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Chapter 1

Introduction

In this introductory chapter, I first give a motivation for probabilistic fuzzy
systems (PFSs), which are the subject of study of this thesis. I also discuss
the relevance of fuzzy systems in general and PFSs in particular to economic
applications. I then formulate the research questions that are considered in
the thesis. The chapter is concluded with an overview of the thesis. In this
overview, the methodology that is adopted in the different parts of the thesis
is also briefly discussed.

1.1 Motivation for probabilistic fuzzy systems

Many statistical models are difficult to interpret and therefore do not pro-
vide much insight into the process that is being modeled. This is especially
true for the popular neural network models. In comparison with statisti-
cal modeling approaches, fuzzy systems have the important advantage that
they can be interpreted much more easily. Fuzzy systems therefore result
in a better understanding of the process that is being modeled. As a con-
sequence, useful information about a process can be extracted from fuzzy
systems and fuzzy systems may be used with higher confidence than black
box statistical models. In addition to an improved understanding of a pro-
cess, another motivation for fuzzy systems is the possibility to define a model
using knowledge provided by human experts. The use of expert knowledge
may result in an improved accuracy and in lower data requirements.

Due to limited availability of information, there are many problems that
involve probabilistic uncertainty. As I will discuss in Subsection 1.2.2, ex-
amples of economic problems involving probabilistic uncertainty are target
selection and financial markets analysis. The presence of probabilistic un-
certainty makes it impossible to obtain a model that always provides cor-
rect output. To model probabilistic uncertainty in an appropriate way, one
should therefore use a model that provides a probability distribution over all
possible outputs. Since ordinary fuzzy systems do not have this ability, these
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systems cannot appropriately model probabilistic uncertainty. PFSs, intro-
duced in [16, 18, 34], are an extension of ordinary fuzzy systems. Because
PFSs calculate a probability distribution over the output space instead of a
single output, these systems allow probabilistic uncertainty to be modeled
appropriately. The importance of PFSs therefore is that they are both easily
interpretable and capable of modeling probabilistic uncertainty.

1.2 Economic applications of fuzzy systems and
probabilistic fuzzy systems

1.2.1 Fuzzy systems

Numerous applications of fuzzy systems to economic problems exist. Some
recent examples of such applications can be found in [6, 19, 20, 22, 31, 33].
I will now briefly discuss these examples.

In [6, 19, 31], fuzzy systems are used for predicting financial time series.
Stock price prediction using a technical analysis approach is considered in
[6]. The authors use a fuzzy system because they believe that fuzzy reason-
ing corresponds closely with the way humans reason in technical analysis
processes. As another advantage, the authors point out that it is easy to
understand the knowledge that is contained in a fuzzy system. In [19], neu-
ral networks and fuzzy systems are used for predicting currency exchange
rates. The authors do not discuss the specific advantages of applying fuzzy
systems to this problem. In [31], stock price prediction using fuzzy systems
is considered with special emphasis on the issue of combining information
provided by human experts and information contained in a data set.

In [33], an early warning system for predicting bank failures is discussed.
The authors point out that traditional statistical models for studying bank
failures function as black boxes. These models are not able to identify
the characteristics of financial distress, which is a very important cause
of bank failures. As an alternative, the authors propose to use a fuzzy
system for predicting bank failures. Using a fuzzy system, the inherent
characteristics of failed banks can be identified. It is interesting to note
that the problem of predicting whether a bank will fail or survive involves
probabilistic uncertainty. The probabilistic uncertainty is caused by the
limited availability of relevant information, which makes it impossible to
obtain a model that always provides a correct prediction. Because of the
presence of probabilistic uncertainty, bank failures may be modeled in a
more appropriate way by using a PFS.

Examples of the use of fuzzy reasoning in decision support systems and
expert systems are given in [20, 22]. In [20], an intelligent system for de-
veloping a marketing strategy is described. The author argues that the
development of a marketing strategy involves a high degree of uncertainty
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and ambiguity. He proposes to use fuzzy reasoning for dealing with these
factors. In [22], a fuzzy system that supports corporate acquisition processes
is described. The authors use fuzzy reasoning because they want to enable
users to adapt the system to their requirements.

Outside academic research, fuzzy systems have been applied to numerous
real-world business problems. A list of examples is given in [5] (p. 36–43).

1.2.2 Probabilistic fuzzy systems

PFSs have been applied to target selection problems and to financial markets
analysis. I will now briefly discuss these applications.

In [15, 17], PFSs are applied to a target selection problem. The problem
is to predict whether a customer will respond to a mailing. Since only limited
information is available on each customer, it is not possible to predict with
certainty whether a customer will respond. The problem therefore involves
probabilistic uncertainty. As a consequence of this uncertainty, instead of
predicting whether a customer will respond, a more appropriate approach is
to predict a customer’s probability of response. In [15, 17], PFSs are used for
predicting this probability. The target selection problem studied in [15, 17]
will also be considered in Section 5.4 of this thesis.

The application of PFSs to financial markets analysis is considered in
[18, 34]. The authors use PFSs to obtain linguistic descriptions of the char-
acteristics of financial time series. They study both an artificial time series
following a GARCH process and a real-world time series consisting of re-
turns of the Dow Jones index. Both time series exhibit volatility variations.
As discussed in Subsection 1.2.1, ordinary fuzzy systems may be used for
predicting the future state of a financial market. In [18, 34], however, the
authors recognize that predicting the future state of a financial market in-
volves probabilistic uncertainty. Instead of giving a single prediction of a
financial market’s future state, the authors therefore choose to predict the
probabilities of different future states. To accomplish this, the authors make
use of PFSs.

1.3 Research questions

In this thesis, I consider two research questions. The first research ques-
tion is concerned with fuzzy histograms. Fuzzy histograms, introduced in
[16, 18, 34], are nonparametric density estimators that can be seen as fuzzy
generalizations of ordinary crisp histograms. Because fuzzy histograms are
related to PFSs, studying the properties of fuzzy histograms may be ex-
pected to result in an improved understanding of PFSs. The following re-
search question concerning fuzzy histograms is considered in this thesis:

1. What are the statistical properties of fuzzy histograms and how do
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these properties compare with the properties of other nonparametric
density estimators?

This question has not been addressed before in the literature.
The second research question considered in this thesis is concerned with

the estimation of the parameters in a PFS:

2. How can the parameters in a PFS be estimated in a way that is, in
some sense, optimal?

To answer this question, it is necessary both to choose a criterion of optimal-
ity and to provide a method for obtaining parameter estimates that satisfy
this criterion. In this thesis, the second research question is split into the
following three, partly overlapping subquestions:

2.1. How can the probability parameters in a PFS be estimated in a way
that is, in some sense, optimal?

2.2. How can the parameters in a PFS for classification tasks be estimated
in a way that is, in some sense, optimal?

2.3. How can the parameters in a PFS for regression tasks be estimated in
a way that is, in some sense, optimal?

The first subquestion has also been considered in [16, 18, 26, 34]. In this
thesis, a detailed analysis of the approach taken in [16, 18, 34] is provided
and an alternative approach is proposed. The second subquestion has also
been considered in [1]. The third subquestion has not been addressed before
in the literature.

1.4 Overview of the thesis

In addition to this introductory chapter, the thesis consists of six chapters.
Chapter 2 is concerned with the first research question. The second research
question is addressed in Chapter 3 to 6. Conclusions and issues for future
research are discussed in Chapter 7. When reading the thesis, Chapter 2
can be skipped without loss of continuity. Chapter 5 and 6 can be read in
arbitrary order. I will now briefly discuss the contents of Chapter 2 to 6.
I will also pay some attention to the methodology that is adopted in each
chapter.

In Chapter 2, a statistical analysis of fuzzy histograms is presented. The
analysis provides insight into the statistical efficiency of different types of
fuzzy histograms. The results of the analysis are compared with the results
reported in the literature for other nonparametric density estimators. The
analysis of fuzzy histograms in Chapter 2 is mainly asymptotic, as is usually
the case in statistical analyses of nonparametric density estimators. The
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question to what extent the results of the analysis hold for small samples is
not considered.

In Chapter 3, PFSs are discussed. Although the discussion is based on
the existing literature on this subject [16, 18, 34], there are some important
differences and additions. The chapter also contains a proof of the functional
equivalence between PFSs for classification tasks and a specific type of radial
basis function networks for classification tasks.

Chapter 4 is concerned with the estimation of the probability parameters
in a PFS. The probability parameters constitute a subset of all the parame-
ters in a PFS. The statistical properties of an existing method [16, 18, 34] for
estimating probability parameters are derived. Because the existing method
turns out to have unsatisfactory statistical properties, an alternative method
for estimating probability parameters is proposed. This method is based on
the criterion of maximum likelihood. The mathematical properties of the
optimization problem that results from the proposed method are also ana-
lyzed.

In Chapter 5, the issue of estimating the parameters in a PFS for classi-
fication tasks is considered. It is proposed to use the criterion of maximum
likelihood for estimating both the probability parameters and the antecedent
parameters in a PFS for classification tasks. Contrary to Chapter 2 to 4,
which are completely theoretical, Chapter 5 also contains some practical
experiments. In these experiments, the proposed method for parameter es-
timation is compared with two heuristic methods that are described in the
literature [1, 17]. The heuristic methods make use of fuzzy clustering. One of
the experiments in Chapter 5 is concerned with the target selection problem
that was discussed in Subsection 1.2.2.

In Chapter 6, probabilistic fuzzy modeling in regression problems is dis-
cussed. First, it is argued using a simple example that in many regression
problems a PFS with a limited number of rules does not have a satisfac-
tory approximation accuracy. Then, an alternative approach to probabilis-
tic fuzzy modeling in regression problems is proposed. Chapter 6 is quite
theoretical, since applications of probabilistic fuzzy modeling to practical re-
gression problems are not considered. The contribution of the chapter is to
draw attention to important issues in the application of probabilistic fuzzy
modeling to regression problems. The further elaboration of these issues
remains for future research.
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Chapter 2

Fuzzy Histograms

In this chapter, a statistical analysis of fuzzy histograms (FHs) is presented.
FHs are considered from the point of view of nonparametric density estima-
tion. The analysis of FHs is based on a book and some papers written by
Scott [27, 28, 29, 30]. In his book, Scott analyses a number of nonparametric
density estimators, namely (crisp) histograms, frequency polygons, averaged
shifted histograms, and kernel density estimators (KDEs). The analysis of
FHs in this chapter is an extension of Scott’s analysis of KDEs. Based on
the results of the analysis of FHs, FHs are compared to other nonparametric
density estimators. It is also shown that in the special case in which there
is no fuzziness, the analysis of FHs gives the same results as Scott’s analysis
of crisp histograms.

It should be noted that FHs are very similar to double-kernel estimators
introduced in [36]. However, the analysis of FHs in this chapter differs
considerably from the analysis of double-kernel estimators that is given in
[36]. Furthermore, in [4] so-called soft histograms are studied. Like FHs,
these soft histograms can be seen as an extension of crisp histograms based
on ideas from fuzzy set theory. It is, however, important to note that the
soft histograms in [4] are not identical to the FHs considered in this chapter.
It should also be noted that what is called a FH in [25] is not the same as
the FHs in this chapter.

This chapter is organized as follows. In Section 2.1, a statistical analysis
of KDEs is given. The results in this section are taken from [30]. FHs
are discussed in Section 2.2. In this section, it is also shown that FHs
can be seen as KDEs with a variable kernel. Based on this observation, a
statistical analysis of FHs is presented in Section 2.3. In Section 2.4, the
results of this analysis are applied to crisp histograms, which are considered
as a special case of FHs. It is shown that the same results are obtained
as in the analysis of crisp histograms that is given in [30]. FHs that use
triangular membership functions (mfs) turn out to have special properties.
Some of these properties are analyzed in Section 2.5. In Section 2.6, FHs
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are compared to other nonparametric density estimators. Finally, the use of
FHs for estimating the mean and the variance of a population is discussed
in Section 2.7. It should be noted that only univariate density estimation
is considered in this chapter. Furthermore, the relation between the FHs
discussed in this chapter and the PFSs discussed in the remainder of this
thesis will become clear in Section 3.3 and 4.1.

2.1 Analysis of kernel density estimators

In this section, a statistical analysis of KDEs is given. All results in this
section are taken from [30].

Let x1, . . . , xn denote a random sample of size n from a distribution with
probability density function (pdf) f (x). A KDE estimates f (x) as follows

f̂ (x) =
1

nh

n∑

i=1

K

(
x− xi

h

)
=

1
n

n∑

i=1

Kh (x− xi) , (2.1)

where K denotes the kernel function, which is usually a pdf, h denotes the
smoothing parameter, and Kh (t) = K (t/h) /h.

For a specific value of x, the estimation of f (x) can be seen as a standard
point estimation problem in which the unknown parameter f (x) is estimated
by the point estimator f̂ (x). The bias and the variance of the estimator f̂ (x)
are defined as

Bias
(
f̂ (x)

)
= Ef̂ (x)− f (x) (2.2)

and

Var
(
f̂ (x)

)
= E

(
f̂ (x)− Ef̂ (x)

)2
. (2.3)

First consider the bias of f̂ (x). The expectation of f̂ (x), which is the
first term in (2.2), can be written as

Ef̂ (x) = E

(
1
n

n∑

i=1

Kh (x− xi)

)
=

1
n

n∑

i=1

EKh (x− xi) . (2.4)

The random variables x1, . . . , xn are independent and identically distributed
according to f (x). Using X to denote a random variable that is distributed
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according to f (x), it therefore follows that

Ef̂ (x) = EKh (x−X)

= E
(

1
h

K

(
x−X

h

))

=
∫

1
h

K

(
x− t

h

)
f (t) dt

=
∫

K (w) f (x− hw) dw

=
∫

K (w)
∞∑

k=0

(−hw)kf (k) (x)
k!

dw

= f (x)
∫

K (w) dw − hf ′ (x)
∫

wK (w) dw

+
1
2
h2f ′′ (x)

∫
w2K (w) dw + O

(
h3

)
, (2.5)

where a Taylor series has been used. It should further be noted that in this
chapter the symbol

∫
should be read as

∫∞
−∞. Define µK and σ2

K as

µK =
∫

wK (w) dw and σ2
K =

∫
w2K (w) dw. (2.6)

Assuming that K is a pdf implies that
∫

K (w) dw = 1. Equation (2.5) can
then be written as

Ef̂ (x) = EKh (x−X) = f (x)−hf ′ (x)µK +
1
2
h2f ′′ (x) σ2

K +O
(
h3

)
. (2.7)

Furthermore, by assuming that µK = 0, it follows from (2.2) and (2.7) that

Bias
(
f̂ (x)

)
=

1
2
h2f ′′ (x) σ2

K + O
(
h3

)
. (2.8)

Now consider the variance of f̂ (x). Since x1, . . . , xn are independent and
identically distributed random variables, it follows that

Var
(
f̂ (x)

)
=

1
n2

n∑

i=1

Var (Kh (x− xi)) =
1
n

Var (Kh (x−X)) . (2.9)

Notice that

Var (Kh (x−X)) = E
(
Kh (x−X)2

)
− (EKh (x−X))2 . (2.10)
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The first term in (2.10) can be written as

E
(
Kh (x−X)2

)
= E

((
1
h

K

(
x−X

h

))2
)

=
∫

1
h2

K

(
x− t

h

)2

f (t) dt

=
∫

1
h

K (w)2f (x− hw) dw

=
∫

1
h

K (w)2
∞∑

k=0

(−hw)kf (k) (x)
k!

dw

=
f (x) R (K)

h
+ O (1) , (2.11)

where R (K) measures the roughness of the kernel function K. The rough-
ness R (φ) of a function φ is defined as

R (φ) =
∫

φ (x)2dx. (2.12)

The second term in (2.10) equals the square of (2.7). Since µK = 0, this
results in

(EKh (x−X))2 = f (x)2 + O
(
h2

)
. (2.13)

Substituting (2.11) and (2.13) in (2.10) and (2.10) in (2.9) gives

Var
(
f̂ (x)

)
=

f (x)R (K)
nh

+ O

(
1
n

)
. (2.14)

The bias and the variance of the estimator f̂ (x) are criteria for measuring
the error of f̂ (x) for a specific value of x. When f̂ (x) is used for estimating
an entire pdf rather than a single point on a pdf, one may want to consider
a global error criterion. One such criterion is the mean integrated squared
error (MISE) (also called the integrated mean squared error or IMSE) of
f̂ (x), which is defined as

MISE
(
f̂
)

= E
(∫ (

f̂ (x)− f (x)
)2

dx

)

=
∫

E
(
f̂ (x)− f (x)

)2
dx

=
∫ (

Ef̂ (x)− f (x)
)2

+ E
(
f̂ (x)− Ef̂ (x)

)2
dx

=
∫

Bias2
(
f̂ (x)

)
+ Var

(
f̂ (x)

)
dx

= ISB
(
f̂
)

+ IV
(
f̂
)

, (2.15)

16



where the integrated squared bias (ISB) of f̂ (x) and the integrated variance
(IV) of f̂ (x) are given by

ISB
(
f̂
)

=
∫

Bias2
(
f̂ (x)

)
dx (2.16)

and
IV

(
f̂
)

=
∫

Var
(
f̂ (x)

)
dx. (2.17)

In the case that f̂ (x) is a KDE, the ISB and the IV can be derived from
(2.8) and (2.14), respectively. This results in

ISB
(
f̂
)

=
1
4
h4R

(
f ′′

)
σ4

K + O
(
h5

)
(2.18)

and

IV
(
f̂
)

=
R (K)

nh
+ O

(
1
n

)
. (2.19)

In order to compare different kernel estimators, the optimal rate of con-
vergence of the MISE as the sample size n → ∞ is usually considered. For
convergence of the MISE, it is necessary that h → 0 and nh →∞ as n →∞.
This follows from (2.18) and (2.19). In an asymptotic analysis of a kernel
estimator, the asymptotic mean integrated squared error (AMISE) crite-
rion is used, which is equal to the MISE criterion without the terms that
are insignificant in the asymptotic analysis. For a KDE f̂ (x), the AMISE
equals

AMISE
(
f̂
)

=
R (K)

nh
+

1
4
h4R

(
f ′′

)
σ4

K . (2.20)

The asymptotically optimal smoothing parameter, denoted by h∗, is the
smoothing parameter h that results in the optimal rate of convergence of
the AMISE (or MISE). From (2.20), it follows that

h∗ =
(

R (K)
R (f ′′) σ4

K

)1/5

n−1/5. (2.21)

The optimal AMISE, denoted by AMISE∗, is obtained by substituting (2.21)
in (2.20). The result is given in the following theorem.

Theorem 2.1 Let the kernel K be a pdf with µK = 0. A KDE f̂ (x) that
uses kernel K has an AMISE given by (2.20) and an asymptotically optimal
smoothing parameter given by (2.21). The optimal AMISE equals

AMISE∗
(
f̂
)

=
5
4
(σKR (K))4/5R

(
f ′′

)1/5
n−4/5. (2.22)

Therefore, the optimal AMISE of f̂ (x) decreases at a rate of O
(
n−4/5

)
.
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The optimal kernel, i.e. the kernel K that minimizes σKR (K), is known
as the Epanechnikov kernel and is given by (see [30])

K (t) =





3
4

(
1− t2

)
if − 1 ≤ t ≤ 1

0 otherwise.
(2.23)

For this kernel, σK = 1/
√

5 and R (K) = 3/5. Therefore, a KDE f̂ (x) that
uses the Epanechnikov kernel has an optimal AMISE given by

AMISE∗
(
f̂
)

=
5
4

(
3

5
√

5

)4/5

R
(
f ′′

)1/5
n−4/5. (2.24)

2.2 Fuzzy histograms as kernel density estimators
with a variable kernel

FHs have been introduced in [16, 18, 34]. In a FH, the sample space X is
partitioned in a number of fuzzy sets Aj . The partitioning is done in such
a way that ∑

j

µAj (x) = 1 ∀x ∈ X. (2.25)

If the condition in (2.25) is satisfied, the sample space X is said to be ‘well-
defined’ [16, 18, 34, 35] or, equivalently, the fuzzy sets Aj are said to be
‘normalized disjunct’ [36]. A FH estimates a pdf f (x) as follows

f̂ (x) =
∑

j

f (x|Aj) pj , (2.26)

where f (x|Aj) denotes the conditional pdf of x given fuzzy event Aj . f (x|Aj)
is assumed to be given by

f (x|Aj) =
µAj (x)∫
µAj (x) dx

. (2.27)

Furthermore, pj in (2.26) denotes an estimate of the probability Pr (Aj).
This estimate is calculated on the basis of a random sample x1, . . . , xn in
the following way

pj =
1
n

n∑

i=1

µAj (xi) . (2.28)

The KDE defined by (2.1) uses the same kernel for all values of x. A
more general KDE is obtained by allowing the use of different kernels for
different values of x. Such a KDE with a variable kernel is given by

f̂ (x) =
1
n

n∑

i=1

Kx (x− xi) , (2.29)
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where the smoothing parameter has been omitted. (To avoid confusion, it
should be noted that in the literature on KDEs [30] the term ‘variable kernel’
is sometimes used in a different sense than in this thesis.) Now consider the
following theorem.

Theorem 2.2 A FH given by (2.26), (2.27), and (2.28) is mathematically
equivalent to a KDE with a variable kernel given by (2.29) if the kernels Kx

are chosen as follows

Kx (w) =
∑

j

µAj (x− w) µAj (x)∫
µAj (x) dx

. (2.30)

Furthermore, if condition (2.25) is satisfied, then the kernels Kx in (2.30)
are valid pdfs.

Proof: Substituting (2.27) and (2.28) in (2.26) and rearranging terms gives
the following result for a FH

f̂ (x) =
1
n

n∑

i=1

∑

j

µAj (xi) µAj (x)∫
µAj (x) dx

. (2.31)

The same result is obtained for a KDE with a variable kernel by substituting
(2.30) in (2.29). This proves the mathematical equivalence of a FH and a
KDE with a variable kernel given by (2.30). Also, it follows from (2.30)
that

∫
Kx (w) dw =

∫ ∑

j

µAj (x− w) µAj (x)∫
µAj (x) dx

dw

=
∑

j

∫
µAj (x− w) dw∫

µAj (x) dx
µAj (x)

=
∑

j

µAj (x) . (2.32)

If condition (2.25) is satisfied, then (2.32) implies that
∫

Kx (w) dw = 1 for
all x ∈ X. Moreover, since mfs are nonnegative, it follows from (2.30) that
the kernels Kx are also nonnegative. Therefore, the kernels Kx are valid
pdfs. This completes the proof of the theorem.

2.3 Analysis of fuzzy histograms

In this section, a statistical analysis of FHs is presented. Since FHs can be
seen as KDEs with a variable kernel, the analysis in this section is actually
an extension of the analysis of KDEs with a fixed kernel that was given in
Section 2.1.
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In the analysis in this section, the sample space is assumed to be R.
Moreover, the analysis is restricted to the special case that the sample space
is uniformly partitioned. The sample space R is said to be uniformly parti-
tioned if there are an infinite number of fuzzy sets Aj , with j ∈ Z, and these
fuzzy sets have mfs given by

µAj (x) = µA

(x

h
− j

)
∀j ∈ Z, (2.33)

where 0 < h < ∞ is a smoothing parameter and µA is an arbitrary mf that
satisfies ∫

xµA (x) dx = 0 (2.34)

and ∑

j∈Z
µA (x + j) = 1 ∀x ∈ R. (2.35)

Equation (2.35) ensures that the partitioning of the sample space given by
(2.33) satisfies condition (2.25). Also, (2.35) implies that

∫
µA (x) dx =

∑

j∈Z

∫ j+1

j
µA (x) dx

=
∑

j∈Z

∫ 1

0
µA (x + j) dx

=
∫ 1

0

∑

j∈Z
µA (x + j) dx

=
∫ 1

0
dx

= 1. (2.36)

In a uniformly partitioned sample space, the denominator in (2.30) can
be rewritten as follows by using (2.36)

∫
µAj (x) dx =

∫
µA

(x

h
− j

)
dx = h

∫
µA (w) dw = h. (2.37)

Substituting (2.33) and (2.37) in (2.30) gives

Kx,h (w) =
1
h

∑

j∈Z
µA

(
x− w

h
− j

)
µA

(x

h
− j

)
. (2.38)

Therefore, in a uniformly partitioned sample space, a FH is mathemati-
cally equivalent to a KDE that uses the variable kernel given by (2.38).
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Consequently, a statistical analysis of a FH can be given by analyzing the
equivalent KDE. This approach is followed below.

To determine the bias of a KDE f̂ (x) that uses a variable kernel Kx,h,
first consider the expectation of f̂ (x)

Ef̂ (x) = EKx,h (x−X)

=
∫

Kx,h (x− t) f (t) dt

=
∫

Kx,h (w) f (x− w) dw

=
∫

Kx,h (w)
∞∑

k=0

(−w)kf (k) (x)
k!

dw

=
∞∑

k=0

(−1)kf (k) (x)
k!

∫
wkKx,h (w) dw. (2.39)

Since
∫

Kx,h (w) dw = 1, the bias of f̂ (x) equals

Bias
(
f̂ (x)

)
=

∞∑

k=1

(−1)kf (k) (x)
k!

∫
wkKx,h (w) dw. (2.40)

For a FH in a uniformly partitioned sample space, the kernels Kx,h are given
by (2.38). Therefore, the integral in (2.39) and (2.40) can be written as

∫
wkKx,h (w) dw =

∫
wk

h

∑

j∈Z
µA

(
x− w

h
− j

)
µA

(x

h
− j

)
dw

=
∑

j∈Z
µA

(x

h
− j

)∫
wk

h
µA

(
x− w

h
− j

)
dw

=
∑

j∈Z
µA

(x

h
− j

)∫
(x− hj − hv)kµA (v) dv.

(2.41)

Now consider the ISB of f̂ (x)

ISB
(
f̂
)

=
∫

Bias2
(
f̂ (x)

)
dx

=
∫ ( ∞∑

k=1

(−1)kf (k) (x)
k!

∫
wkKx,h (w) dw

)2

dx

= h

∫ ( ∞∑

k=1

(−1)kf (k) (hu)
k!

∫
wkKhu,h (w) dw

)2

du, (2.42)
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where x has been replaced by hu in the last step. Replacing x by hu in
(2.41) results in

∫
wkKhu,h (w) dw = hk

∑

j∈Z
µA (u− j)

∫
(u− j − v)kµA (v) dv. (2.43)

For k = 1, this gives
∫

wKhu,h (w) dw = h
∑

j∈Z
(u− j) µA (u− j), (2.44)

where (2.34) and (2.36) have been used. Using the results of (2.43) and
(2.44), (2.42) can be written as

ISB
(
f̂
)

= h

∫ 
−hf ′ (hu)

∑

j∈Z
(u− j) µA (u− j) + . . .




2

du

= h3

∫
f ′ (hu)2


∑

j∈Z
(u− j)µA (u− j)




2

du + . . .

= h3
∑

i∈Z

∫ i+ 1
2

i− 1
2

f ′ (hu)2


∑

j∈Z
(u− j) µA (u− j)




2

du + . . .

= h3
∑

i∈Z
f ′ (hηi)

2
∫ 1

2

− 1
2


∑

j∈Z
(u− j) µA (u− j)




2

du + . . . ,

(2.45)

where the last step follows from the generalized mean value theorem. This
step is valid for some collection of points ηi, where i− 1

2 < ηi < i + 1
2 . The

generalized mean value theorem states that
∫ b

a
φ (x) g (x) dx = φ (c)

∫ b

a
g (x) dx, (2.46)

for some value of c such that a < c < b. The functions φ and g are assumed
to be continuous on the finite interval [a, b], and g is also assumed to be
nonnegative on this interval. The last step in (2.45) also uses the following
result

∫ a+1

a


∑

j∈Z
(u− j) µA (u− j)




2

du = c ∀a ∈ R, (2.47)

where the value of c is constant for all a ∈ R. Equation (2.45) can be
rewritten using numerical integration approximations. This results in

ISB
(
f̂
)

= h2P (µA) R
(
f ′

)
+ O

(
h3

)
, (2.48)
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where P (φ) is defined as

P (φ) =
∫ 1

2

− 1
2


∑

j∈Z
(x− j) φ (x− j)




2

dx. (2.49)

The variance of a KDE f̂ (x) with a variable kernel Kx,h is given by

Var
(
f̂ (x)

)
=

1
n

Var (Kx,h (x−X)) , (2.50)

where

Var (Kx,h (x−X)) = E
(
Kx,h (x−X)2

)
− (EKx,h (x−X))2 . (2.51)

The first term in (2.51) can be written as

E
(
Kx,h (x−X)2

)
=

∫
Kx,h (x− t)2f (t) dt

=
∫

Kx,h (w)2f (x− w) dw

=
∫

Kx,h (w)2
∞∑

k=0

(−w)kf (k) (x)
k!

dw

=
∞∑

k=0

(−1)kf (k) (x)
k!

∫
wkKx,h (w)2dw. (2.52)

For a FH in a uniformly partitioned sample space, the kernels Kx,h are given
by (2.38). The integral in (2.52) can therefore be written as

∫
wkKx,h (w)2dw =

∫
wk

h2


∑

j∈Z
µA

(
x− w

h
− j

)
µA

(x

h
− j

)



2

dw

=
1
h

∫
(x− hv)k


∑

j∈Z
µA (v − j) µA

(x

h
− j

)



2

dv.

(2.53)

Notice further that the second term in (2.51) equals the square of (2.39).
The IV of f̂ (x) is given by

IV
(
f̂
)

=
∫

Var
(
f̂ (x)

)
dx. (2.54)

Replacing x by hu results in

IV
(
f̂
)

= h

∫
Var

(
f̂ (hu)

)
du

=
h

n

∫
E

(
Khu,h (hu−X)2

)
du

− h

n

∫
(EKhu,h (hu−X))2 du, (2.55)
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where (2.50) and (2.51) have been used. Replacing x by hu in (2.53) gives

∫
wkKhu,h (w)2dw = hk−1

∫
(u− v)k


∑

j∈Z
µA (v − j) µA (u− j)




2

dv.

(2.56)
Using (2.52) and (2.56), the first term in (2.55) can be written as

h

n

∫
E

(
Khu,h (hu−X)2

)
du

=
1
n

∞∑

k=0

(−h)k

k!

∫
f (k) (hu)

∫
(u− v)k


∑

j∈Z
µA (v − j) µA (u− j)




2

dvdu

=
1
n

∫
f (hu)

∫ 
∑

j∈Z
µA (v − j) µA (u− j)




2

dvdu + . . .

=
1
n

∑

i∈Z

∫ i+ 1
2

i− 1
2

f (hu)
∫ 

∑

j∈Z
µA (v − j) µA (u− j)




2

dvdu + . . .

=
1
n

∑

i∈Z
f (hηi)

∫ 1
2

− 1
2

∫ 
∑

j∈Z
µA (v − j) µA (u− j)




2

dvdu + . . . . (2.57)

The last step, which is valid for some collection of points ηi (i − 1
2 < ηi <

i + 1
2), follows from the generalized mean value theorem. Furthermore, the

following result has been used

∫ a+1

a

∫ 
∑

j∈Z
µA (v − j) µA (u− j)




2

dvdu = c ∀a ∈ R, (2.58)

where the value of c is constant for all a ∈ R. Rewriting (2.57) using
numerical integration approximations gives

h

n

∫
E

(
Khu,h (hu−X)2

)
du

=
1

nh

∫
f (x) dx

∫ 1
2

− 1
2

∫ 
∑

j∈Z
µA (v − j)µA (u− j)




2

dvdu + O

(
1
n

)

=
Q (µA)

nh
+ O

(
1
n

)
, (2.59)

where Q (φ) is defined as

Q (φ) =
∫ 1

2

− 1
2

∫ 
∑

j∈Z
φ (w − j) φ (x− j)




2

dwdx. (2.60)
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The last step in (2.59) can be made because f (x) is a pdf and, consequently,∫
f (x) dx = 1. Using (2.35), (2.36), (2.39), and (2.43), the second term in

(2.55) can be written as

h

n

∫
(EKhu,h (hu−X))2 du

=
h

n

∫ ( ∞∑

k=0

(−1)kf (k) (hu)
k!

∫
wkKhu,h (w) dw

)2

du

=
h

n

∫
f (hu)2 du + . . . . (2.61)

In a similar way as the first term in (2.55), the second term can be rewrit-
ten using the generalized mean value theorem and numerical integration
approximations. Equation (2.61) then becomes

h

n

∫
(EKhu,h (hu−X))2 du =

R (f)
n

+ O

(
h

n

)
. (2.62)

The IV of f̂ (x) is obtained by substituting (2.59) and (2.62) in (2.55). Since
(2.59) decreases at a lower rate than (2.62) as the sample size n → ∞ and
the smoothing parameter h → 0, the IV of f̂ (x) can be written as

IV
(
f̂
)

=
Q (µA)

nh
+ O

(
1
n

)
. (2.63)

The AMISE of a KDE f̂ (x) with a variable kernel Kx,h given by (2.38)
follows from (2.48) and (2.63)

AMISE
(
f̂
)

=
Q (µA)

nh
+ h2P (µA) R

(
f ′

)
. (2.64)

This equation is valid under the assumption that P (µA) > 0. From (2.64),
it follows that the asymptotically optimal smoothing parameter is given by

h∗ =
(

Q (µA)
2P (µA) R (f ′)

)1/3

n−1/3. (2.65)

The optimal AMISE is given in the following theorem.

Theorem 2.3 Let f̂ (x) be a FH given by (2.26), (2.27), and (2.28), let
the sample space R be uniformly partitioned as defined by (2.33), (2.34),
and (2.35), and let P (µA) > 0. Then, f̂ (x) has an AMISE given by (2.64)
and an asymptotically optimal smoothing parameter given by (2.65). The
optimal AMISE equals

AMISE∗
(
f̂
)

=
(

27
4

P (µA) R
(
f ′

))1/3

Q (µA)2/3n−2/3. (2.66)

Therefore, the optimal AMISE of f̂ (x) decreases at a rate of O
(
n−2/3

)
.
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2.4 Crisp histograms as a special case of fuzzy his-
tograms

If the fuzzy sets used by a FH for partitioning the sample space are actually
crisp sets (i.e. the degree of membership is always either 0 or 1), then the FH
reduces to a crisp histogram. Crisp histograms can therefore be considered
as a special case of FHs. Consequently, the results of the analysis of FHs
presented in the previous section can be applied to crisp histograms.

Consider a sample space R that is uniformly partitioned according to
(2.33). Let µA, which must satisfy the conditions in (2.34) and (2.35), be
defined as

µA (x) =





1 if −1
2
≤ x <

1
2

0 otherwise.
(2.67)

Notice that (2.26), (2.27), (2.28), (2.33), and (2.67) define a crisp histogram
with a fixed bin width.

For an asymptotic analysis of a crisp histogram f̂ (x) with a fixed bin
width, P (µA) and Q (µA) need to be calculated. Substituting (2.67) in
(2.49) gives

P (µA) =
∫ 1

2

− 1
2


∑

j∈Z
(x− j)µA (x− j)




2

dx

= lim
a↑ 1

2

∫ a

− 1
2


∑

j∈Z
(x− j) µA (x− j)




2

dx

= lim
a↑ 1

2

∫ a

− 1
2

x2dx

=
1
12

, (2.68)
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and substituting (2.67) in (2.60) gives

Q (µA) =
∫ 1

2

− 1
2

∫ 
∑

j∈Z
µA (w − j) µA (x− j)




2

dwdx

= lim
a↑ 1

2

∫ a

− 1
2

∫ 
∑

j∈Z
µA (w − j) µA (x− j)




2

dwdx

= lim
a↑ 1

2

∫ a

− 1
2

∫
µA (w)2 dwdx

= lim
a↑ 1

2

∫ a

− 1
2

∫
µA (w) dwdx

= 1. (2.69)

Using (2.68) and (2.69), the following asymptotic results are obtained for
f̂ (x)

AMISE
(
f̂
)

=
1

nh
+

1
12

h2R
(
f ′

)
, (2.70)

h∗ =
(

6
R (f ′)

)1/3

n−1/3, (2.71)

and

AMISE∗
(
f̂
)

=
(

3
4

)2/3

R
(
f ′

)1/3
n−2/3. (2.72)

These results correspond with the results obtained by Scott in his analysis
of crisp histograms (see Theorem 3.3 in [30]).

Scott [30] has also studied the properties of averaged shifted histograms.
An averaged shifted histogram results from averaging a number of crisp
histograms with the same bin width but with different locations for the
bin edges. Like ordinary crisp histograms, averaged shifted histograms can
be considered as a special case of FHs. For example, an averaged shifted
histogram constructed from m histograms that are all given equal weight is
mathematically equivalent to a FH with µA given by

µA (x) =





1
m

if −1
2
m ≤ x <

1
2
m

0 otherwise.
(2.73)

Notice that (2.73) satisfies the conditions in (2.34) and (2.35). Also, (2.73)
reduces to (2.67) for m = 1.
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2.5 Fuzzy histograms with triangular membership
functions

Consider a FH in a uniformly partitioned sample space R with µA given by

µA (x) =





1
m

+
x

m2
if −m ≤ x < 0

1
m
− x

m2
if 0 ≤ x < m

0 otherwise,

(2.74)

where m is a positive integer. It can be shown that (2.74) satisfies the
conditions in (2.34) and (2.35). (Notice that m is restricted to integer values
in order to satisfy (2.35).) Equation (2.74) results in a partitioning of the
sample space in fuzzy sets with triangular mfs.

It will now be shown that P (µA) = 0 for µA given by (2.74). From
(2.49), it can be seen that for a continuous function φ (x)

P (φ) = 0 ⇔ ∀x ∈ [−1
2 , 1

2

]
:
∑

j∈Z
(x− j) φ (x− j) = 0

⇔ ∀x ∈ R :
∑

j∈Z
(x− j) φ (x− j) = 0. (2.75)

Assume, without loss of generality, that 0 ≤ x < 1. It can then be observed
that for µA given by (2.74)

∑

j∈Z
(x− j) µA (x− j)

=
0∑

j=1−m

(x− j)
(

1
m
− x− j

m2

)
+

m∑

j=1

(x− j)
(

1
m

+
x− j

m2

)

=
0∑

j=1−m

(
− x2

m2
− j2

m2
+

2xj

m2
+

x

m
− j

m

)

+
m∑

j=1

(
x2

m2
+

j2

m2
− 2xj

m2
+

x

m
− j

m

)

=


 2x

m2

0∑

j=1−m

j


−


 2x

m2

m∑

j=1

j


 + 2x

=
(
−x +

x

m

)
−

(
x +

x

m

)
+ 2x

= 0. (2.76)

From (2.75) and (2.76), it follows that P (µA) = 0 for all values of m.
Because P (µA) = 0, the results in Theorem 2.3 cannot be applied to FHs
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with triangular mfs. The asymptotic properties of FHs with triangular mfs
will therefore be derived in the remainder of this section.

Let f̂ (x) denote a FH in a uniformly partitioned sample space R and let
P (µA) = 0. The ISB of f̂ (x) can be derived from (2.42) and (2.43). For
k = 1, (2.43) has been rewritten in (2.44). Since P (µA) = 0, (2.44) can be
combined with (2.75), which results in

∫
wKhu,h (w) dw = h

∑

j∈Z
(u− j) µA (u− j) = 0. (2.77)

Furthermore, for k = 2 (2.43) becomes

∫
w2Khu,h (w) dw = h2




∫
v2µA (v) dv +

∑

j∈Z
(u− j)2µA (u− j)


 ,

(2.78)
where (2.34), (2.35), and (2.36) have been used. Using (2.77) and (2.78),
(2.42) can be written as

ISB
(
f̂
)

= h

∫ (
1
2
h2f ′′ (hu)

(∫
v2µA (v) dv

+
∑

j∈Z
(u− j)2µA (u− j)

)
+ . . .

)2

du

=
1
4
h5

∑

i∈Z
f ′′ (hηi)

2
∫ 1

2

− 1
2

(∫
v2µA (v) dv

+
∑

j∈Z
(u− j)2µA (u− j)

)2

du + . . . , (2.79)

where the last step, which is valid for some collection of points ηi (i − 1
2 <

ηi < i + 1
2), follows from the generalized mean value theorem. Rewriting

(2.79) using numerical integration approximations gives

ISB
(
f̂
)

=
1
4
h4S (µA) R

(
f ′′

)
+ O

(
h5

)
, (2.80)

where S (φ) is defined as

S (φ) =
∫ 1

2

− 1
2




∫
w2φ (w) dw +

∑

j∈Z
(x− j)2φ (x− j)




2

dx. (2.81)

The equation for the IV of a FH is the same for P (µA) = 0 and P (µA) >
0. The IV of f̂ (x) is therefore given by (2.63). The asymptotic properties
of f̂ (x) follow from (2.63) and (2.80) and are summarized in the following
theorem.
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Theorem 2.4 Let f̂ (x) be a FH given by (2.26), (2.27), and (2.28), let the
sample space R be uniformly partitioned as defined by (2.33), (2.34), and
(2.35), and let P (µA) = 0. Then,

AMISE
(
f̂
)

=
Q (µA)

nh
+

1
4
h4S (µA) R

(
f ′′

)
, (2.82)

h∗ =
(

Q (µA)
S (µA) R (f ′′)

)1/5

n−1/5, (2.83)

and
AMISE∗

(
f̂
)

=
5
4
(
S (µA) R

(
f ′′

))1/5
Q (µA)4/5n−4/5. (2.84)

Therefore, the optimal AMISE of f̂ (x) decreases at a rate of O
(
n−4/5

)
.

For the triangular mfs given by (2.74), it turns out that the calculation
of Q (µA) and S (µA) for an arbitrary value of m is rather complicated.
For m = 1, however, it can be shown that Q (µA) = 1

2 and S (µA) = 7
60 .

Substituting these values in (2.84) gives the following result.

Theorem 2.5 Let f̂ (x) be a FH given by (2.26), (2.27), and (2.28), let the
sample space R be uniformly partitioned as defined by (2.33), (2.34), and
(2.35), let µA be a triangular mf as defined by (2.74), and let m = 1. Then,

AMISE∗
(
f̂
)

=
5
8

(
7
30

R
(
f ′′

))1/5

n−4/5. (2.85)

The density estimator f̂ (x) in Theorem 2.5 is equivalent with a density
estimator that has been studied in the statistical literature. In [11], this
estimator is called a frequency polygon based on a linearly weighted dis-
cretization of the data. From Equation (3.2) in [11], the same expression
can be derived for the optimal AMISE as in (2.85).

Finally, it should be noted that the triangular mfs defined by (2.74)
are not the only mfs for which P (µA) = 0. It can be shown that some
trapezoidal mfs also satisfy P (µA) = 0.

2.6 Comparison between fuzzy histograms and other
nonparametric density estimators

When choosing a nonparametric density estimator, two important criteria
are the statistical efficiency and the computational efficiency of an estima-
tor. In this thesis, the statistical efficiency of an estimator is determined
by the estimator’s AMISE∗. Using the criteria of statistical efficiency and
computational efficiency, crisp histograms and KDEs can be considered as
two extremes. Crisp histograms are very efficient computationally but quite
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inefficient statistically. KDEs, on the other hand, are quite efficient sta-
tistically but very inefficient computationally. The difference in statistical
efficiency between crisp histograms and KDEs follows from their AMISE∗.
Comparing (2.22) and (2.72), the AMISE∗ of a crisp histogram turns out to
decrease at a rate of O

(
n−2/3

)
, whereas the AMISE∗ of a KDE turns out

to decrease at a rate of O
(
n−4/5

)
.

In order to combine the advantages of crisp histograms and KDEs, other
nonparametric density estimators have been introduced (see for example
Scott [30] and Jones [11]). Examples include the frequency polygon, which
is formed by linear interpolation of adjacent mid-bin values of a crisp his-
togram, and the averaged shifted histogram, which was briefly discussed in
Section 2.4. The frequency polygon and the averaged shifted histogram can
also be combined, which results in the frequency polygon of an averaged
shifted histogram. This density estimator has an AMISE∗ given by (derived
from Theorem 5.2 in [30])

AMISE∗
(
f̂
)

=
5
12

((
4
3

+
4

3m2
+

3
5m4

)
R

(
f ′′

))1/5

n−4/5, (2.86)

where m denotes the number of underlying histograms used in the construc-
tion of the averaged shifted histogram. For m = 1, (2.86) reduces to the
AMISE∗ of an ordinary frequency polygon (cf Theorem 4.1 in [30]). As
m → ∞, (2.86) approaches the AMISE∗ of a KDE that uses a triangular
kernel. Notice that for all values of m, the AMISE∗ in (2.86) decreases at
the same rate as the AMISE∗ of a KDE. This means that the combination
of a frequency polygon and an averaged shifted histogram results in a high
level of statistical efficiency.

For a FH given by (2.26), (2.27), and (2.28) in a sample space R that
is uniformly partitioned as defined by (2.33), (2.34), and (2.35), the rate of
convergence of the AMISE∗ depends on the value of P (µA). For P (µA) > 0,
the AMISE∗ decreases at a rate of O

(
n−2/3

)
, as stated in Theorem 2.3.

For P (µA) = 0, Theorem 2.4 states that the AMISE∗ decreases at a rate
of O

(
n−4/5

)
. In other words, if P (µA) > 0, the AMISE∗ of a FH has

the same rate of convergence as the AMISE∗ of a crisp histogram. This
means that in this case, a FH is statistically quite inefficient. On the other
hand, if P (µA) = 0, the AMISE∗ of a FH decreases at the same rate as
the AMISE∗ of a KDE, which is statistically quite efficient. Therefore, by
choosing an appropriate mf µA, for example a triangular mf as defined by
(2.74), a FH can be a statistically quite efficient density estimator. Since
a FH is computationally much more efficient than a KDE (as the sample
size n → ∞), a FH can be used to obtain both a high level of statistical
efficiency and a high level of computational efficiency.

In Table 2.1, a comparison is made between a number of nonparametric
density estimators. All estimators in the table have a high level of statis-
tical efficiency, since they all have an AMISE∗ that decreases at a rate of
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Density estimator Relative AMISE∗ Equivalent sample size
KDE 1.000 1.000
FH 1.071 1.089
FP 1.210 1.269
FP-ASH (m = 2) 1.062 1.078
FP-ASH (m = 3) 1.034 1.043
FP-ASH (m →∞) 1.011 1.014

Table 2.1: Comparison between a number of nonparametric density estima-
tors.

O
(
n−4/5

)
. In the first column of the table, ‘KDE’ refers to a KDE that

uses the optimal Epanechnikov kernel. ‘FH’ refers to a FH in a uniformly
partitioned sample space that uses the triangular mf given by (2.74) for
m = 1. (Notice that it might be possible that other mfs are statistically
more efficient.) Furthermore, ‘FP’ refers to a frequency polygon, and ‘FP-
ASH’ refers to a frequency polygon of an averaged shifted histogram. In the
second column of Table 2.1, the relative AMISE∗ of each density estimator
is reported. The relative AMISE∗ of an estimator equals the ratio between
the AMISE∗ of that estimator and the AMISE∗ of a KDE that uses the
Epanechnikov kernel. The equivalent sample size for an estimator, reported
in the third column of the table, gives the ratio between the sample size
required by that estimator and the sample size required by a KDE that uses
the Epanechnikov kernel such that they both have the same AMISE∗. It is
interesting to observe that the FH in Table 2.1 is only slightly less statisti-
cally efficient than the KDE. The AMISE∗ of the FH is 7.1% higher than
the AMISE∗ of the KDE, and the FH requires 8.9% more data to obtain the
same AMISE∗ as the KDE. Also, the FH performs much better than the
frequency polygon, which has a 21.0% higher AMISE∗ than the KDE and
requires 26.9% more data to obtain the same AMISE∗. Compared to the
combination of a frequency polygon and an averaged shifted histogram, the
FH is competitive when the averaged shifted histogram is constructed from
only two underlying histograms (m = 2). When more than two histograms
are used (m > 2), the frequency polygon of the averaged shifted histogram
is statistically somewhat more efficient than the FH.

2.7 Estimation of the mean and the variance of a
population

Given a random sample x1, . . . , xn, one may be interested in estimating the
population mean µ and the population variance σ2. Statistical theory states
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that unbiased estimates of µ and σ2 are given by

x̄ =
1
n

n∑

i=1

xi (2.87)

and

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2 =
1

n− 1

((
n∑

i=1

x2
i

)
− nx̄2

)
, (2.88)

respectively.
When it is assumed that the sample x1, . . . , xn has been drawn from a

distribution with an unknown pdf f (x) and when an estimate f̂ (x) of this
pdf has been obtained, one may choose to use the mean and the variance of
f̂ (x) as estimates of µ and σ2. This results in

x̄ =
∫

f̂ (x) x dx (2.89)

and

s2 =
∫

f̂ (x) (x− x̄)2 dx =
∫

f̂ (x) x2 dx− x̄2. (2.90)

(Notice that this approach to estimating the mean and the variance is fol-
lowed in PFSs, as will be discussed in Chapter 3.) Now suppose that f̂ (x)
is a FH given by (2.26), (2.27), and (2.28) in a uniformly partitioned sam-
ple space R as defined by (2.33), (2.34), and (2.35). Equation (2.89) then
becomes

x̄ =
∑

j

∫
µAj (x) x dx∫
µAj (x) dx

pj =
∑

j

h2j

h
pj = h

∑

j

jpj (2.91)

and (2.90) becomes

s2 =


∑

j

∫
µAj (x) x2 dx∫
µAj (x) dx

pj


− x̄2

= h2


∑

j

(
j2 +

∫
µA (x) x2 dx

)
pj


− x̄2, (2.92)

where pj is obtained from the sample x1, . . . , xn using (2.28).
An interesting question is whether (2.91) and (2.92) are equivalent to

the unbiased estimates in (2.87) and (2.88). In general, it turns out that
this is not the case. However, if mf µA is triangular, then (2.91) and (2.87)
can be shown to be equivalent. This result is given in the following theorem.

33



Theorem 2.6 Let f̂ (x) be a FH given by (2.26), (2.27), and (2.28), let the
sample space R be uniformly partitioned as defined by (2.33), (2.34), and
(2.35), and let µA be a triangular mf as defined by (2.74). Then, (2.91) and
(2.87) are equivalent.

Proof: Substitution of (2.28) and (2.33) in (2.91) results in

x̄ = h
∑

j

j
1
n

n∑

i=1

µA

(xi

h
− j

)
=

1
n

n∑

i=1

h
∑

j

jµA

(xi

h
− j

)
. (2.93)

To prove the theorem, (2.93) and (2.87) must be equivalent. This is the case
if

h
∑

j

jµA

(x

h
− j

)
= x ∀x ∈ R. (2.94)

Now assume, without loss of generality, that x ∈ [0, h). Substitution of
(2.74) in the left part of (2.94) then gives

h
∑

j

jµA

(x

h
− j

)
= h

−1∑

j=1−m

j

(
1
m
− 1

m2

(x

h
− j

))

+ h

m∑

j=1

j

(
1
m

+
1

m2

(x

h
− j

))

=
x

m2

m−1∑

j=1

j +
x

m2

m∑

j=1

j

= (m− 1)
x

2m
+ (m + 1)

x

2m
= x. (2.95)

For µA defined by (2.74), the condition in (2.94) is therefore satisfied. This
completes the proof of the theorem.

Theorem 2.6 indicates that FHs with triangular mfs have a special prop-
erty. Generally, when a sample from a population is used for estimating
a pdf and when the estimated pdf is subsequently used for estimating the
population mean, a different estimate is obtained than the unbiased esti-
mate that is provided by the sample mean. (As a very simple example,
consider a crisp histogram with one of its bins between 0 and 1. Suppose
that the sample consists of only one element, which has a value of 0.25. The
pdf estimated using the crisp histogram then equals a uniform distribution
between 0 and 1. It follows that the use of the estimated pdf for estimating
the population mean results in an estimate of 0.5. This estimate does not
equal the estimate of 0.25 that is provided by the sample mean.) For FHs
with triangular mfs, this is not the case and the mean of the estimated pdf is
always the same as the mean of the sample. Therefore, a pdf estimated using
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a FH with triangular mfs contains the same information about the popula-
tion mean as the sample that was used for estimating the pdf. It should be
emphasized that this property only holds for the population mean. There
is no similar property for the population variance.
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Chapter 3

Probabilistic Fuzzy Systems

In this chapter, PFSs are discussed. The discussion is based on [16, 18,
34]. These are the papers in which the idea of PFSs has been introduced.
However, compared to [16, 18, 34] the discussion in this chapter contains
some important differences and additions:

1. A more accurate mathematical notation is used.

2. Equation (14) in [18] and (3) and (6) in [34], which are incorrect, are
omitted.

3. The assumption of a well-defined input space, which is actually not
necessary, is omitted.

4. The procedure for obtaining a conditional pdf from a conditional prob-
ability distribution over fuzzy sets is interpreted in a different way than
in [16, 18, 34].

5. In addition to an estimate of the conditional expectation, an estimate
of the conditional variance is provided.

The last two points only relate to PFSs that are applied to regression prob-
lems.

This chapter is organized as follows. In Section 3.1, PFSs for classifica-
tion tasks are considered. These PFSs turn out to be functionally equiv-
alent to the radial basis function networks for classification tasks that are
described in [2, 21]. A proof of this functional equivalence is given in Sec-
tion 3.2. PFSs for regression tasks, which can be seen as an extension of
PFSs for classification tasks, are discussed in Section 3.3. It should be noted
that the issue of estimating the parameters in a PFS is not considered in
this chapter. This issue is studied in detail in Chapter 4 and 5.
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3.1 Probabilistic fuzzy systems for classification
tasks

Consider the task of determining the (crisp) class y ∈ {C1, . . . , Cc} to which
a data point x = (x1, . . . , xd) ∈ X belongs. To perform this task, a PFS can
be used with probabilistic fuzzy rules that have the following general form

If x is Aj then y = C1 with probability pj,1 and
y = C2 with probability pj,2 and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y = Cc with probability pj,c.

(3.1)

Notice that in this thesis y denotes a random variable and y denotes a
particular value that y may take. The fuzzy sets Aj (j = 1, . . . , a) in (3.1)
are defined in the d-dimensional input space X. For each fuzzy set there
is a corresponding probabilistic fuzzy rule. Furthermore, the probability
parameters pj,k in (3.1) satisfy

pj,k ≥ 0 for j = 1, . . . , a and k = 1, . . . , c (3.2)

and
c∑

k=1

pj,k = 1 for j = 1, . . . , a. (3.3)

Let µAj denote the mf of a fuzzy set Aj . In [16, 18, 34], the input space
X is assumed to be well-defined, which means that

∑a
j=1 µAj (x) = 1 for all

x ∈ X. In this thesis I do not make this assumption. Instead, I choose to
normalize the mfs µAj . The normalized mfs are given by

µ̄Aj (x) =
µAj (x)∑a

j′=1 µAj′ (x)
. (3.4)

A PFS with rules given by (3.1) provides an estimate of Pr(y|x), the con-
ditional probability distribution of y given x. Similarly to Takagi-Sugeno
fuzzy reasoning, the normalized mfs µ̄Aj determine the activations of the
probabilistic fuzzy rules. The estimate p̂(Ck|x) of a conditional probability
Pr(Ck|x) is therefore obtained as follows

p̂(Ck|x) =
a∑

j=1

µ̄Aj (x) pj,k. (3.5)

The estimated conditional probability distribution p̂(y|x) can be used for
classifying a data point x. The following classification rule minimizes the
probability of misclassification

ŷ = Ck if p̂(Ck|x) > p̂(Ck′ |x) for all k′ 6= k. (3.6)
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It may be interesting to note that the fuzzy classifiers discussed in [1]
make use of probabilistic fuzzy rules that have a very similar form as in
(3.1). The only difference is that in the approach followed in [1] a certainty
factor is attached to each rule. In the above approach, certainty factors
are not considered and all rules are given equal weight. In Section 5.3,
the classification performance of PFSs is studied on two benchmark data
sets and the results are compared with the results that are reported in [1].
Classifiers that are similar to the PFSs discussed in this section are also
considered in [26].

3.2 Functional equivalence to radial basis function
networks for classification tasks

For regression problems, it is well-known that under certain conditions
Takagi-Sugeno fuzzy systems are functionally equivalent to radial basis func-
tion networks (RBFNs) [7, 9, 10]. In this section, it is shown that a similar
equivalence exists for classification problems. More specifically, it is shown
that for classification problems the PFSs described in Section 3.1 are func-
tionally equivalent to the RBFNs described in [2, 21]. Because of this equiv-
alence, the learning algorithms that are used in the RBFNs in [2, 21] can
also be used in PFSs for classification tasks.

First, I briefly discuss how RBFNs can be applied to classification prob-
lems. Although the discussion follows [2, 21], I use a somewhat differ-
ent mathematical notation in order to emphasize the similarities between
RBFNs and PFSs. In an RBFN, the activation of output unit zk given a
data point x is usually calculated as follows

zk(x) =
h∑

j=1

wj,k φj(x). (3.7)

The functions φj are called radial basis functions. These functions deter-
mine the activations of the hidden units of an RBFN. A typical choice is
to use Gaussian basis functions, but other choices are also possible. The
parameters wj,k are the weights between the hidden units and the output
units of an RBFN. (A bias weight w0,k is sometimes added to the expression
in (3.7). However, in classification problems bias weights need not be used.)
Notice that the output units of an RBFN use an identity activation func-
tion. Furthermore, in an RBFN it is also possible that the activations of the
hidden units are normalized to sum to 1. Equation (3.7) then becomes

zk(x) =

∑h
j=1 wj,k φj(x)
∑h

j=1 φj(x)
. (3.8)
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Now consider the application of RBFNs to classification problems as
described in [2, 21]. Like in Section 3.1, let x denote a data point and let
y ∈ {C1, . . . , Cc} denote the class to which a data point belongs. When
using an RBFN for a classification task, the network has for each class Ck a
corresponding output unit zk. The activations of the network’s hidden units
are normalized, which means that the activations of the network’s output
units are given by (3.8). These activations are interpreted as estimates of the
conditional probabilities Pr(Ck|x). Under this interpretation, the network
as a whole provides an estimate of the conditional probability distribution
Pr(y|x). This estimate can be used for classifying a data point x according
to

ŷ = Ck if zk(x) > zk′(x) for all k′ 6= k. (3.9)

This classification rule is very similar to the rule given by (3.6) that is used
in PFSs.

The following theorem states that for classification problems PFSs and
RBFNs are functionally equivalent.

Theorem 3.1 A PFS described in Section 3.1 is functionally equivalent to
an RBFN described in this section if the following conditions are satisfied:

1. The number of fuzzy sets a is equal to the number of radial basis func-
tions h.

2. Each mf µAj is equal to a radial basis function φj′.

3. If µAj = φj′, then the probability parameters pj,k are equal to the
weights wj′,k.

Proof: If the conditions of the theorem are satisfied, then it follows from
(3.4), (3.5), and (3.8) that p̂(Ck|x) = zk(x) for k = 1, . . . , c. This means
that the PFS and the RBFN provide identical estimates of the conditional
probability distribution Pr(y|x). As a consequence, the classification rules
in (3.6) and (3.9) give identical classifications, which implies that the PFS
and the RBFN are functionally equivalent. This completes the proof of the
theorem.

It should be emphasized that Theorem 3.1 only applies to RBFNs for
classification tasks that follow the description given in [2, 21]. In the litera-
ture on RBFNs, networks that use unnormalized hidden unit activations are
sometimes applied to classification problems. The activations of the output
units of these networks, which are calculated using (3.7), cannot be inter-
preted as estimates of conditional probabilities. Instead, the activations of
the output units are interpreted as discriminant functions. Theorem 3.1
does not apply to these networks.
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3.3 Probabilistic fuzzy systems for regression tasks

Consider the regression problem of estimating a function f : X → Y . Typi-
cally, f(x) contains an error term and is therefore stochastic. In that case,
one is usually interested in estimating the expectation of f(x). However,
it may also be useful to know, for each value of x, the variance of f(x) or
even the entire pdf of f(x). An estimate of the pdf of f(x) provides the
most general information, since estimates of the expectation and the vari-
ance (and other statistics) can be derived from it. Notice that estimating
the pdf of f(x) for each value of x is equivalent to estimating the conditional
pdf p(y|x), where x ∈ X and y ∈ Y . Therefore, one approach to solving a
regression problem is to estimate the conditional pdf. This is the approach
that is followed in this section.

In Subsection 3.3.1, the use of PFSs for estimating conditional pdfs is
discussed. The application of PFSs to regression problems is discussed in
Subsection 3.3.2. In this subsection, it is pointed out how PFSs that provide
estimates of conditional pdfs can be used for estimating the expectation and
the variance of stochastic functions.

3.3.1 Estimation of a conditional probability density func-
tion

A PFS for estimating conditional pdfs uses probabilistic fuzzy rules that
have the following general form

If x is Aj then y is C1 with probability pj,1 and
y is C2 with probability pj,2 and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y is Cc with probability pj,c,

(3.10)

where j = 1, . . . , a. These rules are very similar to the rules in (3.1), which
are used in PFSs for classification tasks. The conditions in (3.2) and (3.3)
also apply to the rules in (3.10). The difference with PFSs for classification
tasks is that C1, . . . , Cc denote fuzzy sets instead of crisp classes. These fuzzy
sets are defined in the output space Y in such a way that Y is well-defined.
This means that the mfs µCk

satisfy

c∑

k=1

µCk
(y) = 1 ∀y ∈ Y. (3.11)

Like in PFSs for classification tasks, the activations of the probabilistic
fuzzy rules are determined by the normalized mfs of the antecedent fuzzy
sets Aj . Therefore, the estimates p̂(Ck|x) of the conditional probabilities
Pr(Ck|x) of the consequent fuzzy sets Ck are given by (3.4) and (3.5). Using
these estimates, the conditional pdf p(y|x) can be estimated in a similar way
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as in the fuzzy histograms that were discussed in Chapter 2. This results in
(cf (2.26))

p̂(y|x) =
c∑

k=1

p(y|Ck)p̂(Ck|x), (3.12)

where p(y|Ck) denotes the conditional pdf of y given fuzzy event Ck. Usually,
p(y|Ck) will be unknown. In that case, the assumption is made that p(y|Ck)
is given by (cf (2.27))

p(y|Ck) =
µCk

(y)∫
µCk

(y)dy
. (3.13)

It is important to note that in (3.12) and (3.13) (as well as in (2.26)
and (2.27)) fuzzy histograms are given a different interpretation than in
[16, 18, 34]. In the above mathematical notation, a PFS for estimating
a conditional pdf relies on the assumption given by (3.13). Without this
assumption (and the assumption that Takagi-Sugeno fuzzy reasoning is used
for interpolation between rules), the estimate of a conditional pdf provided
by a PFS does not follow deductively from the system’s rule base. Of course,
the approximation accuracy of a PFS is affected by the extent to which the
assumption in (3.13) actually holds. Furthermore, remember that fuzzy
histograms are very similar to double-kernel estimators, which are studied
in [36]. It may be interesting to note that in Section 4.6 of [36] a similar
assumption is made as in (3.13).

3.3.2 Estimation of the expectation and the variance of a
stochastic function

This subsection is concerned with the application of PFSs to regression prob-
lems. The assumption is made that the function to be estimated, which is
given by f : X → Y , contains an error term. It follows from this assumption
that f(x) is stochastic. Also, it is assumed that the distribution of the error
term of f(x) is unknown and may depend on the value of x. Given these
assumptions, one may be interested in estimating, for each value of x, both
the expectation and the variance of f(x). In this subsection, it is shown
how estimates of the expectation and the variance of f(x) can be derived
from an estimated conditional pdf p̂(y|x) given by (3.12).
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An estimate f̂(x) of the expectation of f(x) can be derived as follows

f̂(x) = Êf(x)
= Ê(y|x)

=
∫

yp̂(y|x)dy

=
∫

y
c∑

k=1

p(y|Ck)p̂(Ck|x)dy

=
c∑

k=1

p̂(Ck|x)
∫

yp(y|Ck)dy

=
c∑

k=1

p̂(Ck|x)E(y|Ck), (3.14)

where

E(y|Ck) =
∫

yp(y|Ck)dy =
∫

yµCk
(y)dy∫

µCk
(y)dy

. (3.15)

The last step in (3.15) follows from the assumption in (3.13). Notice that
under this assumption E(y|Ck) is equal to the centroid of fuzzy set Ck.

The variance σ2(x) of f(x) is given by

σ2(x) = E(f(x)− Ef(x))2 = Ef(x)2 − (Ef(x))2. (3.16)

Consequently, an estimate σ̂2(x) of the variance of f(x) can be obtained as
follows

σ̂2(x) = Êf(x)2 −
(
Êf(x)

)2
= Êf(x)2 − f̂(x)2. (3.17)

Using (3.12), the first term in (3.17) can be written as

Êf(x)2 = Ê
(
y2|x)

=
∫

y2p̂(y|x)dy

=
∫

y2
c∑

k=1

p(y|Ck)p̂(Ck|x)dy

=
c∑

k=1

p̂(Ck|x)
∫

y2p(y|Ck)dy. (3.18)

Finally, substitution of (3.18) in (3.17) gives

σ̂2(x) =

(
c∑

k=1

p̂(Ck|x)
∫

y2p(y|Ck)dy

)
− f̂(x)2. (3.19)
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Chapter 4

Estimation of Probability
Parameters

As discussed in Chapter 3, the rule base of a PFS consists of fuzzy rules
that have multiple consequent parts. Each consequent part has an associ-
ated probability parameter. This chapter is concerned with the estimation of
the probability parameters in a PFS. It is assumed in this chapter that both
the antecedent and the consequent mfs have already been determined and
need not be further optimized. (For classification problems, the estimation
of the mfs is considered in Chapter 5.) In [16, 18, 34], probability param-
eters are estimated using a fuzzy generalization of the statistical formula
for the estimation of conditional probabilities (see also [35]). This method
for estimating probability parameters will be referred to as the conditional
probability method in the remainder of this thesis. In this chapter, I show
that the conditional probability method generally does not give optimal re-
sults in terms of the approximation accuracy of a PFS. As an alternative,
I propose to use the maximum likelihood (ML) criterion for estimating the
probability parameters in a PFS.

This chapter is organized as follows. In Section 4.1, the conditional
probability method for estimating the probability parameters in a PFS is
discussed. It is shown, both for classification problems and for regression
problems, that probability parameters estimated using the conditional prob-
ability method are biased, asymptotically biased, and inconsistent and do
not satisfy the ML criterion. In Section 4.2, a new method for estimating the
probability parameters in a PFS is proposed. This method is based on the
ML criterion. The properties of the optimization problem that results from
the ML criterion are also considered in Section 4.2. Notice further that in
the experiments described in Chapter 5 the conditional probability method
and the ML method are compared empirically by applying both methods to
a number of classification problems.
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4.1 The conditional probability method

Let (x1, y1), . . . , (xn, yn) denote a random sample of size n. Using this sam-
ple, an estimate of Pr(C|A), the conditional probability of event C given
event A, is provided by the following statistical formula

p̂(C|A) =
∑n

i=1 χA(xi)χC(yi)∑n
i=1 χA(xi)

, (4.1)

where the characteristic functions χA and χC are given by

χA(x) =
{

1 if x ∈ A
0 otherwise

(4.2)

and

χC(y) =
{

1 if y ∈ C
0 otherwise.

(4.3)

Now suppose that A and C are fuzzy events instead of ordinary crisp events.
This means that A and C are defined by mfs µA and µC instead of char-
acteristic functions χA and χC . Equation (4.1) can then be generalized by
replacing the characteristic functions χA and χC by the mfs µA and µC .
This results in

p̂(C|A) =
∑n

i=1 µA(xi)µC(yi)∑n
i=1 µA(xi)

. (4.4)

This formula is based on Zadeh’s definition of the probability of a fuzzy
event [37]. A derivation of (4.4) can be found in [35, 36].

The result in (4.4) can be used for estimating the probability parameters
in a PFS. This approach is followed in [16, 18, 34] and will be referred to
as the conditional probability method in this thesis. Suppose that a data
set containing n examples (xi, yi) (i = 1, . . . , n) is available for estimating
the parameters in a PFS. Suppose further that both the antecedent and the
consequent mfs in the system have already been determined and need not be
further optimized. This means that only the probability parameters remain
to be estimated. It seems reasonable to set a probability parameter pj,k

equal to the estimated conditional probability of fuzzy event Ck given fuzzy
event Aj . However, because the input space X need not be well-defined,
instead of the unnormalized mf µAj the normalized mf µ̄Aj must be used in
the calculation of pj,k. This gives

pj,k =
∑n

i=1 µ̄Aj (xi)µCk
(yi)∑n

i=1 µ̄Aj (xi)
. (4.5)

Therefore, pj,k is actually set equal to the estimated conditional probability
of fuzzy event Ck given the normalization of fuzzy event Aj . Notice further
that PFSs for regression tasks that have a rule base with only one rule and
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that use probability parameters pj,k given by (4.5) are equivalent to the
fuzzy histograms discussed in Chapter 2.

In a PFS for classification tasks, in which Ck denotes a crisp output
class, (4.5) can also be written as

pj,k =
∑n

i=1 µ̄Aj (xi)χCk
(yi)∑n

i=1 µ̄Aj (xi)
, (4.6)

where the characteristic function χCk
is given by

χCk
(y) =

{
1 if y = Ck

0 otherwise.
(4.7)

In the remainder of this section, the statistical properties of the param-
eter estimates in (4.5) and (4.6) are analyzed. Subsection 4.1.1 is concerned
with PFSs for classification tasks. PFSs for regression tasks are considered
in Subsection 4.1.2.

4.1.1 Statistical properties in classification problems

In this subsection, I prove that probability parameters estimated using (4.6)
are biased, asymptotically biased, and inconsistent and do not satisfy the
ML criterion. To prove this, it is sufficient to give a single example in
which (4.6) provides estimates that are biased, asymptotically biased, and
inconsistent and that do not maximize the likelihood of the available data
set.

Consider a PFS that is applied to a classification problem in which there
are two classes, denoted by C1 and C2. The PFS has an input space X =
[0, 1] and has a rule base that contains two probabilistic fuzzy rules. The
mfs of the antecedent fuzzy sets A1 and A2 are given by

µA1(x) = 1− x and µA2(x) = x. (4.8)

It follows from (3.4) that µ̄Aj = µAj for j = 1, 2. Assume that the condi-
tional probabilities of C1 and C2 equal

Pr(C1|x) = 1− x and Pr(C2|x) = x. (4.9)

These conditional probabilities are unknown and need to be estimated by
the PFS. Using (3.5), it can be seen that in a PFS that correctly estimates
the conditional probabilities in (4.9), the probability parameters are given
by p∗1,1 = p∗2,2 = 1 and p∗1,2 = p∗2,1 = 0. (Notice that in this example the
antecedent mfs in (4.8) have been chosen in such a way that it is possible
to obtain a PFS that correctly estimates the conditional probabilities in
(4.9). If it had not been possible to obtain a PFS that correctly estimates
the conditional probabilities, then there would be no correct probability
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parameters p∗j,k and, as a consequence, it would not be possible to analyze the
bias, the asymptotic bias, and the consistency of estimates of the probability
parameters.)

The following two theorems are concerned with the statistical properties
of (4.6). To prove the theorems, I make use of the above example.

Theorem 4.1 In a PFS for classification tasks, (4.6) provides estimates
pj,k of the probability parameters p∗j,k that are biased, asymptotically biased,
and inconsistent.

Proof: Consider the example given above. Suppose that a data set contain-
ing n classification examples (xi, yi) (i = 1, . . . , n) is available for estimating
the probability parameters in the PFS. For simplicity, assume that x1, . . . , xn

have fixed values. This means that only y1, . . . , yn have to be treated as ran-
dom variables. As an example, consider the estimate p2,2 of the probability
parameter p∗2,2. From (4.6), (4.7), (4.8), and (4.9), it follows that

Ep2,2 = E
(∑n

i=1 µ̄A2(xi)χC2(yi)∑n
i=1 µ̄A2(xi)

)

=
∑n

i=1 µ̄A2(xi)E(χC2(yi))∑n
i=1 µ̄A2(xi)

=
∑n

i=1 xi(0(1− xi) + 1xi)∑n
i=1 xi

=
∑n

i=1 x2
i∑n

i=1 xi
. (4.10)

Now assume that xi ∈ (0, 1) for i = 1, . . . , n. It then follows from (4.10) that
Ep2,2 ∈ (0, 1). Since p∗2,2 = 1, the estimate p2,2 is biased. This argument
holds independent of the number of classification examples n. Therefore, it
also holds for n → ∞, from which it follows that the estimate p2,2 is also
asymptotically biased.

Equation (4.6) provides consistent estimates if and only if for any positive
number ε

lim
n→∞Pr(|pj,k − p∗j,k| ≤ ε) = 1, (4.11)

where the estimate pj,k is obtained from a data set containing n classification
examples. This condition can also be written as plim pj,k = p∗j,k. A necessary
condition for plim pj,k = p∗j,k is limn→∞ Epj,k = p∗j,k (see Theorem 2.9.39 in
[12]), i.e. the estimate pj,k of p∗j,k must be asymptotically unbiased. However,
it has already been proven that pj,k is an asymptotically biased estimate of
p∗j,k. It therefore follows that pj,k is also an inconsistent estimate of p∗j,k.
This completes the proof of the theorem.

Theorem 4.2 Consider a PFS for classification tasks. Given a data set,
the probability parameters pj,k estimated using (4.6) need not maximize the
likelihood of the data set.
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x 0.0 0.5 0.5 1.0
y C1 C1 C2 C2

Table 4.1: The data set that is used in the proof of Theorem 4.2.

Proof: Consider the example given above. Suppose that a data set con-
taining four classification examples (xi, yi) (i = 1, 2, 3, 4) is available for
estimating the probability parameters in the PFS. The data set is displayed
in Table 4.1. Substitution of the classification examples in (4.6) results in
p1,1 = p2,2 = 0.75 and p1,2 = p2,1 = 0.25. It then follows from (3.5) that

p̂(C1|x) = 0.75− 0.5x and p̂(C2|x) = 0.25 + 0.5x. (4.12)

The likelihood of a data set is given by

L =
n∏

i=1

p̂(yi|xi), (4.13)

where it is assumed that the examples in the data set are independent of
each other. For the probability parameters pj,k estimated using (4.6), it
follows from (4.12) and (4.13) that the likelihood of the data set in Table 4.1
equals 9/64 ≈ 0.14. Now consider the alternative probability parameters
p′1,1 = p′2,2 = 1 and p′1,2 = p′2,1 = 0. Using (3.5), these probability parameters
result in

p̂′(C1|x) = 1− x and p̂′(C2|x) = x. (4.14)

For the alternative probability parameters p′j,k, it follows from (4.13) and
(4.14) that the likelihood of the data set in Table 4.1 equals 0.25. The
alternative probability parameters therefore result in a higher value of the
likelihood than the probability parameters pj,k estimated using (4.6). This
example demonstrates that probability parameters estimated using (4.6)
need not maximize the likelihood of a data set. (Actually, in the example it
can be shown that the alternative probability parameters p′j,k maximize the
likelihood of the data set. Of course, that the ML estimates of the proba-
bility parameters equal the correct probability parameters p∗j,k is merely a
coincidence resulting from the specific data set in Table 4.1.) This completes
the proof of the theorem.

It may be interesting to note that in a system in which the input space
X is partitioned in a crisp way (i.e. µ̄Aj (x) equals, for j = 1, . . . , a and for
all x ∈ X, either 0 or 1), probability parameters estimated using (4.6) can
be shown to be unbiased and consistent and to satisfy the ML criterion. (I
do not prove this here.) Therefore, in such a crisp system it is possible to ob-
tain parameter estimates with desirable statistical properties by estimating
each parameter separately, as is done in (4.6). In a fuzzy system, however,
it follows from Theorem 4.1 and 4.2 that parameter estimates with desir-
able statistical properties cannot be obtained by estimating each parameter
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separately using (4.6). Instead, the parameters in a fuzzy system must be
estimated simultaneously. Such an approach is proposed in Section 4.2.

4.1.2 Statistical properties in regression problems

In this subsection, I prove that probability parameters estimated using (4.5)
are biased, asymptotically biased, and inconsistent and do not satisfy the
ML criterion. To prove this, it is sufficient to give a single example in
which (4.5) provides estimates that are biased, asymptotically biased, and
inconsistent and that do not maximize the likelihood of the available data
set. It should be noted that this subsection is very similar to the previous
subsection. The only difference is that this subsection is concerned with
PFSs for regression tasks instead of PFSs for classification tasks.

Consider a PFS that is applied to a regression problem. The PFS has
an input space X = [0, 1] and an output space Y = [0, 1]. The system’s rule
base contains two probabilistic fuzzy rules. The mfs of the antecedent fuzzy
sets A1 and A2 are given by

µA1(x) = 1− x and µA2(x) = x. (4.15)

It follows from (3.4) that µ̄Aj = µAj for j = 1, 2. The output space Y is
partitioned using two fuzzy sets, C1 and C2. The mfs of these fuzzy sets are
given by

µC1(y) = 1− y and µC2(y) = y. (4.16)

Notice that the condition in (3.11) is satisfied, which means that Y is well-
defined. Assume that the conditional pdf of y given x equals

p(y|x) = 4xy − 2x− 2y + 2. (4.17)

This conditional pdf is unknown and needs to be estimated by the PFS.
Using (3.5), (3.12), and (3.13), it can be seen that in a PFS that correctly
estimates the conditional pdf in (4.17), the probability parameters are given
by p∗1,1 = p∗2,2 = 1 and p∗1,2 = p∗2,1 = 0. (Notice that in this example the
antecedent mfs in (4.15) and the consequent mfs in (4.16) have been chosen
in such a way that it is possible to obtain a PFS that correctly estimates
the conditional pdf in (4.17). If it had not been possible to obtain a PFS
that correctly estimates the conditional pdf, then there would be no correct
probability parameters p∗j,k and, as a consequence, it would not be possible
to analyze the bias, the asymptotic bias, and the consistency of estimates
of the probability parameters.)

The following two theorems are concerned with the statistical properties
of (4.5). To prove the theorems, I make use of the above example.

Theorem 4.3 In a PFS for regression tasks, (4.5) provides estimates pj,k

of the probability parameters p∗j,k that are biased, asymptotically biased, and
inconsistent.
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x 0.0 0.5 1.0
y 0.0 0.5 1.0

Table 4.2: The data set that is used in the proof of Theorem 4.4.

Proof: Consider the example given above. Suppose that a data set con-
taining n examples (xi, yi) (i = 1, . . . , n) is available for estimating the
probability parameters in the PFS. For simplicity, assume that x1, . . . , xn

have fixed values. This means that only y1, . . . , yn have to be treated as ran-
dom variables. As an example, consider the estimate p2,2 of the probability
parameter p∗2,2. From (4.5), (4.15), (4.16), and (4.17), it follows that

Ep2,2 = E
(∑n

i=1 µ̄A2(xi)µC2(yi)∑n
i=1 µ̄A2(xi)

)

=
∑n

i=1 µ̄A2(xi)E(µC2(yi))∑n
i=1 µ̄A2(xi)

=
∑n

i=1 xi

∫ 1
0 yp(y|xi)dy∑n
i=1 xi

=
∑n

i=1 xi

(
1
3xi + 1

3

)
∑n

i=1 xi
. (4.18)

Because xi ∈ [0, 1] for i = 1, . . . , n, it follows from (4.18) that Ep2,2 ∈
(1/3, 2/3]. Since p∗2,2 = 1, the estimate p2,2 is biased. This argument holds
independent of the number of examples n. Therefore, it also holds for n →
∞, from which it follows that the estimate p2,2 is also asymptotically biased.

Equation (4.5) provides consistent estimates if and only if plim pj,k =
p∗j,k. A necessary condition for plim pj,k = p∗j,k is limn→∞ Epj,k = p∗j,k (see
Theorem 2.9.39 in [12]), i.e. the estimate pj,k of p∗j,k must be asymptotically
unbiased. However, it has already been proven that pj,k is an asymptotically
biased estimate of p∗j,k. It therefore follows that pj,k is also an inconsistent
estimate of p∗j,k. This completes the proof of the theorem.

Theorem 4.4 Consider a PFS for regression tasks. Given a data set, the
probability parameters pj,k estimated using (4.5) need not maximize the like-
lihood of the data set.

Proof: Consider the example given above. Suppose that a data set con-
taining three examples (xi, yi) (i = 1, 2, 3) is available for estimating the
probability parameters in the PFS. The data set is displayed in Table 4.2.
Substitution of the examples in (4.5) results in p1,1 = p2,2 = 5/6 and
p1,2 = p2,1 = 1/6. It then follows from (3.5), (3.12), and (3.13) that

p̂(y|x) =
1
3
(8xy − 4x− 4y + 5). (4.19)
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The likelihood of a data set is given by (4.13). For the probability parameters
pj,k estimated using (4.5), it follows from (4.13) and (4.19) that the likelihood
of the data set in Table 4.2 equals 25/9 ≈ 2.78. Now consider the alternative
probability parameters p′1,1 = p′2,2 = 1 and p′1,2 = p′2,1 = 0. Using (3.5),
(3.12), and (3.13), these probability parameters result in

p̂′(y|x) = 4xy − 2x− 2y + 2. (4.20)

For the alternative probability parameters p′j,k, it follows from (4.13) and
(4.20) that the likelihood of the data set in Table 4.2 equals 4. The alterna-
tive probability parameters therefore result in a higher value of the likelihood
than the probability parameters pj,k estimated using (4.5). This example
demonstrates that probability parameters estimated using (4.5) need not
maximize the likelihood of a data set. (Actually, in the example it can be
shown that the alternative probability parameters p′j,k maximize the likeli-
hood of the data set. Of course, that the ML estimates of the probability
parameters equal the correct probability parameters p∗j,k is merely a coinci-
dence resulting from the specific data set in Table 4.2.) This completes the
proof of the theorem.

It may be interesting to note that in a system in which the input space
X and the output space Y are partitioned in a crisp way (i.e. µ̄Aj (x) equals,
for j = 1, . . . , a and for all x ∈ X, either 0 or 1, and µCk

(y) equals, for
k = 1, . . . , c and for all y ∈ Y , either 0 or 1), probability parameters esti-
mated using (4.5) can be shown to be unbiased and consistent and to satisfy
the ML criterion. (I do not prove this here.) Therefore, in such a crisp
system it is possible to obtain parameter estimates with desirable statistical
properties by estimating each parameter separately, as is done in (4.5). In
a fuzzy system, however, it follows from Theorem 4.3 and 4.4 that param-
eter estimates with desirable statistical properties cannot be obtained by
estimating each parameter separately using (4.5). Instead, the parameters
in a fuzzy system must be estimated simultaneously. Such an approach is
proposed in the next section.

4.2 The maximum likelihood method

In this section, I propose to use the ML criterion for estimating the proba-
bility parameters in a PFS. Contrary to the conditional probability method
discussed in the previous section, all the probability parameters in a PFS
are estimated simultaneously in this approach. It is assumed in this section
that the antecedent and consequent mfs in a PFS have already been deter-
mined and need not be further optimized. (For classification problems, ML
estimation of both the mfs and the probability parameters is considered in
Section 5.2.) It should be noted that the focus of this section is on PFSs for
estimating conditional pdfs. However, the results in this section also apply
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to PFSs for classification tasks, since a PFS for classification tasks can be
seen as a special case of a PFS for estimating conditional pdfs. Notice fur-
ther that ML estimation of probability parameters has also been discussed
in [26].

First notice that substitution of (3.5) in (3.12) results in

p̂(y|x) =
c∑

k=1

p(y|Ck)
a∑

j=1

µ̄Aj (x) pj,k. (4.21)

The probability parameters pj,k in (4.21) must satisfy the conditions in (3.2)
and (3.3). It follows from (3.3) that pj,c = 1−∑c−1

k=1 pj,k. Therefore, (4.21)
can also be written as

p̂(y|x) =




c−1∑

k=1

p(y|Ck)
a∑

j=1

µ̄Aj (x) pj,k


 + p(y|Cc)

a∑

j=1

µ̄Aj (x)

(
1−

c−1∑

k=1

pj,k

)
.

(4.22)
The probability parameters pj,k in (4.22) must satisfy

pj,k ≥ 0 for j = 1, . . . , a and k = 1, . . . , c− 1 (4.23)

and
c−1∑

k=1

pj,k ≤ 1 for j = 1, . . . , a. (4.24)

Now suppose that a data set containing n examples (xi, yi) (i = 1, . . . , n)
is available for estimating the probability parameters in a PFS. Given a
parameter matrix P = [pj,k] (j = 1, . . . , a and k = 1, . . . , c−1), the likelihood
of a data set equals

L(P) =
n∏

i=1

p̂(yi|xi), (4.25)

where it is assumed that the examples in the data set are independent of
each other. The probability parameters in P must satisfy the conditions in
(4.23) and (4.24). Using (4.22) and (4.25), the log-likelihood can be written
as

l(P) = ln

(
n∏

i=1

p̂(yi|xi)

)

=
n∑

i=1

ln p̂(yi|xi)

=
n∑

i=1

ln







c−1∑

k=1

p(yi|Ck)
a∑

j=1

µ̄Aj (xi) pj,k




+ p(yi|Cc)
a∑

j=1

µ̄Aj (xi)

(
1−

c−1∑

k=1

pj,k

)
 . (4.26)
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ML estimates of the probability parameters in a PFS are obtained by maxi-
mizing the log-likelihood function l(P) in (4.26) with respect to the param-
eter matrix P. Maximization of l(P) is constrained by the conditions in
(4.23) and (4.24). Since l(P) is a nonlinear function, finding ML estimates
of probability parameters is a nonlinear programming problem.

Now consider the following theorem.

Theorem 4.5 The log-likelihood function l(P) in (4.26) is concave.

Proof: Since a sum of concave functions is concave, it is sufficient to prove
that

φ(P) = ln p̂(y|x)

= ln







c−1∑

k=1

p(y|Ck)
a∑

j=1

µ̄Aj (x) pj,k




+ p(y|Cc)
a∑

j=1

µ̄Aj (x)

(
1−

c−1∑

k=1

pj,k

)
 (4.27)

is a concave function for all x ∈ X and all y ∈ Y . Notice that φ(P) is
defined for any parameter matrix P for which p̂(y|x) > 0. Furthermore,
φ(P) is twice continuously differentiable. The first-order and second-order
partial derivatives of φ(P) are given by

∂φ(P)
∂pα,γ

=
µ̄Aα(x)(p(y|Cγ)− p(y|Cc))

p̂(y|x)
(4.28)

and

∂2φ(P)
∂pα,γ ∂pβ,δ

= − µ̄Aα(x)(p(y|Cγ)− p(y|Cc))µ̄Aβ
(x)(p(y|Cδ)− p(y|Cc))

p̂(y|x)2
,

(4.29)
where α, β = 1, . . . , a and γ, δ = 1, . . . , c−1. From (4.29), it follows that for
any parameter matrix P for which φ(P) is defined

∂2φ(P)
∂p2

α,γ

= −
(

µ̄Aα(x)(p(y|Cγ)− p(y|Cc))
p̂(y|x)

)2

≤ 0. (4.30)

Let Dm denote an m×m determinant given by

Dm =

∣∣∣∣∣∣∣∣∣∣∣

∂2φ(P)
∂pα1,γ1 ∂pβ1,δ1

· · · ∂2φ(P)
∂pα1,γ1 ∂pβm,δm

...
. . .

...
∂2φ(P)

∂pαm,γm ∂pβ1,δ1

· · · ∂2φ(P)
∂pαm,γm ∂pβm,δm

∣∣∣∣∣∣∣∣∣∣∣

, (4.31)
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where, for q 6= r, (αq, γq) 6= (αr, γr) and (βq, δq) 6= (βr, δr). Using (4.29), it
can be seen that for any determinant Dm with m = 2 and for any parameter
matrix P for which φ(P) is defined

D2 =
∂2φ(P)

∂pα1,γ1 ∂pβ1,δ1

∂2φ(P)
∂pα2,γ2 ∂pβ2,δ2

− ∂2φ(P)
∂pα2,γ2 ∂pβ1,δ1

∂2φ(P)
∂pα1,γ1 ∂pβ2,δ2

= 0. (4.32)

By applying Laplace determinant expansion, it follows from (4.32) that Dm

also equals 0 for any determinant with m > 2. Combined with (4.30),
this result implies that the Hessian matrix of φ(P) is negative semidefinite
everywhere (see Theorem 1.E.11 in [32]) and, consequently, that φ(P) is a
concave function. This completes the proof of the theorem. Notice that the
theorem is quite general, in the sense that it makes no assumptions about
the mfs µAj in a PFS.

In the nonlinear programming problem of finding ML estimates of the
probability parameters in a PFS, the functions in the constraints, given by
(4.23) and (4.24), are all linear, from which it follows that these functions are
all convex. Since, according to Theorem 4.5, the objective function is con-
cave, the nonlinear programming problem is actually a convex programming
problem. Convex programming problems have the convenient property that
each local optimum is also a global optimum. Therefore, finding a globally
optimal solution should be relatively easy.
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Chapter 5

Applications to Classification
Problems

This chapter is concerned with PFSs that are applied to classification prob-
lems. A new method for estimating the parameters in these systems is
proposed. This method can be seen as an extension of the ML method for
estimating the probability parameters in a PFS, which was introduced in
Section 4.2. The method proposed in this chapter uses the ML criterion for
estimating both the probability parameters and the antecedent parameters
in a PFS (instead of only the probability parameters, as in Section 4.2).
Maximization of the likelihood function is performed using a gradient-based
optimization algorithm.

In the experiments described in this chapter, the performance of the
proposed method is compared with the performance of two heuristic meth-
ods for parameter estimation. The first heuristic method is the conditional
probability method, which is used for estimating the probability parameters
in a PFS. This method was discussed in Section 4.1. The second heuristic
method, which makes use of fuzzy c-means (FCM) clustering, estimates the
antecedent parameters in a PFS. Notice that the heuristic methods are com-
plementary to each other, since the first method only estimates probability
parameters and the second method only estimates antecedent parameters.
Two sets of experiments are described in this chapter. In the first set of ex-
periments, PFSs are applied to the Wisconsin breast cancer data set and the
wine data set, which are both taken from the UCI machine learning repos-
itory [3]. The results of these experiments are compared with the results
that are reported in [1], where a supervised clustering algorithm is used for
estimating the parameters in a probabilistic fuzzy classifier. In the second
set of experiments, PFSs are applied to a target selection problem. The
results of these experiments are compared with the results that are reported
in [17]. It should be noted that the issue of finding the optimal number of
rules in a PFS is not considered in the experiments in this chapter.
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This chapter is organized as follows. In Section 5.1, the use of FCM
clustering for estimating the antecedent parameters in a PFS is considered.
In Section 5.2, a ML method is proposed for estimating both the probability
parameters and the antecedent parameters in a PFS. Experiments with the
Wisconsin breast cancer data set and the wine data set are described in
Section 5.3, and experiments with a target selection problem are described
in Section 5.4.

5.1 Antecedent parameter estimation using the fuzzy
c-means method

In this chapter, it is assumed that each antecedent mf µAj in a PFS is the
product of d univariate Gaussian mfs φ(x) = exp

(−(x− c)2/σ2
)
, one for

each dimension of the input space X. This results in

µAj (x) = exp

(
−

d∑

l=1

(xl − cj,l)2

σ2
j,l

)
. (5.1)

For each mf, the parameters that need to be estimated are given by a vec-
tor cj = {cj,1, . . . , cj,d} and a vector Σj = {σj,1, . . . , σj,d}. These vectors
indicate, respectively, the center and the width of the mf in each dimension
of the input space. Furthermore, it is assumed in this chapter that a data
set containing n classification examples (xi, yi) (i = 1, . . . , n) is available for
estimating the parameters in a PFS.

In this section, the use of the FCM algorithm for estimating the an-
tecedent parameters cj and Σj in a PFS is discussed. In this approach, the
data set available for parameter estimation is first normalized. For the lth
feature (l = 1, . . . , d) of a data point xi (i = 1, . . . , n), this is done according
to

x̄i,l =
xi,l − µl

σl
, (5.2)

where µl and σl denote, respectively, the mean and the standard deviation of
the lth feature over the entire data set. The FCM algorithm is then applied
to the normalized data points x̄i in order to identify a predefined number of
cluster centers. The FCM algorithm uses the standard Euclidean distance
measure. The cluster centers obtained using FCM serve as the centers cj of
the Gaussian mfs µAj . The vectors Σj , which contain the widths of the mfs,
then remain to be estimated. In the experiments in this chapter, the nearest
neighbor heuristic [13] is used for estimating these vectors. This results in

σj,l = min
j′ 6=j

‖cj − cj′‖ for l = 1, . . . , d, (5.3)

where ‖cj − cj′‖ denotes the Euclidean distance between cj and cj′ . Notice
that an mf is given the same width in each dimension according to this
heuristic.
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It should be noted that the FCM algorithm and other unsupervised
clustering algorithms generally do not provide optimal estimates of the an-
tecedent parameters in a fuzzy system. In the PFSs discussed in this chap-
ter, this is because FCM does not take the class labels yi into account. An
alternative approach is proposed in [1], where a supervised clustering algo-
rithm is used for estimating the parameters in a probabilistic fuzzy classifier.
Contrary to unsupervised algorithms, this algorithm takes class labels into
account during clustering.

5.2 Parameter estimation using the maximum like-
lihood method

In this section, I propose a ML method for estimating the parameters in
a PFS for classification tasks. Compared with the conditional probability
method described in Section 4.1 and the FCM method described in Sec-
tion 5.1, the proposed method has the advantage that it maximizes the
likelihood of the data set available for parameter estimation and that it
simultaneously estimates both the antecedent parameters cj and Σj and
the probability parameters pj,k. Notice that the ML method discussed in
Section 4.2 only estimates the probability parameters pj,k.

The likelihood of a data set is given by

L =
n∏

i=1

p̂(yi|xi), (5.4)

where it is assumed that the classification examples in the data set are
independent of each other. Maximization of the likelihood is equivalent to
minimization of the negative log-likelihood. I therefore choose to minimize
the following error function

E = −
n∑

i=1

ln p̂(yi|xi). (5.5)

Notice that minimizing (5.5) is similar to minimizing the cross entropy error
function that is used for training neural network classifiers [2].

Finding the parameters cj , Σj , and pj,k that minimize the error function
in (5.5) is a constrained optimization problem, since the probability param-
eters pj,k must satisfy the conditions in (3.2) and (3.3). This constrained
optimization problem can be converted into an unconstrained optimization
problem by using the auxiliary variables uj,k (j = 1, . . . , a and k = 1, . . . , c).
The relation between these variables and the probability parameters pj,k is
described by the softmax function, i.e.

pj,k =
euj,k∑c

k′=1 euj,k′
. (5.6)
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ML estimates of the parameters cj , Σj , and pj,k can be obtained by un-
constrained minimization of (5.5) with respect to cj , Σj , and uj,k. I choose
not to optimize the variables uj,c (j = 1, . . . , a). These variables are given
a fixed value of 0. In this way, the size of the optimization problem is re-
duced, while the variables uj,k can still represent all possible solutions for
the parameters pj,k.

For minimizing the error function in (5.5), a gradient descent optimiza-
tion algorithm is used. The stochastic variant of gradient descent is applied,
which means that the available classification examples are processed one by
one and that updates are performed after each example. The initial values
of the antecedent parameters cj and Σj are obtained using the FCM method
described in Section 5.1, and the initial values of the probability parame-
ters pj,k are obtained using the conditional probability method described in
Section 4.1.

5.3 Application to the breast cancer data set and
the wine data set

In order to compare the performance of the ML method (Section 5.2) with
the performance of the FCM method (Section 5.1) and the conditional prob-
ability method (Section 4.1), experiments were performed with the Wiscon-
sin breast cancer data set and the wine data set. These data sets were taken
from the UCI machine learning repository [3]. In the breast cancer data set,
the problem is to classify cancers as benign or malignant. Classifications
are based on nine features that have integer values between one and ten.
The breast cancer data set contains 683 classification examples (excluding
16 examples that have missing values). The problem in the wine data set is
to distinguish three types of wine. A wine is characterized by 13 continuous
features. The wine data set contains 178 examples. In the experiments, the
breast cancer data set and the wine data set were normalized using (5.2).

5.3.1 Setup of the experiments

Four different types of experiments were performed. The differences between
these types lie in the way in which the parameters in a PFS are estimated.
In the first type of experiment, the antecedent parameters are estimated
using the FCM method and the probability parameters are estimated using
the conditional probability method. In the second type of experiment, the
FCM method is again used for estimating the antecedent parameters. How-
ever, the probability parameters are estimated using the ML method. In
the third type of experiment, the ML method is used for estimating the an-
tecedent parameters. After each iteration of the gradient descent algorithm,
the probability parameters are re-estimated using the conditional probabil-
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ity method. Finally, in the fourth type of experiment, all parameters are
estimated using the ML method.

In the experiments, the weighting exponent of the FCM algorithm, which
determines the degree of fuzziness of the clustering, was given a value of 2.
This is a typical value for this parameter. In each experiment, the FCM
algorithm was run several times using different initial values. Eventually,
the clustering with the lowest value of the objective function was taken. In
the gradient descent algorithm that was used in the ML method, the num-
ber of iterations was set to 300 and a fixed value of 0.03 was used for the
learning rate. Using these parameter settings, it was found that the gradi-
ent descent algorithm had always converged at the end of an experiment.
The PFS obtained after 300 iterations was used for performance evaluation.
Furthermore, in all experiments the constraint σj,l ≥ 0.25 (j = 1, . . . , a
and l = 1, . . . , d) was imposed. This was done to avoid numerical stability
problems.

The performance of a PFS was evaluated using two different error func-
tions, denoted by E1 and E2. The first error function is given by

E1 =
nerrors

n
, (5.7)

where nerrors is equal to the number of examples that are misclassified. This
is the usual error function for classification problems. The second error
function is a normalized version of (5.5), i.e.

E2 = − 1
n

n∑

i=1

ln p̂(yi|xi). (5.8)

In the same way as (5.5), this error function is derived from the ML criterion.
Two different motivations can be given for error function E2 in (5.8).

Consider, for example, a system for diagnosing the presence or absence of a
disease based on certain indicators of a patient’s condition. Some indicators
that are relevant to the diagnosis of the disease may not be available to
the system. In that case, the relation between the indicators that are avail-
able and the correct diagnosis will be stochastic. As a consequence of the
stochasticity, it will be impossible to obtain a system that always gives the
correct diagnosis. Instead, one may want to obtain a system that provides
estimates of the conditional probabilities of the different diagnoses. Since
an estimate of a (conditional) probability distribution is typically evaluated
using the ML criterion, the performance of such a system can be assessed
in an appropriate way using error function E2, which is derived from this
criterion. In the literature [8], error function E2 is also applied to the similar
task of evaluating estimates of conditional probability density functions.

The second motivation for error function E2 applies even when all in-
dicators that are relevant to the diagnosis of the disease are available to
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Estimation method 2 rules 4 rules
cj and Σj pj,k E1 E2 E1 E2

FCM Eq. (4.6) 0.261 (0.036) 0.497 (0.014) 0.291 (0.028) 0.578 (0.034)
FCM ML 0.050 (0.039) 0.339 (0.024) 0.296 (0.030) 0.563 (0.045)
ML Eq. (4.6) 0.034 (0.025) 0.102 (0.047) 0.032 (0.023) 0.109 (0.050)
ML ML 0.029 (0.021) 0.100 (0.060) 0.037 (0.024) 0.101 (0.060)

Table 5.1: Results for the Wisconsin breast cancer data set. The results are
averages from a ten-fold cross-validation. Standard deviations are reported
within parentheses.

Estimation method 3 rules 6 rules
cj and Σj pj,k E1 E2 E1 E2

FCM Eq. (4.6) 0.034 (0.048) 0.683 (0.031) 0.068 (0.065) 0.168 (0.152)
FCM ML 0.057 (0.075) 0.451 (0.053) 0.079 (0.081) 0.167 (0.152)
ML Eq. (4.6) 0.028 (0.041) 0.168 (0.318) 0.028 (0.047) 0.149 (0.275)
ML ML 0.023 (0.041) 0.121 (0.220) 0.034 (0.039) 0.079 (0.091)

Table 5.2: Results for the wine data set. The results are averages from a ten-
fold cross-validation. Standard deviations are reported within parentheses.

the system. This motivation follows from the fact that only a finite set of
example diagnoses will be available for training the system, implying that
the correctness of a diagnosis given by the system generally cannot be guar-
anteed. One may therefore be interested to know the degree of confidence
the system attaches to a diagnosis that it provides [23]. When the degree
of confidence is expressed in terms of the probability that the diagnosis is
correct, error function E2 can be used for evaluating the accuracy of the
confidence measure. The underlying idea is that an incorrect diagnosis with
a probability of 0.6 attached to it is less problematic than an incorrect diag-
nosis with a probability of 0.9 attached to it. Conversely, a correct diagnosis
is more valuable when a probability of 0.9 was attached to it than when a
probability of 0.6 was attached to it.

5.3.2 Results of the experiments

The results of the experiments are reported in Table 5.1 for the Wisconsin
breast cancer data set and in Table 5.2 for the wine data set. For each data
set, two different values were used for the number of rules in a PFS. The
results in Table 5.1 and 5.2 were obtained using ten-fold cross-validation.
The splitting of a data set into ten subsets was done in such a way that the
distribution of the classes was approximately the same in each subset.

First consider the estimation of the parameters cj and Σj of the an-
tecedent mfs in a PFS. In all experiments, the ML method performed better
than the FCM method. This result holds for both error functions. Of course,
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Experiment Ref. [1] ML
Breast cancer, 2 rules 0.074 0.029
Breast cancer, 4 rules 0.044 0.037
Wine, 3 rules 0.022 0.023

Table 5.3: Comparison between E1 errors reported in [1] and E1 errors of
the ML method. The errors are averages from a ten-fold cross-validation.

it is not surprising that the ML method performed better, since the FCM
method is unsupervised. However, the results clearly indicate the substan-
tial performance improvement that can be realized by using a supervised
method for estimating the antecedent parameters. On the other hand, it
should also be noted that the performance of the FCM method may depend
strongly on the heuristic that is used for estimating the parameters Σj . It
may be possible to improve the performance of the FCM method by using
a different heuristic than the nearest neighbor heuristic defined by (5.3).

Concerning the estimation of the probability parameters pj,k in a PFS,
the error functions E1 and E2 sometimes give contradictory results. Error
function E2 indicates that in all experiments the ML method performed
better than the conditional probability method, i.e. the method that uses
(4.6) for estimating probability parameters. However, in some experiments
the difference between the two methods is negligible. Error function E1

does not give conclusive results. According to this error function, the con-
ditional probability method performed better in some experiments whereas
the ML method performed better in other experiments. Notice that in the
breast cancer experiments with two rules and with FCM estimation of the
antecedent parameters, the ML method realized a large performance im-
provement compared with the conditional probability method. This result
suggests that at least in some cases the ML method may be preferable to
the conditional probability method.

The results of the experiments can be compared with the results that
are reported in [1], where a probabilistic fuzzy classifier is studied that is
very similar to a PFS for classification tasks. Also, a supervised clustering
algorithm for estimating the parameters in the probabilistic fuzzy classifier is
proposed in [1]. In the experiments described in [1], the proposed algorithm
is tested on the Wisconsin breast cancer data set and the wine data set.
For performance evaluation, ten-fold cross-validation is used in combination
with error function E1. The results are shown in Table 5.3. For comparison,
the results of ML estimation of all the parameters in a PFS are also shown in
the table. In two experiments, the supervised clustering algorithm and the
ML method have comparable performance. However, in the breast cancer
experiment with two rules, the ML method has a substantially lower error
than the supervised clustering algorithm. In this rather limited comparison,
the ML method therefore performs somewhat better than the supervised
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clustering algorithm.

5.4 Application to a target selection problem

In this section, experiments are discussed in which PFSs are applied to a
target selection problem. The problem is to predict whether a customer, who
is described by a number of features, will respond to a mailing concerning
an offer for a product. This is a classification problem with two classes,
the class of responders and the class of non-responders. By estimating each
customer’s probability of response, a company can choose to send an offer
to its high-prospect customers only instead of to all its customers. In that
way, the size of a mailing is reduced, which should result in an increase of
the company’s profit.

One approach to obtain a target selection model is to use a PFS for
classification tasks. This approach results in a model that can be inter-
preted linguistically and that provides an estimate of the probability that
a customer will be a responder. The approach of modeling target selection
problems using PFSs is taken in [14, 15, 17]. In these papers, the param-
eters of the antecedent mfs in a PFS are estimated using an unsupervised
clustering algorithm. The probability parameters in a PFS are estimated
using the conditional probability method (Section 4.1). In this section, ex-
periments with parameter estimation using the ML method (Section 5.2) are
discussed. The results of these experiments are compared with the results
that are reported in [17].

In the experiments in this section, a data set is used that has been
obtained from the mailing campaigns of a charity organization. Charity
organizations use target selection for selecting people that are more likely to
donate money. In that way, organizations try to maximize their fund raising
results. The data set that is used in the experiments consists of a training
set of 4057 examples and an independent validation set of 4080 examples.
Each example is described by the following three features:

1. Number of weeks since last response.

2. Number of months as a supporter.

3. Fraction of mailings responded.

For more details about the data set, the reader is referred to [24]. In the
experiments in this section, the data set was normalized using (5.2).

5.4.1 Setup of the experiments

The same four types of experiments were performed as in Section 5.3. There-
fore, the antecedent parameters in a PFS were estimated using either the
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Figure 5.1: An example of a hit probability chart. The chart shows the
performance of a typical target selection model (solid line), an optimal target
selection model (dotted line), and a random target selection model (dashed
line).

FCM method or the ML method, and the probability parameters in a PFS
were estimated using either the conditional probability method or the ML
method.

Like in the experiments in Section 5.3, the weighting exponent of the
FCM algorithm was given a value of 2 and a fixed value of 0.03 was used
for the learning rate of the gradient descent algorithm. The number of
iterations of the gradient descent algorithm was set to 50, which turned
out to be sufficient for convergence. Furthermore, like in Section 5.3, the
constraint σj,l ≥ 0.25 (j = 1, . . . , a and l = 1, . . . , d) was imposed.

The performance of a PFS was evaluated using a hit probability chart.
A hit probability chart shows the percentage of the mailed customers that is
a responder as a function of the percentage of the customers that is mailed.
An example of a hit probability chart is displayed in Figure 5.1. (Notice that
in Figure 3 in [17] the hit probability chart of an optimal target selection
model is drawn incorrectly.) In general, a larger area under a hit probability
chart indicates a better performance of a target selection model.

To quantify the performance of a PFS, a performance index was used in
the experiments. This performance index is defined as

I =
p∗ −A

p∗ ln p∗
, (5.9)
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Figure 5.2: Hit probability chart for a PFS with 5 rules. The chart shows
the performance of the ML method (solid line) and of the FCM method
combined with the conditional probability method (dotted line).

Estimation method Number of rules
cj and Σj pj,k 5 10 15

FCM Eq. (4.6) 0.485 0.520 0.578
FCM ML 0.487 0.576 0.584
ML Eq. (4.6) 0.584 0.591 0.590
ML ML 0.600 0.602 0.590

Table 5.4: Results of the target selection experiments calculated using the
performance index in (5.9).

where p∗ denotes the fraction of responders in the entire data set and A
denotes the area under the hit probability chart. The performance index
in (5.9) equals 1 for an optimal target selection model and equals 0 for
a random target selection model. (Notice that the performance index in
Equation (12) in [17] is defined incorrectly, since it does not equal 1 for an
optimal target selection model.)

5.4.2 Results of the experiments

Experiments were performed with 5, 10, and 15 rules in a PFS. Hit prob-
ability charts for these experiments are displayed in Figure 5.2, 5.3, and
5.4. The charts show the results of two types of experiments: experiments
in which the antecedent parameters were estimated using the FCM method
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Figure 5.3: Hit probability chart for a PFS with 10 rules. The chart shows
the performance of the ML method (solid line) and of the FCM method
combined with the conditional probability method (dotted line).
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Figure 5.4: Hit probability chart for a PFS with 15 rules. The chart shows
the performance of the ML method (solid line) and of the FCM method
combined with the conditional probability method (dotted line).
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and the probability parameters were estimated using the conditional proba-
bility method, and experiments in which all parameters were estimated using
the ML method. For all four types of experiments that were performed, the
value of the performance index defined by (5.9) is reported in Table 5.4. All
results were obtained using the independent validation set.

The hit probability charts show that the ML method performed much
better than the combination of the FCM method and the conditional prob-
ability method. This was especially the case when the number of rules in
a PFS was small. The results in Table 5.4 indicate that the largest perfor-
mance improvement was obtained by estimating the parameters cj and Σj

of the antecedent mfs using the ML method instead of the FCM method.
In most cases, the performance improvement obtained by estimating the
probability parameters pj,k using the ML method instead of the conditional
probability method was relatively small. Notice that these outcomes are
similar to the outcomes of the experiments discussed in Section 5.3. Fur-
thermore, it is interesting to observe that when the ML method was used,
a simple target selection model consisting of only 5 probabilistic fuzzy rules
was sufficient to obtain a good performance. Such a model performed con-
siderably better than a much more complex model consisting of 15 rules
in which the parameters were estimated using the FCM method and the
conditional probability method.

The results of the experiments can be compared with the results that are
reported in [17]. In the experiments in [17], the same target selection data
set is considered as in this thesis and a PFS with 15 rules is used as target
selection model. The system’s antecedent parameters are estimated using a
weighted fuzzy clustering algorithm, and the system’s probability parame-
ters are estimated using the conditional probability method. A number of
target selection models are obtained in the experiments in [17]. I only con-
sider the model that gives the best performance. The hit probability chart
of this model is shown in Figure 6 in [17]. The value of the performance
index defined by (5.9) equals 0.573 for this model. (The value reported in
Table I in [17] has been calculated using a different performance index and
must therefore be multiplied by 1.2.) By comparing this value with the val-
ues in the rightmost column of Table 5.4, it can be seen that the best model
in [17] gives approximately the same performance as a PFS in which the
antecedent parameters are estimated using the FCM method and the prob-
ability parameters are estimated using the conditional probability method.
However, compared with a PFS in which all the parameters are estimated
using the ML method, the best model in [17] gives worse performance. This
can also be observed by comparing the hit probability charts in Figure 6 in
[17] and in Figure 5.4 in this thesis. Especially when less than 10 percent
of the customers is mailed, a PFS with ML parameter estimates performs
much better than the best model in [17].
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Chapter 6

Probabilistic Fuzzy Modeling
in Regression Problems

This chapter is concerned with probabilistic fuzzy modeling in regression
problems. As an example, a simple regression problem is considered in which
a linear function with a normally distributed error term has to be estimated.
In Section 6.1, the application of PFSs to this problem is discussed. It is
demonstrated that a PFS with a limited number of rules generally cannot
provide a satisfactory estimate of a linear function with a normally dis-
tributed error term. In Section 6.2, an alternative approach to probabilistic
fuzzy modeling is proposed. It is shown that the use of PFSs can be seen as a
special case of this approach. The proposed approach is successfully applied
to the problem of estimating a linear function with a normally distributed
error term.

6.1 Estimation of a linear function

Consider the regression problem of estimating an unknown linear function
f : X → Y . f(x) is given by

f(x) = x + N(0, 1), (6.1)

where N(0, 1) denotes an error term that is drawn from a normal distribution
with mean 0 and standard deviation 1. Since f(x) has an error term, the
function is stochastic. The domain of f(x) is X = [0, 10]. For estimating
f(x), a large data set containing n = 10, 000 examples (xi, yi) (i = 1, . . . , n)
was generated. To generate an example (xi, yi), xi was first drawn from a
uniform distribution on X and yi was then obtained using (6.1).

A PFS for regression tasks was used for estimating f(x). The system’s
antecedent and consequent mfs were determined first and were not optimized
using the data set. The mfs of the system’s antecedent fuzzy sets A1 and
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Figure 6.1: The conditional pdf p(y|x) (dotted line) and the estimated con-
ditional pdf p̂(y|x) (solid line) for x = 0 (upper panel), x = 5 (middle panel),
and x = 10 (lower panel).
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Figure 6.2: The upper panel shows the expectation of f(x) (solid line) and
the expectation of f(x) plus or minus the standard deviation of f(x) (dotted
lines). The lower panel shows the estimate f̂(x) of the expectation of f(x)
(solid line) and the estimate f̂(x) of the expectation of f(x) plus or minus
the estimate σ̂(x) of the standard deviation of f(x) (dotted lines).
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j = 1 j = 2
k = 1 0.0000 0.0000
k = 2 0.0000 0.0000
k = 3 0.0003 0.0000
k = 4 0.0027 0.0000
k = 5 0.0273 0.0000
k = 6 0.0972 0.0000
k = 7 0.1689 0.0000
k = 8 0.2002 0.0000
k = 9 0.1954 0.0000
k = 10 0.2057 0.0000
k = 11 0.1022 0.0805
k = 12 0.0000 0.2074
k = 13 0.0000 0.2130
k = 14 0.0000 0.1916
k = 15 0.0000 0.1744
k = 16 0.0000 0.1029
k = 17 0.0000 0.0265
k = 18 0.0000 0.0033
k = 19 0.0000 0.0004
k = 20 0.0000 0.0000
k = 21 0.0000 0.0000

Table 6.1: The values of the probability parameters pj,k.

A2 were given by

µA1(x) = 1− 0.1x and µA2(x) = 0.1x. (6.2)

It follows from (3.4) that µ̄Aj = µAj for j = 1, 2. The system’s output space
Y was partitioned using 21 consequent fuzzy sets Ck (k = 1, . . . , 21) with
triangular mfs given by

µCk
(y) =





y − k + 7 if k − 7 ≤ y < k − 6
k − y − 5 if k − 6 ≤ y < k − 5
0 otherwise.

(6.3)

It should be noted that only 21 consequent fuzzy sets needed to be considered
because it turned out that yi ∈ [−5, 15] for all examples in the data set.

Given the antecedent mfs µAj and the consequent mfs µCk
, the proba-

bility parameters pj,k in the PFS were estimated using the ML method, as
discussed in Section 4.2. The convex programming problem of finding ML
estimates of the system’s probability parameters was solved using the func-
tion fmincon in MATLAB’s optimization toolbox. The standard parameter
settings of this function were used, except that the medium-scale optimiza-
tion algorithm was chosen instead of the large-scale optimization algorithm.
The values that were obtained for the probability parameters pj,k are shown
in Table 6.1.
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The resulting PFS provided an estimate p̂(y|x) of the conditional pdf
p(y|x). For x = 0, x = 5, and x = 10, p(y|x) and p̂(y|x) are shown in
Figure 6.1. Following the discussion in Subsection 3.3.2, estimates of the
expectation and the variance (or standard deviation) of the stochastic func-
tion f(x) in (6.1) were derived from the estimated conditional pdf p̂(y|x).
The estimate f̂(x) of the expectation of f(x) and the estimate σ̂(x) of the
standard deviation of f(x) are shown in the lower panel of Figure 6.2. For
comparison, the true expectation and the true standard deviation of f(x)
are shown in the upper panel of the figure. From Figure 6.1 and 6.2, it must
be concluded that the PFS did not provide a satisfactory estimate of f(x).

6.2 An alternative approach to modeling proba-
bilistic uncertainty using fuzzy systems

To gain further insight into the reasoning mechanism that is used in PFSs
for regression tasks, it is important to observe that the reasoning mechanism
can be interpreted in a different way than in Chapter 3 (see also [16]). First,
an estimate p̂(y|Aj) of the conditional pdf of y given fuzzy event Aj can be
obtained as follows

p̂(y|Aj) =
c∑

k=1

p(y|Ck)pj,k, (6.4)

where p(y|Ck) is defined by (3.13). Then, an estimate p̂(y|x) of the condi-
tional pdf p(y|x) is given by

p̂(y|x) =
a∑

j=1

µ̄Aj (x) p̂(y|Aj), (6.5)

where the normalized mf µ̄Aj is defined by (3.4). This probabilistic fuzzy rea-
soning mechanism is mathematically equivalent to the reasoning mechanism
described in Chapter 3. This can be proven by showing that substitution of
(6.4) in (6.5) results in the same expression as substitution of (3.5) in (3.12).

The above probabilistic fuzzy reasoning mechanism can be used for ex-
plaining the results in Figure 6.1. From (6.2) and (6.5), it follows that
p̂(y|x = 0) = p̂(y|A1) and p̂(y|x = 10) = p̂(y|A2). The solid lines in the
upper and the lower panel of Figure 6.1 therefore show the conditional pdfs
p̂(y|A1) and p̂(y|A2). Since µ̄A1(5) = µ̄A2(5) = 0.5, it follows from (6.5)
that p̂(y|x = 5) is obtained by taking the average of p̂(y|A1) and p̂(y|A2).
Therefore, the solid line in the middle panel of Figure 6.1 should be the
average of the solid lines in the upper and the lower panel of the figure. It
can be seen that this is indeed the case.

I now propose an alternative approach to modeling probabilistic uncer-
tainty using fuzzy systems. Consider a fuzzy system with rules that have
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the following general form

If x is Aj then p(y) = φ(y;αj,1, . . . , αj,m), (6.6)

where φ(y; αj,1, . . . , αj,m) denotes the pdf of y that results from the jth
rule (j = 1, . . . , a). The function φ(y;αj,1, . . . , αj,m) is characterized by the
parameters αj,k (k = 1, . . . , m). To obtain a valid pdf, it is necessary that
for all values of these parameters φ(y; αj,1, . . . , αj,m) satisfies

∫
φ(y; αj,1, . . . , αj,m) dy = 1 (6.7)

and
φ(y; αj,1, . . . , αj,m) ≥ 0 ∀y ∈ Y. (6.8)

In the fuzzy system, it is assumed that all rules use the same function
φ(y;αj,1, . . . , αj,m). Only the values of the parameters αj,k are different in
each rule. Any function that satisfies the conditions in (6.7) and (6.8) can
be chosen for φ(y; αj,1, . . . , αj,m). For example, if the normal distribution
function is chosen, then φ(y; αj,1, . . . , αj,m) becomes

φ(y; αj,1, αj,2) =
1

αj,2

√
2π

exp

(
−(y − αj,1)2

2α2
j,2

)
, (6.9)

where αj,1 and αj,2 > 0 denote, respectively, the mean and the standard
deviation of a normal distribution. Other functions that may be chosen for
φ(y;αj,1, . . . , αj,m) include, for example, functions based on a mixture model
and functions based on a (fuzzy) histogram.

It is important to note that in a fuzzy system with rules given by (6.6), no
fuzzy sets need to be defined in the output space, as is the case in a PFS for
regression tasks. Instead, the assumption is made that the conditional pdf
p(y|x) can be described by a specific model, for example a normal distribu-
tion or a Gaussian mixture model. Consequently, for each rule in a system’s
rule base, instead of the probability parameters pj,k the parameters αj,k of
the model that is used for density estimation need to be determined. Notice
that probability parameters in a PFS have a simple interpretation, i.e. a
probability parameter pj,k can be interpreted as the conditional probability
of fuzzy event Ck given fuzzy event Aj . Because of this property, the rule
base of a PFS can be easily interpreted. Since the fuzzy sets Aj and Ck can
be given linguistic values, the user of a PFS only needs to be familiar with
the concept of probability to be able to understand the rules in the system.
In a fuzzy system with rules given by (6.6), on the other hand, it may be
more difficult to interpret the system’s rule base. The user of such a system
needs to be familiar with the concept of a pdf and, probably more prob-
lematic, if the system’s consequent parameters have to be determined using
expert knowledge, then the user also needs to understand the model that is
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used for density estimation. These requirements are a potential drawback
of fuzzy systems with rules given by (6.6). However, as will become clear
below, this drawback may be compensated by an improved approximation
accuracy.

As I discussed above, two different, but mathematically equivalent rea-
soning mechanisms can be used in PFSs for regression tasks:

1. The probability parameters pj,k can first be interpolated, and the in-
terpolated probability parameters can then be used for estimating the
conditional pdf p(y|x). This reasoning mechanism is applied in (3.5)
and (3.12).

2. The conditional pdfs p(y|Aj) can first be estimated, and an estimate
of the conditional pdf p(y|x) can then be obtained by interpolating
the estimates p̂(y|Aj). This reasoning mechanism is applied in (6.4)
and (6.5).

Similar reasoning mechanisms as in PFSs for regression tasks can be used
in fuzzy systems with rules given by (6.6). If the parameters αj,k are first
interpolated and the interpolated parameters are then used for estimating
the conditional pdf p(y|x), then the estimate p̂(y|x) is given by

p̂(y|x) = φ(y; α1(x), . . . , αm(x)), (6.10)

where for k = 1, . . . ,m

αk(x) =
a∑

j=1

µ̄Aj (x) αj,k. (6.11)

On the other hand, if instead of the parameters αj,k the pdfs φ(y;αj,1, . . . , αj,m)
are interpolated, then p̂(y|x) is given by

p̂(y|x) =
a∑

j=1

µ̄Aj (x)φ(y; αj,1, . . . , αj,m). (6.12)

In general, the reasoning mechanism in (6.10) and (6.11) and the reasoning
mechanism in (6.12) do not provide the same estimates of p(y|x). This is
an important difference with PFSs for regression tasks.

Obviously, which of the above reasoning mechanisms gives better results
depends on the problem to which a fuzzy system is applied. However, it
seems reasonable to assume that in many regression problems the reason-
ing mechanism in (6.10) and (6.11) is more appropriate than the reasoning
mechanism in (6.12). As an example, consider the regression problem that
was studied in Section 6.1. In this problem, the stochastic function f(x)
in (6.1) has to be estimated. This is a linear function with a normally
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distributed error term. The standard deviation of the error term does not
depend on x. For estimating f(x), the input space X has been partitioned
using two fuzzy sets, A1 and A2. The mfs of these fuzzy sets are defined
by (6.2). Suppose that a fuzzy system with rules given by (6.6) is used for
estimating f(x). Suppose further that the normal distribution function is
chosen for φ(y; αj,1, . . . , αj,m), i.e. φ(y;αj,1, . . . , αj,m) is given by (6.9). If
the reasoning mechanism in (6.10) and (6.11) is used, then it is possible to
obtain a perfect estimate of f(x). This is accomplished by setting α1,1 = 0,
α2,1 = 10, and α1,2 = α2,2 = 1. If, on the other hand, the reasoning mecha-
nism in (6.12) is used, then a perfect estimate of f(x) cannot be obtained.
To see this, notice that according to the reasoning mechanism in (6.12), the
estimated conditional pdf p̂(y|x) results from averaging two normal distri-
bution functions. As a consequence, p̂(y|x) itself will not, in general, be a
normal distribution function (in many cases, p̂(y|x) will be a bimodal pdf).
From (6.1), it follows that p(y|x) is a normal distribution function. This
implies that p̂(y|x) cannot be a perfect estimate of p(y|x). Based on these
observations, it must be concluded that in the regression problem studied in
Section 6.1, the reasoning mechanism in (6.10) and (6.11) is more appropri-
ate than the reasoning mechanism in (6.12). It seems reasonable to assume
that this conclusion applies to many regression problems, since in many re-
gression problems the probabilistic uncertainty will, to some extent, have
similar characteristics as in the regression problem studied in Section 6.1.

6.2.1 Generalized probabilistic fuzzy systems

A PFS for regression tasks can be seen as a special case of a fuzzy system
with rules given by (6.6). Or, in other words, a fuzzy system with rules
given by (6.6) can be seen as a generalization of a PFS for regression tasks.
This result is stated more precisely in the following theorem.

Theorem 6.1 A fuzzy system with rules given by (6.6) is equivalent to a
PFS for regression tasks if the following conditions are satisfied:

1. Both systems use the same number of rules a.

2. Both systems use the same antecedent fuzzy sets Aj (j = 1, . . . , a).

3. Both systems use the same number of parameters in a rule, i.e. m = c.

4. In both systems, corresponding parameters have the same value, i.e.
αj,k = pj,k (j = 1, . . . , a and k = 1, . . . ,m).

5. In the fuzzy system with rules given by (6.6), φ(y; αj,1, . . . , αj,m) is
defined as

φ(y; αj,1, . . . , αj,m) =
m∑

k=1

p(y|Ck)αj,k, (6.13)
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where the functions p(y|Ck) (k = 1, . . . , m) are defined in the same
way as in the PFS for regression tasks.

Proof: Notice that the theorem holds both for the reasoning mechanism in
(6.10) and (6.11) and for the reasoning mechanism in (6.12). First consider
the reasoning mechanism in (6.10) and (6.11). If the conditions in the theo-
rem are satisfied, then αk(x) given by (6.11) equals p̂(Ck|x) given by (3.5).
Using (6.13), it can then be seen that (6.10) and (3.12) provide the same
estimate p̂(y|x) of the conditional pdf p(y|x). Now consider the reasoning
mechanism in (6.12). If the conditions in the theorem are satisfied, then
φ(y; αj,1, . . . , αj,m) is given by (6.13) and equals p̂(y|Aj) given by (6.4). It
can then be seen that (6.12) and (6.5) provide the same estimate p̂(y|x) of
the conditional pdf p(y|x). This completes the proof of the theorem.

Because a fuzzy system with rules given by (6.6) can be seen as a gen-
eralization of a PFS for regression tasks, I will refer to a fuzzy system with
this type of rules using the term generalized PFS.

6.2.2 A simple experiment

In this subsection, a simple experiment is described in which a generalized
PFS was applied to the regression problem discussed in Section 6.1. In the
experiment, the normal distribution function was chosen for the function
φ(y; αj,1, . . . , αj,m) in the rules of the generalized PFS. This means that
φ(y; αj,1, . . . , αj,m) was given by (6.9). Furthermore, the reasoning mecha-
nism in (6.10) and (6.11) was applied in the system. For partitioning the
input space X, the same antecedent fuzzy sets A1 and A2 were used as in
Section 6.1. The mfs of A1 and A2 were therefore given by (6.2). Also, the
same data set was used as in Section 6.1. The parameters α1,1, α1,2, α2,1,
and α2,2 in the generalized PFS were estimated by maximizing the likeli-
hood of the data set. Since α1,2 and α2,2 represented standard deviations,
the constraints α1,2 > 0 and α2,2 > 0 were imposed. Maximization of the
loglikelihood function was performed using the function fmincon in MAT-
LAB’s optimization toolbox. The standard parameter settings of this func-
tion were used, except that the maximum number of function evaluations
was increased to 10,000 and that the medium-scale optimization algorithm
was chosen instead of the large-scale optimization algorithm. The initial
values of α1,1 and α2,1 were drawn from a uniform distribution between 0
and 10, and the initial values of α1,2 and α2,2 were drawn from a uniform
distribution between 0 and 2.

The experiment was repeated ten times using different initial values of
the parameters αj,k. In nine experiments, the optimization algorithm found
the parameter values α1,1 = 0.0256, α1,2 = 1.0014, α2,1 = 9.9770, and
α2,2 = 1.0006. These values were very close to the values α1,1 = 0, α1,2 = 1,
α2,1 = 10, and α2,2 = 1 that would have resulted in a perfect estimate of the
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function f(x) in (6.1). In one experiment, the optimization algorithm found
the parameter values α1,1 = −0.2762 ·106, α1,2 = 8.4147 ·106, α2,1 = 457.36,
and α2,2 = 0.0001. Clearly, these values did not result in a satisfactory
estimate of f(x). The results of the experiments indicate that appropriate
values for the parameters in a generalized PFS can be obtained by using the
ML criterion.
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Chapter 7

Conclusions and Future
Research

7.1 Conclusions

The main conclusions of this thesis are summarized below. The first con-
clusion addresses the first research question of the thesis, as formulated in
Section 1.3. The other conclusions relate to the second research question of
the thesis.

1. In general, fuzzy histograms have the same rate of convergence as ordi-
nary crisp histograms. This means that, in general, fuzzy histograms
are statistically quite inefficient. However, a special class of fuzzy his-
tograms, which includes fuzzy histograms that use triangular mfs, has
the same rate of convergence as kernel density estimators. This spe-
cial class of fuzzy histograms therefore is statistically quite efficient.
Since fuzzy histograms are computationally much more efficient than
kernel density estimators, fuzzy histograms can be used to combine a
high level of statistical efficiency with a high level of computational
efficiency.

2. The conditional probability method for estimating the probability pa-
rameters in a PFS [16, 18, 34] provides estimates that have unsatis-
factory statistical properties. As an alternative, the probability pa-
rameters in a PFS can be estimated using the criterion of maximum
likelihood. Finding maximum likelihood estimates of probability pa-
rameters is a convex programming problem.

3. In PFSs for classification tasks, the criterion of maximum likelihood
can be used for estimating both the probability parameters and the
antecedent parameters. In the experiments described in this thesis,
the maximum likelihood method gives good results.
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4. In many regression problems, it is questionable whether a PFS with
a limited number of rules has a satisfactory approximation accuracy.
A generalized PFS may have a better approximation accuracy, but
the rule base of such a system may also be more difficult to interpret.
Probabilistic fuzzy modeling in regression problems is an important
issue for future research.

7.2 Future research

There are two main issues for future research:

1. Concerning fuzzy histograms in a sample space R that is uniformly
partitioned, an important question that has not been addressed in this
thesis is what choice of mf µA in (2.33) is statistically most efficient.
It has been shown that the statistically most efficient choice of mf µA

must satisfy the condition P (µA) = 0, where P (µA) is given by (2.49).
However, within the class of all mfs that satisfy this condition, it is
not known which mf is statistically most efficient. Furthermore, the
small sample properties of fuzzy histograms may be studied in future
research. This can be done by using Monte Carlo simulation, which
has also been used for studying the small sample properties of other
nonparametric density estimators [27, 29].

2. The issue of probabilistic fuzzy modeling in regression problems de-
serves considerable attention in future research. The claim made in
this thesis that in many regression problems a PFS with a limited
number of rules does not have a satisfactory approximation accuracy
needs to be tested experimentally. If the claim turns out to be correct,
then an alternative approach to probabilistic fuzzy modeling in regres-
sion problems is needed. The idea of generalized PFSs may then be
further elaborated. However, since the interpretation of the rules in a
generalized PFS is relatively difficult, other approaches to probabilistic
fuzzy modeling in regression problems should also be considered.
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