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Chapter 1

Introduction

Since their invention, computers have been playing an ever increasing role
in our society. Nowadays, a lot of computers are interconnected by means
of networks, the largest of all being without doubt the global Internet. The
interconnection of computer systems has numerous advantages. Computer
users can communicate with each other simply, for instance via electronic
mail, bulletin boards, or so-called ‘chat’ applications. Businesses can work
together more easily, for instance via EDI. And information can be readily
accessible from numerous locations, to name but a few.

However, connecting computer systems makes them an easier target for
attacks!; physical access is no longer needed to manipulate a computer sys-
tem. With information being a valuable corporate asset, more and more
effort is being made to ensure the security of computer systems. Protective
security functions aim to prevent an incident from happening. A firewall,
for instance, limits the accessibility of a network or host. Only traffic that
complies with a certain policy, a number of predefined rules, is allowed to
pass.

In practice, however, it is nearly impossible to prevent all incidents from
happening. Regardless of the protective security measures that are applied,
incidents are likely to happen. The purpose of reactive security functions
is to minimize the effects of an incident while it is happening. After an
incident has taken place, corrective security functions are used to handle
the results of the incident. For instance, by restoring a backup of a compro-
mised system and prosecuting the attacker.

A special and important reactive security function is detection. Without
detecting an incident, you never know that you are or were under attack.
The result is that any further reactive and corrective security functions
are useless, for they rely on prior detection. More and more organizations
implement an Intrusion Detection System (IDS) to automate the detection
task. An IDS observes events on a network or host and whenever it suspects
an attack, it raises an alarm.

1An attack is an attempt to compromise the confidentiality, integrity, availability and/or
accountability of (the use of) information residing on a computer.

1



2 CHAPTER 1. INTRODUCTION

The ideal situation arises when an IDS detects all intrusions, and reports
only real intrusions, i.e. raises no false alarms. In this ideal situation, the
output of an IDS is readily usable, without the need of any significant fur-
ther analysis by the user. This output then gives an instant overview of
which attacks occur where in the network, and how severe these attacks
are. However, this ideal situation is not yet occurring - and perhaps never
will exist. This means that, with respect to the ideal situation, current
IDSs suffer from a number of problems. One of the biggest problems is the
high number of false alarms. Another big problem is the high number of -
legitimate - alarms that tends to result from an attack. A lot of research is
needed and carried out to evolve IDSs towards the ideal situation. Part of
this research is in the direction of resolving the above mentioned problems
with the high number of alarms in general, and false alarms in particu-
lar. A research area that seems particularly promising in this direction is
the application of multisensor data fusion techniques to intrusion detec-
tion. Multisensor data fusion is a framework that enables the combination
of data from multiple, possibly heterogeneous, sensors. When applied to
intrusion detection, data originating from different types of IDSs are com-
bined. Based on this combined data, hopefully better decisions can be made
regarding the (non)existence of an attack, and the current situation as a
whole, resulting in less false alarms.

Bass [Bas00] describes a process model for fusion-based Intrusion Detection
Systems. It also includes a brief overview of the functionality of a fusion-
based IDS. A number of research projects have started to implement IDSs
using data fusion techniques. However, a lot of these research projects seem
to use a rather ad-hoc approach, and focus on the implementation. Besides
the process model and overview of functionality by Bass, there is no clear
picture available of what a good, generic architecture of a fusion-based IDS
should look like.

Based on these observations, it seems important to start a systematic anal-
ysis and to develop a generic architecture for fusion-based IDSs. Such
an architecture is an elaboration on the process model and functionality
overview from [Bas00], and provides another framework to think and talk
about fusion-based Intrusion Detection Systems. While there are numerous
advantages of having an architectural description of a system - it enables
easy adoption, reusability, and provides an important design step towards
implementation - this thesis concentrates on a more specific goal. The goal
of this thesis is to solve, at least conceptually, the current problems with the
high number of false and legitimate alarms, by deriving a generic architec-
ture of a fusion-based Intrusion Detection System. As indicated earlier,
such an architecture can also aid in further development and implementa-
tion of a fusion-based IDS.

The actual implementation of IDS fusion algorithms and eventually a com-
plete fusion-based IDS is not covered by this thesis, and is the logical next
step - although research is already performed in this area. Instead of fo-
cussing on a specific implementation, this thesis focusses on a - more ab-
stract - generic architecture for fusion-based intrusion detection. Hence,



the character of this thesis remains analytical. The lack of a concrete im-
plementation of the derived generic architecture in this thesis, is mainly
due to time constraints. To enable at least some preliminary evaluation of
the architecture, a test case is presented. The architecture is then applied
to this test case. This shows on a conceptual level how a fusion-based IDS
handles such a case, as well as the result thereof.

This thesis relies heavily on data fusion theory - to which the reader is in-
troduced in Chapter 3 - and uses [Bas00] as a starting point. An elaboration
on the functionality overview in [Bas00] provides a detailed functional-level
analysis of a fusion-based IDS. The fundamental issues in building a data
fusion system, as outlined by Hall and Llinas [HL971?, are used as a guide-
line throughout this thesis. Finally, with the help of fusion architecture de-
scriptions from fusion theory, and considering the results of the performed
analysis, an architecture for fusion-based IDSs is derived.

The remainder of this thesis is divided into four chapters. Chapter 2 pro-
vides an overview of the workings of, and problems with, current IDSs, and
lists the state of the art in IDS interoperability and data fusion techniques
applied to IDS. In Chapter 3 the reader is introduced to multisensor data
fusion theory. In Chapter 4, the above methodology is used to present an ar-
chitecture for fusion-based Intrusion Detection Systems. That chapter also
presents a test case to evaluate the developed architecture. The last chap-
ter, Chapter 5, states the conclusions of this thesis and points to possible
further research in this area.

2These fundamental issues can be found in Section 3.5.



CHAPTER 1. INTRODUCTION



Chapter 2

Intrusion Detection
Systems

This chapter describes the need for Information Security and the roles that
Intrusion Detection and Intrusion Detection Systems have. It turns out
that current Intrusion Detection Systems suffer from a number of prob-
lems. Solutions to these problems are active research topics for numerous
researchers. A particular research area is the cooperation between individ-
ual Intrusion Detection Systems. An overview of research performed in this
area is given and evaluated. This evaluation leads to the statement of the
goal of this thesis.

2.1 Information Security

Like other business assets, information has value to an organization. An or-
ganization’s information should therefore be appropriately protected. The
British Standard Institution defines Information Security as the preserva-
tion of three features of information [BSI0O]:

1. Confidentiality - ensures "that information is accessible only to those
authorized to have access”;

2. Integrity - safeguards "the accuracy and completeness of information
and processing methods”;

3. Availability - ensures "that authorized users have access to informa-
tion and associated assets when required”;

Ubizen adds another feature to this list, concerning the usage of informa-
tion [Ubi00]:

4. Accountability - ensures that “an action (can) be linked without doubt
to its initiator”.
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Preservation of these four features of information is the goal of information
security. In other words, confidentiality, integrity, availability and account-
ability are the four security requirements. To satisfy the security require-
ments, security services can be used. Stallings [Sta99] identifies six security
services:

1. Confidentiality: the protection of transmitted data from passive at-
tacks (eavesdropping);

2. Authentication: assures that a communication is authentic;

3. Integrity: assures that messages are received as sent, with no dupli-
cation, insertion, modification, reordening or replays;

4. Non-repudiation: prevents sender and receiver from denying a trans-
mitted message;

5. Access Control: limits access to systems and applications;

6. Availability: prevents or recovers from loss of availability.

Security services are provided by implementations of controls [BSI00] or
security mechanisms [Sta99]. Security services, and hence the controls
that provide them, can be classified by means of security functions [Ubi00].
A security function is a group of security services related to a main do-
main of action. Multiple security functions can again be grouped together,
distinguishing between protective, reactive and corrective functions. This
distinction is based on the time, relative to an incident, that the corre-
sponding security functions apply. An overview of security functions, taken
from [Ubi00], is given below:

1. Protective security functions apply before an incident has happened:

(a) prevention aims to
e prepare the means and resources to fight the future possible
aggression,;
e prepare the organization to face and enforce the security
strategy.
(b) deterrence aims to
e rise the risk for the aggressor to be detected, identified and
prosecuted;
e lure the aggressor placing ’decoys’ or traps he’ll fall in;
e prepare tools to trace the aggressor and possibly attack him
back.
(c) protection aims to

e lower the probability of, and the vulnerability of the system
to accidental incidents;
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e restrain the access possibilities to the system, its functions
and its data;

e increase the required resources and level of experience to
break into the system.

2. Reactive security functions apply during an incident:

(a) detection aims to

e immediately allow the most adequate reaction to an incident
by detecting it and alerting the appropriate staff.

(b) containment aims to

e avoid the extension or propagation of the incident;

e reduce the direct and immediate consequences of the inci-
dent.

(c) intervention aims to

e stop the incident;

e reduce the direct and immediate consequences of the inci-
dent.

3. Corrective security functions apply after an incident took place:

(a) recovery aims to

e reactivate and operate the system even in degraded condi-
tions;
e reduce the indirect consequences of the incident.
(b) restoration aims to
e reactivate and operate the system in its normal configura-
tion;
e recuperate lost data and transactions by using backups.
(c) compensation aims to

e reduce the long term consequences of the incident.

2.2 Intrusion Detection and its Problems

An intrusion is defined as any set of actions that attempt to compromise
the integrity, confidentiality or availability of a resource [YpeO1l], or ac-
countability of the use of a resource [Ubi00], relative to a security policy.
Intrusion Detection (ID) is the process of monitoring computer networks
and systems for violations of the security policy [YpeO1].

Ypey lists the benefits of Intrusion Detection [YpeO1l]. In parentheses are
the security functions that the benefit subserves:

e deterrence (deterrence);
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detection (detection);

damage assessment (recovery and restoration);

attack anticipation (prevention);

prosecution support (compensation).

In practice, the emphasis of Intrusion Detection lies on the detection func-
tion.

The definition of Intrusion Detection does not indicate how the detection
should take place. Intrusion Detection can be accomplished manually, for
instance by examining log files for signs of intrusions. Intrusion Detection
can also be automated. A system that performs automated Intrusion De-
tection is called an Intrusion Detection System (IDS) [Col] .

Intrusion Detection Systems logically consist of three functional compo-
nents [AT00]:

e sensors: responsible for collecting data;

e analyzers: responsible for analyzing data and determining if an intru-
sion has occurred;

e user interface: enabling a user to view the output or control the be-
havior of the system.

In current IDSs, the analyzer makes a decision - based on the data collected
by the sensors - that puts the IDS in one of two states. At any moment the
state of an IDS is either positive, indicating an intrusion, or negative, not
indicating an intrusion. The analyzer’s conclusion, and hence the state the
IDS is in, may be either #rue, meaning the state of the IDS is appropriate,
or false, meaning the state of the IDS is inappropriate. This means that
there are four possible classifications of the state of an IDS:

e true positive means the IDS appropriately indicates an intrusion;

e true negative means the IDS appropriately doesn’t indicate an intru-
sion;

e false positive means the IDS inappropriately indicates an intrusion;

e false negative means the IDS inappropriately doesn’t indicate an in-
trusion.

The IDS should maximize the true states, and at the same time minimize
the false ones [YpeO1].
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IDSs can be classified based on the location of the sensor [YpeO1, Sch00,
MCAO00]. An IDS that has a sensor that monitors a host is called a Host-
based IDS (HIDS). A HIDS’s sensor collects data from sources internal to
an individual system, such as operating system audit trails and system
logs. When the IDS’s sensor monitors a network instead, collecting net-
work packets, the IDS is called a Network-based IDS (NIDS). A NIDS can
typically monitor a complete (segment of a) network. A HIDS is per defini-
tion confined to a single host.

High-speed networks, switched networks and encrypted traffic can severely
limit the view of a NIDS. Since a NIDS looks at all traffic on a network
segment, a high-speed network can simply overwhelm it and force it to drop
packets. A switched network, unlike a traditional shared network, does not
send all data to all hosts. This enhances performance, but also prevents a
NIDS from looking at traffic not directed to itself. Some switches provide
a so-called spanning port to solve this problem. When enabled, the switch
copies all data that passes through it to this spanning port. Encryption in
itself does not limit the visibility of the traffic. It is however impossible
to analyze it until it has been decrypted on the target host, often within a
specific application.

While a HIDS does not necessarily suffer from these problems, Host-based
Intrusion Detection has some other disadvantages. Since a HIDS has a lim-
ited view of only one host, one must be installed on every system that should
be monitored. The presence of a HIDS on a system can affect the system’s
performance. Furthermore, when a system is successfully compromised the
attacker might be able to shut off the HIDS.

Another classification is based on the detection mechanism of the ana-
lyzer [YpeO1, Sch00, AT00, MCAOO]. A distinction is made between misuse
detection and anomaly detection. Misuse detection is the easiest mecha-
nism. It uses pattern-matching techniques to determine if the observed
data corresponds to a known attack. This is much like the technique that
most anti virus software uses. The number of false positives is relatively
low when compared with anomaly detection, but since signatures can match
both data belonging to intrusive and data belonging to non-intrusive behav-
ior false positives are still quite common. The main disadvantage of misuse
detection is that it can at best detect intrusions that are at least in some
way equivalent to a previously known pattern. It can not detect a truly
novel attack. This means that the list of signatures, like that of anti virus
software, must be constantly updated and the IDS is in general always one
step behind the attackers.

Anomaly detection views Intrusion Detection as a pattern recognition prob-
lem, rather than a signature matching problem. It assumes that all in-
trusive actions are necessarily anomalous, and uses a definition of normal
activity. The concept of normal activity can for instance be modelled us-
ing statistical techniques. Anything that deviates from normal activity is
deemed a possible intrusion. An example of such a deviation is a user who
normally only logs in during business hours and suddenly starts to log in
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at night from a remote location. This might indicate that the user’s account
has been compromised, although it could just as well be the user himself
making legitimate use of his account, for instance because of a project near-
ing a deadline. With anomaly detection, the IDS can detect new attacks,
for in general they will deviate from normal behavior. The amount of false
positives, however, tends to be very high with this mechanism. There are
some other problems related to anomaly detection. There is for instance
the possibility that an intrusion takes place while the IDS is modelling
normal behavior. This results in the intrusion being considered normal.
Furthermore, an intrusion might look similar to normal behavior and thus
be missed. Yet the main problem with anomaly detection remains the high
rate of false positives.

2.3 Cooperating IDSs

Section 2.2 outlines some of the intrinsic problems with the different types
of current IDSs. These problems include the inherently limited view of a
HIDS, the inability of a NIDS to see all traffic, the false negatives that
result from misuse detection, and the high rate of false positives - which
tends to be even higher with anomaly detection. To be able to solve at least
some of these problems, IDSs should be able to cooperate. When there is
cooperation between different types of IDSs, the advantages of each type
can be combined and the disadvantages minimized [M*T01]. Current IDSs
are often proprietary, closed systems that are not able to cooperate very
welll.

2.3.1 Interoperability

The lack of interoperability has been recognized, and in 1997 the US gov-
ernment’s Defense Advanced Research Projects Agency (DARPA) initiated
the Common Intrusion Detection Framework (CIDF) research project [Kot02,
A100]. CIDF contains the Common Intrusion Specification Language
(CISL), which is a Lisp-like language that is used to represent intrusion
data and communicate this data between IDS components. Although CISL
is quite powerful, and vendors were invited to participate in the CIDF
project, IDS vendors never showed much interest in it. Development of
the project ceased in 1999.

The CIDF project triggered the creation of a new working group within the
Internet Engineering Task Force (IETF) [Kot02, IDW, AT00]. The Intru-
sion Detection Working Group (IDWG) has three output goals:

10f course, there are exceptions to this rule: Snort [Sno], for instance, is a well-known open
source Intrusion Detection System.
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1. A requirements document, which describes the high-level functional
requirements for communication between IDSs and requirements for
communication between IDSs and management systems, including
the rationale for those requirements;

2. A common intrusion language specification, which describes data for-
mats that satisfy the requirements;

3. A framework document, which identifies existing protocols best used
for communication between IDSs, and describes how the devised data
formats relate to them.

Unlike CIDF, which was a research project, the IDWG tries to establish a
standard for IDS interoperability. At the time of this writing, the IDWG
has submitted the requirements, language and transport documents to the
Internet Engineering Steering Group (IESG) for consideration as Request
for Comments (RFCs). One of the IDWG’s proposals is the Intrusion Detec-
tion Message Exchange Format (IDMEF). This is a data format that IDSs
can use to report alerts. It includes an object-oriented data model and XML
based implementation. IDMEF is independent of the communication pro-
tocol that is used.

Another IDWG proposal is the Intrusion Detection Exchange Protocol, or
IDXP. IDXP is an application-level protocol that provides for the exchange
of IDMEF messages, unstructured text and binary data. It is in part spec-
ified as a Blocks Extensible Exchange Protocol (BEEP) profile. BEEP is
a generic application protocol framework. It does not rely on any particu-
lar transport protocol and maps easily to TCP/IP. Through the use of other
profiles, BEEP allows features such as authentication, confidentiality and
‘tunneling’ through firewalls.

2.3.2 Intelligent Attack Analysis and Data Fusion

Allen et al. [AT00] concludes that one of the most serious problems with
current IDSs is the high false alarm rate, in other words the high number
of false positives. Every declared intrusion requires time to investigate, so
a large number of false positives costs a lot of time to investigate. Also,
a large number of false positives can distract the attention from a true
positive. This means that a true positive might accidentally be ignored.
Furthermore, the number of false positives might become so high that sys-
tem administrators simply ignore all warnings. The conclusion that this is
one of the most serious problems is endorsed by the observation of Axelsson
that the problem of base-rate fallacy applies to Intrusion Detection [Axe99].
This means that even a small false positive rate has a significant negative
impact on the probability that an alarm indicates a real intrusion. See also
Appendix A.

An August 2001 survey by Information Security Magazine [ISM01] restates
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4. If you could improve ONE aspect about your current IDS, what would it be?

Intelligent Attack Analysis | 48%

Reduce False Positives ’ 27%

Improved Console -8%
Simplify Tech Complexity . 6%

Cost DS%
Other .5%
0

10 20 30 40 50

Figure 2.1: Question from an Information Security Magazine survey (from
[ISMO1]).

the conclusion of Allen et al. When asked to name one aspect of IDSs to be
improved, 27 percent of the 300 interviewed information security profes-
sionals named the reduction of false positives. Another 48 percent named
a more intelligent attack analysis (see also Figure 2.1). This also implies
a need for reduced false positives, since a more intelligent attack analy-
sis provides not only a means to detect sophisticated attacks, but also to
reduce the false positive rate [AT00]. This means that 75 percent of the in-
terviewed information security professionals either implicitly or explicitly
named the reduction of the high rate of false positives to be at least part of
their primary wish of improvement of IDSs.

Several advanced research areas have been identified, each of which im-
proves current IDSs by enabling a more intelligent analysis of attacks and
attack data [AT00]. Examples are the application of machine learning al-
gorithms - for instance, example classification, neural nets, and genetic al-
gorithms - and the use of state transition diagrams and petri net modelling.
Another example is the application of multisensor data fusion techniques.
The main idea behind multisensor data fusion is that the combination of
data from multiple sensors enhances the quality of the resulting informa-
tion. A precise definition is given in Chapter 3. That chapter also contains
an introduction to multisensor data fusion theory. When applied to intru-
sion detection, data fusion enables the combination of, and intelligent rea-
soning with, the output of different types of IDSs. By making inferences
from the combined data, a multiple level-of-abstraction situation descrip-
tion emerges. Combination of IDS data is part of the solution to the problem
with high false positive rates [AT00, Bas00].

Bass argues that multisensor data fusion provides an important functional
framework for building next generation IDSs. Bass also presents an Intru-
sion Detection Data Fusion model, based on the Joint Directors of Labo-



2.3. COOPERATING IDSS 13

ratories (JDL) Functional Data Fusion Process Model. The JDL model is
described in more detail in Section 3.2. The Intrusion Detection Data Fu-
sion model is shown in Figure 2.2. The four levels correspond to the levels
defined in the JDL model. Level 1 fusion results in a collection of objects
representing the observed data, the object base. This object base is further
analyzed by the Level 2 and Level 3 processes, to form the situation base.
Such a next generation, fusion-based IDS would have an inference hierar-
chy as depicted in Figure 2.3. At the lowest level of inference, a fusion-
based IDS indicates the existence of an intrusion. At the highest level of
inference, such an IDS presents an analysis of the threat of the current
situation [Bas00].

There are a number of (research) projects that have started to implement
multisensor data fusion techniques. One of these projects is EMERALD, an
acronym for ‘Event Monitoring Enabling Responses to Anomalous Live Dis-
turbances’ [VS01]. It couples sensors, so the state of one sensor can adjust
another. This suppresses false positives and increases sensitivity EMER-
ALD wuses an extension of the IETF/IDWG IDMEF to introduce amongst
others the concept of an alert thread. An EMERALD alert thread consists
of alerts that originate from the same sensor and belong to the same attack.
A second concept that is used is that of a meta alert. A meta alert is com-
posed of one or more alerts that may originate from multiple heterogeneous
sensors. A probabilistic alert fusion algorithm looks at the similarity of two
alerts, usually a new alert and a meta alert. The overall similarity of two
alerts is based on the similarity and expected similarity of their features.
Based on the overall similarity the system can decide to fuse the two alerts.
This fusion usually involves the merging of the features of the two alerts.

Another project that uses multisensor data fusion techniques is the french
MIRADOR (Mécanismes de détection d’Intrusion et de Réaction aux At-
taques en DOmaine militaiRe) project [Cup01]. Cooperation between mul-
tiple IDSs is achieved by means of a cooperation module. This module has
five main functions:

1. alert base management receives alerts from multiple IDSs and stores
them into a relational database;

2. alert clustering accesses the database and generates alert clusters
that correspond to the same occurrence of an attack;

3. alert merging creates for each cluster a new, global alert that repre-
sent the information in that cluster;

4. alert correlation correlates global alerts in order to create candidate
plans that correspond to the intrusion plan that is executed by an
intruder;

5. intention recognition extrapolates the candidate plans to anticipate
the intruder intentions.
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The alert clustering function uses a similarity function to determine the
similarity between two alerts. Instead of a probabilistic approach like EMER-
ALD, MIRADOR uses an expert system approach in which the similarity
requirements are specified using expert rules. The result of the alert merg-
ing function is comparable to EMERALD’s meta alerts.

Burroughs, Wilson and Cybenko [BWCO02] presents yet another approach.
It considers intrusions from an attacker centered viewpoint, instead of the
more common network centered viewpoint. By using a Bayesian multiple
hypothesis tracking algorithm it tracks and identifies attackers.

The projects referred to in this section do not focus on a generic architec-
ture of fusion-based IDSs, but rather on the implementation of data fusion
techniques and algorithms.

2.4 Evaluation and Thesis Goal

Currently, IDSs are fairly rigid and rather ‘dumb’. They lack the ability to
make a distinction between important and less-important events. Together
with the large number of false positives this often results in a huge amount
of alerts that can easily overwhelm the user.

The application of multisensor data fusion to Intrusion Detection is part of
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the solution to these problems. The goal of this thesis is to

e discuss the requirements of a fusion-based Intrusion Detec-
tion System;

e describe a good architecture of a fusion-based Intrusion De-
tection System. In other words an architecture that con-
tributes to

- elimination of false positives;

— a more intelligent IDS, in the sense that the IDS partly
automates the handling of true positives - thereby re-
ducing the number of alerts the operator of the system
has to inspect as well as prioritizing these alerts.

An architecture description leads to further insight in the fundamental de-
sign issues of fusion-based Intrusion Detection Systems. Besides, it pro-
vides a guideline for the application of multisensor data fusion techniques
to the area of Intrusion Detection and the development of fusion-based In-
trusion Detection Systems.

2.5 Summary

Information security is defined as the preservation of confidentiality, in-
tegrity and availability of information, and accountability of the usage of
information. To achieve a certain level of information security, controls
must be selected and implemented. Each control corresponds to at least
one security function.

Intrusion Detection is the process of monitoring computer networks and
systems for violations of the security policy. As a control, Intrusion Detec-
tion benefits the security functions deterrence, detection, recovery, restora-
tion, prevention and compensation, with the emphasis on detection. In-
trusion Detection Systems are systems that perform automated Intrusion
Detection.

Current IDSs logically consist of sensor, analyzer and user interface com-
ponents. The conclusion of an analyzer component puts the IDS in either
a positive state, indicating an intrusion, or a negative state, indicating no
intrusion. The state of an IDS can be true (appropriate) or false (not appro-
priate).

Based on the location of the sensor, a distinction is made between Network-
based (NIDS) and Host-based (HIDS) IDSs. Another classification is based
on the detection mechanism of the analyzer component. Misuse detection
uses pattern-matching techniques and can only detect previously known
attacks. Anomaly detection uses pattern-recognition techniques and a con-
cept of ‘normal behavior’. It relies on the assumption that all intrusions are
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anomalous actions. Anomaly detection tends to have a high false positive
rate.

Cooperation between IDSs enables the combination of advantages and min-
imizes the disadvantages of different approaches. The CIDF project was
started by DARPA and addressed the lack of interoperability between IDSs.
It triggered the creation of the IETF/IDWG that tries to establish a stan-
dard for IDS interoperability.

Multisensor data fusion provides an important functional framework for
building next generation fusion-based IDSs. A number of (research) projects
implement multisensor data fusion techniques. EMERALD uses a proba-
bilistic approach to specify similarity between alerts, whereas MIRADOR
uses an expert system approach to accomplish this. Burroughs, Wilson and
Cybenko presents a Bayesian multiple hypothesis tracking algorithm to
track and identify attackers.

Unlike other research projects, this thesis does not focus on the implemen-
tation of multisensor data fusion techniques. Instead, it discusses the re-
quirements and derives a good architecture of fusion-based Intrusion De-
tection Systems. In order for the architecture to be considered ‘good’, it
should at least enable the elimination of false positives, and contribute to a
more intelligent attack analysis.
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Chapter 3

Multisensor Data Fusion

This chapter provides an introduction to multisensor data fusion theory.
It describes the history and some application domains of multisensor data
fusion, as well as a number of (process) models and architectures.

3.1 History of Multisensor Data Fusion

Multisensor data fusion is about the synergistic use of sensory data from
multiple sensors to extract the greatest amount of information possible
about the sensed environment [WL90]. It is a rapidly evolving field based
on a concept that is hardly new. The fusion of multisensory data is nat-
urally performed by animals and humans. By using multiple senses they
improve their ability to survive [HL97]. A barn owl for instance fuses vi-
sual and auditory information to accurately locate mice under very low light
conditions [Ant95].

There are several definitions of data fusion. The definition that is used
throughout this thesis is the definition given by Wald [Wal99]:

Data fusion is a formal framework in which are expressed means
and tools for the alliance of data originating from different sour-
ces. It aims at obtaining information of greater quality; the exact
definition of ‘greater quality’ will depend upon the application.

Unlike most other definitions, this definition focusses on a conceptual frame-
work for data fusion, instead of on the means and tools themselves. Note
that this definition implies that, although the fusion process itself incorpo-
rates decision making, the subject of a data fusion system is not decision
making, but rather providing information.

The first reports of the automation of data fusion functions are from the

late 1970s. These reports referred to military systems. Throughout the
1980s, a lot of research was done with regard to data fusion. This research
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was done mainly by the three U.S. military services, and much of its results
were published in open literature. In 1986 the U.S. Department of Defense
(DoD) established the Data Fusion Subpanel (DFS), a subpanel of the Joint
Directors of Laboratories (JDL) Technical Panel for C3. The establishment
of the JDL/DFS was a result of the concern that the three services were
duplicating efforts. In the late 1980s a small number of military data fusion
systems was operational. Since then, data fusion technology has rapidly
advanced. What started as a loose collection of related technologies became
an emerging engineering discipline [WL90, HL97, Yan99].

While the first data fusions methods where primarily applied in the mil-
itary domain, in recent years these methods have also been applied to
problems in the civilian domain. Examples of military applications are
ocean surveillance, air-to-air defense, surface-to-air defense, battlefield in-
telligence, surveillance, and target acquisition, and strategic warning and
defense. These applications focus on the location, characterization, and
identification of entities. Civilian applications include the implementation
of robotics, automated control of industrial manufacturing systems, devel-
opment of smart buildings, and medical applications [HL97]. A more recent
idea is the application of multisensor data fusion techniques to the area of
information security [Sem99, A*00, Bas00].

3.2 The JDL Functional Data Fusion Process
Model

One of the results of the JDL/DFS efforts was the development of a data
fusion process model. It provides a high-level functional view of the data
fusion process. The JDL Functional Data Fusion Process Model, depicted
in Figure 3.1, consists of eight components [WL90, Hal92, Ant95, HL97]:

e Sources provide input to the data fusion system. Possible sources are
local sensors, distributed sensors, human input and a priori informa-
tion from databases. Multiple sensors that are from the same type are
called commensurate sensors, as opposed to noncommensurate sen-
sors that are of different type.

e Source Pre-Processing is sometimes referred to as ‘Level 0 Processing’
or ‘Process Assignment’. It covers initial signal processing and allo-
cates data to appropriate processes. It enables the data fusion process
to focus on data that applies most to the current situation and reduces
the data fusion system load.

e Level 1 Processing - Object Refinement fuses sensor information to
achieve a refined representation of an individual entity. It usually
consists of four functions:
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Figure 3.1: JDL Functional Data Fusion Process Model

— Data Alignment aligns data received from multiple sensors to a
common reference frame;

— Association combines, sorts or correlates observations from mul-
tiple sensors that relate to a single entity;

— Tracking involves the combination of multiple observations of po-
sitional data to estimate the position and velocity of an entity;

— Identification combines data related to identity to refine the esti-
mation of an entity’s identity or classification.

Level 1 fusion benefits from the use of heterogeneous sensors, the em-
ployment of spatially distributed sensors and the application of non-
sensor derived information.

e Level 2 Processing - Situation Refinement develops a contextual de-
scription of relations between entities. It focusses on relational in-
formation to determine the meaning of a group of entities. It consists
of object aggregation, event and activity interpretation and eventually
contextual interpretation. Its results are indicative of hostile behavior
patterns. It effectively extends and enhances the completeness, con-
sistency, and level of abstraction of the situation description produced
by Object Refinement.

e Level 3 Processing - Threat Refinement analyzes the current situation
and projects it into the future to draw inferences about possible out-
comes. It identifies potential enemy intent and friendly force vulnera-
bilities. Threat refinement focusses on intent, lethality, and opportu-
nity.

e Level 4 Processing - Process Refinement is a meta-process that aims to
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optimize the overall performance of the fusion system. It consists of
four key functions:

— Performance evaluation provides information about real-time con-
trol and long-term performance;

— Process control identifies the information needed to improve the
multilevel fusion product;

— Source requirements determination determines the source spe-
cific requirements to collect relevant information,;

— Mission management allocates and directs sources to achieve mis-
sion goals.

Part of the process refinement, in particular mission management,
may be outside the domain of specific data fusion functions. It is there-
fore partially placed outside the fusion process in Figure 3.1.

e The Database Management System provides access to, and manage-
ment of data fusion databases. It is the most extensive support func-
tion for data fusion processing. Its functions include data retrieval,
storage, archiving, compression, relational queries, and data protec-
tion.

e The Human-Computer Interface allows human input into the data fu-
sion process. It is also a means of communicating data fusion results
to a human operator.

Antony [Ant95] presents three interpretations of levels 1, 2, and 3 in the
JDL model. These interpretations are depicted in Figure 3.2. The first in-
terpretation associates the three levels with input information classes. The
second interpretation associates them with the answers to the questions
where, when, what, why, how and so what. The third one associates the
levels with the information product classes. These interpretations resem-
ble the multiple levels of abstraction of the input, the fusion process, and
its products.

Antony compares the multiple level-of-abstraction situation description
that results from data fusion with a jigsaw puzzle [Ant95]. Individual puz-
zle pieces represent low level-of-abstraction information, such as color or
texture. When several pieces are combined they might represent an object,
such as a tree. The whole puzzle contains several aggregate objects, for in-
stance a forest. When one starts with solving the puzzle, there is very little
context, since there are no pieces in place yet. This means that a single
piece can be interpreted in multiple ways. A blue piece, for example, could
represent sky as well as water. Hence placing the pieces is quite difficult.
At this stage, solving the puzzle is analogous to level 1 fusion. With the
placement of more and more pieces, objects (‘level 1’) and groups of objects
(level 2’) emerge. This makes placement of new pieces considerably easier.
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One might even start to look for specific missing pieces (‘level 4’)!. Eventu-
ally, although some pieces might be missing, the whole scene (situation) is
adequately described by the pieces that are in place.

3.3 Antony’s Biologically Motivated Fusion Pro-
cess Model

Antony [Ant95] presents another, biologically motivated, data fusion pro-
cess model. As mentioned in section 3.1, humans and animals naturally
perform data fusion. The biologically motivated fusion process model relies
on the distinction between short-term, medium-term, and long-term mem-
ory, and associates the primary elements of data fusion with them. Where
short-, medium-, and long-term memory are associated with the durability
of information in biological systems, short-, medium- and long-term knowl-
edge are associated with the durability of information in artificial data fu-
sion systems.

A fusion system’s short-term declarative knowledge is represented by the
sensor observables. In general short-term knowledge is dynamic, perish-
able, and highly context-sensitive. This means that it implicitly depends
on the current state of the fusion process, the output of nonprimary sen-
sors, or non-sensor derived domain knowledge. This is in contrast with
context-insensitive information, which has none of the aforementioned de-
pendencies.

The system’s medium-term declarative knowledge is represented by the
current situation description at all levels of abstraction. It is the system’s
current relevant perception? of the environment. Although medium-term
knowledge is learned and forgotten at a slower rate than short-term knowl-
edge it is still relatively dynamic, perishable and context-sensitive. As a
result of their context-sensitivity, medium-term and short-term knowledge
require interpretation within context.

The fusion system’s long-term declarative knowledge is represented by its
factual knowledge base. The system’s long-term procedural knowledge is
represented by its procedural knowledge-base. Long-term knowledge is
relatively non-perishable information that can be either context-sensitive,
specialized, knowledge, or context-insensitive knowledge.

Long-term declarative knowledge can be further classified. It is considered
to be either specific or general declarative knowledge. Specific declarative

INote that there is no analogy for ‘level 3’ in this jigsaw puzzle metaphor. This is due to the
fact that, once the puzzle (situation description) is complete, there is no need to analyze it any
further to assess threats, for instance. The level 2 product is the highest abstraction sought
for.

2Note that there can be a disparity between perception and reality. This is due to the
inherent uncertainties in the data fusion process.
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knowledge represents static facts, transformations or templates. General
declarative knowledge does not represent a set of fixed attributes, but can
characterize the value of, and relationships among individual attributes.
Hence specific long-term declarative knowledge supports only non-model-
based reasoning, whereas general long-term declarative knowledge sup-
ports model-based reasoning.

Figure 3.3 is taken from [Ant95] and provides a schematic overview of the
biologically motivated fusion process model. The terms ‘Update’ and ‘Learn-
ing’ describe analogous operations. Distinct terms are used to indicate the
difference of the timescale on which the knowledge is learned and forgotten.

Antony further decomposes fusion processes in three conceptually separate
processes. These processes are:

1. Composition of knowledge sources;
2. Evidence accumulation;

3. Decision making.

Figure 3.4 shows this decomposition.

Knowledge composition brings together the knowledge sources - short-term,
medium-term, and long-term - using various numeric and symbolic tech-
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Figure 3.4: Decomposition of Fusion Processes (adapted from [Ant95]).

niques. Evidence accumulation, or evidence aggregation, uses these knowl-
edge sources and combines and reasons with - possibly uncertain - data,
rules, and decisions. The decision function uses the accumulated evidence
to make a certain decision.

3.4 Data Fusion Architectures

A fundamental issue regarding data fusion systems is the question where
in the data flow the fusion must take place, or in other words the choice of
architecture. Hall and Llinas [HL97], as well as Hall [Hal92] describe three
architectural approaches to the fusion of information at level 1 in the JDL
fusion model. The first approach involves the fusion of raw sensor data,
and is called centralized fusion (with raw data), or data level fusion (see
Figure 3.5). It is the most accurate way of fusing data, but may also require
much communication bandwidth since all raw data must be transmitted
from the sensors to a central processing facility. The fusion of raw data is
possible if commensurate sensors are available.

Another possible architecture is centralized fusion with feature vector data
(see Figure 3.6). This is also called feature level fusion. In this architec-
ture, feature vectors rather than raw data are transmitted to the central
fusion process. The feature vectors are extracted from the raw data by the
sensors. Since the feature vectors are a representation of the raw data,
this approach inherently results in data loss. In practice, this is often less
problematic than it sounds. Compared with data level fusion, feature level
fusion has advantages that might outweigh the disadvantage of data loss.
Although there is some data loss, feature level fusion enables the fusion of
data from non-commensurate sensors and reduces the required communi-
cation bandwidth.

Autonomous fusion, or decision level fusion, is the third possible level 1
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fusion architecture (see Figure 3.7). Instead of outputting raw data or fea-
ture vectors, a sensor makes a decision based on its own single-source data.
This decision, a declaration of identity or estimation of position and/or ve-
locity, is the input for the fusion process. This too allows data from non-
commensurate sensors to be fused. There is significant data loss compared
with raw data fusion, and decision level fusion may result in a local rather
than a general optimized solution.

There is no ‘best’ architecture in general. The choice of architecture de-
pends on requirements and constraints, such as the available communica-
tions bandwidth, sensor characteristics, etcetera. For each application, the
architectural advantages and disadvantages must be weighed against each
other.

As described in section 3.2, the result of this level 1 fusion is interpreted
in the next levels to achieve situation and threat assessments. The fusion
processes involved in this next stages are more complex, since they typ-
ically use multiple types of expertise. Waltz and Llinas [WL90] present
three problem solving approaches involving multiple experts, or knowledge
sources. The three approaches are described as

e Opportunistic problem solving (see Figure 3.8(a)). Multiple experts
are (usually) collocated. They each monitor the problem state and
solution state and asynchronously contribute partial solutions to the
overall solution, applying pieces of knowledge at the most opportune
time;

e Communicative problem solving (see Figure 3.8(b)). The experts must
use some type of communication channel in order to share problem
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and solution state awareness, as well as to contribute their partial
solutions;

e Cooperative problem solving (see Figure 3.8(c)). Together the experts
interpret the problem states and develop partial solutions.

The problem solving approach that is probably most used in higher level
data fusion applications is ‘blackboard processing’. This is a special case
of opportunistic problem solving. All independent knowledge sources, or
experts, have access to a central blackboard. All communication and inter-
action between the knowledge sources takes place using this blackboard,
which is a global database containing the solution state. Each knowledge
source can use, change and create solution state data stored on the black-
board. The knowledge sources respond opportunistically to changes in the
blackboard, and are thus self-activating. At any given time a number of
knowledge sources might want to respond to the situation described on
the blackboard. A monitoring or control function is in general present to
mediate between the knowledge sources that want to respond. The con-
trol function itself can be on the blackboard, and hence be modified by
the knowledge sources. This control function has the ability to violate the
opportunistic problem solving characteristic of the blackboard approach.
Since the control function selects the knowledge source that may respond,
blackboard processing reflects a communicative rather than opportunistic
problem solving approach - although the model in itself is a form of oppor-
tunistic reasoning [WL90, Nii86]. The JDL model can be readily mapped to
the blackboard paradigm [Ant95].

3.5 Development of a Data Fusion System

Hall and Llinas [HL97] remark that, while there are numerous examples
of improved system performance by using multisensor data fusion, the im-
plementation of effective data fusion systems is not simple. For instance,
the combination of accurate with inaccurate data might produce worse re-
sults than the use of the accurate data alone. Seven questions are stated
regarding the fundamental issues that should be addressed when building
a data fusion system:

1. What algorithms and techniques are appropriate and optimal for a
particular application?

2. What architecture should be used?

3. How should the individual sensor data be processed to extract the
maximum amount of information?

4. What accuracy can realistically be achieved by a data fusion process?

5. How can the fusion process be optimized in a dynamic sense?
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Figure 3.9: Fusion system design process (adapted from [WL90])

6. How does the data collection environment affect the processing?

7. Under what conditions does multisensor data fusion improve system
operation?

A general structured fusion system design process is given by [WL90]. A
simplified version is depicted in Figure 3.9. Designing a fusion system must
start with a definition of the mission requirements. The mission require-
ments form a high level system specification. Next, the functional require-
ments of the data fusion system must be defined. Often, this requires de-
composition of the system into functional subsystems. The functional sub-
systems must satisfy the mission-level effectiveness requirements. Simula-
tions can be used to support the analysis of the effectiveness of the subsys-
tems.

After decomposition, the functional requirements for the sensor systems,

processing system, communications, and display system are specified. These
subsystems must satisfy the functional performance requirements. De-

sign of the subsystems results in the development of various requirements,

which must be satisfied during implementation.

This thesis focusses on part of this design process, namely:
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identification of the ‘mission’ requirements;

definition of functional requirements;

development of the processing system architecture;

effectiveness analysis by using test cases.

This limited focus is mainly due to time constraints.

3.6 Summary

Multisensor data fusion is a rapidly evolving field about the synergistic use
of data from multiple sensors. Its use in military systems was first reported
in the late 1970s. In recent years, data fusion methods are also applied to
problems in the civilian domain.

The JDL/DFS was established to coordinate the data fusion research per-
formed by the three U.S. military services. One of the results of its efforts is
the JDL Functional Data Fusion Process Model. The JDL model provides a
high-level functional view of the data fusion process.

The Biologically Motivated Fusion Process Model was developed by Antony.
It builds on the fact that humans and animals naturally perform data fu-
sion, and relies on the distinction between short-term, medium-term, and
long-term memory. Short-term, medium-term, and long-term knowledge
are associated with the durability of information in artificial data fusion
systems.

There are three types of level 1 fusion architectures, based on the posi-
tion of the fusion process in the data flow. The three architectures are
data level fusion, feature level fusion and decision level fusion. Higher
level fusion processes are more complex and make use of multiple knowl-
edge sources. There are three types of problem solving involving multiple
knowledge sources: opportunistic, communicative and cooperative problem
solving. Probably most used in higher level fusion is ‘blackboard process-
ing’, a special case of opportunistic problem solving.

The implementation of effective multisensor data fusion systems is not sim-
ple, and a number of fundamental issues should be addressed when devel-
oping such a system. Hall and Llinas describe these issues.



Chapter 4

Fusion-Based Intrusion
Detection Systems

This chapter provides a detailed description of fusion-based Intrusion De-
tection Systems. It starts with a discussion on the purpose of a fusion-based
IDS. Next, a functional-level analysis of a fusion-based IDS is presented.
Finally, a generic architecture is derived.

4.1 The Purpose of a Fusion-Based IDS

In Chapter 2, a number of problems with ‘traditional’ IDSs are outlined.
Amongst these problems, the high number of positives in general, and of
false positives in particular, are identified as major problems with these
IDSs. The application of multisensor data fusion to intrusion detection aids
in solving these problems.

Recall the definition of data fusion, stated earlier in Chapter 3:

Data fusion is a formal framework in which are expressed means
and tools for the alliance of data originating from different sour-
ces. It aims at obtaining information of greater quality; the exact
definition of ‘greater quality’ will depend upon the application.

This definition implies that

1. a fusion-based IDS should provide information. This means that deci-
sion making is not part of the tasks of a fusion-based IDS, apart from
decisions made in the fusion process itself. However, decision making
- either automated or manual - can be supported by the information
provided by a fusion-based IDS.

2. afusion-based IDS should provide information ‘of greater quality’ than
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information provided by a non-fusion-based IDS. The greater quality
of this information lies in

e reduction of the number of positives that must be inspected by
the operator of the system;

e elimination of false positives.

The positives that result from ‘traditional’ IDSs are in general too fine-
grained, too low-level. A high-level situation description is required to pro-
vide a coarser view. Compare this to the puzzle-solving metaphor described
in Section 3.2. The reports of ‘traditional’ IDSs are comparable with in-
dividual puzzle pieces. Sometimes a number of pieces are assembled, to
represent a port scan for instance. There may be duplicate pieces, when
multiple IDSs report the same observation. There may be pieces that do not
belong to the puzzle - false positives. But in general there is no adequate
picture of the puzzle, hence no overall understanding of the situation.

Burroughs argues that “it is not the attack but rather the attacker against
which networks must be defended” [BWCO02]. Burroughs therefore suggests
to perform intrusion detection from an attacker centered viewpoint, as op-
posed to a much more common network centered viewpoint. Unfortunately,
this view ignores the possibility that an attack might be a coordinated effort
between multiple, possibly geographically separated, attackers. An exam-
ple of such an attack is the 1997 Langley Cyber Attack, a coordinated global
e-mail bomb attack against the Langley Air Force Base e-mail infrastruc-
ture [BFGW98]. In the end it is the attack against which one should defend,
although a network centered view is indeed not sufficient: a single attack
might be spread over multiple networks or network segments, or be related
to other attacks in other networks - for instance because the other attacks
are performed by the same attacker. Tracking the activities of individual
attackers through multiple networks is therefore still useful, but is merely
a subgoal of a complete fusion-based IDS, not the goal.

Hence, it is not the attack, nor the attacker that should be considered
most important. What is needed is a situational view, involving both. Fig-
ure 4.1 depicts an example of such a view. It shows three different attacks,
launched against three networks or network segments by three individual
attackers. Attacker 1 is involved in a single attack against Networks 1
and 2. Attacker 3 is also involved in a single attack, but this is a coordi-
nated attack in which Attacker 2 is also involved. Furthermore, Attacker 2
has also launched his ‘own’ attack against Network 1. Hence Attacker 2
is participating in two attacks: one coordinated attack and one individual
attack. Note that not all actions of an attacker (light gray) are attacking,
or intrusive, actions (dark grey). Some actions that the attacker performs
might be legitimate actions. Note also that not all of an attacker’s actions
- either legitimate or intrusive - are directly observable in the network or
network segment. For instance, during an attack, an attacker might look
up vulnerabilities known to exist on a default installation of some software
on the targeted host. While this is clearly an action that belongs to the
attack, it is not directly observable from the network.
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Figure 4.1: Situational view

The information provided by a fusion-based IDS is therefore information
concerning the current situation. The greater quality of this information is
due to intelligent attack analysis and the use of data from multiple sensors,
and results in a reduced amount of false positives. A high-level picture of
the attacks that take place, and the attackers that are involved, forms a
situational view. This situational view provides a coarser view than ‘tradi-
tional’ IDSs and thereby reduces the, otherwise high, number of positives
that result from an intrusion.

4.2 Functional-Level Analysis

Section 4.1 compares the output of traditional IDSs with puzzle pieces, and
identifies a fusion-based IDS as a means to solve - at least partly - the
puzzle, sorting out pieces that do not belong to the puzzle and joining pieces
that belong together. Solving the puzzle requires and results in a multiple
level-of-abstraction view of the situation. To build a fusion-based IDS, a
framework that supports this kind of abstraction must be used.

The JDL model, described in Section 3.2, inherently supports multiple lev-
els of abstraction. Use of this model therefore provides a natural way for
the IDS to coarsen the data and arrive at a high-level situation description.
This section presents a functional-level analysis of a fusion-based IDS per
level of the JDL model. This is an elaboration on the work in [Bas00], and
will be used as a basis for the development of a generic architecture for
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fusion-based IDSs.

Bass [Bas00] lists the functions of the five levels in the IDS Data Fusion
Model. Since this model is an application of the more generic JDL model,
the functions resemble those described in Section 3.2:

e Level 0: Filtering of raw data;

e Level 1: Alignment and correlation of data and placing the resulting
objects in context in an object base;

e Level 2: Detection of aggregate sets of objects by their coordinated be-
havior, dependencies, common points of origin, common targets, cor-
related attack rates and other high-level attributes;

o Level 3: Assessment of current situation and identification of future
threats;

e Level 4: Refinement of the entire process to further refine detection.

When viewing the JDL model from an object-centered view [Ant95], level 1
is associated with individual objects (events), level 2 with organizations of
objects (for instance, attacks) and level 3 with the higher level analysis of
those organizations. Hence, each level provides a more abstract view of
lower-level information.

Based on the function descriptions by Bass, and the generic JDL model, a
more detailed functional-level requirements analysis can be made. In this
section the specific tasks of a fusion-based IDS belonging to each of the five
levels are determined. These tasks are described, and the key information
requirements for these tasks are identified. The bottom-up approach that is
used reflects the increasing level of abstraction associated with each level.
While this provides a good description of the per-level functionality that is
needed, it is not necessarily true that the information flow follows these
levels in ascending order. Section 4.3 treats this in further detail.

4.2.1 Level 0 - Source Pre-Processing/Data Refinement

At level 0 the initial signal processing takes place. The raw data that is
observed by the sensors consists of events!. An event is the result of an
action. An action is defined in [Den87] as an operation performed by some
initiator - normally a user - on or with a resource managed by the target
system.

These events are typically observed on a host - in the shape of rows in an
event log/syslog, application log, etcetera - or ‘on the wire’ - in the shape of

INote that an event is not an intrusion per se. The arrival of a single network packet, for
instance, is an event, as is a failed or succeeded log on. Hence an intrusion or attack consists
of one or more events, but not every event is part of an intrusion. See also figure 4.2(a).
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(a) Not all events are intrusions. (b) Not all alerts are intrusions.

Figure 4.2: Events, alerts and intrusions.

Filter

Figure 4.3: Alerts are events that are considered important.

network packets. These two types of observables correspond with two types
of non-fusion-based IDSs: NIDSs and HIDSs. An observed event is either
important for the other fusion processes to know of, or it is not. The prepro-
cessing of the observed events consists of a filtering function that filters the
raw data to exclude as much unimportant events as possible from further
processing. Events that are particularly important are events that are part
of an intrusion. The filter can be dynamically adjusted by the level 4 pro-
cess to let through other important events. For instance, during an attack
all events that originate from the attacker might be considered important,
instead of just the events that are part of an intrusion. It can also be ad-
justed to block events that are no longer important. For instance, when
during an attack all events that originated from the attacker were consid-
ered important and now the attack has ended. Events that pass through
the filter are thus events that are deemed important, and are called alerts.
See also figures 4.2(b) and 4.3.

To be able to preprocess or filter the raw data, the level 0 process requires
the following information:

1. The raw data observed by the sensor;
2. A definition of

(a) Events that should pass the filter, in other words a definition of
important events, or;

(b) Events that should be blocked by the filter, in other words a defi-
nition of unimportant events.
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3. A filtering procedure.

Note that the filtering method described by 2a corresponds with the method
used by IDSs that perform misuse detection - the important events being
intrusions - while the method described by 2b corresponds with the method
used by IDSs performing anomaly detection - the unimportant events be-
ing ‘normal behavior’. If the filtering method of 2a is used, the signature
that matched and allowed the data to pass through the filter provides a
preliminary estimation of the identity (or type) of the event.

4.2.2 Level 1 - Object Refinement

Level 1 processing refines the objects resulting from level O processing. The
result of the level 1 process answers the question “where and when did
something happen?” (see Figure 3.2).

The alerts that passed through the level 0 filter are first aligned to a com-
mon reference frame. This alignment facilitates the comparison and fur-
ther processing of multiple alerts that originate from different sources.
During the alignment, relevant features are extracted from the raw alert.
When combined, these features form an abstract description of the raw
alert. Alerts originating from different sensors are likely to possess dif-
ferent kinds of features. A sensor that observes network traffic in general
knows little more of the target of an attack than its network address. A
sensor located on and observing a single host is more likely to know much
more about this host. If the observed host is the target of an attack, the
alerts originating from this sensor may include for instance detailed infor-
mation about the application or process that was targeted by the observed
event. The reference frame should therefore provide enough room for these
different kinds of features to be represented. The alignment stage requires
the following information:

1. Raw alerts, i.e. raw data that passed the filter during level 0 process-
ing;

2. A common reference frame to which the alerts should be aligned;

3. An alignment procedure.

An example of a possible reference frame is the Intrusion Detection Mes-
sage Exchange Format (IDMEF) data model [IDW], which is part of the
results of the IETF/IDWG. A draft? version of the IDMEF data model is
shown in Figure 4.4. It shows various groups of classes: the core classes,
the time classes, the assessment classes and the support classes. The core
classes form the core of the model. The Alert class is in the center of it.

2The IDMEF data model shown here is based on draft version 0.6.
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Figure 4.4: IDMEF data model.
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The Alert class has a list of attributes that can be used to describe a spe-
cific alert. The analyzer, source, and target attributes - all part of the core
classes - can be described in further detail by using the corresponding sup-
port classes. The target, for instance, can specify the targeted node (device),
process, user, service, and/or file(s). Depending on the data reported by the
sensor, and its level of detail, some parts of the model are used and filled
in, while other parts are left unused. For an in-depth explanation of the
IDMEF data model and its various classes, refer to [IDW].

Different observations of events can refer to one and the same event. This
is the case if a single event is observed by two or more different sensors. If
multiple observations pass through the level 0 filter, this results eventually
in multiple (aligned) alerts referring to a single event, thus in fact being a
single alert. Recognition of such associated alerts is performed during the
next stage in level 1 processing, the association stage. A group of associated
alerts is called an alert track. A single alert that has no associated alerts
forms an alert track on its own.

For each alert that is processed during the association stage there are ex-
actly two possibilities with regard to the event that produced it:

1. The event also produced other alerts that already belong to an alert
track. This means that the alert being processed is associated with
that particular alert track;

2. None of the existing alert tracks is the result of the event that pro-
duced the alert. In other words, the alert is the result of the observa-
tion of a new event and forms its own alert track.

These two possibilities are shown in Figure 4.5. In this figure, two sensors
are depicted while two events take place. Sensor 1 observes only Event 1,
Sensor 2 observes both events. All observations pass the filters, resulting
in three alerts (one for Sensor 1, two for Sensor 2). Both Alert 1.1 and
Alert 2.1 are the result of an observations of Event 1. Hence Alerts 1.1 and
2.1 are associated alerts. Alert 2.2 is the only alert produced by Event 2.

During data association, data fusion systems often also consider the pos-
sibility that the observed signal is a false alarm. A false alarm is usually
the result of noise observed by the sensor and interpreted as a detection.
At this level of data fusion in intrusion detection there are no such things
as false alarms. Unlike for instance some military applications, the sen-
sors do not observe objects (events) that are of no importance at all®. Even
events that comprise legitimate traffic contain information that is relevant
for a situation description. The only problem with reporting events that
comprise legitimate traffic is the risk of overloading the system. Therefore
the level 0 filter blocks ‘unimportant’ events - as described earlier - where

3Sensors that are used in a military situation for anti-submarine warfare might observe
a whale, for example. A whale has clearly nothing to do with anti-submarine warfare, and a
reported observation is therefore a false alarm.
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Alert Track 2
Alort 1 1A/ert Track 1 Alert 2.2
(Event 1) Alert 2.1 (Event 2)

(Event 1)

Event 1 Event 2

Figure 4.5: Alert association.

‘unimportant’ is a context-sensitive concept. It is possible that the observed
event did not rightly pass the filter?, and hence is mistakenly considered
important. Alerts resulting from such a mistake are considered false posi-
tives in traditional IDSs, and will be dealt with later on.

The association process must therefore decide if the alert being processed is
due to a new event or is associated with an existing alert track. To diminish
the amount of possible associations, the alerts that are unlikely to be asso-
ciated with the alert being processed are not considered in the decision step.
They are not discarded, but merely ignored for the moment. This elimina-
tion of unlikely associations, the very first step in the association process,
is called gating [Hal92]. The gating is performed by selecting alerts from
the set of previously processed alerts. The selection criteria are based on
the possible values that the alert’s attributes could have had in the past, or
may have in the future®, and are therefore the result of a function on the
attributes of the alert being processed.

After unlikely associations are eliminated, the remaining alerts are com-
pared with the alert being processed. The comparison results in an indi-
cation of the similarity of all possible association pairs. The most likely
association is the association of the pair of alerts with the highest similar-
ity. Only if this similarity is ‘high enough’, the association process decides
to assign the new alert to the alert track that the existing alert belongs to.
The assignment results thus in either a new alert track or the extension of
an existing alert track.

A decision that must be made when implementing a fusion-based IDS is
whether the assignment of an alert to an alert track is irrevocable. If so,
each alert is only considered once for assignment. If not so, the assignment

4In other words, did pass the filter but was in fact unimportant.
5Alerts are not guaranteed to arrive in chronological order.
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decision made for an alert might be reconsidered after n other alerts have
arrived. The value of n is also called the number of scans [Hal92].

Association requires the following information:

1. An alert (new or ‘revisited’);

2. All alerts in the existing alert tracks;

w

. A model or definition of possible earlier attribute values, based on the
current attribute values;

. A gating procedure;
. A definition of similarity;
. A similarity computing procedure;

. A similarity threshold for association;

o 9 & U

. An assignment procedure that decides whether or not the alert should
be assigned to an existing alert track.

Remember that the (events underlying the) alert tracks are still not guar-
anteed to be part of an attack, or intrusion. They are merely deemed to
be important for the fusion process as a whole. Every time an alert is as-
signed to an alert track, however, the confidence in the importance of the
alerts that are part of that alert track increases. Based on confidence char-
acteristics of the sensor that reported an alert, the initial confidence in a
single-alert track can be calculated.

Confidence calculation requires:

. An alert;
. Confidence characteristics for the sensor that created the alert;

. The alert track that the alert is assigned to;

BOw N R

. The expectation of the existence of prior observations (alerts) in the
alert track;

5. A confidence calculation procedure.

If the level O filter made use of a definition of important events, and knows
of the reason why an event is considered important, the filter could attach
an indication of this reason to the alert, thereby estimating the identity
of the observed event. This is what happens amongst others in current
misuse detecting IDSs: since a misuse detecting IDS has a list of signatures
that are matched against an event, and a signature belongs to a specific
intrusion, the IDS can indicate what intrusion it ‘thinks’ is going on.
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The next, and final, step in level 1 processing is refining the estimate of the
identity of the observed event. When an event is reported for the first time
it may be difficult to unambiguously determine its identity. Subsequent
reports of the same event may contain data that is complementary to the
data that is already known. These data are combined with the data that
was reported earlier. Hence, with every reported alert, the estimate of the
identity of the event can be refined. A variety of pattern recognition tech-
niques can be used to estimate the identity of the observed event. [Hal92]
lists a number of these techniques.

Combination and identity estimation have the following key information
requirements:

1. All alerts in an alert track;
2. An attribute combining/attribute refinement procedure;

3. An identity estimation (pattern recognition) procedure.

The collection of refined alerts that result from level 1 processing forms the
Object Base that is used as basis for level 2 and further processing.

4.2.3 Level 2 - Situation Refinement

Unlike object refinement (level 1), situation refinement, as well as threat
assessment, is relatively ill-defined. While object refinement is able to di-
rectly adapt well-established data association and estimation techniques,
situation refinement and threat assessment currently do not have such a
well-established basis. There is much less consensus on how to perform sit-
uation refinement and threat assessment than there is consensus on how
to perform object refinement [WL90, Lam99]. This implies that, compared
to object refinement, there are more choices to be made when designing and
implementing levels 2 and 3 of a specific® fusion-based IDS. Therefore the
following sections are necessarily less detailed than the previous section.

The result of level 2 processing answers the questions “what did we see?”
and “why did we see that?” (see also Figure 3.2). Where level 1 processing
involves objects, level 2 processing involves relations between, and groups
of, these objects. The objects in level 1 are alerts. What we did see is ex-
pressed by two main types of relationships between alerts, in other words
two types of alert aggregations:

1. Alerts that together make up an attack;

2. Alerts that together represent the behavior of a single attacker.

6As opposed to a generic fusion-based IDS, which is the subject of this thesis.
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These are different types of aggregations, because a single attacker can be
involved in multiple attacks and multiple attackers can be involved in a
single attack (see also Figure 4.1). Furthermore, not all attacker behavior
is necessarily part of an attack. On the other hand, all attacks are nec-
essarily the result from attacker behavior. Hence alerts that make up an
attack are a subset of alerts that represent attacker behavior, and alerts
that represent attacker behavior are a subset of the set of all alerts. The
set of alerts, again, is a subset of abstract representations of all events.

Note that an alert aggregation (attack or attacker behavior) can consist of
a single alert, just like an alert track.

Why we did see this becomes clear when the relationships between attack-
ers and attacks are analyzed. This shows which attackers are involved in
which attack.

It is at this level that the notion and concept of false positives becomes
important. At the lower levels there were no false positives, since all alerts
are representations of events that do indeed exist. However, not all alerts
are necessarily part of an attack, or resulting from attacker behavior. From
a level 2 point of view, an alert that is neither part of an attack, nor the
result of attacker behavior is a false alarm.

Finding alerts that represent the behavior of a single attacker can be viewed
as a tracking problem?. The actions of an attacker leave a trail of alerts.
The tracking procedure that is needed resembles what is done during object
refinement at level 1. There, an event is ‘tracked’ by associating observa-
tions, or alerts, that belong together. With attacker tracking, an attacker
is tracked by associating alerts that result from (the behavior of) a single
attacker. Attacker tracking is different from the creation of alert tracks
in that it must also consider false positives. Therefore it must take into
account amongst others the belief that the level 1 process has in the impor-
tance of an alert track. A low belief in importance at level 1 might be due
to a false positive at level 2. The most obvious way to track an attacker is
to look at the source of events. Events that have the same source are likely
to be the result of actions by one and the same attacker.

The second type of alert aggregations that are considered at this level are
attacks. Like an attacker, an attack leaves traces. In fact, these are the
traces left by one or more attackers while performing an attack. Traces
left by a single attacker, either due to attacks or legitimate actions, pro-
vide insight into the identity, intentions, and sophistication of that specific
attacker. Traces left by one or more attackers during an attack provide in-
sight into the identity, intentions, and sophistication of that attack. So like
tracking an attacker, recognizing attacks can be viewed - at least partly -
as a tracking problem.

But there is more to situation refinement than tracking alone. Further

TThis is also the view that [BWC02] takes.
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reasoning is needed to take the context, the current situation, into account,
and interpret the meaning of this situation. Hall [Hal92] lists the following
types of reasoning:

e Pattern recognition utilizing uncertain, incomplete, and conflicting
data;

e Spatial and temporal reasoning;

e Establishing cause-effect relationships;
e Prediction of future events/activities;

¢ Planning;

e Induction®;

e Deduction?;

e Abduction??;

e Learning.

Reasoning involves the use of both long-term and medium-term knowledge.
For instance, at this level the (network) environment must be taken into
account. In particular, locations of devices that perform Network Address
Translation (NAT) [EF94] can be important information. On a network,
a NAT device changes source and/or destination of a network packet. By
maintaining an internal table of mappings, the NAT device can translate
network traffic back and forth. This means that when two sensors are de-
ployed, one at each side of the NAT device, both sensors might see different
source and destination addresses for the same event. Other important envi-
ronmental information consists of a list of known compromised hosts. When
an attacker compromises a host, an action initiated from that host might
be initiated by the attacker, and be part of an ongoing attack. Hence the
needed environmental information can be both relatively static (e.g. NAT
device location) and dynamic (e.g. compromised hosts).

The interrelations between attacks and attackers must also be taken into
account. An individual is not an attacker until he actually engages in an
attack!’. Hence the tracking of an attacker relies on the recognition of
at least one attack he is involved in. On the other hand, knowing that a

8Establishing general concepts based on examples of specific cases or instances.
9Reasoning from general principles to specific conclusions about a particular case.
0Establishing parallels or analogies.

This raises the question whether someone whose machine or address is unknowingly and
unwillingly used in an attack must also be regarded as an attacker. The answer is twofold.
When the machine is not in the view of the fusion-based IDS, it cannot be known to the fusion-
based IDS that the attacker is in fact the victim of another attack. Hence in this case the
victim is considered an attacker. If, however, it is known that the attacking machine was the
victim of an earlier attack - for instance because the attacking machine is also monitored by
the fusion-based IDS - the attack is contributed to the earlier attacker, not to the (owner of)
the attacking machine.
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certain individual is an attacker might aid in recognizing attacks in am-
biguous behavior by that individual. The mere fact that the source of an
alert is actively involved in one or more attacks raises the suspicion that
that specific alert is also part of an attack. However, there’s still the possi-
bility that the alert results from legitimate behavior, and hence should be
considered a false positive.

By making use of (a subset of) the types of reasoning listed above, a hu-
man expert is able to make inferences on the current situation. Enabling
automation of situation refinement involves enabling a computer to reason
like a human expert. In any case, the result of the situation refinement
stage is a high-level overview of the situation. In this context, high-level
means that the focus is on aggregations of individual events - attacks and
attacker behavior - instead of on the individual events alone. By focussing
on aggregations instead of individuals, a coarser representation of the situ-
ation is attained.

4.2.4 Level 3 - Threat Assessment

Level 3 processing answers the questions “how did all this happen?”, and
“so what?”. During level 3 processing, the threat of the current situation,
i.e. the individual attacks and the attacker behavior identified in level 2
processing, is determined through further reasoning with the situation re-
finement result. Apart from the possible severity of the result of an at-
tack, the vulnerability of the target must be taken into account. Threat
assessment enables prioritizing alert aggregations, thereby aiding the user
to focus on the most threatening attacks.

One of the questions that is answered by threat assessment is whether
or not a certain attack was successful. The outcome of an attack is not
only important environmental information for situation refinement, but is
also an indication of the vulnerability of a machine, and potentially the
sophistication of the attacker(s) involved. By analyzing the outcome and
various other characteristics of the attacks an attacker is involved in, an
attacker profile can be created. Such a profile captures the capabilities of
the attacker. For example, attacker profiling might classify an attacker as
either script-kiddy or cracker. A script-kiddy is generally regarded as a
person incapable of performing a truly new attack. Instead, he makes use
of an automated script, written by someone else, that provides a step by
step ‘walk-through’ of an attack. Crackers'? on the other hand, are persons
that do create and build new attacks, and are therefore likely to pose a
larger threat than script-kiddies.

Another aspect of threat assessment is vulnerability assessment. If an at-
tack is taking place against a machine that is known to be vulnerable to

2There is a lively discussion going on regarding the difference - if any - between crackers
and hackers. Here, the term ‘crackers’ is used as ‘hackers who misuse their capabilities’.
Depending on your definition of a hacker, these two might be interchangeable.
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such an attack, the threat is higher than when the machine is known not
to be vulnerable. Vulnerability assessment combines various types of in-
formation. Relatively static information, such as a database of known vul-
nerabilities, but also more dynamic information, such as versions of the
operating systems and other software that runs on hosts in the network.

Yet another goal of threat assessment is to project the current situation into
the future. This means hypothesizing the outcome(s) of an attack and the
intent of an attacker. If an attack is likely to succeed, it poses more threat
than if it is likely not to succeed.

Threat assessment involves the same kind of reasoning and inference draw-
ing as situation assessment. Again, automation requires enabling a com-
puter to reason like a human expert.

4.2.5 Level 4 - Resource Management

Level 4 processing performs evaluation of the total fusion process. After
evaluation, it adjusts the fusion process and cues the sensors to dynami-
cally improve the quality of the output.

One of the most obvious ways of sensor cuing is adjusting the level 0 filter.
By adjusting the filter, the level 4 process effectively affects the data col-
lection process. Since the filter defines what is considered ‘important’ for
the rest of the fusion process, this adjustment involves reasoning with the
current situation description - including threat assessments - to derive a
notion of importance. For instance, given the fact that a certain attacker
is currently heavily attacking one or more hosts, it might be deemed im-
portant to collect and analyze all events that originate from this specific
attacker. This means events that result from legitimate as well as mali-
cious behavior. Or, given the suspicion that a certain attack is going on,
further evidence that supports this suspicion might be sought. Sensor cu-
ing does not only involve broadening the filter, but also shrinking it. Again,
this depends on the current situation. If, for instance, an attack that was
suspected is now known to exist, the search for further evidence can be
ceased. Hence, sensor cuing provides the context-sensitivity that is needed
for the level 0 filter.

Apart from sensor cuing, Resource Management adjusts the fusion process
itself. There are numerous possibilities for such adjustments. Based on
the threat assessment, for instance, the level 4 process might prioritize
the analysis of attacks with a high threat-level. This prioritization is then
communicated back to the various processes within the fusion-based IDS.
This results in the allocation of more resources to the attacks or attackers
that pose the most threat.
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Figure 4.6: Multiple levels of abstraction

4.3 Architecture

In this section, an architecture for fusion-based IDSs is developed. The
basis for this architecture is the multiple level-of-abstraction view that was
presented in Section 4.2. In other words, the architecture supports the
functions described in that section.

The multiple level-of-abstraction situational view that a fusion-based IDS
maintains is summarized in Figure 4.6. This figure shows what kind of in-
formation is associated with the abstraction levels represented by levels 1,
2, and 3 of the JDL model. It also shows the relationships between the dif-
ferent levels of abstraction. This is all in agreement with Section 4.2. The
collection of alerts forms the lowest level of situation description. Analy-
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sis reveals two types of objects at a higher abstraction level: attacks and
attackers. There is a close relationship between attacks and attackers in
that there is always at least one attacker involved in an attack, and there
is at least one attack that an attacker is involved in. At yet another level
higher, the impact of the current situation is analyzed by taking into ac-
count the capabilities and intents of the attackers, and the vulnerabilities
of the monitored systems.

The multiple level-of-abstraction view is attained in two different steps:

1. Combination, or fusion, of data originating from multiple sensors
(level 1);

2. Further fusion of, and reasoning with, the fused level 1 data (levels 2
and 3).

An overview of the level 1 fusion in a fusion-based IDS, and the level 0
filtering that precedes it, is depicted in Figure 4.7. The figure shows four
events, observed by three sensors. Not all sensors see all events, however.
Sensor 2 does see all four events, but sensor 1 can see only three. The view
of sensor 3 is even more limited; only two events are observed. Each of the
sensors has its own filter. Since each of the filters operates independently,
events that pass through one filter do not have to pass through another. Af-
ter the resulting alerts are aligned, they are inspected to find alert tracks,
i.e. groups of alerts that are the result of multiple sensors reporting the
same event. Based on these alert tracks a refined identity estimate of the
events is attained. In this figure, it is assumed that each sensor-filter com-
bination fires exactly one or zero alerts for each observed event. As it turns
out, this is a gross oversimplification.

As stated in Section 4.2.1, the sensors of a fusion-based IDS are comparable
to the sensors of a traditional IDS. More specific, the two types of observ-
ables - events on a host and events on the wire - correspond with what is
observed by a HIDS and a NIDS respectively. Furthermore, the filtering
function of a fusion-based IDS is comparable with the analyzer component
of a non-fusion-based IDS. This means that traditional IDSs can be reused
as sensor-filter combinations for a fusion-based IDS (see Figure 4.8). In
short, traditional IDSs form single-sensor systems that can be reused as
input to a multisensor fusion-based IDS. Input to a fusion-based IDS is not
limited to traditional IDSs, however. Information can also be filtered out of
log files, such as firewall and router logs, for instance. This requires a sepa-
rate process that monitors the log file, interprets and aligns the entries and
reports events that the corresponding filter allows to pass. This means that
multiple heterogeneous sources - different types of IDSs as well as other
types of sources - can be used as input to a fusion-based IDS. For clarity, in
the rest of this section the sensor-filter combinations are represented only
by IDSs.

However, an IDS is not guaranteed to fire one or zero alerts per event. On
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the contrary, it is quite common for an IDS to aggregate the observations of
multiple events of a certain type and fire a single alert containing informa-
tion about all these events. For example, most IDSs will try not to fire an
alert for each and every event that is part of a port scan. Instead, an aggre-
gated alert is fired indicating a port scan, and presumably a list of targeted
ports. Such an aggregated alert represents a level 2 attack, instead of a
level 1 alert. Hence the port scan alert should be directly assigned to the
level 2 process, instead of going through the level 1 process first. This iden-
tifies the second task at level 0 besides filtering: allocation of data to the
appropriate process. While this defies the one-way bottom-up information
flow that was presumed in Section 4.2, the functionality that was identified
for each level still holds good.

Not only does the reuse of traditional IDSs imply more functionality at
level 0, it also affects the fusion process, and hence the fusion architecture,
itself. The fusion of data from multiple sensors can no longer be viewed as
the one-way bottom-up process depicted in Figure 4.7. Instead, there must
be a way to fuse the higher level aggregated data that can be created by an
IDS with the lower level alerts, as well as with aggregated data from other
IDSs.

Section 4.2.3 remarks that the tracking of attacks and attackers at level 2
resembles the functionality of the level 1 fusion process. This means it
also consists of an association stage and a fusion stage'®. In fact, it can be
viewed as level 1 fusion in which the objects are not alerts, but attacks and
attackers. The fact that attacks and attackers are level 2 objects rather
than level 1 objects, is the reason to place attack and attacker tracking
at level 2 instead of level 1. The association stage at level 2 inspects the
(refined) alerts that are the output of the level 1 process. Alerts that are
associated with the same attack or attacker are combined, and refined es-
timates of the corresponding attack or attacker emerge. Together with the
refined alerts that result from level 1, the aggregated alerts that can be
produced by an IDS form the input for this level 2 fusion process.

Section 3.4 presents three possible level 1 fusion architectures:

13 Alignment already took place at level 1.
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Figure 4.9: A feature level fusion architecture for object refinement

e Data level fusion;
e Feature level fusion;

e Decision level fusion.

In data level fusion, raw data is associated and fused. In feature level
fusion, feature vectors are first extracted from the raw data. These feature
vectors are then associated and fused. In decision level fusion, each sensor
makes a preliminary decision based on its own single-source data. These
decisions are then associated and fused.

The alignment stage shown in Figure 4.7 is actually the feature extraction
function that belongs to feature level and decision level fusion. As described
in Section 4.2.2, the raw data is aligned by extracting relevant features.
Noticing this, and comparing Figure 4.7 with Figure 3.6, it becomes clear
that Figure 4.7 depicts a feature level fusion architecture. The feature vec-
tors are formed by the alerts that are aligned to a common reference frame.
This is also depicted in Figure 4.9.

The next fusion step, to track attackers and attacks, also has characteristics
of feature level fusion. Although the refined alerts are regarded as decisions
at level 1, they can be viewed as features describing attacks and/or attacker
behavior at level 2. Indeed, if all input to this fusion step consisted of these
refined alerts, level 2 fusion could be regarded as purely feature level fu-
sion. However, the aggregated alerts that can be output by an IDS also
serve as input for this fusion step. Unlike the level 1 output, these aggre-
gated alerts do represent level 2 decisions. If the input to the level 2 fusion
process consisted solely of aggregated alerts, level 2 fusion would employ
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decision level fusion. Consequently, fusion at level 2 has characteristics of
feature level as well as decision level fusion. A hybrid fusion architecture
is needed for level 2 fusion. Figure 4.10 shows such a hybrid fusion archi-
tecture for object and situation refinement.

Level 2 fusion is much more complicated than level 1 fusion, for it must
take the current situation into account. At level 1, comparison of attributes
of different events, and calculation of their similarity, is needed for asso-
ciation and consequent fusion. Unlike level 1 fusion, level 2 fusion needs
to take the possibility of a false alarm, a false positive, into account. This
means that, during the association stage, there is yet another hypothesis to
consider. Evidence that supports or refutes the hypothesis that an alert is a
false positive must be collected from the refined level 1 alerts. For instance,
a refined alert that originated from a single sensor is more likely to be a
false positive than an alert that was formed by fusing data from multiple
sensors. If not only the number of sensors that reported an event is low, but
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there is also no clear sign that it is part of an attack, it might be discarded
as a false alarm. Furthermore, as shown in Section 4.2.3, level 2 fusion
needs sophisticated context-sensitive reasoning. Consequently, to enable
automation of level 2 fusion, it is required that the system is able to reason
like a human expert. The use of expert systems accomplishes this.

Hall describes the basic structure of an expert system as comprising four
logical parts [Hal92] (see also Figure 4.11):

e A knowledge base, that contains facts, algorithms, and a representa-
tion of heuristics;

e A global database that contains dynamic data;
e A control structure or inference engine;

¢ A human-computer interface.

The knowledge base contains long-term knowledge, the global database
medium-term knowledge - or, in other words, the current situation descrip-
tion. The inference engine iteratively decides which knowledge from the
knowledge base is applicable to the current situation, and alters, or up-
dates, the current situation description accordingly.

There are various ways to represent knowledge in the knowledge base. Hall
presents an overview of these knowledge representation techniques [Hal92]:

e Production rules;

o Networks;
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e Frames;
e Scripts;
e Analogical methods.

Production rules are rules of the form IF-THEN. Networks provide a de-
scription of hierarchical relationships between generic objects and instances
of those objects. Frames are designed to encapsulate multiple attributes of
an object, while scripts define sequences of action - and hence incorporate a
time element. The direct use of analogical methods is a ‘catch-all’ category
that refers to domain-specific specialized knowledge representations.

All these knowledge representation techniques are in some way or another
applicable to fusion-based intrusion detection. If certain conditions are
known to imply a false positive, the production rule ‘IF (certain conditions
are true) THEN (the alert is a false positive)’ can be used to identify this
type of false positives. Networks are applicable when a distinction must
be made between generic classes of attacks, and specific instances thereof.
Examples of generic attack classes are port scans and Denial of Service
(DoS) attacks. Specific instances of these classes are for instance a RESET
scan (port scan), and a smurf attack (DoS)!4. Frames are used to describe
an object, such as an attack. In fact, frames are often used to implement
networks [Hal92]. An example of the use of scripts is an attack script. An
attack script contains descriptions of sequences of actions that make up
known attacks. Hence, together with frames - which contain static stereo-
typical data - attack scripts aid in the recognition of known attacks. Attack
scripts also aid in the ‘intent recognition’ subprocess of threat assessment.

Uncertainty must also be taken into account. As indicated in Section 3.3
there can be a disparity between the current situation description and re-
ality. Furthermore, there can be inherent uncertainty in the relationships
described by the data in the knowledge base. For instance, instead of be-
ing able to say ‘IF (certain conditions are true) THEN (the alert is a false
positive)’, one might only be able to conclude that ‘IF (certain conditions
are true) THEN (the alert is probably a false positive). The term ‘proba-
bly’ indicates there is uncertainty embedded in the conclusion. There are
various techniques that can be used to represent uncertainty. Hall lists the
following representation techniques [Hal92]:

e Classical probability P(H) of a hypothesis;

e Evidential interval to indicate support and plausibility of a proposi-
tion or a hypothesis;

e Confidence factors that describe a degree of belief or validity;

e Fuzzy sets, i.e. sets that are defined by specifying set elements and a
membership function.

4For more information on these attacks please see [Nor99].
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The question which knowledge and uncertainty representation techniques
should be used is a question that must be answered when implementing a
specific fusion-based IDS.

Recall that the purpose of a fusion-based IDS is to provide information,
rather than to make a decision. Decisions based on this information, for
instance the decision to restrict or deny access for a certain (attacker) ad-
dress by adding a rule to the firewall, must be made by another entity. This
decision making process could again be (partly) automated. But it is very
likely that, given the far-reaching consequences a decision might have, this
decision making will be performed, or at least supervised, by a human.

To make a good decision based on the information provided by a fusion-
based IDS, it is important that the information at all levels of the fusion-
based IDS’s situational view is accessible and understandable. As men-
tioned in Section 3.3 there can be a disparity between the system’s percep-
tion of the situation (the situational view), and reality (the factual events).
It is important that such disparities can be found, especially when the de-
cision that is to be made has far-reaching consequences'®. In order to find
such disparities, the (human) analyzer must be able to ‘drill down’ from the
high-level situational overview to a low-level view of individual events. Fur-
thermore, the relationship between objects on different levels must be clear
to the analyzer. In other words: a fusion-based IDS must be a transparent
system. This implies that the knowledge in the expert system’s knowledge
base must be comprehensible by the human expert.

Transparency has another advantage. Since the human expert understands
the information at all levels, he can reason with the information himself
and act as an expert ‘system’ within the fusion-based IDS. In this way, a
human expert can directly influence the situation description within the
fusion-based IDS.

Thus, what is needed is an architecture that lets several experts - auto-
mated expert systems as well as human experts - work together on the same
problem: refining the situation description, and assessing the threat of this
situation. Section 3.4 identifies the so-called ‘blackboard architecture’ as an
architecture that enables this cooperation between multiple experts. When
using a blackboard architecture, multiple experts work together on a prob-
lem. The current problem state is kept on a central ‘blackboard’ that is ac-
cessible by all experts. In this case, the blackboard holds the current, mul-
tiple level-of-abstraction situation description, summarized by Figure 4.6.

Based on the functionality description in Section 4.2, the following needed
expert systems can be identified:

e Attack recognizer;

e Attacker tracker;

15For instance the decision to shut down a server or to prosecute an attacker.
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e Attack outcome predictor;
e Attacker profiler;

e Attacker intent predictor;
e Vulnerability assessor;

e Threat assessor (prioritizer).

The attack recognizer and attacker tracker are both operating at level 2.
The other expert systems operate at level 3. Since the attack recognizer
and attacker tracker operate at level 2, they must perform the level 2 asso-
ciation and fusion steps depicted in Figure 4.10. To do so, they rely on the
knowledge in their knowledge bases. What knowledge must be included in
the knowledge bases, as well as how it is represented, is a (very important)
implementation decision.

Using a blackboard architecture, a fusion-based IDS can be modelled as de-
picted in Figure 4.12. Initially, the blackboard is empty. At a given moment,
one or more of the IDSs start reporting alerts. These alerts are fused by
the level 1 fusion process, after which the fusion process writes the refined
alerts to the blackboard. Aggregated alerts (single-sensor decisions) are
written directly to the blackboard. In the mean time, the expert systems
are constantly inspecting the blackboard for any condition that activates
them.

The attack recognizer is activated by the existence of alerts on the black-
board. The recognition of attacks consists of finding associated alerts, using
sophisticated reasoning techniques, and recognizing known attack patterns
in these associated alerts. When an attack is recognized, the attack recog-
nizer updates the blackboard to reflect this. This means that it marks the
alerts as belonging to an attack, and describes the corresponding attack.
This description is the result of fusion of the data obtained from the associ-
ated alerts, as well as with a priori knowledge about the recognized attack.

The recognition of an attack activates the attacker tracker. Some alerts are
now known to be part of attacker behavior. Based on this information, the
attacker tracker starts another level 2 fusion process. Instead of finding
alerts that form an attack, however, it searches for all alerts that originate
from the attacker involved in the recognized attack. Again, the blackboard
is updated to ensure it contains all the relevant information; alerts are
marked as comprising attacker behavior, and an attacker object is created.

These are the first steps to fill the blackboard with information regard-
ing the current situation. The expert systems keep responding to relevant
changes in the situation description on the blackboard, thereby constantly
updating and refining it. Each expert system knows under what condi-
tions it should respond. The attacker profiler, for instance, can react on the
first indication of the existence of an attacker, but also on new attack infor-
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Figure 4.12: Blackboard architecture for a fusion-based IDS

mation regarding that attacker. This new information might provide new
insight into the sophistication of the attacker.

The architecture described above reflects a truly opportunistic approach, in
which all expert systems operate independently and respond opportunis-
tically to changes on the blackboard. However, as said in Section 3.4, in
general a control function is present. This control function mediates be-
tween expert systems that want to respond. By adopting a certain selec-
tion strategy, the control function can violate the opportunistic character
of the system. Such a selection strategy makes it possible to concentrate
on specific goals, by enabling the expert systems that directly contribute
to achieving this goal to respond. This means that adjusting the control
function is part of the level 4 process.

The level 4 process evaluates the current fusion process and dynamically
improves it. This means that it influences all levels of the fusion process.
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This is depicted in Figure 4.13, in which the control function and the level 4
process are added to the blackboard architecture. In this new situation,
whenever an expert system wants to respond it communicates this wish
to the control component. Based on its current strategy, and the list of
expert systems that want to respond, the control function selects which
expert system is allowed to update the blackboard. The current strategy is
determined by the level 4 process. It communicates this strategy not only
to the control function, but to the other components as well.

The architecture depicted in Figure 4.13 incorporates all functionality de-
scribed in Section 4.2. It forms a generic architecture for a fusion-based
Intrusion Detection System. Due to the multiple levels-of-abstraction, it
diminishes the number of alerts that a human analyst using the system
has to inspect, by focusing on attacks and attackers instead of individual
events. But it also allows the analyst to ‘drill down’ to the lower level of
individual events when needed. Fusing data originating from multiple sen-
sors combined with intelligent reasoning allows the system to ignore false
positives. The next section evaluates the architecture by hypothesizing an
implementation of a fusion-based IDS and examining how it reacts on a
test case.

4.4 Evaluating the Architecture

By now it will be clear that the implementation of a fusion-based IDS based
on the architecture from Section 4.3 is not simple. A lot of decisions still
have to be made, regarding the fusion techniques that should be used, the
kind of reasoning that must be supported, the knowledge that should be
put in the knowledge bases, and the representation of uncertainty, to name
but a few. Still, the architecture provides a starting point to design and
implement a fusion-based IDS.

In this chapter, it is assumed that a fusion-based IDS is implemented ac-
cording to the generic architecture from Section 4.3. This hypothetical sys-
tem is used to evaluate the architecture. By using a test case, and showing
how the implemented fusion-based IDS would deal with it, it is shown that
the architecture indeed does what it is supposed to do:

e support the elimination of false positives;

e reduce the number of positives that must be inspected by the operator
of the system.
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4.4.1 Scan and Exploit

Often, an attack can be divided into two phases: a ‘recon’ phase, in which
the attacker tries to gain as much information as possible about potential
targets, and the actual attack in which vulnerabilities that were found in
the recon phase are exploited (see for instance [Nor99]).

A port scan is in general considered part of the recon phase of an attack.
The purpose of a port scan is to find out which ports are open on a target
system, or on a range of target systems. After a specific port is found to
be open, a second scan can be used to search for known vulnerabilities in
services that use that port. If, for instance, port 80 is found to be open,
one could start to scan for vulnerabilities that are known to exist in various
webservers'®. This results in a list of vulnerabilities that exist, or are likely
to exist, on the target. The next step is the actual exploitation of one or
more of these vulnerabilities.

This scanning behavior generates a lot of suspicious events, and conse-
quently a lot of alarms are raised by IDSs that observe these events. Fig-
ure 4.14 shows a typical network architecture for a web application that is
backed by a database (think of an online store, for example). The first fire-
wall limits the traffic that is allowed to enter the DMZ, or De-Militarized
Zone. This zone contains the servers that are publicly accessible through
the Internet. Since the only server in this zone is a webserver, the only
traffic that is allowed from the Internet into the DMZ is traffic destined
for port 80. Since the DMZ contains publicly accessible servers, that might
be compromised during an attack, a second firewall is placed between the
DMZ and the internal LAN. This firewall limits traffic from the DMZ to the
LAN to only the traffic that is necessary to access the database server.

16The canonical use of port 80 is by a webserver.
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There are a number of IDSs placed in the network. Each of the IDSs has its
own characteristics. There is a special IDS dedicated to detect port scans!’
placed before the first firewall. Then there is a NIDS observing the DMZ,
and two HIDSs; one monitoring the webserver, the other monitoring the
database server. Furthermore, numerous devices make use of log files.
While the IDSs inspect and report events in ‘real-time’, the log files pro-
vide insight in what happened ‘after the fact’. In the example architecture,
log files are used by both firewalls, the webserver and the database server.

Port scan

At a given moment, an attacker happens to start such a port scan. Up until
that moment, no attacks took place, hence the situation description on the
blackboard is still empty. The attack starts with a port scan, but since the
firewall blocks all traffic except traffic destined for port 80, the port scan is
not seen on the DMZ. The port scan detector, however, is placed before the
firewall and therefore does see the port scan. The report of the port scan
is comprised of multiple events, and serves as input for level 2 fusion. It is
therefore written directly on the blackboard.

This update of the blackboard is a first indication of a change in the situa-
tion. It is now the attack recognizer’s task to inspect the updated situation
to infer whether an attack is taking place. Because no other IDS can see the
port scan, there are no subsequent reports of it. Hence there is no further
data available for the attack recognizer to use for fusion. However, since the
port scan detector’s reports tend to be fairly accurate, the attack recognizer
infers that indeed there is a port scan going on. It writes its conclusion
on the blackboard, after which the attacker tracker marks the source of
the port scan as an attacker (after all, the source is now assumed to take
part in an attack). There is not yet enough evidence for a clear profile of
the attacker. However, the attacker’s intentions are likely to be further
information gathering and exploitation of a found vulnerability. These hy-
potheses are written on the blackboard by the intent predictor. Based on
the information found sofar, the threat assessor assigns a low threat level
to the ongoing attack.

Vulnerability scan

The port scan shows the attacker that port 80 is open. In the next stage of
the attack, he uses a script that looks for known vulnerabilities in various
webservers. The resulting events are seen by the NIDS that monitors the
DMZ. Consequently, it starts reporting these events by generating alerts.
Since the HIDS monitors the target webserver, it can also see the events,
and thus it too generates alerts. The NIDS’s alerts contain different infor-
mation than the HIDS’s alerts, due to the different view both IDSs have.

17Even hard to detect stealthy scans that a more generic IDS might miss.
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These alerts, that originate from different sources (the HIDS and the NIDS)
but can be the result of a single event, are fused at level 1. The first step
is alignment of the alerts to a common reference frame, for instance the
one presented by the IDMEF model. The alignment can be done by the
IDS itself, or by a dedicated process that interprets the IDS’s alerts and
translates them to the chosen reference frame. Based on common attributes
- such as source, target, timestamp, etc. - , associated alerts are identified
and assigned to alert tracks. After this, each alert track contains either one
alert (from either the HIDS or the NIDS), or two alerts (from the HIDS and
the NIDS). The data in the alert tracks are fused, and a refined estimate of
the identity of the event is made based on this fused data. Note that in the
case of a single alert in the alert track fusion is not possible. In this case,
the refined estimate is based only on the single-sensor alert. The IDS, in
particular when it uses a misuse detecting analyzer, may have estimated
the identity of the event on its own. This single-sensor identity estimation
is also used in the refinement step, and - in the case of a single alert in the
alert track - might even be reused as the refined estimate.

After level 1 fusion, the blackboard contains lots of refined alerts based
on the alerts generated by the HIDS and the NIDS; one for each reported
event that was part of the vulnerability scan. The attack recognizer tries
to find an attack in the data that are written on the blackboard. One of the
things the attack recognizer looks at to find associations in the collection
of refined alerts is the source of the alerts (i.e. the attacker, not the IDS
that generated it). In this case, the attack recognizer sees that all alerts
have the same source, and hence are likely to be associated. Furthermore,
the source turns out to be an attacker that is already known, namely the
attacker that was involved in the earlier port scan. The blackboard also
shows the hypothesized next steps of the earlier port scan: either a scan
for vulnerabilities, or a exploitation of a vulnerability. The attack recog-
nizer infers that, due to the high number of alerts - presumably reported by
multiple IDSs - and the hypothesis that the port scan would lead to further
attacks, the alerts are very likely true positives. Meanwhile, the vulnera-
bility assessor has inspected the alerts. Based on environmental knowledge
- amongst others the vendor and version of the webserver software - and a
database of known vulnerabilities, it infers that the webserver is not vul-
nerable to a large part of the reported events. These events try to exploit a
vulnerability in another version of the webserver software, or even in soft-
ware from another vendor. This leads the attack recognizer to believe that
this is a vulnerability scan, and not an actual exploit of a vulnerability. The
attack recognizer updates the earlier recognized attack to reflect this. At
the same time, the attacker tracker updates the track record of the involved
attacker to include the newly reported events.

The intent predictor sees one of his hypotheses turn out to be the truth.
Based on the new information, it predicts the next step in the attack to be
an actual exploitation of a vulnerability, and updates the hypotheses on the
blackboard. Its prediction is endorsed by the conclusion of the vulnerabil-
ity assessor that not all events were the result of actions the webserver is
not vulnerable to. This conclusion also leads the outcome predictor to pre-
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dict a future successful attack on the webserver. Also, the attacker profiler
now has some more clues as to what kind of attacker is involved in this
attack: the use of scripts to find vulnerabilities indicates that the attacker
is searching for well-known vulnerabilities. It can hence be concluded that
the sophistication of the attacker is quite low - his current profile resembles
that of a script-kiddy. Based on all this, the threat assessor slightly raises
the threat level associated with this attacker and his attack, to indicate a
possible succeeding attack by an attacker with a low degree of sophistica-
tion.

Exploit

The attacker now knows of the existence of some potential vulnerabilities
on the webserver, and decides to pick and exploit one. Again, this results in
alerts generated by both the HIDS and the NIDS, and level 1 fusion thereof.
The attack recognizer, still looking for attacks, again sees events that re-
sult from actions by the known attacker. The attacker tracker updates the
attacker’s track with the new information. The time between successive
events gives an indication of whether the attacker is performing the attack
by hand, or by use of a script. This is used by the attacker profiler to further
refine the profile. The attack recognizer compares the sequence of events
with sequences of events that are known to make up a certain attack, and
finds a match. It updates the attack information on the blackboard to indi-
cate which attack is being performed. The outcome predictor, making use
of information from the vulnerability assessor, predicts that the outcome of
the attack is now a compromised host. It consequently updates the environ-
mental information on the blackboard to reflect this. The threat assessor
raises the threat level even more.

4.4.2 False Alarm

In the meantime, a legitimate user uses the webapplication to run a query
on the database. The query parameters can be filled in in a search form that
is served by the webserver. However, the search parameters provided by the
user happen to trigger the NIDS - perhaps some part of the string he used is
also found in a known attack. The reported alert is also put in to the system.
First, level 1 fusion is applied, however - since the HIDSs did not react
- nothing is done in this step: the alert attributes and identity estimate
provided by the NIDS are copied onto the blackboard. The attack recognizer
notices the alert, and tries to find associated alerts. This fails, because there
are none. All this diminishes the believe of the attack recognizer that this
event is truly part of an attack. Even if it is part of an attack, presumably
more events are needed for the attack to complete. In the end, the attack
recognizer decides not to report the event as being part of an attack. It
rightly infers this must be a false positive.
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4.4.3 Attack on the Application Database

Another attacker decides to try his luck. Unlike the other attacker, this
attacker tries to attack the application instead of the webserver. He does so
by trying a so-called ‘SQL Injection’ attack. In such an attack, the attacker
manipulates a query string so that it contains characters that are normally
used in SQL!8. If these characters are not filtered out, they can be inter-
preted as part of the SQL query. This means that the attacker can perform
any query he wants, even queries that he is not allowed to perform when
legitimately using the application. Such an SQL Injection attack must in
general be ‘hand-crafted’ for the targeted server.

When the attacker starts its SQL Injection attack, again multiple IDSs
start generating alerts - this time the NIDS and the HIDS on the database.
Level 1 fusion is applied to the alerts and thereafter the attack is recognized
by the attack recognizer. This leads amongst others to the identification of
a new attacker. Due to the nature of the attack - it is not likely that it is a
scripted attack - the attacker profiler indicates that the attacker is probably
more sophisticated than the earlier attacker. The threat assessor uses this
information to set a preliminary threat level for this attack. The outcome
predictor, however, has no clue as to whether the attack succeeded or failed.
To find out, it needs more information - for instance from the database log
- about the result of the actions comprising the attack. It communicates
this need for more information, for instance by writing two hypotheses on
the blackboard (attack succeeded and attack failed) that are dependent on
the needed information. The level 4 process acts on this by requesting the
needed information from the log - provided there is a process able to parse
the log that the level 4 process can request the information from. Once
the new information is written to the blackboard, it is used by the outcome
predictor to update the hypotheses correspondingly.

The example in this section shows how the generic architecture aids in solv-
ing the problems with false positives and the low-level view of traditional
IDSs. However, the example uses a fairly simple test case. More sophisti-
cated attacks exist, for which the benefit of fusion-based intrusion detection
might be even higher. Think, for instance, of the ‘Mitnick attack’, in which
two machines having a trust relationship are attacked, and the attacker is
able to hijack the session (see also [Nor99]). Also, the used network archi-
tecture is a very simple one. Much more intricate architectures exist and
are used. Although this example is a first evaluation step, further evalua-
tion of the architecture is still needed (see also Section 5.3).

183QL (Structured Query Language) is a standard for accessing a database. It can be used
to retrieve and manipulate (insert, update, delete) data in a database.
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4.5 Summary

The purpose of a fusion-based IDS is to provide information concerning the
current situation, i.e. attacks and attackers and their relationships. It pro-
vides information of greater quality than traditional IDSs by using multiple
sensors and a multiple level-of abstraction situational view.

The multiple levels of abstraction are supported by the JDL data fusion
model. This means that the JDL model is applicable to intrusion detection.
At each of the levels of the JDL model, functionality of a fusion-based IDS
can be identified. At level 0, events (that are the result of actions) are
observed, and unimportant events are filtered out. The important events
that are reported are called alerts. These alerts are the subject of level 1
fusion. Level 1 fusion finds groups of alerts, called alert tracks, that are
the result of the same event. Data of the alerts in an alert track are fused
and a refined identity estimate is made. During level 2 fusion, context-
sensitive reasoning is applied to find and recognize attacks and attackers.
The next level - level 3 - assesses the threat of the current situation, and of
individual attackers and attacks. Level 4, finally, evaluates the total fusion
process and adjusts it to dynamically improve the quality of the output.

An architecture for a fusion-based IDS must support the multiple level-of-
abstraction situational view that is needed. The sensor-filter combinations
that provide input to the fusion-based IDS can be formed by - but are not
limited to - traditional IDSs. Reuse of traditional IDSs as sensor-filter com-
binations implies a hybrid fusion architecture is needed for level 2 fusion,
because multisensor feature vectors must be fused with single sensor deci-
sions. The reasoning that is needed to take the context into account can be
automated by using expert systems. The following 7 needed expert systems
can be identified:

e Attack recognizer;

e Attacker tracker;

e Attack outcome predictor;
e Attacker profiler;

e Attacker intent predictor;
e Vulnerability assessor;

e Threat assessor (prioritizer).

These expert systems can work together by using a blackboard architecture.

Evaluation of the developed architecture by using a test case on a hypothet-
ical implementation shows that the architecture does indeed aid in elimi-
nating false positives and reducing the number of positives that must be
inspected by the operator of the system.



Chapter D

Conclusions and Future
Research

This chapter revisits the goal of this thesis and states the conclusions. Fur-
thermore, it provides a summary of the major contributions of this thesis.
Finally, possible directions for further research are given.

5.1 Conclusions

The goal of this thesis, as stated earlier, is the development of an architec-
ture for a fusion-based Intrusion Detection System that aids in:

1. the elimination of false positives, and

2. the reduction of the number of positives that must be inspected by the
operator of the system.

Chapter 4 shows why application of the multisensor data fusion framework
can help to solve these problems, through the use of multiple heterogeneous
sensors and obtaining a multiple level-of-abstraction view. It also shows an
architecture for a fusion-based IDS, and a test case that evaluates the archi-
tecture. Although the test case that is used for evaluation is not extremely
sophisticated, it does show the potential of the architecture to contribute to
the solution of the identified problems. One thing the architecture shows is
the importance of the common reference frame that is chosen for alignment;
it is at the very basis of fusion-based Intrusion Detection. In summary, the
conclusions of this thesis are:

e The multisensor data fusion framework appears to be applicable to
intrusion detection;

e The architecture that is developed in Chapter 4 seems promising in
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its ability to aid in the elimination of false positives and the reduction
of the overall number of positives.

e A blackboard architecture can be used to let multiple parts of a fusion-
based IDS work together;

e The quality of the common reference frame that is used for alignment
is critical for the functioning of a fusion-based IDS.

5.2 Summary of Contributions

In summary, the major contributions of this thesis are:

e The development of a generic architecture for fusion-based Intrusion
Detection Systems;

e Further evaluation of multisensor data fusion as a framework for in-
trusion detection;

e Providing a starting point for development of fusion-based IDSs.

5.3 Future Research

This thesis still leaves many questions open regarding fusion-based IDSs
and the implementation of the developed generic architecture. The follow-
ing topics could be topics of future research:

e The design of a specific fusion-based IDS based on the generic archi-
tecture;

e The selection and development of fusion algorithms for fusion-based
intrusion detection. This could benefit from the taxonomies that have
been developed by Antony [Ant95];

e The design and implementation of individual expert systems. This
involves answering such questions as what knowledge representation
techniques to use as well as what knowledge to include in the knowl-
edge base;

e Building and evaluating a prototype implementation;

e Further refinement of the architecture based on experiments with a
prototype;

e Identification and incorporation of further requirements into the ar-
chitecture. Possible requirements are:
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— (Near) real-time analysis;

— Secure communication between the various parts of a fusion-
based IDS.
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Appendix A

Base-Rate Fallacy

This Appendix contains a description of the base-rate fallacy problem by
example. This slightly modified example is taken from Axelsson [Axe99].

The base-rate fallacy is a direct result from Bayes’ theorem

P(A) - P(B|A
P(A|B) = %
which can be rewritten to
P(A)- P(B|A)

P(A|B) = ==
> im1 P(Ai) - P(B|A;)

by expanding the probability P(B) for the set of all n possible, mutually

exclusive outcomes A.

Now we let I denote intrusive behavior, —I non-intrusive behavior, A the
presence of an intrusion alarm and —A the absence of an intrusion alarm.
We can then denote the true positive rate, or detection rate, by P(A|I), the
true negative rate by P(—A|-I), the false positive rate, or false alarm rate,
by P(A|-I) and the false negative rate by P(—A|I).

We want both P(I|A) and P(—I|—A) to be as high as possible, for that means
that an alarm really indicates an intrusion and the absence of an alarm
really indicates the absence of an intrusion. With the use of Bayes’ theorem
we know that

- P(I) - P(A[I)
P(I]A) = P(I) - P(A|I) + P(~I) - P(A|-])
and
P(-1|-A) = i

P(=I) - P(—A|-I)+ P(I) - P(-A|I)

The incidence rate P(I) is the probability that a single, randomly selected
event is part of an intrusion. Note that an event is not the same as an
alarm, but an alarm might be raised based on a (number of) event(s).

_ #events/intrusion - #intrusions/day
N #events/day

P(I)
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The number of events per day will be usually very big, especially when
related to the number of intrusions per day. Even when multiplied by the
average number of events that an intrusion consists of, P(I) will still be
very small. Since P(—I) is defined in terms of P(I) as

P(~I)=1-P()
we know that P(—I) will be very close to 1.

Now remember that

P(I) - P(A[I)
P(I) - P(A|T) + P(~I) - P(A|~])

P(I14) =

Since P(A|I) is the detection rate and P(A|-I) is the false alarm rate, we
can rewrite this as

P(I) - detection rate
P(I) -detection rate + P(—I) - false alarm rate

P(I|A) =

Since P(—I) = 1 — P(I) is much larger than P(I) for small values of P(I),
the influence of the false alarm rate on P(A|I) is very big. It completely
overwhelms the influence that the detection rate has. Thus even a small
false alarm rate will substantially lower P(I|A) while a very large detection
rate will have relatively little influence.

For a numeric example please refer to [Axe99].
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