities for a large enough
amount of time in the past is maintained for each neuron in
each layer. The other data fields required for each neuron are
pretty straightforward: these are the neuron’s current external
stimulus, inhibitory input, synaptic input, and resulting new
state. The algorithm is:

For each neuron in each layer, do:

• Advance history and place new state in it

• Calculate inhibitory input according to history

• Sum synaptic inputs from all other neurons according to
last state in history

• Determine new state according to synaptic inputs and inhi-
bition

B.2 Monte Carlo update

The Monte Carlo algorithm for multiple layers should activate
one totally randomly chosen neuron from the whole set of
available neurons each time step. The data structures are the
same as in appendix B.1. The algorithm is:

For each neuron in each layer, do:

• Advance history and place new state in it

• Calculate inhibitory input according to history

For neurons, randomly chosen from the

complete set of neurons, do:

• Sum synaptic inputs from all other neurons connected to
this neuron

• Subtract the already calculated inhibitory input and deter-
mine new state according to activation function

B.3 Read-out algorithm

For the read-out algorithm for associative memory, a history of
all overlaps of each pattern is maintained. The algorithm for
one pattern in one layer is:

• Calculate overlap or total activity

• Advance history and place new overlap in it

• Calculate the cumulative overlap of all time windows that
fall within the specified time interval, and determine the
maximum.

The read-out algorithm for an optimisation network requires a
large enough array of network states that can be filled when
solutions occur. We start measuring after we are reasonably

N N1 N2 … Nn+ + +=

Conclusions 6 December 1997 48

certain that the network has had time to converge, and contin-
ue on for two maximum cycle lengths. The algorithm is:

If the current state is a solution, then

• Increment relative quality value

• If not found in database, store it in database

• If the state is the same as the last time step, the coherence
value of this occurrence is incremented

The quality of convergence can be measured using

The coherence of objects can be measured using

The persistence of objects can be measured using

C Problem representations

C.1 N-queen problems

In this range of problems,n queens are to be placed on anxn
chess board in such a way that no queen checks against any
other queen.

It is easy to see that no two queens may be placed on any one
row or column, implying that the solution must have exactly
one queen in each row and column. Using this property, a
slightly pre-simplified problem representation may be used
[Takefuji 92]. In this representation, each variable represents
one column of the chessboard. Each variable may assume one
of n states, representing the vertical position of the queen to be
places on the corresponding column.

Theoretically, solutions exist for all . For , there
are two solutions in a problem space of 16x15x14x13 ele-
ments. With the simplified representation, the problem space is
reduced to 4x4x4x4 elements. For smalln, the problem is
tight, but becomes looser asn increases.

The problem may be represented by the following energy
function:

,

with .

quality
relative quality

total time
------------------------------------=

coherence
1

nr. objects found
-- coherenceo

o objects found∈
∑=

persistence
nr. of differentobjects that occurred more than once

total nr. of different objects that occurred
---=

n 4≥ n 4=

H
ρ

Vi
k
Vj

l∑∑∑∑=

k i l j,,
k l≠

i j or i k– j l or i– k+ j l+= = =

i j k l, , , 1 … n, ,{ }∈

C.2 Crossword puzzle

This range of problems involves the placement of letters in an
mxm square, in such a way that all rows and columns form
valid words out of a specific vocabulary. The alphabet and vo-
cabulary are chosen as follows: The alphabet hasm letters, so
as to be large enough for the problem size. The vocabulary is
chosen in such a way, that a solution always exists. This is
done by working backwards from a specific solution: first, the
mxm square is filled with random letters. Then, the words that
can be read horizontally and vertically determine the vocabu-
lary. Therefore, the vocabulary size is 2m.

Given the vocabulary, the solution, or a solution, has to be re-
constructed by the network. Actually, there are always at least
two solutions: the solution we started with, and this solution
rotated. As long as the alphabet is large enough, there is very
little chance there are any more solutions, therefore this CSP
is tight.

The problem can be mapped to a binary CSP definition by
means of three sets of variables:

 the variables corresponding to each letter

placed in columni and rowj, where each letter is assigned
a different number.

 the binary transformation into variables

of the m-ary constraints placed on each column, namely,
that the letter combinations found in each column should
correspond to a word in the vocabulary of 2m words.

 the binary transformation of them-ary

constraints placed on each row.

The a priori solution is given by:

 for all .

The vocabularyW is given by:

 for

 for

The constraints can then be defined as follows:

, with

 and

.

Lij 1 … m, ,{ }∈

Ci 1 … 2m, ,{ }∈

Ri 1 … 2m, ,{ }∈

Lij Lij
solution

= i j, 1 … m, ,{ }∈

Wk i, Lik
solution

= 1 k m≤ ≤

Wk i, Lki
solution

= m 1+ k 2m≤ ≤

H
ρ

H
ρ rows,

H
ρ columns,

+=

H
ρ rows,

Vk

Lij
Vw

Ri

j
∑

i
∑

k
∑

w
∑=

Ww j, k≠

H
ρ columns,

Vk

Lij
Vw

Cj

j
∑

i
∑

k
∑

w
∑=

Ww i, k≠

Conclusions 6 December 1997 49

C.3 TSP

The n-city Traveling Salesman Problem involves finding a
shortest tour visiting all of a number of given locations. In the
planar TSP, these locations are given by coordinates on a two-
dimensional map, with the distances between each pair of
points given by their Hamming distance. In the more general
case, the distances between any pair of locations may be an ar-
bitrary value. Assume the distances between locationsi and j
are given by values .

A straightforward way to represent the TSP, which is also used
in [Hopfield & Tank 85], is to represent each of then steps in
the tour by a variable, which may assumen different values,
each standing for one of then cities to be visited in that step.
Obviously, all cities must be visited exactly once. This hard
constraint can be given by:

The soft constraints are given by the distances between the
neighbouring cities. These result in weighted constraints be-
tween neighbouring layers with weights

 for , and

 for .

resulting in the energy contribution

The distances will be chosen randomly, and in such a way that
the maximum distance is less than one.

D References

[Amit et al 85], D.J. Amit & H. Gutfreund & H. Sompolinsky
(1985), Spin-glass models of neural networks, Physical re-
view A - General physics, Vol. 32 no. 2 pp 1007-1018

[Amit et al 87], D.J. Amit & H. Gutfreund & H. Sompolinsky
(1987),Information storage in neural networks with low levels
of activity, Physical Review A 35-5, pp 2293-2303

[Baird 86], Nonlinear dynamics of pattern formation and pat-
tern recognition in the rabbit olfactory bulb, Physica D: 22, pp
150-175

dij

H
ρ

R Vi
k
Vj

l∑∑∑∑=

k i l j,,
k l≠
i j=

Wki lj, dij= i j≠

Wki lj, 0= i j=

H
dis cetan

A Wki lj, V
i

k
Vj

l∑∑∑∑=

k i l j,,
k l–() mod m 1=

i j≠

[Baird 91] B. Baird (1991),Bifurcation and category learning
in network models of oscillating cortex, Emergent Computa-
tion, S.Forrest (ed), pp 365-384

[van den Berg 96], J. van den Berg (1996),Neural Relaxation
Dynamics: Mathematics and Physics of Recurrent Neural Net-
works with Applications in the Field of Combinatorial Optimi-
zation, Ph.D. thesis, Erasmus University Rotterdam.

[Borisyuk et al. 94], R. Borisyuk & A. Casaleggio & Y. Ka-
zanovich & G.Morgavi,Some results on Correlation Dimen-
sion of Time Series Generated by a Network of Phase
Oscillators, ICANN 94, pp 755-758

[Bruck 90], J. Bruck,On the Convergence Properties of the
Hopfield Model, Proc. IEEE vol.78 no.10, pp 1579-1585

[Buhmann 89] J. Buhmann (1989),Oscillations and low firing
rates in associative memory neural networks, Physical Re-
view A Volume 40 number 7, pp 4145-4148

[Buhmann & Divko & Schulten 89] J. Buhmann & R. Divko
& K. Schulten (1989),Associative memory with high informa-
tion content, Physical Review A 39-5, pp 2689-2692

[Damasio 89] A.R. Damasio (1989), The Brain Binds Entities
and Events by Multiregional Activation from Convergence
Zones, Neural Computation 1, pp 123-132

[Eckhorn et al. 88] R. Eckhorn & R. Bauer & W. Jordan & M.
Brosch & W. Kruse & M. Munk & H.J. Reitboeck (1988),Co-
herent Oscillations: A Mechanism of Feature Linking in the
Visual Cortex?, Biological Cybernetics 60, pp 121-130

[Gerstner & van Hemmen 92] W. Gerstner & J.L. van Hem-
men (1992),Associative memory in a network of ‘spiking’
neurons, Network 3, pp 139-164

[Gerstner & Ritz & van Hemmen 93] W. Gerstner & R. Ritz &
J.L. van Hemmen (1993),A biologically motivated and analyt-
ically soluble model of collective oscillations in the cortex, I.
Theory of weak locking, Biological Cybernetic 68, pp 363-374

[Gray et al. 89] C.M. Gray & P. Konig & A.K. Engel & W.
Singer (1989),Oscillatory responses in cat visual cortex ex-
hibit inter-columnar synchronization which reflects global
stimulus properties, Nature 338, pp 334-337

[Hansel & Sompolinsky 92] D. Hansel & H. Sompolinsky,
Synchronization and Computation in a Chaotic Neural Net-
work, Physical Review letters 68-5, pp 718-721

[Hebb 49] D.O. Hebb,The organization of behaviour.

[van Hemmen et al. 90] J.L. van Hemmen & W. Gerstner &
A.V.M. Hertz & R. Kuhn & B. Sulzer & M. Vaas (1990),En-
coding and decoding of patterns which are correlated in space
and time, G. Dorffner (ed), Konnektionismus in Artificial In-
telligence und Kognitionsforschung.

[van Hemmen & Ritz 94] J.L. van Hemmen & R. Ritz (1994),
Neural Coding: A Theoretical Vista of Mechanisms, Tech-

Conclusions 6 December 1997 50

niques and Applications, Analysis of Dynamical and Cognitive
Systems, S.I. Andersson (ed), pp 75-119

[Hertz & Krogh & Palmer 91] J. Hertz, A. Krogh, R.G. Palmer
(1991),Introduction to the theory of neural computation

[Hopfield 82], J.J. Hopfield, Neural Networks and Physical
Systems with Emergent Collective Computational Abilities,
Proc. Natl. Acad. Sci. USA. 79, p 2554

[Hopfield 84], J.J. Hopfield (1984),Neurons with graded re-
sponse have collective computational properties like those of
two-state neurons, Proc. of the National Academy of Sciences
USA 81, pp 3088-3092

[Hopfield & Tank 85], J.J. Hopfield, D.W. Tank (1985),‘Neu-
ral’ Computation of Decisions in Optimisation Problems, bio-
logical cybernetics 52, pp 141-152

[Horn & Usher 89], D. Horn & M. Usher (1989),Neural net-
works with dynamical thresholds, Physical Review A: General
physics 40-2, pp 1036-1044

[Kurokawa & Mori 96], H. KuroKawa, S. Mori (1996),A Lo-
cal Connected Neural Oscillator Network for Pattern Segmen-
tation, ICANN ‘96

[Lenting 95], J.H.J. Lenting (1995),Representation Issues in
Boltzmann Machines, ANN: An Introduction to ANN Theory
and Practice, pp 131-144

[Little & Shaw 78], W.A. Little & G.L. Shaw (1978),Analytic
Study of the Memory Capacity of a Neural Network, Mathe-
matical Biosciences 19, p 101

[Luzyanina 95] T.B. Luzyanina (1995),Synchronization in an
oscillator neural network model with time-delayed coupling,
Network: Computation in Neural Systems 6, pp 43-59

[McClelland & Mcnaughton 94], J.L. McClelland & B.L. Mc-
Naughton (1994),Why there are complementary systems in the
hippocampus and neocortex: Insights from the successes and
failures of connectionist models of learning and memory, Tech.
Report PDP.CNS.94.1

[Moll & Miikkulainen 95], Convergence-Zone Episodic Mem-
ory: Analysis and Simulations, Technical report AI95-227

[Muller & Reinhardt 90], B. Muller & J. Reinhardt (1990),
Neural Networks - An Introduction

[Perez Vicente & Amit 89], C.J. Perez Vicente & D.J. Amit
(1989), Optimised network for sparsely coded patterns, Jour-
nal of Physics A: Math. Gen., pp 559-569

[Philipsen 95], W. Philipsen (1995), Optimization with Potts
Neural Networks in High Level Synthesis.

[Rangarajan et al 97], A. Rangarajan & A. Yuille & S. Gold &
E. Mjolsness,A Convergence Proof for the Softassign Quad-
ratic Assignment Algorithm, Advances In Neural Information
Processing Systems 9, pp 620-626

[Ritz et al. 94] R. Ritz & W. Gerstner & U. Fuentes & J.L. van
Hemmen (1994),A biologically motivated and analytically
soluble model of collective oscillations in the cortex, II. Appli-
cation to binding and pattern segmentation, Biological Cyber-
netics 71, pp 349-358

[Rotter & Dorffner 90] M. Rotter & G. Dorffner (1990),Struk-
tur und Konzeptrelationen in verteilten Netzwerken, Konnek-
tionismus in Artificial Intelligence und Kognitionsforschung.

[Schuster & Wagner 90] H.G. Schuster & P. Wagner (1990),A
model for neuronal oscillations in the visual cortex, 1. Mean
field theory and derivation of the phase equations, and 2.
Phase description of the feature dependent synchronization,
Biological Cybernetics 64, pp 77-82 and pp 83-85

[Smith et al. 94], Synchronization of Integrate-and-fire Neu-
rons with Delayed Inhibitory Lateral Connections, ICANN
‘94, pp 142-145

[Sompolinsky et al 91] H. Sompolinsky & D. Goulomb & D.
Kleinfeld (1991),Cooperative dynamics in visual processing,
Physical Review A Vol. 43, No. 12, pp 6990-7011

[Sompolinsky & Kanter 86], H.Sompolinsky & I. Kanter,Tem-
poral Association in Asymmetric Neural Networks, Physical
review letters 57, pp 2861-2864

[Sporns et al. 89] O. Sporns & J.A. Gally & G.N. Reeke &
G.M. Edelman (1989),Reentrant signaling among simulated
neuronal groups leads to coherency in their oscillatory activi-
ty, Proceedings of the Natural Academy of Sciences 86, pp
7265-7269

[Sporns et al. 91] O. Sporns & G. Tononi & G.M. Edelman
(1991),Modeling perceptual grouping and figure-ground seg-
regation by means of active reentrant connections, Proceed-
ings of the Natural Academy of Sciences 88, pp 129-133

[Takefuji 92], Y. Takefuji (1992), Neural Network Parallel
Computing.

[Tsang 93], E. Tsang (1993),Foundations of Constraint Satis-
faction

[Tsodyks & Feigelman 88] M.V. Tsodyks & M.V. Feigelman
(1988), The Enhanced Storage Capacity in Neural Networks
with Low Activity Level, Europhysics letters 6 (2), pp 101-105

[Wang & Terman 95] D. Wang & D. Terman,Locally Excita-
tory Globally Inhibitory Oscillator Networks, IEEE transac-
tions on neural networks vol. 6, no 1, pp 283-286

[Wilson & Pawley 88], G.V. Wilson & G.S. Pawley (1988),
On the Stability of the Traveling Salesman Problem Algorithm
of Hopfield and Tank, Biological Cybernetics 58, pp 63-70

