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1. Introduction 

“Onder onjuiste aannames is alles bewijsbaar” 
-- dr. ir. Jan van den Berg 

 
This chapter is the introduction of this thesis. It starts with the background of the thesis 

(1.1). Hereafter the research question will be mentioned (1.2), followed by the related research 
(1.3). The methodology used is given (1.4) followed by the chapter outline for the thesis (1.5).   

1.1 Background 

Nowadays most people in western civilisations are used to working with computers. 
Many people even use them on a daily basis. When using computers this often, one would expect 
it to be easy to communicate with them. We would expect to be able to talk to the computer, and 
expect it to talk back. Besides easy communication, we would expect it to be able to check for 
consistency in our writing, and automatically correct typing errors. In short, we want it to behave 
intelligently.  

However, when we look for example at the search for information on the Internet, we see 
computer behaviour can hardly be called intelligent. Suppose we are watching television and 
there is a commercial for the musical ‘Cats’. When we want to search the Internet for information 
on the location and ticket availability for the show, current technology forces us at best to use one 
of the Internet’s search engines. Here, one should enter one or more words connected with the 
subject and press the search button. The result will be a number of sites in which one or more of 
these words occur. In contrast with the current situation, we could imagine a situation where we 
could ask the computer something like “Do you know if Cats will be in town?”. To which it 
reacts with “One moment”, searches the Internet and says, “I believe they will be here Saturday 
the 5th, shall I order tickets for you?”. But, as we’ve seen, this is not the case. Why is it so hard 
for a computer to process and/or generate natural language? 

In this thesis we will see that the difficulty computers have when dealing with natural 
language is one caused by the difficulty to deal with meaning. This thesis will be about computers 
and meaning. The difficulty when dealing with meaning can briefly be illustrated by continuing 
the example of searching information on the Internet. On the Internet, most documents contain 
natural language. Most search engines on the Internet use symbol matching to search documents 
about a certain subject. When using symbol matching, a search engine compares a search string 
(or parts of it) with the words in documents. It is possible for a word to refer to different objects 
in the world (homonyms) or for a certain object to be referred to by different words (synonyms).  

Suppose one is looking for information on ‘the musical Cats’. In one of the Internets’ 
search engines, the search string ‘Cats’ can be entered. The result on a search for ‘the musical 
Cats’ will probably be a list of documents on the subject. It probably also contains documents 
about the animal ‘cat’ which can also be referred to with word ‘Cats’. Furthermore it is possible 
that the search engine does not find certain documents about the musical ‘Cats’, because these 
documents do not contain the word ‘Cats’. Here the musical ‘Cats’ is referred to by the words 
‘new musical by Andrew Loyd Webber’. Keep in mind, we already made the concession to 
search for Internet sites about ‘the musical Cats’ instead of typing the question “Can I book 
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tickets for Cats?” or “Will Cats be in my town in the near future?”. Determining the subject of a 
document looks hard enough as is. 

If symbol matching yields such poor results, why aren’t search engines based on a 
different technique that takes meaning into account when searching? While progress is being 
made to develop search techniques based on something else than symbol matching, the meaning 
of natural language is hard to determine for a computer. In the example there was attention for the 
ambiguity of single words (‘Cats’, the musical and ‘Cats’, the animals). Determining meaning can 
even get harder when dealing with whole sentences instead of single words. The meaning of a 
sentence can change when words change position. For example with the words in the last 
sentence, we can make another sentence with a different meaning, namely: “Change position 
when the meaning of words can change a sentence”. The meaning of a sentence can also change 
when there is irony or sarcasm in it. When someone loses a whole day work by a computer crash 
and calls out: “Well, that is just great!”, he usually does not really mean that he thinks this is 
great. 

Although natural language can have a lot of ambiguity in it, humans can work with it. It 
is likely the knowledge humans have about the world and the ability to deal with the context it is 
used in helps to work with natural language. At the moment, computers have difficulty working 
with natural language. A reason for this could be their lack of knowledge of the world and 
inability to interpret the context in which it is used. To overcome this, we could let a computer 
use a representation of knowledge. This means knowledge must somehow be represented in a 
form suitable for use by computers. 

Some computer applications today already use a representation of knowledge. This 
knowledge is almost always domain specific; examples include domains like animals, medicine 
and geography. This knowledge is usually used to do a specialised task in a certain domain. 
However when we look at search engines on the Internet, the knowledge a search engine needs, 
can not be called domain specific, but rather an ‘all domain overview’. The search engine does 
not have to be able to perform surgery to determine that an Internet site provides information 
about it. To determine what an arbitrary document is about, little knowledge about many domains 
is needed. Is it possible to merge existing domain specific knowledge bases into one, whereby it  
the possibility creates to use knowledge from all domains and to reuse knowledge for different 
applications in that domain? 

When it is attempted to create one knowledge base out of many, one need to keep in mind 
the different domain specific knowledge bases will probably have different authors. Each author 
wants to represent his knowledge as detailed as is necessary for his application(s). Each 
representation namely needs to be accurate enough to enable a computer application to reach its 
goals. This means that a method of representation needs to be able to represent everything other 
methods of representation can also represent. Hereby it remains possible for all authors to 
represent the knowledge they need. 

At TNO (a Dutch organization for applied science) an attempt is being made to create a 
knowledge base that is able to store knowledge which is represented by different authors. This 
creates the advantage of having knowledge about different domains stored in the same way and 
also creates the possibility to “re-use” this knowledge for other applications. 

This thesis is written after an internship at TNO. TNO is using a semantic network (see 
chapter 2 for further information) to represent knowledge in a computer. Semantic networks in 
computer science exist since the early ‘60’s, but are here only for use by one author. TNO has 
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made an extension on the semantic network that enables the representation of knowledge by 
many authors.  

1.2 Research Question 

We have seen why it is interesting to create one knowledge base for knowledge used by 
many different applications. Let us now look at where the challenges lay. Using one knowledge 
base to store the represented knowledge of different authors, allows two authors to independently 
represent the same knowledge. When considering two representations of knowledge, where the 
first representation represents a part of the knowledge that is also represented in the second, the 
first is called semantically equivalent to the second.  

Semantical equivalence differs from the related term ‘synonymy’ because synonymy 
implicates a symmetrical relation. When ‘bank’ is synonymous with ‘financial institution’ it is 
also the other way around. With semantic equivalence this is not the case, representation A could 
represent the same knowledge as representation B, but not the other way around. Representation 
B could namely represent more than A.   

When there is hidden semantic equivalence in the network, it will lead to 
‘underperforming’ applications. An ‘underperforming’ application is an application which can 
access a knowledge base, but is unable to act like it knows it. This will be illustrated by the 
following example. Consider two applications, A and B. The knowledge for application A is 
represented as “Shakespeare has written Othello”. The knowledge for application B is represented 
as “Shakespeare has created Macbeth”. When the applications are not programmed to work with 
the representation of the other, both only behave like they know one play (or piece, or book), by 
the hand of Shakespeare. This way, these applications perform less than possible considering the 
represented knowledge they both can access. If we could make both applications work with 
writing and creating, both applications can behave like they know “Macbeth” and “Othello” were 
creations of Shakespeare.  

Discovering semantic equivalence in the network is therefore an interesting challenge. 
Discovering semantic equivalence however has a few pitfalls. For example, while ‘writing’ does 
always mean ‘creating’, this does not hold the other way around. One is tempted to say the 
creator of a book will also have written it, so under the boundaries that the knowledge is about a 
person and a book, ‘creating’ is equivalent to ‘writing’, but how about the publisher of a book? 
We can also say that the publisher of a book created the book.  

While a large knowledge representation will probably contain thousands and thousands of 
elements, it becomes merely impossible for humans to discover hidden semantic equivalence 
without some initial shifting between expected semantically un-equivalent situations and 
semantically equivalent representations. While we have seen meaning is a hard subject, final 
judgement about the semantic equivalence of representations is currently done by humans. The 
question arises whether this judgement can also be performed by a computer. A computer which 
can judge semantic equivalence just as well as humans will be also be able to find all semantic 
equivalence in a semantic network.  

A semantic network has three main elements that can be used to represent knowledge. 
These elements are: concepts, relations and attributes. This thesis will focus on one of these three 
namely relations. This leads to the following research question this thesis will focus on: 
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To which extent is it possible to automate the finding of collections of semantically 
equivalent relations in a semantic network? 
 
At a more pragmatic level, we will develop a computer algorithm that is capable of selecting 
semantically equivalent relations from the current semantic network at TNO. 

1.3 Related Research 

The semantic network, as used at TNO [7], is different from the usual semantic networks 
found in literature [11]. Therefore there is little publicized research on this extension of the 
semantic network. This thesis will be the first on semantic equivalence. Another thesis [8] 
however has also focused on meaning in a semantic network.  

Important research on the meaning of words [6] has been very useful for this thesis, as 
well as a paper on the question “What is Knowledge Representation?” [2]. 

One has tried to define the semantics of a ‘usual’ semantic network [1] and used a 
semantic network for information extraction [3]. 

As far as we are concerned with the similarity in meaning, research has been done to 
discover the semantic distance in WordNet [16]. One has also looked at the usefulness of 
Taxonomies and Ontologies to represent knowledge and search for the similarity in it [15][17]. 

1.4 Methodology 

A literature survey was the start of this thesis. Related research as well as most other 
references comes from the Internet. Unfortunately I still had to search it myself instead of leaving 
the search to a computer. After the literature survey and an introduction on semantic networks at 
TNO, the research question was still open.  

It was however already clear that enabling many authors to represent knowledge in one 
knowledge base would create the challenge of dealing with the meaning of what is represented. A 
lot of time hereafter was spent trying to crystallize the problem at hand. 

While trying to come to the problem, approaches to a solution were created and rejected. 
In the end however three main approaches to the problem kept standing.  These approaches were 
not yet rejected, but acceptance was only reasonable with a more pragmatic view. An 
implementation of one of the theories was made and validated based on the results on a test-set.  

1.5 Chapter Outline 

After this introduction to the thesis, chapter 2 will contain a more elaborate explanation 
of semantic networks. Here we will see the extension TNO has made to enable multiple authors 
to use the same semantic network to represent knowledge. This usage by many authors leads to 
possible semantic equivalence in a semantic network. The issues of meaning in the network and 
semantic equivalence are discussed in chapter 3.  
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In chapter 4 we will focus on conceptual solutions to search for semantic equivalence. 
One of the suggested solutions is implemented and tested on the existing semantic network at 
TNO. Chapter 5 will be about the implementation, chapter 6 about its results on the test-set. 

Chapter 7 holds the conclusions of this thesis, together with suggestions for further 
research. 
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2. Semantic Networks 

"Wat betekent eigenlijk eigenlijk?" 
-- Wim T. Schippers 

 
Before starting a search for semantic equivalence in a semantic network, it has to be clear 

what a semantic network is and what it is meant by semantic equivalence. This chapter will focus 
on semantic networks. Semantic networks can be used to represent knowledge. Therefore we will 
first go into knowledge representation in general and discuss a theory on the way humans deal 
with meaning (2.1). 

Next, the theory on semantic networks is given (2.2). This is split up in a part about 
elements that can be used to build a semantic network, which is called its syntax, and a part on 
the meaning in a semantic network, which is called its semantics. 

The semantic network used in this thesis is being developed at TNO. This semantic 
network is an extension of the syntax of a ‘general’ semantic network. The extension of the 
syntax will first be explained, followed by the consequences this has for the semantics of the 
semantic network (2.3).  

This chapter ends with a discussion of the advantages and disadvantages of the extension 
of the semantic network (2.4). 

2.1 Knowledge representation 

Humans are in constant interaction with their environment. The environment is also 
called the world or reality. Humans are not only interacting with their environment, they are also 
part of it. In the world there are millions of objects. Whenever people come across one of these 
objects, it causes a reaction in the brain by being seen, heard, felt, smelled or tasted. The way 
someone thinks an object looks, sounds, tastes, smells or feels like is called a concept of that 
object in the mind of the thinker. Besides concepts of physical objects, it is possible to have 
abstract concepts. Abstract concepts can stand for a group of objects, like the concept ‘cats’. 

Figure 2.1 A man with a concept of how the world looks like 
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Abstract concepts can also be things like math, geography, truth or time. Concepts can be 
anything humans can think of as being a coherent whole or sharing some common property. 
Generally speaking, concepts can be anything in the world, including the ideas and concepts of 
humans in the world. Figure 2.1 shows someone with a concept of how the world looks like. 

People tend to bring structure to everything they encounter. We could say a concept like 
‘a cat’, is created by encountering multiple cats and structuring the properties they have in 
common to ‘conclude’ these will probably be the characteristics of everything that is ‘a cat’. This 
process sounds very similar to the scientific method called induction.   

The tendency to associate concepts can also be seen as the will to structure. People are 
able to associate different concepts and seem to be very willing to do so. Some of these 
associations sound ‘logical’ like associating the concept ‘rain’ with the concept ‘getting wet’ or  

associating ‘fire’ with ‘hot’. Other associations seem to be less ‘logical’ some sportsmen 
tend to associate the concept ‘wearing particular underwear’ with the concept ‘winning the game’ 
others associate ‘black cat’ with ‘bad luck’.    

While there are millions of objects, one human can impossibly create concepts of 
everything in the world. Often, person A has concepts that person B has not and vice versa. One 
way humans use to inform another of their concepts, and the associations they have on them, is 
language. When person A knows there is a lion coming and he thinks person B does not, person 
A can tell B that “there is a lion coming” or he can tell him to “get out of here”. Person B can take 
action on hearing this and decide to get out of there. 

To do so sounds very simple, but how does person B know the meaning of the things 
person A says? To understand the way humans attach meaning to the symbols in language, we 
will take a look at a sample theory on the meaning of words, the so-called ‘meaning triangle’ [6].  

According to the meaning triangle, the symbols in a language acquire meaning, not by 
directly referencing objects in the world, but by referring to concepts of these objects which are in 
the mind of a cognitive agent. Note that the word symbol (or symbols) in this thesis is used in its 
broadest sense. It can stand for one character or a whole word, even a group of words, both the 
written as well as spoken. It can also stand for a picture or a sign.  
   On the left, figure 2.2 shows an object in the world, a cat called “Yojo”. On top stands the 
idea or concept one has in mind when thinking of the cat called “Yojo”. On the right is the 

Figure 2.2 The 'meaning triangle' taken from [Sowa] 
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symbol or sign one can use to refer to the cat called “Yojo”. When people talk or read about 
“Yojo”, they actually are referring to the concept of the cat they have in mind.  

Is it necessary for person A and B to have exactly the same concept? We believe this to 
be unnecessary. This will be illustrated by the following example. Assume two people are looking 
at a cat. This cat is half black, half white. From one point of view, only its black side could be 
seen, so while most people have occasionally seen a cat, the concept of “Yojo” it creates is 
probably one of a totally black cat. The same goes for the other person with a different point of 
view, who would only see its white side. The concept “Yojo” in their mind is probably totally 
white. So, while the object is not changed, it can create two different concepts in one’s mind (see 
figure 2.3). Keep in mind that neither concept, that of a totally white or totally black cat, is right. 
Still when people want to talk about the cat, it is possible.  

A concept is often as detailed or accurate as needed to help accomplish a goal. Suppose a 
disagreement occurs about the colour of the cat. Someone states “Yojo” is a black cat, while 
another states it is a white cat. They can take a closer look at the cat to refine their concept. By 
attaching meaning to the symbols in natural language, humans are capable of communication. 
This is possible even though the concepts that correspond to the symbols are not equal for sender 
and receiver. As long as it is equal from the context they need it for. For example, when one 
needs information about the weight of the cat to determine its diet, the one that is asked does not 
necessary have to have the same idea on the colour of the cat. This means person A and B do not 
have to have exactly the same concept in their mind as long as it refers to the same object. 

 
 
 
 
 
 

Figure 2.3 Two man looking at “Yojo” 
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From the meaning triangle we can derive at least three properties of a human involved in 
the process of communication: 
 

• The ability to perceive objects in the real world, for which most people have the 
availability over five senses. 

• The ability to store the concepts, related to the objects, in the mind. 
• The ability to communicate about these concepts with one another by referring to it with 

symbols. 
 

To successfully communicate with each other using language, humans need to share at 
least a minimum set of symbols to which they attach in essence the same meaning. Someone who 
only speaks French will have great difficulty to communicate using language with someone who 
only speaks English.  

Simplified we could say humans use natural language to exchange information with each 
other. The meaning of the symbols in language is based on a common understanding between 
people. The meaning of a symbol is the concept to which it refers in the mind of a person. The 
meaning of the concept in the mind of a person is the object in the real world related to the 
concept. 

Humans can of course communicate in many different ways besides natural language. 
People can for example make gestures at each other to inform the other of their intentions. They 
can also look at each other in a certain way. Sometimes it is even enough to say absolutely 
nothing to communicate your ideas about something. The simplified presentation above is 
however sufficient for explaining the reason why and the way how humans work with language. 
Before discussing a model of how computers can communicate, we could question if computers 
also ‘need’ to communicate. Here the term ‘communication’ is not used for the technical use of 
communication between computers. We all agree the World Wide Web and email are excellent 
ways of communication, but it is a communication between humans, technically enabled by 
computers. With communication is meant the exchange of knowledge. Do computers need to be 
able to exchange knowledge? To answer this question, we will first look at the term ‘knowledge’.  

There are many definitions of knowledge. The classic definition used in philosophy is 
that knowledge is true, justified belief. However, it is being questioned if this is always true [4]. 
Another definition of knowledge defines it along side with two terms on things that can be stored 
in a computer. Table 2.1 derived from [10] shows these definitions. 
 

Table 2-1 Definitions of data, information and knowledge 

 Definition Example 
Data Uninterpreted signals or symbols sensible in 

the world or stored in a computer 
…---… 

Information Data to which meaning is attached Morse-code: S.O.S 
Knowledge The whole of data and information on which 

humans can understand each other and act in 
creating new information or taking action 

Humans in need, start 
rescue operation 

 
Although people can have knowledge about something, can we also say a computer has 

knowledge about something? This is a difficult question, because is it not so that we see 
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knowledge only existing in living creatures, preferably human? Is it not so a computer is an 
eccentric calculator that outperforms men only in computation? Don’t we see the hand of God in 
everything we do not yet understand and the hand of men in everything we do understand? Does 
the acceptance of a computer holding knowledge means a crack in the superiority of men? We see 
how one question can trigger others, but fortunately we do not need to answer these questions 
here. It is not necessary to answer this question, while a computer uses a representation of 
knowledge. A representation of knowledge is not the knowledge itself. So there is no need to 
discuss whether computers can actually know something as long as they can successfully 
represent it. Gladly we can leave discussions about the meaning of ‘to know’ to philosophers. 
Here we state a representation of knowledge need a) to be in a format understandable for humans, 
and b) must cause the system to act as if it knows it. [12]  

This also answers the question if computers need to communicate. This is the same 
reason as goes for humans; the exchange of knowledge. It is unlikely one human or computer 
could hold all the knowledge needed to achieve its goals at a given time. When one computer 
application behaves as if it knows something and we want another program to behave the same, 

one approach is to let the first application communicate the representation of the knowledge to 
the second so the second application can also behave as if it knows it. 

Figure 2.4 shows a model of how computer applications could communicate. This model 
is inspired by the sample theory on the way people communicate. Here we also see a 
representation of objects in the world, as well as a set of symbols that can refer to the 
representation. We started this chapter by asking how humans deal with meaning. The question 
arises now how computer applications deal with meaning. 

The knowledge one needs depends on the goals one has. One could wonder which part of 
the model represents the represented knowledge. This depends however on the behavior one 
expects from the computer application. One could expect it to be able to behave as if it knows 
which symbol corresponds to which representation. This knowledge is not represented in the 
model. Most of the time however, one expects the computer application to behave as if it knows 

O b je cts

A *:
R e prese n ta tio n  o f o b je c ts

S a :
S e t o f sym bo ls  re fe rr ing  to  A * 

T h e  w orld

C o m pu te r 
a pp lica tio n  A

C om p u te r 
ap p lica tio n  B

B *:
R ep rese n ta tio n  o f ob jec ts

S b :
S e t o f sym bo ls  re fe rrin g  to  A * co m m un ica tion

Figure 2.4 Model of communicating computer applications 



 15 

something that exists in the world. The knowledge to do so can partially be found in the model, 
namely as the representation of objects in the world. 

A representation of objects in the world will need to hold information on the possible 
actions that are possible for an object. A computer application for example needs a representation 
of the knowledge that ‘a cat can be stroked’ and ‘one can sit on a chair’ in order to act as if it 
knows it.  

Knowledge can be represented using a symbolic approach. The challenge of a symbolic 
approach is that it forces one to split some knowledge into several parts. For most knowledge 
however it is possible to choose different splits. This division is mostly based on the viewpoint of 
a person and depends on the goal one has in mind. A good example of possible ways to divide 
knowledge is seen when we search for information on ‘Knowledge Representation”. Different 
authors have different goals and therefore divide the concept differently. There is a division in 
symbolic and connectionistic [9]. Others divide Knowledge Representation into four main 
features [12] or in five different roles [2]. 

Here we will focus on the symbolic approach called a ‘semantic network’.  

2.2 Theory of a Semantic Network 

According to one of the first publications on semantic networks, a semantic network is 
defined as: A graph structure in which nodes (or vertices) represent concepts, while the arcs 
between these nodes represent relations among concepts. [14] The concepts and relations used in 
a semantic network follow the here for presented theory on how humans deal with meaning. What 
we have also seen is that one can say humans tend to structure the world in concepts and 
associations (or relations). Next we will present the constructions that are allowed in a semantic 
network. 

2.2.1 Syntax of a Semantic Network 
 

A semantic network is a graph representing concepts and relations representing 
knowledge. So what exactly is a concept? There are a lot of different objects in the world, there 
can be even more different concepts. A concept can reach from something physical, like “Yojo” 
the cat, to something abstract like an idea. It could be a collection, like “all students at Erasmus”, 
or a single element from a collection, like “a student at Erasmus”. As we see a concept in a 
semantic network closely follows the concepts humans can have according to the ‘meaning 
triangle’. 
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Between concepts, there are relations, this also follows the way people structure the world. The 
concept “Yojo” has the relation “is a” with the concept “cat”. The concept “cat” has the relation 
“has a” with the concept “tail”. Two concepts have a relation when they can be associated in the 
world a certain way. A relation represents the way a person believes two concepts are connected. 
Using concepts and relations, the knowledge that “Yojo is a cat” can be represented (see figure 
2.5). This minimal network can be extended with, for example, the knowledge that “a cat has a 
tail” (see figure 2.6).  These networks have a small set of relations, (is a, has a, is part of) which 
are the only relations used between concepts. From now on, unless explicitly stated otherwise, a 
concept refers to a concept in a semantic network.  
 

So the allowed syntax for a semantic network exists of a small set of relations that can be used 
between an unrestricted number of concepts. Next, we look at the meaning these elements have. 
 
 
 
 

is
 a

Cat

Yojo

has a

Tail

Figure 2.6 A small semantic network 

Figure 2.5 Semantic network representing ‘Yojo 
is a cat’ 
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2.2.2 Semantics of a Semantic Network 
 

What are the semantics of a semantic network? It becomes hard to pinpoint the exact 
meaning of the node labeled “Yojo”. It could be the object “Yojo” or the concept in a human 
brain. It would simplify the matter if we could state the concept “Yojo” in the semantic network 
refers to the object in the world. This way, there is only one object represented and we avoid the 
question to which mind is being referred to. This however points at another difficulty. When a 
node in the semantic network refers to an abject in the world, does something like ‘math’ exist in 
a world without the humans that created it? Perhaps a more pragmatic approach is appropriate 

here. A node refers to the concept and behavior that follows from the concept (considering its 
context) on which most people would agree. Note this leaves the meaning of a concept fuzzy. 

A semantic network however, is created by a person (or sometimes a group of persons) 
giving his (their) view on the objects and how they are related. This means different semantic 
networks describing knowledge in the same domain will probably contain different concepts.  

So a semantic network is created according to a (or more) person(s) view on the world. 
While persons could have a different view, they look at the same world. The meaning of the 
knowledge in their mind and therefore of the representation in the network should therefore be 
the same.  

To further explore the meaning of a semantic network, let us take another look at the 
semantic network representing “Yojo is a cat” and “a cat has a tail”. From this network, a 
computer could deduct that “Yojo has a tail”. But what is the meaning of this deducted 
“knowledge”. Does it mean every cat has the same tail, Yojo included? Or does every cat have 
its’ own tail. Most people would agree of course that ‘Yojo’ does not have the same tail as any 
other cat. This is our knowledge, but not necessarily what is represented in the network. Suppose 
the following was represented “”Yojo is a cat” and “a cat has an ancestor” (see figure 2.7). 

In contrast with a tail, which is a part of cat and which is unique for every cat, an ancestor 
is not part of the cat and it is possible for cats to share ancestors. This is a property of an ancestor. 
It lies hidden in the meaning of the concept ancestor. To “have a tail” is something else then 

is
 a

Cat

Yojo

has an
Ancestor

Figure 2.7 Another small semantic network 
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“having an ancestor”. This is a recognized issue when working with semantic networks and 
therefore it should be made very explicit which inferences can be made from certain relations. 

Finally the ‘Oedipus’ example will be used to point out some subtleties. For people who 
do not know the story about Oedipus, here follows a very brief summary of the story. It points out 
how subtle dealing with meaning can be. This is the story of Oedipus by Sophocles: 

“Laius and Jocasta were king and queen of Thebes, a town in Greece. One day, they had a baby 
boy. An oracle prophesied that the boy would grow up and kill his father and marry his mother. To thwart 
the prophecy, Laius and Jocasta decided to kill their baby. In those days, it was usual to leave an unwanted 
or defective baby in the wilderness. Laius and Jocasta did this.  

A kindly shepherd found the baby. He gave the baby to a friend, who took it to Corinth, another 
town. The king and queen of Corinth couldn't have a baby of their own. So they adopted the foundling.  

Nobody ever told little Oedipus that his mother was never pregnant. One day, after he had grown 
up, a drunk mentioned his being adopted. Oedipus questioned his parents, but they denied it. Oedipus 
visited various oracles to find out whether he was really adopted. All the oracles told him instead that he 
would kill his father and marry his mother.  

To thwart the oracles, Oedipus left Corinth permanently. Travelling the roads, Oedipus got into a 
traffic squabble and killed a stranger who (unknown to him) was King Laius.  

Soon Oedipus's smarts saved the town of Thebes, and he was made king. Oedipus married Laius's 
widow, Queen Jocasta. He ruled well, and they had four children. Eventually, Oedipus and Jocasta found 
out what had really happened. Jocasta committed suicide, and Oedipus blinded himself and became a 
wandering beggar.”1 

 
We could in short make a semantic network (figure 2.8) from the story of Oedipus. From 

this network we could conclude Oedipus married his mother, which is in fact true. Everyone that 
knows the story will however say the statement “Oedipus married his mother” is too rigorous and 
prefers the milder “Oedipus married Jocasta”. At the time they got married they namely did not 
know they were mother and son. It depends on the context whether “Oedipus married his mother” 
is true. All people at the wedding would at the time have believed that “Oedipus married his 

                                                           
1 Summary by E. Friedlander, http://www.pathguy.com/oedipus.htm 
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Figure 2.8 Oedipus has married Jocasta 
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mother” was false. This points out that it is not always as easy to draw conclusions from a 
network as it initially seems. It also points out that what is true can depend on context.  
   When we go back to the two demands of knowledge representation, we see computer 
applications using this kind of semantics are complying with criterion a), i.e. the knowledge is in 
a human understandable format.  But to comply with criteria b), acting like the application 
“knows” it, is only possible when it does not need to know a lot. For example, when a computer 
application only has to answer questions like “does a cat have a tail?” and “Is Yojo a cat?” an 
interpreter for these questions can be written as also an interpreter for the semantic network. 
These interpreters will also be a representation of knowledge, namely a procedural representation 
(see 2.1). This way the questions can be answered and the computer application acts as if it 
knows it.  

The difficulty with a semantic network using only a predefined set of relations is that it is 
impossible to be able to represent all views on the world that are possible. When person X has 
knowledge about person A loving person B, how can it be represented using only the relations: 
“has a”, “is a” and “is part of”? It is possible to extend the set of predefined relations with the 
relation “loves” and also describe very precisely which inferences can be made from it. But there 
are many more relations which can not be all included in the predefined set. Therefore, an 
extension is made on this kind of semantic network. 

2.3 Extension on the theory of a Semantic Network 

2.3.1 Extension on the Syntax of a Semantic Network 
The first extension on the semantic network is the addition of attributes. An attribute 

stands for a property a concept or relation can have. An attribute is represented by a box 
connected with a concept or the relation (see figure 2.9). This semantic network represents the 
knowledge “Yojo is a cat. The eye color of Yojo is green”. 

An attribute is made up from an attribute type, in this case ‘eye color’ and an attribute 
value, in this case ‘green’. While this attribute defines a property of a object in the world, it could 
also represent a property inserted specifically for an computer application. For example an 
attribute of the concept “Yojo” could be the date this concept was created (see figure 2.10). Such 

is
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E y e  c o lo r :  g r e e n

Figure 2.9 A small network with an attribute 
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an attribute is called a system attribute. While in this example the difference between system 
attributes and normal attributes is clear, there can be cases where it is not.  

This extension on a semantic network does not make it possible to represent more 
knowledge in a semantic network. Every attribute can namely be represented as a relation with a 
concept.  

Figure 2.11 represents the same knowledge as figure 2.9. In figure 2.11 only, the attribute 
on ‘Yojo’ is translated into a relation. This can be done for every attribute by making the attribute 
type the relation and the attribute value the concept. While it does not extend the quantity of 

knowledge that can be represented, it does create the possibility to stop representing knowledge 
in concept when it is not necessary. Suppose one wants to represent the knowledge that “Yojo has 
two eyes”. It is possible to represent the number ‘2’ as a concept. This concept number ‘2’ could 
have a “is a” relation with the concept ‘number’. While this representation is also valid, it is most 
of the time unnecessary. An application can be developed with procedural knowledge to behave 
correctly when encountering ‘two’ as attribute value.  

The possibility to translate attributes into relations is the second extension on the 
semantic network. While the ‘standard’ semantic network works with a small set of predefined 
relations, here this is no longer the case. With the extended network it is possible to describe any 
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Figure 2.10 Another small network with an attribute 
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relation one thinks necessary to represent the knowledge. This is done while many different 
people could have many different representation of their knowledge in mind.  

When using an unrestricted number of relations, it is could be useful to represent 
knowledge on a relation. Here for, the extension of the network splits a relation in three parts, a 
subject concept, a predicate concept and an object concept. In the sentence “Shakespeare has 
written Othello”, “Shakespeare” is the subject and “Shakespeare” has the association ‘has 
written’ with the object “Othello”.  

By making the predicate a separate concept in the network, it is possible to represent 
knowledge that holds for the predicate separate from knowledge that holds for the relation as a 
whole. The relation “Shakespeare has written Othello” could have an attribute with the date he 
wrote it. The predicate “has written” could be in relation with the predicate “is writing” (see 
figure 2.12)  

For the rest of this thesis when we use the term semantic network, it refers to the 
extended semantic network unless explicitly stated otherwise. We will use the following notation 
to refer to the elements of a semantic network (illustrated by figure 2.13): 
 
Cn  : Concept n.  
Pn : Concept n which can be used as a predicate in a relation. 
Rnop : A relation with subject node Cn, predicate node Po and object node Cp. 
XAi : Attribute Ai on element X. X can either be concept Cn or relation Rnop. 
 

Othello

Shakespeare

Has written
Period: 
1600-1613

Figure 2.12 In a relation is referred to a predicate  
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2.3.2 Consequences for the Semantics of a Semantic Network 
 

The semantics of the attributes added to the network is not different from the semantics of 
those attributes in relational form. It does point out there is probably an application with 
procedural knowledge on what to do when encountering this attribute.  

The main consequence for the semantics lies in the extension of a small set of predefined 
relations to an unrestricted set. When working on a network with a set of predefined relations, it 
is possible to add the procedural knowledge to an application for each specific relation. An 
application can be programmed to do action B when encountering relation Rnpm between concept 
Cn  en Cm. With a small set of relations, it is possible to do this for every relation in the set.  

It was already mentioned (2.2.2) that while there is a large number of possible concepts, it 
is hard to put the procedural knowledge in an application which makes the application take a 
specific action valid to the meaning of a concept for every concept in the network. By working 
with a large number of possible relations, it also becomes impossible to do this for relations 
anymore. 

It is now possible to model a piece of knowledge in many different ways, specific for the 
application one has in mind for it. So, the concepts, attributes and relations stored in the network 
always represent a piece of knowledge. This knowledge will, most of the time, be clear to humans 
(see criteria a) of the KRH). For computer applications, not developed with the procedural 
knowledge to act on reading these elements from the network, they can be said to be meaningless 
to these applications.  

So without further knowledge, the only deduction that can be made from a certain 
concept is that it exists. The only meaning a relation has, is that two concepts are related in that 

Cp

Cn

Co
RnopAi

CnAi

Rnop

Figure 2.13 A semantic network to illustrate the used notation 
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way. The meaning of an attribute is only that a concept or relation has that property. So for a 
computer application not developed to use certain concepts, relations and/or attributes, the only 
meaning they have for it, is that they exists. 

2.4 (Dis-) Advantages of the Extension of the Semantic Network 

The extension of the semantic network makes it possible for different authors to work on 
the same semantic network and still represent their knowledge exactly the way they think is right. 
Using this extension it is possible for multiple applications to use the same network to store their 
knowledge. Using the network without this extension, the small set of relations only allowed one 
view to be represented. Here for it was merely impossible to allow multiple applications to store 
knowledge in such a network.  

By allowing unlimited relations and many applications to work with the network, it 
becomes difficult to equip an application with all procedural knowledge needed to act properly on 
encountering an element from the network. A semantic network can now contain the 
representation of the knowledge according to many different views. For application whose only 
goal is to visualize this network, it gives no problems. When an application needs to deal with 
meaning however, what procedural knowledge should instruct it how to act when encountering an 
unknown element? 

One approach is to search the network for equivalence in semantics. Suppose an 
application has the procedural knowledge to do action A when encountering element B. It has no 
knowledge about the action to take when encountering element C. When the procedural 
knowledge is enriches with the information that element C has the same meaning as B, the 
application can take action A in both cases.  

The main difference between a ‘normal’ semantic network and an extended one is the 
possibility to add knowledge to it by many different applications. It’s a balance between 
completeness of inference and expressiveness. In an extended network there are many forms of 
equivalence. This will be explored in the next chapter. 
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3. Semantic Equivalence in a Semantic Network 

“De aarde is rond. Net als een pannekoek.” 
-- Herman Finkers  

 
We have presented a theory on how people deal with meaning and how knowledge can be 

represented using a semantic network (chapter 2). We have also seen how an extension of the 
semantic network enables authors to represent knowledge using as many different concepts, 
relations and attributes as they think necessary. When multiple authors use the same network to 
represent knowledge, it is possible that multiple representations with the same meaning exist. 
Groups of elements in the network with the same meaning are called semantically equivalent. 
This chapter will be about semantic equivalence in a semantic network. 

When semantic equivalence is about two groups of elements, the first question we try to 
answer is: “what can we say about the relatedness of meaning of elements in a semantic 
network?”. To answer this question we need to know what we can say about the meaning of 
elements in the network (3.1). 
 Next there is a discussion about different ways one can ‘measure’ relatedness of meaning 
in the network (3.2). We will see this gives a lot of hardship. After discussing different 
measurements, we will concentrate on semantically equivalent representations and semantically 
equivalent relations in specific (3.3).  

3.1 Related Meaning 

We are considering a semantic network which will be used by multiple authors to represent 
knowledge, without having agreements on the meaning of certain concepts, relations or attributes. 
This way it is very likely different authors will use different representations for knowledge with 
the same meaning. The next list contains a few ways in which the meaning of two representations 
can be related: 
 

• There meaning can be the same which is called synonymy, for example ‘bank’ and 
‘financial institution’ 

• They can mean the opposite, which is called antonymy, for example ‘big’ and ‘small’. 
• The meaning of the first can be totally included in the meaning of the second, this is 

called hyponymy, for example ‘Yojo’ is a hyponym of ‘cat’. 
 
Two representations are semantically equivalent, when they are synonymous. The first 
representation is semantically equivalent to the second when they are hyponymous. Finding 
semantic equivalence in a semantic network is a matter of finding synonymous or hyponymous 
representations. This is however not trivial while there are no agreements on the meaning of 
certain representations in the semantic network.  
 Semantic equivalence can be seen as a relation two representations have. Representation 
A can be semantically equivalent to representation B. Before discussing some suggested methods 
to measure the relatedness of meaning, it is necessary to first mention ‘transitivity’ along with 
two other properties of relations.  
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‘Transitivity’ is a property a relation, or to be more specific a predicate, can have. For a 
transitive predicate Pt holds:  

when  
relation Rnmt exists  
and  
relation Rmot exists 

then  
relation Rnot exists  

An example of a transitive predicate is ‘is larger than’; when ‘Jan is larger than Mark’ and ‘Mark 
is larger than Rob’ then ‘Jan is larger than Rob’. 
 Another property a relation can have is ‘generalization’. When there is a generalizing 
relation from concept Cn to Cm, Cn is a hyponym of Cm.  
 The last property is ‘symmetry’. When a predicate Pp is symmetric, it means for any 
relation Rnop that also Ronp exists.  

3.2 Measurements of Relatedness  

Some definitions of relatedness of elements in a semantic network have been suggested [7]. Two 
of these definitions are network distance and semantic distance. While the first definition only 
measure the distance between nodes, without addressing meaning, the latter one does.  
 

3.2.1 Network Distance (ND) 
 
‘The network distance between two nodes is the smallest number of relations one could use two 
come from the first to the second node’ [7] 

 

ND = 1

ND = 2

ND = 3

Figure 3.1 Some examples of Network Distance, from [Poell2002] 
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So the ‘network distance’ measures the shortest ‘path’ possible between two nodes.  
Related nodes in the network have network distance 1. When two nodes Cn and Cm can not be 
directly connected, but are both directly connected with a third node Co, Cn and Cm have network 
distance 2 (see figure 3.1). Note that in this figure, there is no distinction between a connection 
from Cn to Cm and one from Cm to Cn. This definition will therefore be called undirected, which 
means there is a simplification of the network whereby we make no distinction between a relation 
from Cn to Cm or Cm to Cn.  

3.2.2 Semantic Distance (SD) 
 
‘The Semantic Distance between two nodes is equal to the minimum number of different 
associations (relations) that are not used in a transitive way: SDx(n1, n2)' [7] 

So the semantic distance is the network distance, but without counting the relations that are used 
transitive. In the example semantic network (figure 3.2) the following semantic distances exist: 
 

• SD1(Jan, Rotterdam), namely the relation “Is Born in” is the minimum relation used. 
 

• SD1(Jan, Solar System) namely the relation “Is Born in” is the minimum relation used, 
the relations “Is located In”, “Are located in” and “Is located on” can be used in a 
transitive way. 

 
• SD0(Europe, The Earth), namely the relations “Is located in”, “Are located in” and “Is 

located on” can be used in a transitive way. 
 

Figure 3.1 network distance in a semantic network 
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SD = 1

SD = 1

SD = 0

Figure 3.2 Semantic distance in a semantic network, adapted from [7] 
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In short, the smaller the semantic distance between two concepts, the closer these two concepts 
will probably be related. 

“One could say relations between two concepts with distance SD0 or SD1 have a 
semantically significant meaning, while those with SD2 or higher only have something to do with 
each other” [7]. 

Remember authors are free to use any relation they see necessary. Therefore, they are 
also allowed to create an “is a concept in the same semantic network as”-relation between all 
concepts in the network. Hereby it reduces the semantic distance between all concepts to zero.  

When a representation of an object is not the object itself, it is possible the representation 
omits information about the object. Therefore it is certainly possible concepts with SD2 or higher 
are in fact closely related.  

So is it always true a relation between concepts with SD0 or SD1 has semantically 
significant meaning? Consider a semantic network very similar to figure 3.2. The only difference 
is instead of location, the concepts are numbers and instead of the relation “Is located in”, another 
transitive relation “Is greater than” is used. Assume also that Jan has a favourite number, that 
number is 13. 

In the same way as the previous example, we should be able to say Jan has favourite 
number 8, but as we see, this would be rather unlikely. The relation ‘Jan’ has with the number ‘8’ 
that can be derived from this semantic network is that ‘Jan has a favourite number which is 
greater than 8’. But we can probably make the same kind of derivations for nodes with a SD 
greater than 1. ‘Jan has favourite number 13’ is a relation which has only significant meaning 
when considering the concepts ‘Jan’ and ‘thirteen’. When there are relations between ‘13’ and 
other numbers, transitive or not, ‘Jan will probably have a ‘vague’ relation with those numbers.  

Jan
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9

8

Has favorite number

Is greater than

Is greater than

Is greater than

Is greater than

Is greater than

Has favorite number ??

SD = 1

SD = 1

SD = 0

Figure 3.3 Semantic distance in another semantic network 
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Based on these examples, the following adaptation on semantic distance is suggested. 
When two concepts have a generalizing relation between them, their semantic distance is zero. So 
in figure 3.2, the semantic distance between ‘Europe’ and the ‘Earth’ remains zero. All other 
relations between concepts are initially 1, including transitive relations. Semantic distance 
between concepts which are not directly related can be measured by addition of the semantic 
distance in between. Hereby placing the remark that semantic distance one added to semantic 
distance one stays one when the two relations can used in a transitive way.    

This measurement results in the following semantic distances. In figure 3.2 the semantic 
distances stay the same. In figure 3.3 however, it results in the following semantic distances: 
 

• SD1(Jan, 13) 
• SD1(13, 12) 
• SD1(12, 11) 
• SD1(13, 11), namely SD1(13, 12) + SD1(12, 11) 
• SD2(Jan, 8), namely SD1(Jan, 13) + SD1(13, 8) 

 
Measuring semantic distance this way still does not consider the context of two concepts. 

It can only become smaller when more relations are inserted. When considering the context of the 
concepts, semantic distance can become both smaller and larger by adding extra relations. Two 
concepts, for example ‘Israeli’ and ‘Palestine’ could be semantically close in a geographical 
context, but semantically far apart in another context.     

3.3 Semantic Equivalent Relations 

We have seen that semantic equivalence is inherent to the extension of a semantic 
network to allow multiple authors to work with it. We have also seen the difficulty when we try 
to make statements about the meaning of elements in the network. 

Next follow some examples of semantically equivalent situations that could possibly exist 
in a semantic network. The examples are divided in hyponymy and synonymy examples. The first 
examples will be about different types of elements while the last will focus on relations.  
 
Example 1: Total concept-concept synonymy 
One author could create the concept ‘Bank’, which is not seen by a second author who creates the 
concept ‘Financial Institution’ (see figure 3.4) 

Bank

Financial 
Institution

Figure 3.4 The concepts Bank and Financial 
Institution are equivalent 
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Example 2: concept-concept Hyponymy  
A first author could use the concept bank while a second uses the broader concept company (see 
figure 3.5). While a bank is also a company, when looking for a ‘Company’, one could also look 
for the semantic equivalent ‘Bank’. 

Example 3: multiple concept – concept synonymy 
One author could create the concept ‘Torah’, while a second describes the books separately as 
‘Genesis’, ‘Exodus’, till ‘Deuteronomy’ (see figure 3.6). Note that the first 5 bible books are also 
known as the “Torah”. 

 

Bank

Company

Figure 3.5 The concepts company and bank are 
semantically equivalent when one is interested in 

companies only 

Torah

Genesis

Exodus Numbers

Leviticus
Deuteronomy

Figure 3.6 The concept Torah could be divided in five diferent 
concepts 
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Example 4: relation  – concept, attribute synonymy 
Every relation could be translated in a concepts with an attribute (see § 2.3.1). Therefore, for 
every relation created by one author it is possible another author has used a concept and a 
attribute to represent the same. 
 
Example 5: relation- relation synonyms 
One author could represent the relation “Shakespeare is author of Othello” while another finds it 
more appropriate to represent “Shakespeare has written Othello” (see figure 3.7).  

Example 6: multiple relation- relation synonyms 
Some authors might pay attention to the relation Jim has with his brother John, others might 
represent the relation they have with their parents (see figure 3.8). 

Othello

Shakespeare

Is author of

H
as w

ritten

Figure 3.7 Shakespeare has created Othello 



 31 

 One can see that by making no agreements on the meaning of elements it is possible to 
create all kinds of semantic equivalence. However, is it possible the representations give clues 
about what is semantic equivalent and what is not? This will be part of the next chapter. 
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Figure 3.8 A triangular example of semantic equivalence 
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4. Searching for Semantically Equivalent Relations 

“Ik houd niet van generaliseren, Surinamers doen dat ook altijd.” 
--Theo Maassen 

 
We have seen that the semantic network holds semantic equivalent relations. In what 

degree is it possible to automate the search for semantically equivalent relations? In this chapter 
we will look at conceptual solutions to automate the search for semantically equivalent relations.  

To automate the search, three search strategies are being suggested. The first strategy is 
based on the patterns semantically equivalent relations can have when being described by 
different authors. The relation two concepts can have can be represented in multiple ways. 
Different authors can choose the representation differently. A method is suggested based on the 
number of relations between two concepts. This approach is called pattern based, while multiple 
relations between concepts can be seen as a pattern (4.1). This method can be extended by using 
human knowledge about the meaning of elements indicating transitivity and generalization in the 
network (4.2). Another extension can be made by using the generalization property of relations 
(4.3). 

The second strategy is based on the assumptions that the meaning of an element or group 
of elements is somehow connected with its representation. For example, a numeric value in an 
attribute says something about the meaning of the attribute and the name of a concept says 
something about the meaning of the concept. From this assumption follows that (groups of) 
elements that have similar representations can also have similar meaning. To compare the 
representation of elements, they can be translated into a multidimensional vector we call a 
‘fingerprint’. Elements with a resembling fingerprint can also have a resemblance in meaning. 
This approach we call association driven (4.4). 

It is possible the method suggested in 4.4 is not sufficient to create effective hypotheses 
on semantic equivalence. Although we assume a representation hold properties of the represented, 
this does not mean that the representation holds properties about the equivalence of meaning. The 
suggestion is to use machine learning on ‘fingerprints’ of elements that are already classified as 
semantically equivalent or not. This way it could be possible to learn the properties that lead to 
semantic equivalence (4.5). 

4.1 Pattern Based Search 

As we have seen in the previous chapter during the definition of semantic distance, 
transitivity and generalization are two properties in a relation that enlarge the probability of 
related meaning between nodes. As seen with semantic distance, when a chain of transitive 
relations is used between two concepts, it can be rewritten as one relation between the two 
random nodes in the chain.  

Let us look at the simplest form this could have. In the simplest form, two authors can both 
have defined the same association between two concepts. This could happen for several reasons: 
 

• Both authors define the relation at approximately the same time. 
• The second author does not realize the relation is already defined by the first author. 
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• The second author is unaware of the meaning of the relation defined by the first author. 
• Both authors define both concepts as well as relation separate and later the concepts are 

merged. 
 
When two concepts have two associations, this could indicate semantic equivalence of the 
relations, maybe even equivalent predicates. The pattern such a situation will have is illustrated in 
figure 4.1.  

This pattern we call “pattern one”, it involves two relations (Rnpm and Rnqm) with the same 
subject (Cm) and object (Cn) concepts. Examples of pattern one containing semantic equivalence 
are: 
 

• “Shakespeare has created Othello” and “Shakespeare has written Othello” 
• “Shakespeare has created Othello” and  “Shakespeare is author of Othello” 
• “Shakespeare has written Othello” and “Shakespeare is author of Othello” 
 
In these examples, a computer application which uses the information in the first relation can 

also use the second relation for the same goal. While the occurrence of pattern one increases the 
probability of semantic equivalence, the occurrence of pattern one does not by definition indicate 
semantic equivalence. Examples of the occurrence of pattern one, while there is omission of 
semantic equivalence are: 
 

•  “Shakespeare is author of Othello”  and  “Shakespeare is not satisfied with Othello”  
• “Shakespeare is author of Othello”  and  “Shakespeare has been rewarded for Othello”  

Cn

Cm

Figure 4.1 Occurence of pattern one 
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Another simple pattern that is imaginably semantically equivalent happens when two 
authors describe the same association between two concepts, but define them inverse. By inverse 
is meant, one author describes the relations with object concept Cn and subject concept Cm, while 
the other author describes the association with object concept Cm and subject concept Cn. This 
pattern will be called pattern two and is illustrated in figure 4.2. 

So pattern two involves two relations (Rnpm and Rmqn) with both the same concepts (Cn and Cm), 
but reversibly used as subject and object concept. Examples of pattern two containing semantic 
equivalence are: 
 

• “Shakespeare has created Othello” and “Othello is written by Shakespeare” 
• “Shakespeare has created Othello” and “Othello has author Shakespeare” 
• “Shakespeare has written Othello” and “Othello has author Shakespeare” 
 
As also seen with pattern one, the occurrence of pattern two does not by definition indicate 

semantic equivalence. Following are some examples of the occurrence of pattern two, where 
there is no semantic equivalence: 
 

•  “Shakespeare is author of Othello”  and  “Othello is being regarded as a failure by 
Shakespeare”  

• “Shakespeare is author of Othello”  and  “Othello did not make money for Shakespeare”  
 
As we see with both patterns, when predicates relate as hyponyms, relations with that 

predicate are only semantically equivalent in a certain context. So the a relation using the 
predicate “has written” does always indicate a “has created” relation, but not the other way 
around. Consider the relation “Shakespeare has created a lot of garbage”, this does not implicate 
that “Shakespeare has written a lot of garbage” and these relations are certainly not semantically 
equivalent. Still the occurrence of one of these patterns increases the probability of semantically 
equivalent relations. 

While pattern one and two are based on the simplest representation, there is at least a third 
pattern that could indicate semantic equivalence. This pattern is based on the assumption that one 
author will use two relations that go from one concept to another to a third, while another author 

Cn

Cm

Figure 4.2 Occurence of pattern two 
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describes the relation direct from the first to the third. This pattern we cal pattern three and is 
illustrated in figure 4.3. 

When using this pattern, the hypothesis is made that the relations Rnpm and Rmqo are 
equivalent to Rnro. This semantic equivalence could be both by definition as through transitivity or 
generalization. Examples of pattern three representing semantic equivalence are: 
 

• “Jan is son of Sylvia and Rob”, “Sylvia and Rob are parents of Kees” and “Jan is brother 
of Kees”. 

• “Jan is born in Rotterdam”, “Rotterdam is located in the Netherlands” and “Jan is born in 
the Netherlands”.  

 
These occurrences of pattern three represent semantic equivalence, but there are also plenty 

situations imaginable where pattern three occurs, but there is no semantic equivalence. Examples 
of these situations are: 
 

• “Jan is son of Sylvia and Rob”, “Sylvia and Rob are friends of Kees” and “Jan is a friend 
of Kees”. 

• “Jan is born in Rotterdam”, “Rotterdam is located in the Netherlands” and “Jan is living 
in the Netherlands”.  

 
When trying to automate the search for semantic equivalent relations, it seems a valid strategy to 
search for these patterns. 

4.2 Knowledge Extension on Search 

While it could be a good start to search for these patterns, it is possible to extend these 
patterns based on transitivity and generalization in the network. When it is clear which relations 
can be used transitive and which generalizing, it is possible to bring more complex patterns back 
to one of the simple forms. When we look again at figure 3.2, there is a generalizing relation 
between the concepts “Rotterdam” and the “Solar System”. Because the concept “Solar System” 
includes the concept “Rotterdam” the association “Jan” has with “Rotterdam” is also valid for the 
concept “Solar System”. This way figure 3.2 can be brought back to pattern 1 (see figure 4.4). 

Cn

Cm

Co

Figure 4.3 Occurence of pattern three 
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While in this example the hypothesis will be “Jan is born in the Solar System” is semantically 
equivalent to “Jan is born in the Solar System”, it is not unimaginable one of the association 
would be “has first seen the light in” or “Is given birth to in”.  

The same way, a transitive relation (like the one in example 3.2) can be brought back to 
pattern three. Already we have seen that the creation of a direct association between “Jan” and the 
number “8” does not sound natural 

While using knowledge about transitivity and generalization is an option to extend the 
search for semantic equivalence, the question how to get this knowledge remains open. The first 
suggestion is to use human knowledge to indicate which relation has these properties or which 
elements indicate these properties. Another suggestion is to use a ‘standard’. One could ‘demand’ 
for every generalizing relation to be indicated with the attribute ‘generalizing relation’. Or one 
could demand for every two concepts where one is a generalization of the other, to be indicated 
with a ‘is a generalization of’ relation.  

4.3 Generalizing Extension on Search 

Another extension on the search for patterns could be based on the usage of 
generalization relations. Suppose we have knowledge on generalization and find no occurrences 
of pattern one or two. It is possible to take an association two concepts have and ‘lift’ that 
association to a more general concept. By doing so, the occurrence of a pattern can be created. 
Let us for example, look at a situation where there is a relation “Shakespeare has written Othello” 
and “J.K. Rowlings is author of Harry Potter”. No occurrence of pattern one can be found here. 
Suppose however both “Shakespeare” and “J.K. Rowlings” have a association with the concept 
“writer”. In the same manner “Othello” and “Harry Potter” have an association with the concept 
“writing” (see figure 4.5).  

Jan

Rotterdam

Solar System

Is Born in

Is Born in

Figure 4.4 Using generalizing relations in a semantic network 
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For simplicity, the generalizing relations have remained nameless. When two concepts in 
such a relation share a common super-type, it is still possible the relations are semantically 
equivalent. This extension we call generalizing extension while it is more likely relations are 
semantically equivalent when by ‘lifting’ relations to a super-type a pattern occurs more often. 

4.4 Association Driven Search 

Another strategy to search for semantic equivalence does not only apply to relations, but 
should apply to all equivalent elements one looks for. When we assume the meaning of 
knowledge is showing through its representation, elements that share characteristics in the 
representation could also share meaning.  

Rowlings

Shakespeare Othello

Harry Potter

Is author of

Has written

Writer
Writing

Figure 4.5 Using generalizing relations in a semantic network 
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Take, for example the situation where a birthday is modeled. One author uses a 
representation like figure 4.6.While another represents it as in figure 4.7. Although the 
representations are different, there are indications their meaning is equivalent. This way group of 
elements could be translated in a vector in multidimensional space, a ‘fingerprint’.  

In this ‘fingerprint” one could put information about the number of concepts, relations 
and attributes, and about their names and values. Using current AI techniques like Self-
Organizing-Maps or Associative Conceptual Space, these fingerprints can be organized, leaving 
resembling fingerprints close together. Under the assumption representation gives an indication 
on its meaning, elements with a more or less equivalent meaning will be close together. 

4.5 Machine learning 

Using a ‘fingerprint’ of elements in the network could possibly result in a rude 
organization of meaning. By rude is meant, that ‘fingerprints’ which are near each other have 
some resemblance in meaning, but can in no way be called semantically equivalent. This could 
possibly happen while some elements in the network can indicate semantic equivalence, while 
others have very little to do with it.  

Jan

23-12-1954

Is 
born

 on

Figure 4.6 Another small network containing one relation 

Jan

Birthday:
23-12-1954

Figure 4.7 Another small network containing a concept 
and an attribute 
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The third approach is suggested to find which elements or values (possibly none) 
contribute on semantic equivalence in a specific situation and which do not. One can imagine 
classifying some groups of elements as being semantically equivalent or not. An AI learning 
technique like a neural network is then fed with the ‘fingerprint’ representation of these elements. 
This way an artificial intelligence (AI) technique could be used to ‘learn’ which fingerprints are 
more likely to be semantically equivalent. The AI technique should be able to classify based on 
previous examples. Examples of such techniques are decision trees or neural networks.    
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5. Finding Semantically Equivalent Relations 

Three strategies for searching semantic equivalence have been suggested. In this chapter, 
an implementation of the first strategy will be discussed. First we will look at the existing 
architecture for the semantic network at TNO (5.1). Next some properties of an algorithm that 
searches semantic equivalence will be discussed (5.2). Finally the pseudo-code used for the 
algorithm that finds semantic equivalence is given (5.3).  

5.1 Architecture of the TNO Semantic Network 

Before looking at the algorithm for finding semantically equivalent relations, we first will 
look at the architecture in which the algorithm will be placed. This architecture is used to 
implement the current semantic network at TNO. 

As part of the technical implementation, the semantic network is split up in a storage part 
and a semantic network part. The application is split up in a functional part and a visualization 
part called the ‘client’. This makes a technical architecture of five distinct parts. Each part will be 
discussed separately. 

Storage 
 

The persistent storage used at the moment is a relational database. In this database, the 
tuples represent concepts, relations and attributes. While this is the data for the semantic network, 
it can not yet be accessed as a semantic network. To make this possible, there is need for a piece 
of procedural knowledge called the Semantic Network Engine. So, a SN is implemented as 
storage and SNE. 
 
Semantic Network Engine 
 

 

Semantic 
network 

Figure 5.1 Overview of the architecture used to work with a semantic network 
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The Semantic Network Engine (SNE) gives an interface to retrieve, insert and update 
concepts, relations and attributes from the storage. In the future this is the location that should 
take care of transaction and security management for writing to and reading from storage. So the 
SNE and storage are the internal representation of a semantic network in a computer. 
 
Services 
 

Services are a new part here. Services can be used to take over general tasks from 
applications. One could expect several applications to work with dates stored in the network, 
when this functionality is implemented as a service, it is easily reusable for different applications. 
The algorithm for finding semantic equivalence is an example of a service. 

Technically speaking, services make function-calls on the SNE as if it is a semantic 
network. From the SNE they can retrieve concepts and method calls on the concepts make it 
possible to retrieve the relations defined on it. The concepts and relations retrieved from the 
network are always a copy from the data in storage and never contain the data itself. Based on the 
data retrieved from the SNE, a service can build an internal representation of a part of the 
semantic network. If necessary, the SNE can be notified of updates of the concepts and relations 
and can apply the changes to the data in storage.  
 
Applications 
 

Applications will have a domain specific goal and will work with knowledge provided by 
the SNE, services as well as other applications. Applications are equipped with procedural 
knowledge to enable it to behave as if it knows it. The outcome of this behaviour and the 
sometimes necessary interaction with user is handled through the client. 
 
Client 
 

The client can be something like a HTML-browser on the computer of the user. It is 
needed to show the action (or reaction) of a computer application to the user. 

5.2 Properties of an Semantic Equivalence Finding Algorithm 

When an algorithm for finding semantic equivalence is tested, one can look at its 
effectiveness on a test set. An algorithm is most effective on a test set, when it makes a 
hypothesis of semantic equivalence for all semantic equivalence elements in the test set, no more 
and no less. 

Given a set of elements (S), an algorithm to automate the finding of semantic equivalence 
will be most effective, when it makes a hypothesis of semantic equivalence of all pairs of 
elements from S (S’) which humans will classify as semantically equivalent. Table 5.1 illustrates 
this. Although it seems as if finding semantic equivalence is only a matter of classification, this is 
not the case. However, when using a test set, this approach can be used to measure its 
effectiveness. 
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S can be divided in S’ and S’’ where for every two subsets S’ and S’’ (where S’ not equals S’’), 
S’ can be semantically equivalent to S’’ (notated as S’ s= S’’) or S’ could be not semantically 
equivalent (notated as S’ S!= S’’).  Note that there can be a very large number of subsets S’ 
formed from S, it is however not necessary for an algorithm to compare all these subsets with one 
another, a heuristic may also be used which discards most of the subsets at once. Pattern based 
search is such an algorithm which only tries to find semantically equivalent relations.  

5.3 An Algorithm to Find Semantic Equivalence 

The first remark that will be made on the algorithm is that it will only find semantically 
equivalent relations when the duplicate concepts in the network, which are put there by different 
authors, are merged. The second remark is the occurrence of pattern two is only of interest when 
authors have chosen to represent an association only one time from object to subject 
(“Shakespeare has written Othello”) and not also the other way around (“Othello is written by 
Shakespeare”). If association is represented both ways, a hypothesis based on pattern two is also 
made based on pattern one.  

The service which will make use of this algorithm will use a reporting implementation. 
(see chapter 3.4). Here after the pseudo code for finding the patterns is given. 

Correctly not made 
hypotheses of 
semantic 
equivalence

Incorrect 
hypotheses of 
semantic 
equivalence

S’ s!= S’’

Incorrectly not made 
hypotheses of 
semantic 
equivalence

Correct hypotheses 
of semantic 
equivalence

S’ s= S’’

Hypotheses not 
made by the 
algorithm

Hypotheses by the 
algorithm

Table 5.1 Categories usable to judge the result of an algorithm to find semantic equivalence 
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Pattern one, based on which the service makes a hypothesis of semantic equivalence, is 
based on two associations between the same subject- and object concept. The pseudo-code for 
finding pattern one is: 

 
By searching the relations on a concept this way, each semantic equivalent set of relations will be 
counted only once.  

Pattern two, is based on a association between the subject- and object concept and one 
from where the subject is the object concept and vice versa. The pseudo-code for finding pattern 
two is: 

When considering concept Cn. 
 
Retrieve all relations where Cn  is the object node, call this Rn--  
Count the number of relations in Rn--, call this N 
 
For  i = 1 to N-1 (the first relation till the last minus one) { 

 
For j = i+1 to N (the relation after the ith till the last one) { 

 
Retrieve the subject node of the ith relation in Rn--, call this Cm 
Retrieve the subject node of the jth relation in Rn--, call this Co 
 
If Cm is the same concept as Co { 

Report hypothesis Rn-m s= Rn-o; 
} 

} 
} 
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By searching the relations on a concept this way, each semantic equivalent set of relations will be 
counted once, unless one or both associations are defined both ways. In this case the association 
will count Rn-m s= Rm-n as well as Rm-n s= Rn-m.  

Pattern three, is based on an associations between three concepts. The associations in this 
pattern form a triangle. The pseudo-code for finding pattern three is: 

When considering concept Cn. 
 
Retrieve all relations where Cn is the object node, call this Rn--  
Count the number of relations in Rn--, call this N 
 
For  i = 1 to N (the first relation till the last) { 

Retrieve the subject node of the ith relation in Rn--, call this Cm 
 
Retrieve all relations where Cm is the object node, call this Rm-- 
Count the number of relations in Rm--, call this M 
 
For j = 1 to M (the first relation till the last) { 

 
Retrieve the subject node of the jth relation in Rm--, call this Co 
 
If Cn is the same concept as Co { 

Report hypothesis Rn-m s= Rm-n; 
} 

} 
} 
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The number of times a hypothesis is made here on the same concepts depends on the number of 
associations that are defined in both directions between the concepts. 

5.4 When Relations Are Found 

Whenever semantic equivalence is found, the next question is what the service should do 
with it. The first thing it always should do is report the made hypothesis of semantic equivalence. 
Reporting the hypotheses seems necessary to enable humans to judge about the semantic 
equivalence. Based on this report, applications and services using the relation which has an 
equivalent relation could be updated to work with both of these elements. This however, seems to 
be very labor intensive. Here we consider two other options. 

One option is to alter the network when finding semantic equivalence. After a report of 
semantic equivalence, it is possible to replace the equivalent elements with the other. By doing 
this, only the applications and services using the replaced elements should be updated to use the 
other elements instead. While this could be used for totally equivalent elements, it should not be 
used for others. As we have seen, meaning can be very subtle, by replacing one element with 
another, subtle differences can be lost.   

Another option is to use a set of elements in the network that indicate semantic 
equivalence. This way whenever semantic equivalence is found in the network, it could be 
indicated by for example a relation between the groups of elements. We could suggest the 
predicate “is semantically equivalent with” which can be used between semantically equivalent 
concepts or groups of concepts. We could also store the semantic equivalence separately in an 
attribute. While there is actually no restriction on how semantic equivalence should be indicated, 

When considering concept Cn. 
 
Retrieve all relations where Cn is the object node, call this Rn--  
Count the number of relations in Rn--, call this N 
 
For  i = 1 to N (the first relation till the last) { 

Retrieve the subject node of the ith relation in Rn—, call this Cm 
 

Retrieve all relations where Cm is the object node, call this Rm— 
Count the number of relations in Rm--, call this M 
 
For j = 1 to M (the first relation till the last) { 

 
Retrieve the subject node of the jth relation in Rm—, call this Co 
 

For k = 1 to N (the first relation till the last) { 
Retrieve the subject node of the ith relation in Rn—, call 
this Ck 

 
If Ck is the same concept as Co { 

Report hypothesis Rn-m, Rm-k s= Rn-k; 
} 

} 
 } 
} 
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it should be able to indicate semantic equivalence for all possible semantically equivalent 
elements and the restrictions under which the equivalence holds. 

The second option is probably the most desirable. Semantical equivalence depends on 
context, this way it would in some cases be incorrect to replace one element with another. The 
development of elements that indicate semantical equivalence seems the best option to enable 
applications to work with it. 
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6. Experimental Results 

A method for finding semantically equivalent relations was introduced. In this chapter, 
we will look at the current content of the semantic network on which our proposed pattern search 
algorithm will be used (6.1). We will see the semantic network actually contains four separate 
networks.  

First results of the semantically equivalent relation finding algorithm on parts of the 
network made it clear that there was a need to combine sources (6.2). The combination of the 
different sources was done by merging duplicate concepts from different domains. The merged 
concepts appeared in similar relations with other concepts. These relations were gathered in a test 
set.  

The result of the algorithm on the duplicate concepts is given (6.3) followed by a 
discussion of these results (6.4) 

6.1 Content of the TNO Semantic Network 

To fill the semantic network, TNO tries to import large sources of data. These sources 
also use a symbolic approach to represent knowledge. This far, four large sources are imported in 
the semantic network: 
 
Notion system 
 

Notion System is a knowledge base allowing the storage and retrieval of any kind of 
knowledge you would like to store for later use (www.notionsystem.com). The data in Notion 
System forms a semantic network. This semantic network is based on mostly the same principles 
as the semantic network used here. Notions system contains approximately 210.000 concepts, 
called notions in notions system.  
 
Paranoid 
 

Paranoid is a way to structure unstructured intelligence data. The data is stored in a 
relational database. It uses a small set of predicates (is related with, …) to relate different pieces 
of data. This data is always a sub-type of a small set of general types (person, event, location, and 
some others) 
 
FEL-Intranet 

The information for employees of a division of TNO, the division FEL, is also structured 
according to a small set of predicates. On the FEL-intranet, information is stored together with 
the information on the context it is created in. 
 
WordNet 

WordNet provides an online dictionary with the descriptions not being words, but being 
‘synsets’ (a collection of synonyms). The words in a synset refer to the same concept. 
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Each source contains knowledge on several domains. In some domains knowledge comes 
from different sources. The domains and the sources they are handled in are listed in table 6.1.  
 

Table 6.1 overlapping domains from the different sources 

Notion System WordNET Paranoid FEL-Intranet 
Animals Animals Persons Persons 
Plants Plants Events Projects 
Locations  Locations  

6.2 The Need to Combine Sources 

After running the algorithm several times at random places in the network, it has shown 
that there was no occurrence of pattern one and large occurrences of pattern two and three. It is 
possible to retrieve the nodes in the network by number. The algorithm was fed series of 50 nodes 
from different places in the network. Starting at node number 1 and increasing by 20.000. The 
results are shown in table 6.2. 

Table 6-2 Occurences of the patterns on different places in the network 

Startnode 1 20001 40001 60001 80001 
pattern 1 0 0 0 0 0 
pattern 2 228 212 388 516 748 
pattern 3 210 190 224 234 272 

 
Here we see that there is no occurrence of pattern 1. The lack of occurrence of pattern 1 

could be explained by looking at the 4 different imported sources. In each of these sources we see 
that two concepts are only in one relation. For example, when in one source the defined 
“Shakespeare has written Othello”, they do not also define “Shakespeare is author of Othello”. 

It seemed pattern 2 occurred this much, because almost all relations are defined along 
their inverse relations. Let Pn be the predicate ‘is written by” and predicate Pni its inverse 
predicate “has written”. This way every time a relation Rnpm was defined, Rmpin was also 
defined. This means every time a relation was defined, pattern two could be found. 

The large occurrence of pattern three was also unexpected. After studying which relations 
formed pattern three, none of them appeared to be semantically equivalent. When a semantic 
network is filled with a lot of structured content with few relations on each concept, occurrences 
of pattern three seem rather common. Here for the search for pattern 3 is stopped, while this does 
not seem to result in semantical equivalence. 

The search for pattern 1 and 2 also does not result in semantically equivalent relations, 
some altering of the network could however change this. There is a need to combine sources in 
the network, while without it, there is no semantical equivalence in the network.  

So not finding pattern one could be explained by a wrong assumption on the network, 
namely a network filled with content made by many authors where duplicate concepts would be 
merged. The current network contains only four different sources, with overlapping domains. The 
duplicate concepts however, were not merged. Another reason is that each of these sources uses a 
set of predicates that are normalised. Authors of a source do not use two different predicates that 
express the same meaning. So within one source, “Shakespeare has written Othello” and 
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“Shakespeare is author of Othello” will not occur. So this in fact leaves two authors for each 
domain to create possibly semantic equivalence. 

So to find different predicates that express the same meaning, one has to look in different 
sources at the same time. When two sources discuss the same domain, it is quite likely they use 
the same concepts and describe the same relation between them, only with different elements.  

To recognise two concepts are identical, a service could be developed. For this 
experiment however, finding duplicate concepts and merging them, will be done by hand.  

Both sources Notion System and WordNet handle the domain animals. In this domain, 
there was a search for the Latin name of a animal. This search sometimes resulted in the finding 
of two concept, the animal described in Notion System and the animal described in WordNet. 
These found concepts where merged to form one concept. Between these merged concepts were 
semantically equivalent relations. These relations are listed in appendix A. Eventually there were 
36 nodes to merge, which left 18 nodes. The algorithm was tested on these 18 nodes to see if it 
could find the semantically equivalent relations from appendix A. 

 
To recapitulate, the following steps where taking to come to the results: 
 

• We have taken a series of n (n=50) nodes from the semantic network. 
• Fed these n nodes one by one to the algorithm to let it look for pattern 1,2 and 3. 
• This was done at 5 different places at the network with steps of 20.000, from node 1 till 

80.001. 
• While this did not result in the finding of semantical equivalence, synonymous concepts 

from the different imported sources were searched for and the search for pattern 3 was 
dropped. 

• There was knowledge about the domains the sources used. In the domain animals, a 
search for the Latin name of an animal sometimes resulted in duplicate concepts from 
different sources.   

• These duplicate concepts were merged. 
• The merging of these concepts resulted in some semantically equivalent relations 

between merged concepts. 
• The merged concepts were fed to the algorithm, which looked for occurrences of pattern 

1 and 2 on each concept. 

6.3 Results 

In the table below, the number of times the algorithm reported the occurrence of a pattern is 
listed.  

Table 6-3 Results of the algorithm on the merged concepts 

Pattern Number found 
1 18 
2 237 
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6.4 Discussion of Results 

As was expected after inspecting the test set by hand, all occurrences of pattern 1 were 
found. The result gives 18, while there were 18 nodes merged. On every of these 18 nodes was a 
semantically equivalent relation. So while appendix A only list 11 relation sets, the relation in 
each set were also valid for their inverse relation.  

From the 237 times pattern 2 is found, for 201 of them it is already indicated in the 
network that they are an inverse relation. The occurrence of pattern two is twice the occurrence of 
pattern one minus the number of relations that are indicated as inverse in the network.  

The algorithm can be therefore be seen as a pattern based search with some knowledge 
extension to indicate inverse relations. The performance of the algorithm on the test set can 
therefore be said to be most effective while all semantic equivalent relations were found and no 
false hypothesis was made. 
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7. Conclusions and Future Research 

In this final chapter we will make a summary for the thesis (7.1). This summary will be 
followed by the conclusions that can be drawn from the research (7.2). Based on these 
conclusions, suggestions for future research will be made (7.3) 

7.1 Summary 

In the beginning of this thesis we introduced semantic networks as a way to represent 
knowledge. To enable many authors to use the same semantic network to represent their 
knowledge, an extension on the network was introduced. This extension made it possible to use 
any concept, relation or attribute an author finds necessary to represent his knowledge. On the 
other hand, while there were no agreements on specific relations or concepts to use, it became 
more difficult to determine the meaning of elements in the network. 
 Without boundaries on the elements to use, multiple authors could use different 
representation for the same knowledge. A semantic network that is sufficiently large will 
probably hold semantically equivalent representations. It is useful to find these semantically 
equivalent elements, while semantic equivalence gives an indication to computer application what 
certain representations mean. Hereby enabling these applications “to act as if they know” more. 
We focused on a specific type of semantical equivalence, namely semantically equivalent 
relations.   
 After defining semantically equivalent relations and the need to look for them in a 
semantic network, three main strategies to search for them were suggested. The first was based on 
patterns, the latter two on the translation of the symbolic representation into a multi-dimensional 
vector representation. The first strategy is specific for the search for relations, the others could 
also be used to search for other semantical equivalence. 

The first of the three strategies was implemented. In the implementation, the number of 
times a pattern occurred was counted and the found patterns were listed. This algorithm was 
tested for effectiveness on a set of nodes from the network. This resulted in finding of the pattern 
2 and 3, but the found relations were not semantically equivalent. The search for pattern 3 was 
dropped. Some concepts in the network were merged. The algorithm was used on the merged 
concepts. 

7.2 Conclusions 

In introduction of this thesis, the research question was given, namely  
 
To which extent is it possible to automate the finding of collections of semantically 
equivalent relations in a semantic network? 
 
We see now that this question was too much to handle in one thesis.  One of the first conclusions 
that can be drawn from this research is the difficulty computers have to deal with meaning. Using 
a symbolic approach one is tempted to see the meaning of a symbol as something clear and 
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sharply carved. A cat is a cat and Shakespeare is Shakespeare, but what do these concepts really 
mean? The Oedipus-example (see figure 2.8) has shown conclusions are not always that easy to 
make. Did Oedipus marry his mother? This all depends on the context. 

What does the concept ‘cat mean? Does its meaning lie in the difference between a cat 
and other object, for example a couch? Can one distinguish a ‘cat’ from a’ couch’ when one 
‘knows’ a cat can be stroked and one can sit on a couch? Some people could prefer the other way 
around, in which case they need some psychiatric help, but a ‘cat’ stays a cat. The point being 
made here is that one needs a lot of knowledge to ‘know’ the meaning of a concept. Semantical 
equivalence could exist in every aspect of this knowledge. When someone is manager of a 
department, it probably also means he has knowledge if the department.  

Although we have been able through to some experiments to develop an algorithm that 
can find the semantically equivalent relations on concepts presented to him, this is just the tip of 
the iceberg. The theory presented in this thesis points out that semantical equivalence is far more 
complex than the search for patterns. The search for patterns is however a good start and results 
in the discovery of the same semantically equivalent relations on some merged concepts as we 
have done by hand. 

To answer the research question; we do not yet know to which extend it is possible to 
automate the finding of semantic equivalence in a semantic network. Perhaps there is need for 
rules and definitions about the meaning of certain elements. These rules and definitions can than 
be used to search for semantical equivalence.  The results of the experiment of so far encouraging 
to do more research on the topic. 

7.3 Future Research 

One of the first things that could be researched is how to find duplicate concepts in the 
network. It is merely impossible for a semantic network with more than 200.000 concepts to 
search for duplicate concepts by hand. 

Furthermore, semantic equivalence depends on the goals of man or computer, something 
which is not yet used in the current algorithm. When the goal of someone is to find out where Jan 
is, it is irrelevant to him if he is standing, sitting or lying down the hall. Standing, sitting and 
lying are semantically equivalent when one should act as if he knows where someone is. This goal 
is closely connected to the term context. Two representations can be semantically equivalent 
depending on their context, one can also say, depending on the goal of the searcher. 

To use this goal (context) based semantic equivalence, one should at least have a 
minimum set of agreed elements which one can use to express their goals. Based on this 
expressing of the goals can be decided which elements are semantically equivalent. It seems 
however that this is a shift of the problem of meaning to the set of goal related elements. Because 
when someone can make clear to you what his goal is, and you know how he can reach this, why 
not give tell him directly? 

The search strategies suggested in chapter 4 do not take context into account. Association 
driven search and machine learning however need further research, while they seem to have a 
strong ability to deal with the fuzziness of meaning.
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Appendix A  

Semantically Equivalent Relation Sets 

Here follows the set of relations used to test the semantically equivalent relation finding 
algorithm. It is a numbered set, containing 11 relations-sets. In every set, the first relation is 
equivalent to the second and vice versa. This set was found by hand in the semantic network at 
TNO in its state during June 2002 till July 2002. These set is not supposed to be exclusive. It is 
however expected to be representative while all other semantical equivalence found appeared to 
involve the same predicates.   
 
1. Pongo pygmaeus is member of Pongo 

orangutan appartient aux Pongo  
 
2. Physeter catadon is member of Physeter 

Physeter catadon appartient aux Physeter 
 
3. Macropus giganteus is member of Macropus 

Macropus giganteus appartient aux Macropus 
 
4. Cetorhinus maximus is a member of Cetorhinus 

Cetorhinus maximus appartient aux Cetorhinus 
 
5. Alopiidea comporte Alopius 

Alopiidea, has member Alopias 
 
6. Aquila chrysaetos is een Aquila  

Aquila chrysaetos is a Aquila  
 
7. Betulacea comporte Carpinus 

 Betulacea has member Carpinus 
 
8. Betulacea comporte Ostrya 

Betulacea has member Ostrya 
 
9. Betulacea comporte Corylus 

Betulacea has member Corylus 
 
10. Betulacea comporte Betula 

Betulacea has member Betula 
 
11. Betulacea comporte Alnus 

Betulacea has member Alnus 
 
 


