vobile AgEeNTS

as a

Distributed Application
Architecture

Remco Slotboom

Master thesis for completion of a degree in Business Informatics at the
Erasmus University Rotterdam.

Supervision by Dr. Ir. Jan van den Berg and Drs. Mark Polman.

Supported by Cambridge Technology Partners.

Copyright statement
Copyright © 2000 Remco Slotboom. All rights reserved.

This document is provided “as is”, without warranty of any kind.

Company and product names mentioned in this document may be claimed
as trademarks by their respective companies.

Contact information
Remco Slotboom
Ellemare 193

3085 JR Rotterdam,
The Netherlands.

Email: rslotb@ctp.com

Student number: 126801

Table of Contents

Preface. ... VIl
How this thesis came to be............cooviiiiiiii e, VI
Aword of thanks.........coooiiiiii VIII
CHAPTER 1 INtrodUCtiONcccccveeiieeiie et 1
1.1 EXECULIVE SUMMANYiiiiiiiieiiiece e 1
1.2 MOTIVATION ... 2
1.3 GOAIS. .. 3
1.4 Chapter outline.........ccoviiiiii e 3
CHAPTER 2 AQENLS...coiiiiiiceeeeeieeee e 5
2.1 Agent according to the dictionary............c.cocoeeeviennnnen. 5
2.2 Why agents are importantc.ccoveiviiiiii i, 7
2.3 SOftWare agentScoccvviiiiiiie e 7
2.4 The importance of autonoMy..........cocevvvivviieiineineen, 8
25 Roles for agents..........ovveuiiiiiniii e 8
251 Agent as an autoNOMOUS ENTILY..........ccoovieriiireieeeeee e 8
252 Agent MONItOriNG INPUL..........ooviiiiiiieiieeee e 9
253 Agent controlling SOMEtNING..........ccorvrirreriiiie s 9
254 Agent Providing @ SEIVICEccvcviiiiiiiicii e 9
255 AQGENt NEIPING B USET ... 10
256 Agent representing someone or SOMethingcccocevveeriieniiienianne 10
2.6 Agentsindepth.........coooviiiiiiii 10
26.1 An agent and itS eNVIFONMENT............ccooiiiiiiieeree e 10
2.6.2 STATE. ..o 12
2.6.3 Reactive and ProactiVe..........cc.oveevieiinieicseese s 12

Table of Contents

264
26.5
2.6.6
26.7

2.7

2.8

281
282
283

2.9
2.10
211

CHAPTER 3

3.1

3.2
321
3.2.2

3.3
3.4
3.5

CHAPTER 4

4.1

4.2
421

422
423
424
425
426
427
4238

4.3
431
432

4.4
441
442

4.5
451

452

INSIAE N AGENT......ceeviiiriie s 12
AGENT CYCIB....iii e 14
MUItI-AGENT SYSTEMS ...t 15
The lifetime Of @ ageNt.........ccoovviiiiiiiieiee s 15
Agents: a different model of computing 15
Types of agentsovviiiiiiiii 16
INEllgENT AQENTS.....c.oviiciii e 16
MODIIE BIENTS......ceiiicici e 17
SOCTAL AGBNTS. ... e 17
Inter-agent communication............c..ccoeeeiiiiiiieiiennennnen. 18
Sample agent applicationsccoooevviviiiiiineenen, 19
CONCIUSION ...t 22
Intelligent agents..........cccocveveeceeceese e 25
Rationality.........oooiiiii 26
Beliefs, desires, intentions..........c..ocoovieiniiiiiniiiieeis 26
A rational BDIagentccooviiiiiiiiiiieee e 32
Stacking BDI TQYEISvcveiiiiiiiicc s 32
Emotional agentscooiiiiiiiiiiii e 33
Adaptive agentsocoviiiiiiiiie e 34
CONCIUSION ...t 36
Modelling and agentscccceveeeereeriesieeseenens 37
UML o 38
A crash course in OO terminologyccocceveevveeniennnnn. 39
State and BEhAVIOUT ..o 39
ClIASS . 39
Methods and attribULES............covriiiiiiiie e 39
ADSEFACTION. ...t 40
ENCAPSUIALION.ceoviiiiiieicce e 40
INNEITANCE ..o 40
POIYMOIPRISM ... 41
ASSOCTALION ... 41
USE CASES ..ottt iie ittt ettt 41
USE CASE TIBGIAMcuviiiiiiieieiceie et et 42
Conditional statements and iNCIUSIONc.ccooiiiiiiieiiiicec e 43
Class Diagram.......c..eeuuiiieiieiiee e 45
Inheritance and aggregation..............ccoeevvierieeciiseree e 47
SEBIBOTYPES ...t 47
Sequence diagramco..cevieiiiee e 48
MESSAGE TYPES ..ottt 50
Object construction and destruction...............ccoeeererreiniinceisciees 52

Mobile Agents as a Distributed Application Architecture

CHAPTER 5

4.6
4.7
4.8

4.9

491
492
493

4.10

4.10.1
4.10.2
4.10.3
4.10.4
4105
4.10.6
4.10.7

411

51

511
512
513
514
515
516

5.2

5.3

531
53.2
533
534

54

541
54.2
543
544

5.5
5.6

5.7
571

5.7.2
5.8

State Diagramoceuveiiieie e 53

Other diagramsvvveiieiiee e 55
Object oriented programming.........c.ccevvverieernneennnennn. 55
Using agents in modelling..........c..ccooveeiiiiiiiiinnis 56
THeE SYSEEM GCTON ... i 56
AGENES S ACTOTS.....viiiiiiiiiieie s 57
Different syStem tyPesS..........oovvviiviiiiii e 59
ANIMate ObJECES ...ivviii i 59
Introducing animate OBJECTS..........ccveiiriiriiiiiee s 59
Class diagrams and animate ODJECtS...........ccccvvvveririiiiiie 61
Sequence diagrams and animate Objects...........c.cooveiiiiiiiiiici 61
Objects in different enVIrONMENLS............ccoovveiiiniiiiciiec 68
Animate 0bjects in SOFEWAreccoovirieiiiicc e 69
Agents as animate ODJECES........c.ccoviiieiiiiricie e 72
AGENES AN SEALE ... 73
(0] 31041113 o o [73
Mobile agent paradigm...........ccccceveviveieeienninnns 77
Distributed COMPULINGvvvviiiiieiiee e 77
Advantages of distributed COMpPULINGcccoeviiiiiiiiiiice 78
Issues with distributed COMPULINGcoovoveiiiire e 79
Network cCommuniCatioN.............ooviiiiiiiiii e
Distributing a computation

SBCUNILY ottt
Guidelines for building distributed applications..............cccocevicrenne. 82
Modelling a distributed application.................ccoceeevniees 83
Paradigms for distributed computing...............ccc..cc.ee. 84
Distributed ODJECES.........ccoviiiiii 84
ABNTS .. 86
MODIlE COUE........ooviiii 88
MODIlE ODJECTS. ... 90
The mobile agent paradigm..........c.cccoeveeniiiiiineienneennnn. 91
Interaction MOdel...........ccooiiiiiiii e 92
The differenCeoovoviviicc s 93
AVANTAGESvevveveviicisie ettt 96
DiSAAVANTAGES.vvvevviviieiieieiett et 97
Mobile agent architecturescccoovveiiiiiiiiinienns 98
Existing mobile agent technology..........c....ccceveennn. 101
Possible applicationsccoeveviiiiiiii 102
Mobile agents on the INternet.............coovveiiiiiinicis e 104
Enterprise scale appliCations............cccoeireiiiineiineine e 105
CONCIUSION ...cuiiii e 106

Table of Contents

CHAPTER 6

6.1
6.11

6.1.2
6.1.3

6.2
6.2.1
6.2.2

6.3
6.3.1

6.3.2

6.4

6.4.1
6.4.2
6.4.3

6.5
6.6

CHAPTER 7

7.1
711

712
7.13

7.2

7.3

731
7.3.2
733

7.4
74.1

74.2
743
744

7.5

751
752
753
754
755
7.5.6

7.6

76.1
762
763

Implementing agents and mobile agents 109
Agent implementation strategies.............cocceeveevennnnn. 109
SCHPLEA AGENTS......eiiieiiiit s 110
USING 8 FraMeWOIK..........coviiiiiiiiie e 110
DY o 111
Basic agent models..........ccociveiiiiiiii 112
Heart, brain, and MemOrY...........cccoveviiiiiiieiiie e 113
Effectors and SENSOIS...........cviiiiriiiiiieee e 117
Creating autONOMYovvvviiiii e 120
Processes and threadsccoovieireiiineie e 121
Agent threading Models...........cocooiiiiiiiiii 122
Creating mobilityccoooviiiii 129
MOVING STALE......vivriviicii e 130
MOoVING BERAVIOUL ..o 131
MOVING AUEONOMY ...ttt 131
Mobile agent pattern............ccoevviiieiiineiin e 131
CONCIUSION ... 137
Mobile user agents framework....................... 141
Application descriptionccooceiieiiiieiiiiieeieeeeees 141
OCTAMNNE ..ot 141
WEDWALCHEN ... 142
THE AIENTS ..ot 143
Technology selectioncccovvviiiiiiicieee 143
USE CASES...uitiiiiiiit ettt ettt 144
WebWatcher application ... 145
AGENES ... 146
OCHANNE SEIVETiviieiiiceie ettt 148
Class DiagramsS........oeuuieiuieieeii e e 152
OcCtaring Dase CIASSES........cvviiiieiiic e 152
OCLAriNG SEIVET CIASSEScvevvvviieiiiieiei et 154
Octaring APPIEL CIASSES........cveveiiiiiiiieeeee s 155
SBIVIBTS. ... s 155
Points of interest ..o 157
MAIN SCIEEIN ... 157
AGENT CrEatiON.....ocviieiiiiicc e 159
Editing 8N 80ENTcvvviiiiiiii 163
WebWatcher at WOrK.........ccooiiiiiiiiice e 167
Applet iNitialiSation.............ccooiiiiiie e 169
SEIVET STAIT-UP ...t 171
CONCIUSION ...cuiiii e 173
DESIGN PIOCESS.c.vvevviviieriereiere sttt ettt a b re e 173
Reflection on the methodology...........ccocveiriiiniiiicice 174
The future of WebWatCher...........ocoiiiiiiiiiicc 174

Mobile Agents as a Distributed Application Architecture

CHAPTER 8 CoNncluSions.........ccccoeceevieciieccie e 175
8.1 Goals revisitedccoviiiiii 175
8.2 Final conclusions.........cccoiviiiiiii e, 176
8.3 Future direCtionscooevviiiiiiiiie e, 177
8.3.1 Agent programming laNQUAGES............eovrerieireiineneeieee e 178
8.3.2 Asynchronous computer interaction.............coceevvvvvereniiseinrssenenns 178
8.3.3 Improving performance with mobile agents..........ccccccovvviciviiinnn, 178
834 Hiding mobile agents..........coooviiiiiiii 179
REfEIENCES ... 181

Table of Contents

\l

Mobile Agents as a Distributed Application Architecture

Preface

What does it take to create a master thesis? You take:

= about 30 packs of Earl Grey tea

= 300 litres of hot water

= apile of agent literature

= astack of other subject matter literature

= acomputer

Add one human on overdrive, and mix for six months.

You get? One master thesis on agents. Mobile agents specifically, and how
they can be used to create architectures for distributed computer systems. If
anything, | hope this thesis will not contribute to the current hype on agents,
but instead show some real, present time advantages of the concept.

As you can suspect, loads of hard work went into the creation of this
document. In the next section, I will briefly describe how this document
saw the light. After that, I want to extend my thanks to some people that
were crucial to the completion of this thesis.

How this thesis came to be

While working as developer on a large-scale e-commerce application, |
came into contact with an OO consultant who suggested ‘mobile agents as
a new paradigm for distributed computing’ as a possible master thesis
subject. Roughly parallel to that, one of my colleagues was very excited
about aglets (IBM’s name for mobile agents) and kept insisting just how
cool they were and what daunting possibilities they had. All this slumbered
a bit for some time, because the breakneck schedule of the application
under development allowed me to focus on little else.

Initial preparations for this thesis started somewhere at the beginning of
1999, when | opted to do the actual writing of the thesis in a reduced
timeframe, but remaining employed. The basic idea was that if | could do

Preface VI

some preparation (reading, research) while working, I would be able to
write the thesis in three months full-time, with some of my own holiday
time added.

‘Agents’ was actually a second, last resort option chosen when an earlier
proposal was shot down for being ‘beaten to death’. Nevertheless,
everybody loved the subject, and | started my initial explorations into the
literature.

I ploughed trough a large pile of books and articles on agents, mobile
agents and more general material on Al and distributed computing. From
these, I gradually assembled the pieces of the puzzle, and gained new
insights. Most of these articles presented different, even conflicting views of
agents, which caused me to present, after thorough analysis, my own view
of agents described in chapter 2.

During our previous development, | was confronted with the complexities
of creating large scale distributed applications, and I gradually put two and
two together, seeing how mobile agents could be used as a possible solution
for many of the issues found in modelling and developing such

applications. This is why | chose to focus my efforts on presenting mobile
agents as a distributed application architecture; the title of this thesis.

My interest in OO modelling and the need for thorough analysis and design
for such large scale applications led me to investigate how agents fitted into
object oriented design and modelling, as presented in chapter 4.

Finally, theory is one thing, but | personally don’t believe something really
works until I see it working. Also, building a prototype is one of the best
ways a theory like the one I present can be validated and tested. An initial
prototype proved that it really was surprisingly easy to implement agents in
Java, and that it provides a very elegant programming model. In chapter 6
we show some ways agents and mobile agents can be implemented, and
chapter 7 presents the design and implementation of a working prototype
that is part of this thesis.

The prototype is a web based application based on mobile agents, called
WebWatcher. The initial version allows you to create ‘smart’ bookmarks
that will alert you when a page you indicated interest in is changed. It
should be on line by now, at:

http://webwatcher.remmie.com

Please, visit it and tell me what you think.

A word of thanks

I am very grateful to a lot of people for giving me the opportunity and
supporting me. | want to thank the following people explicitly:

Vil

Mobile Agents as a Distributed Application Architecture

Jan van den Berg and Mark Polman for their relentless but ever fair
comments on my ramblings, Richard Narine, Kristen Russell, and Clive
Bourke for being killer PMs, Anees Qureshi as a great mentor, Albert
Bartels for pushing me over the edge, Edward van der Jagt for being
network guru, Richard Horner, Erik Rutten, PH de Wit and Jean-Paul de
Vooght for being inspiring colleagues, Jacques Heesterbeek, Bill McCarthy,
Onno de Cloe, Paul Piebinga and Eric Jansen for their support.

And of course a very special ‘can’t thank you enough’ thanks to Indra
Caerteling for always being there.

(Late night) inspiration came from:

Massive Attack, Prodigy, Terry Pratchett, Red Snapper, Junkie XL, Douglas
Adams, Moby, J. Michael Straczynski, Kruder & DorfMeister, George
Marinov (Stereoman), Tobias Wilton, TMF, Underworld, Orbital, Andreas
Saag, Chemical Brothers, MTV, The Lego Group.

Remco Slotboom, April 2000.

Preface

Mobile Agents as a Distributed Application Architecture

CHAPTER 1

11

Introduction

Why are mobile agents so fascinating? Because we believe we can do things
with mobile agents that are very hard to accomplish otherwise. This first
chapter motivates why mobile agents are so interesting, and gives a quick
overview of things to come. We start with an executive summary, which in
a nutshell describes the main ideas presented in this thesis. You can use it as
a first quick overview, or to decide whether this document is relevant for
you or not. We continue with the motivations and goals of this document.
The last section is an outline of the following chapters with some guidance
to the reader.

Executive summary

This thesis investigates the possibilities of agents, and especially mobile
agents, as a distributed application architecture.

Agents are software components that operate more or less on their own, or
autonomously. As a software architecture, agents are a way to build
autonomous computer systems that operate largely asynchronous, not
depending on user interaction. Such systems can be delegated certain tasks,
much like a real person can be delegated a task. There is a whole range of
applications for this, from digital personal assistants to fully automated
factory control systems.

Because being able to operate autonomously requires some degree of
intelligence, agents are often ‘intelligent’ agents, employing some form of
artificial intelligence. We describe several techniques that can be used to
create intelligent agents.

The next step is mobile agents, which are agents that are able to move
themselves from machine to machine. This represents a radical shift from
more traditional distributed computing architectures. It allows us to freely
move code around on a network, which in turn enables us to have a much
more flexible architecture with a much better network performance. In
addition, it can cater for systems that incorporate both high and low

Introduction

WebWatcher
URL

1.2

bandwidth connections and with processing power unevenly distributed
around the network.

To support building systems based on (mobile) agents, we also show how
such systems can be designed. We enhance the standard modelling language
UML with a few additions that allow us to better model (mobile) agent
based applications and even distributed applications in general.

To help implementation of (mobile) agent based system, we discuss what
existing software can be used to implement it, and present several
techniques that can be used to create agents and mobile agents.

Part of this thesis is the design and implementation of a prototype
application that highlights the features of mobile agents.

The prototype should be online by now, and can be found at:

http://webwatcher.remmie.com

We end with some final conclusions and future directions illustrating what
could happen if we take the concept of mobile agents to the limit.

Motivation

Have you ever wished your computer truly do something for you, do
something so you don’t have to do it yourself, like check a web page to see
if its updated, or automatically sort your email? That something is software
agents can do. Now, have you ever wanted your computer to be a little
more proactive? Maybe try to help you out when you are obviously stuck,
or maybe tell you if there is something wrong, and help you fix it? Again,
that's something that can be done with software agents. Software agents are a
very useful model for building software that needs to act autonomous. An
example could be an agent that guides you through a web site, or places
bids in your name in an online auction. Some agents don’t even have any
interaction with a user, but do things like managing a system of valves in a
refinery, or reporting changes in a robot design to another system.

Now, wouldn't it be great if the computer would do something for you

even when it was turned off? Of course, this is physically impossiblel, but
we could have your computer hand off the task to a computer that is
permanently on, and have the task return to your computer should the need
arise. This would simulate the absurdity above to a large degree. Mobile agents
allow just this: a mobile agent is a software agent that is not bound to a
specific computer, but can be moved to another machine and continue its
task there.

We present mobile agents as a new and powerful paradigm for distributed
computing, and describe what the benefits are of using mobile agents as the

1 Unless the task you were thinking of was something like ‘take up space on
my desk’, but let’s not go there.

Mobile Agents as a Distributed Application Architecture

1.3

goals

1.4

foundation for a distributed computing architecture. Architecture in the
sense that mobile agents are taken as the fundamental building blocks of the
application, possibly together with normal (non-mobile) agents and normal
objects, both when modelling and implementing the application.

Applications that could benefit most of this paradigm are applications that
need to:

= undertake activity without a user actively interacting with the
application

= arbitrarily connect and disconnect machines and users from the
network

= manage bandwidth and availability differences

= have massively parallel computing

Goals

In this thesis, we investigate what software agents are, what makes them so
special, what they can be used for, and how to think of computer
applications in terms of agents. We do not focus on any specific application
of software agents, but rather on agents as a concept, as a computing
model.

We set ourselves the following goals:

We want to present mobile agents as a distributed application architecture, as a
paradigm for building software systems running on interconnected
computers. We want to present everything agent specific necessary to build such
an application, so we discuss what agents are, what mobile agents are,

how a (distributed) software system can be designed and modelled using
agents, and how an agent based system can be implemented.

In the next section, we detail how we cover these aspects in the various
chapters.

Chapter outline

This thesis only assumes a basic understanding of how computers work and
what computer programs are. We try to explain many of the more advanced
and/or agent specific topics thoroughly. However, do bear in mind that
some material might be quite dense if you are new to areas such as object
orientation and programming. Those who live and breathe agents in
everyday life can skim through many areas quickly, but we do believe those
might still find some interesting new ideas.

Introduction

We don’t have the illusion that everyone who reads this thesis will do so
from front to back. This outline should give you some idea of what is of
interest to you and what is not.

= chapter 1, this chapter, introduced what is discussed in depth in this
thesis.

= chapter 2 defines what agents are, shows agents as a computing
model, discusses some common types of agents, and shows what could
go on inside an agent.

= Chapter 3 investigates intelligent agents in depth.

= chapter 4 shows how agents can be used in an OO design, and how to
look for agents when designing an application.

= chapter 5 introduces the mobile agent paradigm. It discusses what is
so special about mobile agents, what they can be used for, and how
mobile agents compares to other types of distributed computing. It
concludes with some ideas on how mobile agents can be used for
Internet applications and how mobile agents can be used to create a
powerful application server platform.

= chapter 6 discusses how agents and mobile agents can be
implemented, using what technologies. It shows different models of
agents, different models for agent autonomy, a simple design pattern
for mobile agents. It includes sample implementations in Java.

= chapter 7 describes the design and implementation of a two-part
prototype application: The Octarine mobile user agents framework and
WebWatcher. The framework is capable of supporting user agents that
are able to move between the user’'s machine and a central server.
WebWatcher is a front-end application for this framework.

= chapter 8 gathers the most important conclusions drawn from this
thesis, and discusses some future directions.

If we may present some guidance:

= For more business oriented people interested in agents and mobile
agents, chapter 2, chapter 5, the beginning of chapter 7, and chapter 8
would be of most interest.

= High level technical people would additionally want to read chapter 3,
chapter 4, and the remainder of chapter 7.

= Finally, developers, especially aspiring developers, should just read the
whole thing.

Mobile Agents as a Distributed Application Architecture

CHAPTER 2

2.1

agent

You probably have a pretty good idea of what an agent is in real life. Most
of us interact with agents every now and then. You arrange travel via your
travel agent, insurance hassle is taken care of by your insurance agent, and
her Majesty’s little errands are run by a secret agent. If you have already
made your way into the land of fame and fortune, you might have an agent
taking care of your busy schedule and answering questions.

The topic of this thesis concerns agents in the realm of computer science,
in their most general form usually referred to as ‘software agents’. As with
many relatively new terrains of research, there exist just about as many
different definitions of (software) agents as there are papers about the
subject. These definitions range from a very strict definition of the
behaviour and algorithm of an intelligent program, to a mobile process, to
the behavioural view saying that an agent is anything that is convenient to
call an agent (for some examples, see [1]). Existing applications range from
a flexible architecture for a digital library [11] to animated characters on a
screen that have a vocal conversation similar to humans, including change
of intonation and hand gestures [12].

Given all this confusion and controversy, we think it is imperative we try to
give a good, solid definition of software agents. Doing so will not be easy
however, because the concept ‘software agent’ is at its core very abstract,
often used in complex settings, and very flexible in morphing itself to fit
into the context. Sometimes it seems an agent is more like a feeling than
something you can put your finger on.

The main reason anyone would want to refer to a particular piece of
software as an agent has to be because it resembles a real-life agent in some
way. Therefore, before we look more deeply at software agents, let’s see
what the dictionary says about agents in general.

Agent according to the dictionary

The Oxford English Dictionary of Common English defines ‘agent’ as follows:

Agents

to act

autonomy

agent [...] n. 1 aperson who acts for another in business etc. b spy. 2
person or thing that exerts power or produces an effect.

Webster's Revised Unabridged Dictionary more or less agrees:

agent [...], n. 1. One who exerts power, or has the power to act; an
actor.

[...]

2. One who acts for, or in the place of, another, by authority from him;
one intrusted with the business of another; a substitute; a deputy; a
factor.

3. An active power or cause; that which has the power to produce an
effect; as, a physical, chemical, or medicinal agent; as, heat is a powerful
agent.

The word’s origin stems from the Latin verb ‘agere’, meaning ‘to act’. Also,
both dictionaries 2 define the adjective agent as ‘exerting power, as opposed
to patient’.

We thus have two somewhat different meanings of agent: someone
representing or acting under the authority of someone else, and someone or
something exerting power, producing effects. The ‘spy’ meaning of agent
also falls under the first. After all, James Bond is acting under the authority
of her Majesty the Queen herself.

The second meaning says an agent has the power to act. This implies an
agent has some degree of autonomy, it can do things on its own. In fact, we
can say the first definition of agent is enabled by the second definition: An
agent has the power to act, and as such is able to (autonomously) represent
someone else or act under the authority of somebody.

This autonomy is the main reason businesses let themselves be represented
by agents. The agent can dedicate his or her attention to a (potential) client,
while the people running the business can do just that: run the business.
The agent might even be at a different location.

And the knife cuts both sides. An agent ought to have extensive knowledge
of the offerings of a particular business, and can assist the client in choosing
the service most suited for him. This is especially important if the service is
complicated and/or tailored to the client’s needs. The agent thus also
becomes the representative of the client to the business, especially if the
agent is ‘independent’, representing several businesses with similar

offerings, such as insurance.

Often the same agent has repeated interaction with the same client. As
such, the agent can maintain a history of a client, which allows it to easier
match new requests to the client’s needs and preferences.

2 For Oxford’s, this is in the full, historic dictionary.

Mobile Agents as a Distributed Application Architecture

2.2

attention

delegation

2.3

software agent

perceive, reason,
act

Why agents are important

Agents become increasingly important, and consumers gain a lot by having
agent-type of services available. Given the current wealth of information,
attention, not information, becomes the most important asset [13]. Why?
Well, there are only 24 hours in a day, of which we sleep at least a few.
During those remaining hours left we are overwhelmed by an avalanche of
information (emails, memos, advertisements, billboards, the news etc.), and
are able to access even more (the newspaper, the corporate data store,
archives, the Internet etc.). More and more your daily task becomes very
carefully distributing your attention amongst many different information
sources. Advertisers for instance know this and try ever crazier things to get
your attention. Perhaps the wildest one we know is a cola brand that had
people rake out its trademark logo in the beach every morning so the beach
goers would see it.

By delegating certain things to agents, you can reduce the amount of attention
required to find just that piece of information you need. Take something
like picking a restaurant to eat with a good friend. If you pick a wrong
restaurant, that’s a double waste: you have bad food, and you waste time
that should have been quality time spend with your friend. Now suppose
you make your choice based on the recommendations of a food reporter
you like. This dramatically increases the odds you pick a good place,
because: a) the food reporter has already visited a lot of restaurants so he or
she knows what he or she’s talking about, and b) because you know you
tend to agree with the food reporter. This all in substantially less time than
it would take to scan the entire list of local restaurants in the Yellow Pages.
In this example, the food reporter is effectively your agent, representing you
(and many others) when he or she visits and rates restaurants on your
behalf.

Software agents

The way we want to define software agents now flows naturally from our
discussion in 2.1. We define a software agent as follows:

A software agent is an autonomous software component that perceives,
reasons and acts.

We already saw ‘autonomous’ and ‘act’ in 2.1, and, like a normal agent, a
software agent is able to act, and is able to do so autonomously. In order to
act sensibly, the agent should perceive, reason about what it just perceived, and
act based on those perceptions now or later. Finally, ‘software component’
means the software agent can be stand alone, or be part of a larger
application, which could very well consist of several software agents. Of
course, this software component needs to run on some computer for the
agent to be able to do anything.

From now on, we will often omit the ‘software’ from ‘software agent’ for
brevity. It should be apparent from the context however, when we refer to
a real-life agent or its software counterpart.

Agents

2.4

asynchrony

2.5

251

The importance of autonomy

Arguably, just about all software out there perceives, reasons and acts to
some degree, but the autonomy aspect is what makes the agent special. It
enables the agents to make decisions on its own, in particular without user
intervention. While most software is centred on serving a user or other
systems, agents are more self-centred, more, as said so many times now,
autonomous. The autonomy enables us to really delegate a task to the
software agent, just like we delegate a task to a real life agent.

Another important aspect of autonomy is that it enables the agent to exhibit
asynchronous behaviour. Asynchrony is a very desirable feature because it
allows for greater concurrency and flexibility. It is a bit like the difference
between having a conversation over the phone and exchanging email. A
phone call requires both parties to pay attention at the same time and
respond immediately, while with email each party can respond at a time he
or she sees fit, if at all.

Still, autonomy is not some magical property we need to give the agent. Any
computer program is potentially capable of showing autonomous
behaviour, they just rarely do so. Some examples that do, are screen savers
and insuspicious background processes like mail daemons. These can be
considered very simple agents.

Roles for agents

It is often confusing what a software agent is exactly. Many, at first glance
unrelated applications are described as being agent based or using agents in
some way. In addition, we believe there are pieces of software out there that
could be thought of as agents even though they are not labelled as such. We
read many articles before we grasped the core of the concept and came up
with the broad definition as described above. However, this definition
doesn’t give many clues to what agents are useful for. Below we list a
number of roles agents typically play, along with some other possible names
for an agent in that role, some characteristics, and examples of applications
that use agents in such a way. This list is by no means meant to be
exhaustive and there could very well be agents out there that play a different
role than described here. In addition, one of the powers of the agent
concept is that it is very natural for an agent to have more than one role.
Nevertheless, together these roles give a nice indication of the possible uses
of agents.

Agent as an autonomous entity
Other name for this role: Actor

This is somewhat the mother of all other roles, as apparent from the
definition above, but it is listed separately because the autonomy is
sometimes the most important property of the agent. This role often occurs

Mobile Agents as a Distributed Application Architecture

252

253

254

in simulation or animation, where the agent represents a character in the
system, pursuing it own goals, often interacting with other agents.

Examples are for instance two fully animated characters on a screen,
engaged in a social interaction [12], and Lyotard, a simulated cat [7].

Agent monitoring input
Other names for this role: Monitor, Alerter

This is a very simple agent that watches some source of data, like a database
table, or some physical device, and the agent’s actions consist of sending
some messages to someone or something. The agent could be sending an
email, calling a pager, or placing a message in a message queue. Someone or
something then takes action on the message sometime or later.

Examples include: Agents that monitor network status and alert operators
of network problems, or web sites that send out update notifications such
as e-Bay [22].

Agent controlling something
Other names for this role: Controller, Manager

This is a beefed up version of the Monitor role, where the agent in addition
takes significant actions based on the input, instead of just sending
notifications. This is especially useful if the actions to take need to be taken
very quickly and/or the decisions require expert knowledge (This of course
requires that this expert knowledge is obtained and stored with the agent).

Examples include several agents together controlling a particle accelerator
[15], or agents deciding which machine job to process next [16].

Agent providing a service
Other names for this role: Service, Provider

Here we see that the knowledge of an agent is very important. The agent
knows how to do something, and provides it as a service. This model is a
good basis for a flexible application architecture where various agents hide
the complexities of different systems or functionality and present a
common interface. It differs from a more traditional client-server model in
that the agents are not purely passive like normal server components, but
actively do something as part of their task (i.e. monitoring and indexing a
database). In addition, the agents might accept tasks that are executed
asynchronously.

Examples include the open, agent based architecture of the University of
Michigan Digital Library [11], or task bots that can do secretary-like tasks
[17].

Agents

255

256

2.6

26.1

environment

Agent helping a user
Other names for this role: (Personal) assistant, Guide, Teacher.

This is one of the better known and most visual roles for an agent. The
agent provides assistance to the user in the form of explanation and advice,
often as an animated character on screen.

The notorious paperclip (Office Assistant) in the Microsoft Office
applications is a well known example, another, less famous one, is Herman
the Bug in Design-a-Plant, teaching middle school children about plant
anatomy and physiology [18].

Agent representing someone or something
Other names for this role; Representative, Proxy.

Very handy: having an agent represent you, so you don’t have to do
something yourself. It could also be the other way around: a piece of
software on the user’s machine can be some business’ agent, and can tell the
user when something interesting has occurred.

As for the first type: some more advanced email packages, such as

Microsoft Exchange, have an ‘out of office assistant’ that reply any
incoming email message with automatically while you are gone. These
messages can differ depending on the type of message. For instance, a
message labelled ‘important’ might get a reply with you private mobile
number, whereas a normal one just states you’re away, and when you will be
back.

An example of the latter is the ‘full circle’ agent in the newer Netscape
browsers that pops up when the browser accidentally crashes. The agent
asks the user to (optionally) fill in a problem report to send back to
Netscape.

Agents in depth

We’ve seen what an agent is and what roles it can play, now we want to
examine more closely how an agent actually works, how it can perceive,
reason and act.

An agent and its environment

An agent always perceives and acts on its environment. This environment
might be a real physical environment, so the agent perceives light or sound,
and its actions have a physical effect like the movement of an object or the
display of a message on a screen. A robot can be thought of an agent in a
completely physical environment.

The environment could also be virtual, so only existing in a computer or
computers. Monsters in a 3D-action game can be seen as agents in a virtual

10

Mobile Agents as a Distributed Application Architecture

percepts,
actions

neuron

environment. A subtle point arises here: This virtual environment is
projected on a computer screen, so an agent’s actions on a virtual
environment might still have a physical effect.

Finally, the environment might be a mix of both. For instance, an agent that
teaches a user something in a multimedia application, communicates with
that user (physical), but also observes the user’s actions on the taught
subject (virtual).

To avoid complexities we will assume that as far as the agent is concerned,
its environment is what it can perceive from and/or act on. If we initially
treat the agent as a black box3, we get this very simple model of an agent in
some environment.

e ————————

——

. S—
o Environment T~

Actions \\
J
(=] /
e
-
.

Figure 1: A first model of an agent.

We see two streams of percepts, things that are perceived, going into the
agent, and two streams of actions leaving the agent. Two of each, to indicate
the possibility of many independent streams of different types of percepts
and actions. The percepts and actions occur in time. The agent processes
percepts arriving in time, reasons about them and acts every now and then.

Especially those who are familiar with biology or neural networks might
find that this model resembles that of a neuron (nerve cell). A neuron also
accepts input (electrical pulses) and fires (acts) depending on the values of
the input. A software neuron as used in neural networks (see [14]) is a
simple software model of a real nerve cell. The difference between a
software neuron and a software agent is a matter of scale and complexity. In
a simulated neuron, the input and output are of the same type, and the
transformation is relatively simple. For an agent however, the inputs,
actions and the reasoning process can be of arbitrary complexity.

3 Depicted by a white oval. (pun intended)

Agents

11

2.6.2
state

stateful,
stateless

2.6.3

reactive agent

proactive agent

264

State

Without change, the world would be pretty boring. Most things around us
change as time passes. The weather is rainy and cold at one point in time,
sunny and hot at another. A light switch can be on, or it can be off. Each of
the conditions described here is a state. So the light switch is in the state on,
or in the state off. Under normal circumstances, something is in only one
state at any give point in time.

Something that can be in more than one state is called stateful, something
that cannot is called stateless.

With the concept of state, we can now describe a little more precise how an
agent works. When an agent perceives, it perceives the state of its
environment. Some of the states of that environment will cause the agent to
take action, and the taking of that action in turn changes the state of the
environment. In our discussions, we will assume that the agent gets
feedback on its actions, that it is able to perceive the result of its actions,
whether successful or not. This is not always necessary in practice, but it
makes describing how an agent works somewhat simpler.

Reactive and proactive

So far, only the environment had state. The agent itself was stateless. Such
an agent is a reactive agent: It immediately responds with an action once its
environment has a certain state.

What happens if the agent has state as well? The agent can, instead of
affecting its environment, change its own internal state, so the agent’s
perceptions do not have to have an immediate effect. But when something
else happens later on (which might just be the passing of a certain amount
of time), the agent can take an action based on the earlier perception and
the current state of the environment.

This kind of behaviour is called proactive, and an agent that exhibits this
kind of behaviour is a proactive agent. A simple, real life example: A stop-loss
order. You tell your stockbroker to sell certain stocks if they sink below a
certain level. Your broker does not sell the stocks immediately, but he or
she would once they sink below the threshold.

A proactive agent is capable of much more complex behaviour that a
stateless agent. It can combine events that happen at different points in
time, which means it could for instance accept new tasks to do, and even
‘learn’.

Inside an agent

Now it is time look at the inside of an agent. What goes on inside the agent
that makes the agent do its tasks? Software agents derive their name from
their similarity to human agents, so it should not come as a surprise that a
good way to model the inside of an agent is similar to a model of a living

12

Mobile Agents as a Distributed Application Architecture

being. Specifically, our model consists of a heart, sensors, effectors, a brain, and
memory. In a picture, this looks like this:

Agent

(2]
S
o
(%]
c
(]
%]

S101038)J°9

Figure 2: Inside an agent.

This picture mimics the same oval for an agent as shown before, but now
with the inside filled in. The percept and action streams are omitted for
clarity, but you can think of them in the same place as they were in Figure 1.
The black arrows indicate which component influences each other. What
happens is described below:

Heart

The heart is the source of the agent’s autonomy. It periodically activates the
agent’s brain, and that activation might cause the agent to do something.
How the heart is implemented determines how autonomous the agent is
with respect to its environment. For the technical details of this, see 6.3.

Sensors

The sensors provide the agent with information about its environment, the
percepts mentioned earlier. For a software agent, this might be data from a
file, the current time, input from a hardware device (thus a real ‘sensor’),
data coming from a network, information received from another software
component, etc.

Effectors

Effector is a general name for ‘something to influence the environment'.
For a living being these thus are arms, legs, paws, beak, vocal cords, etc. For
an agent, its effectors might enable it to write to a file, manipulate a
hardware device, send data across a network, send information to another
software component, etc. The effectors thus determine what different
actions an agent is able to take.

Agents

13

agent compared
to a computer

2.6.5

agent cycle, beat

Brain

The brain allows the agent to reason, to decide if and what actions to take.
It combines information from the sensors and the memory to activate some
effectors and/or update the memory.

Memory

The memory provides the brain with historic information and basic
knowledge. We have separated memory from the brain to distinguish
between a component that does the thinking, and a component that stores
information. The memory allows the brain to store current information for
future reference, it provides the agent with state.

We think this model pretty accurately shows how a living being interacts
with its environment, and also how a software agent should interact with its
environment. You might have the eerie feeling this looks like nothing new.
Indeed, if you replace ‘heart’ with ‘clock’, ‘brain’ with ‘CPU’, ‘sensors’, with
‘input devices’ (keyboard, mouse, etc.) and ‘effectors’ with ‘output devices’
(monitor, printer, etc.), you get a simple model of a computer running a
program. So what’s different? Well, most importantly, the concepts of
sensors and effectors are meant to be much more general. They could be
sensing in a partly or completely virtual environment. Also, we consider
many different agents on one computer, even per application.

Agent cycle

We've been saying that an agent continuously perceives reasons and acts.
While it is definitely possible to do these things in parallel, there is a natural
order in these three elements, which is also apparent from Figure 2. It starts
with perception, followed by reasoning (including a possible update of the
agent’s memory) and ends with taking actions. We will call this the agent cycle,
and a single iteration of this cycle a beat, to reflect that the execution of the
cycle executes in a single ‘beat’ of the agent’s ‘heart’.

e
X
.
Z
o

Figure 3: Agent cycle: perceive, reason and act.

14

Mobile Agents as a Distributed Application Architecture

2.6.6

multi-agent
system

2.6.7

hibernating
agent

2.7

web server vs.

agent

Multi-agent systems

Although a single agent by itself can already show very complex behaviour,
it gets even more interesting if we consider multiple agents interacting with
the same environment. Such a system is called a multi-agent system.

Multi-agent systems are big part of agent research by itself. (See for instance
[15]). Multi-agent systems are for instance a way to approach the study of
complex, dynamic systems like trade economies or schools of fish. The big
advantage is you can take a bottom up approach, starting with the simple
components of the system (the trader or the fish) and describe their
behaviour. This is often much easier to capture than the behaviour of the
system as a whole.

The lifetime of an agent

Different agents generally have different lifetimes. At the one extreme, we
can have agents that live ‘forever’, that remain running as long as a
computer system is up, agents that provide a core system service. At the
other end we can have agents that execute a certain short task, agents that
only ‘live’ for a few seconds. It might also be the case that the certain agent
‘hibernates’ for some time, with its state stored on disk, but without the
agent being active in the memory of the computer.

For instance, the article An Experiment in the Design of Software Agents[17]
makes the very useful distinction between user agents and task agents.
(There referred to as user bots and task bots). A user agent not surprisingly
interacts with a single user, probably using some sort of GUI or Web
interface. A task agent on the other hand, continuously executes a fixed
task, such as monitoring a data stream or, as in their case, scheduling
meetings. The user agents come up and come down when the user logs on
logs of, whereas the task bots run continuously.

Agents: a different model of computing

The good thing about our definition of agents that it catches what we
believe to be the core of agency. The bad thing about it is that it might also
cover pieces that are not normally considered agent.

Consider for instance a web server. A web server continuously listens to a
network port, and when a request comes in it finds the requested page and
sends it back to the requester. This can be interpreted as perceive, reason,

and act, though in a very limited way.

Does this mean a web server an agent? No, not really. The difference lies in
the fact that all interaction with the web server is synchronously. You send
a request, and wait for the web server to satisfy it. There is a one-to-one
mapping between input and action (output), and the output always goes to
the requester. The same is not true for an agent. The agent does not
necessarily send a response back to the source of the message, and whether

Agents

15

more interactive
computing

2.8

281

intelligent
agents

it takes action at all often depends on previous input (possibly from another
source), and if it sends back results it often does so asynchronously.

Software agents as we defined them in this chapter present a different
computing model. The traditional model of computing is that of input-
transformation-output, as with the mobster and his goon: ‘“You're not paid
to think. You're a muscle. Relax until I say ‘flex”.

Agents are a way to think about breaking this model, to go towards a more
interactive way of computing, where human and computer are in a dialog to
accomplish a task, and the human can delegate some mundane and/or
highly specialised tasks to the computer. Additionally, it could be the
computer starting the dialog, instead of just the human. And this way of
thinking is not limited to human-computer interaction. It is also a very
useful way of thinking of a large (distributed) application, that, instead of
just clients and servers, also has several agents that are assigned particular
tasks.

Partitioning an application in several agents makes it easy to define a task
for each agent, and probably only one of them would be responsible for
communicating directly with the user

Most traditional software modelling methods consider the system to be
modelled to be largely reactive, to respond to outside stimuli only. This
makes it hard to model more interactive systems and systems that exhibit
asynchronous behaviour. With computer systems becoming ever larger, this
becomes increasingly apparent. Modelling using agents is a possible way of
tackling this problem, simply by making different agents the source of the
asynchronous behaviour. We will introduce this approach in chapter 4,
where we integrate agents into the basic modelling constructs of UML, an
object oriented notation language and methodology.

Types of agents

Now we know a little more of how an agent works, we want to discuss
different types of agents that are commonly recognised in the agent
literature. This is not categorisation, but each type highlights a particular
additional property an agent might have. For these and other types of
agents, see also [1].

Intelligent agents

A large part of agent research concerns intelligent agents. Roughly speaking, an
agent is intelligent when it can act ‘smart’ in many different situations.
Intelligent agents generally deploy some form of Artificial Intelligence (Al)
techniques for their reasoning, such as neural networks, genetic algorithms,
decisions trees or logic programming. In fact, the book Acrtificial Intelligence;
A modern approach [2] states that ‘The purpose of Al is to constructed
intelligent agents.’

16

Mobile Agents as a Distributed Application Architecture

2.8.2

mobile agent

load balancing,
fail-over

mobile agents
on the Internet

2.8.3

Intelligent agents are not the direct topic of this thesis. Nevertheless, we
devote the next chapter entirely to intelligent agents, because we think it
helps illustrate the importance of agents, and really exemplifies what makes
agents so special.

Mobile agents

Mobile agents are another big part of agent research. (See for instance [27]
or [29].) A mobile agent is an agent for which it is possible to move or copy a
running instance to another computer in a network. This ability to move is
a possible, rather fundamental action the agent is able to take while running,
one which can have a rather big influence on what the agent is able to do
next. Actually, the mobility of the agent is so important it often
overshadows the ‘agentness’ of the mobile agent. A mobile agent is a
mobile, autonomous component, and the sensing, reasoning and acting are
less important. A mobile agent is above all a courier, an autonomous
component running around and doing different things in different places.

This mobility creates some exciting possibilities, such as being able to
configure the agent on a user’s machine, and then move it to a central
server. This would allow the user to disconnect from the network, while the
agent would continue to do its task. Once the agent decides it should alert
the user, it could move back to the user’s machine (perhaps waiting until
the user is connected) where it could interact with the user and probably
present some data it has found.

Another idea is to have the agent manage server load and fail-over by
moving to a less-loaded server and distributing copies of itself across the
network. This gives a hook for a highly decentralised and thus very scalable
approach to load balancing and fail-over.

In its most general and unrestricted form, mobile agents could travel all
over the Internet, interacting with servers and other (mobile) agents. This
by itself interesting idea has some serious consequences in terms of security
and responsibilities. Because of these issues, we look at the implications of
restricting the mobility of the agent, in particular between machines in a
trusted network and between the trusted network and a user’s machine.

We explore these topics in much greater detail when we discuss the mobile
agents paradigm in chapter 5.

Social agents

Many agent systems are multi agent systems (see 2.6.6), they consist of
several agents. Although each agent could mind its own business, often the
agents communicate with each other. This might be indirectly, by one agent
observing changes in the environment made by another agent, or directly, if
there is explicit inter-agent communication (see 2.9). If those agents are able
to co-ordinate and assign tasks to one another, you create a society of
agents. Co-operative problem solving is one of the most important
capabilities of agent-based systems [1].

Agents

17

2.9

KQML

KIF

ontology

Although communicating agents are often called social agents, the agents
might not be social in the ‘friendly’ sense of the word. Agents are often
constructed to be self-interested, to pursue their own, selfish goals. This
might mean the agents only co-operate if it is in their own benefit, and even
that agents lie and deceive other agents to best pursue their own goals.

It is often desirable for the system as a whole to have different agents speak
the truth to one another. This poses interesting challenges for the
construction of the agents and for engagement protocols that minimise the
gains one can get by lying. For some examples, see [31].

Inter-agent communication

Systems consisting of several agents often require that those agents are able
to communicate with each other. If those agents live in the same application
on the same machine, this can probably be accomplished in pretty much the
same way as other data is handled in that application. However, if those
agents exist in different applications on different machines, you need a
standard and well-defined way of communicating. There has been quite a
lot of research in this area, especially because the agents are often intelligent
(see 2.8.1) and they need to exchange knowledge with each other.

The Knowledge Query Manipulation Language (KQML) [20] is the current
standard method for exchanging knowledge among agents. KQML defines
a set of standard primitives to inform other agents of some perceptions of
the agent, to ask other agents to take some action, and some more. KQML
also defines the protocol of how the communication takes place, but it
doesn’t define how the data is represented. This is delegated to a knowledge
representation language, such as KIF.

The most used language for knowledge representation among agents is
KIF, Knowledge Interchange Format [20]. KIF is an extended form of first
order logic, equipped with sufficient expressive power to express
knowledge commonly found in knowledge bases, and suitable for automatic
translation to and from internal knowledge representations.

Event though two application (agents) have a way to exchange knowledge,
that does not mean they agree about the semantics of the knowledge, i.e.
what that knowledge means. A good way to solve this is to use an ontology
[20][21]. An ontology is a standard database for a given knowledge area. Using
the common ontology the two agents can make sure the receiving agent
indeed receives the knowledge the sender intends it to receive, without the
risk of misinterpretation. Each agent might know how to translate its
knowledge into one or more ontologies. To send a message, the agent first
finds out if there is an ontology both parties can translate to. Then
translates the knowledge it wants to send from its own internal
representation to that of the chosen ontology, and sends the message. The
receiver accepts the message, translates the knowledge in it into its own
representation, and adds it to his knowledge base.

18

Mobile Agents as a Distributed Application Architecture

2.10

designing a
robot

KIF has a core set of primitives with known semantics, and it has a
mechanism for defining new language elements based on already defined
elements. So in theory, two agents using KIF could do without an ontology.
However, it is tedious to do so at each exchange, and it might even be
prohibitively difficult for some element, so even applications using KIF
could benefit from using an ontology.

Ontologies thus allow two completely different agents on different
platforms with different implementations to communicate in a well-defined
way. This approach has been very successful in integrating previously
independent systems [21]. Instead of painstakingly defining a common
database for data representation and adapting each application to use the
new model, each application is equipped with an agent that monitors the
data of that application, and knows when to send updates to the other
applications. Beforehand, one investigates what data in each system is of
interest to other systems. That (relatively small) set of data is defined in a
common ontology, and the agents communicate with each other using that
ontology.

Sample agent applications

We want to conclude this chapter by describing three existing agent
applications as found in the literature. Each is a good example of how
agents are used to solve a particular problem. We start with PACT, were
agents are used as a systems integration method, then on to an intelligent
email assistant that has friends to help him, and finally an initiative to put
mobile agents in your mailbox.

PACT

The Palo Alto Collaborative Testbed (PACT) is by now an almost classic
example of how agents can make a difference. PACT is a research initiative
to ingrate several engineering systems [32]. The design of a complex system
like a robot is a multi-disciplinary problem. One of the initial experiments
with PACT dealt with the design of a robotic manipulator. It involved the
physical design of the manipulator, and the design of digital circuitry,
analogue circuitry and software. Each of these four tasks is a specialist’s
discipline, and the design of it is done by a separate engineer or engineers.
Each of those engineers uses specialised design software to design his or
her pieces of the manipulator.

Of course, choices made by one engineer affect another. If the physical
design of the device involved four motors, the analogue circuitry should be
able to power those four motors. Without any integration of the different
design tools, these things have to be communicated among the different
disciplines by for instance joint meetings or email. It goes without saying
that this is a slow and error-prone process. In addition, to really prove the
design works a prototype has to be built, because only then we could see if
the different pieces of the design really work together.

Agents

19

It should be clear that integration of the different software tools could
provide substantial benefits. Changes made by one designer would be
immediately apparent by another designer, who can then instantly redesign
his or her piece to accommodate the change. It could even be possible to
run a simulation of the design as a whole, which no doubt is much less
costly than the creation of a physical prototype.

So how does one go about integrating these different systems? The
‘traditional’ way of doing this would be to create a unified, shared model
database and adapt each of the software tools to use that database instead
of their own. This is certainly possible, but very difficult. Each of the tools
has their own, very specialised needs of the model. For instance, for the
physical model, the model of a motor concerns mainly what forces it is able
to produce, the precision of the movements, and the size of the motor. The
analogue circuitry designers on the other hand, are more interested in what
voltage the motor needs, and if there are non-linearities in the power-input
to force-output function of the motor. And there are reasons that are more
technical as well. Each of the design systems runs on different, often
specialised hardware, and the local model database is optimised to allow for
fast modelling. Connecting the modelling system to a unified, less optimal
database on a separate machine could bring performance to a grinding halt.

For these and other reasons, the researches chose a different approach for
PACT. Each of the design tools was equipped with an agent that monitored
that tool’s database, and reported any changes to a facilitator agent. The
facilitator agent would know if there were other tool agents that were
interested in the change, and if yes, report the change to the appropriate
facilitator agents. In turn, such an agent would then tell the local tool’s
agent, which would update its internal model database. This creates a clear
separation in each of the agent’s tasks. The tool agents were responsible for
monitoring and updating their own database, and the facilitator agents
enabled those agents to communicate. The tool’s agent could speak its own
‘dialect’ to the facilitator agent, which would translate the change (if any
other agent was interested) in a common language used between the
facilitator agents. The receiving facilitator agent would translate the message
into the dialect of the local tool’s agent.

The challenge of course was to design the common language used by the
facilitator agents. In this case, the facilitator agents use KQML as a
communication language. KIF was used as the content language, with a
vocabulary based on common ontology for the shared application domain.
(See 2.9)

You might think that defining the content language is just about as difficult
as designing a unified database. This is not true, for two reasons. First, the
only things that need to be agreed upon are the items in the designs that
affect more than one model. For instance, any chips used in the digital
circuitry are of concern only to that area. Second, even if there is an
overlap, the only things that need to match are a way to identify a particular
part and some very basic parameters. There is no need for a shared model
that matches all the requirements of all the tools. For instance, if the
physical system designer decides to pick another motor, the only thing the
other analogue system designer has to know is the part number of that

20

Mobile Agents as a Distributed Application Architecture

motor, essentially the same as if the designers would communicate by email
or in a meeting.

Collaborative interface agents

One of the more useful aspects agents from a user’s perspective, is have
agents take care of mundane tasks. The article Collaborative Interface Agents
[33] describes an agent that integrates with the Eudora mail client on the
Apple Macintosh. The agent is able to control the mail application in much
the same way as the user, so it can move mail to different folders, delete
messages, print, etc. The Eudora interface is enhanced to allow the agent to
do things: suggest an action on some message, or execute a certain
operation immediately, without asking. Which of the two is chosen depends
how confident the agent is the user will really take the action. Of course,
execution without asking first takes more confidence. These confidence
levels are user definable.

There are roughly two ways this type of agent can be implemented: having
the user define a set of rules for the agent, or have the agent learn form the
user’s actions, by sort of ‘looking over the shoulder’ of the user. The first
approach has the advantage that it can be directly controlled by the user,
and the user has a clear picture of what the agent does. The disadvantage is
generally takes a skilled user to define these rules, and the user first has to
figure out what he or she does with certain messages. The learning
approach means the agent acts like an adaptive, intelligent agent, gradually
adapting to its environment, and gaining more confidence in its predictions.
This has the advantage that the user doesn’t have to do any rule definition,
and that the user can gradually get used to the agent, and learn to trust the
agent’s predictions. The big disadvantage is that the agent has to learn from
scratch, which means it might take a long time before the agent can make
accurate decisions.

The agents described in the article are built using the learning approach, but
with a nice feature to flatten the initial learning curve. It can communicate
with ‘older’ more experienced agents in the system (the agents were
deployed on a campus system), and ask them what their response would be
in a certain situation. This happens for two reasons: out of desperation, and
for exploration.

Desperation is pretty straightforward, the agent does not have a clue what
to do in a certain situation, so it asks what a peer would do. This allows
even a very new agent to get a shot at making accurate predictions,
immediately providing value to the user.

Exploration happens when the agent is idle and it asks a peer what it would
do in some situation. In this case, the agent knows what the user’s action was
for the message, so it can, based on the response of the other agent,
gradually decide how much trust it can put in predictions of that agent.
Experimentation has shown that a collaborative version of the agent was
much quicker able to make accurate predictions than one that just had to
learn on its own.

Agents

21

Safe-TCL

2.11

Active Email

Normally, email messages are largely passive, they do not interact with the
user or the mail system in any big way. Email could very well be even more
useful if it allowed for some type of interactive content. Users of Microsoft
Exchange systems have limited access to more active email messages. For
instance, when you want to schedule a meeting, you create a meeting entry
on your calendar, and specify what other people you want to attend. Each
of those attendees then gets an email message with ‘accept’, ‘decline’ and
‘tentative’ buttons. Pressing one of those buttons then allows the user the
choice to send a response straight away, or to edit the response first.

The article Email with a Mind of its Own: The Safe-Tcl Language for Enabled
Email [10] proposes a generalisation of this concept, allowing the inclusion
of pieces of code in an internet email message that get executed at send
time, delivery time and /or opening time. Effectively, such an email
message can be seen as an application of mobile agents. The message is an
agent, that is able to exhibit autonomous behaviour at several different
times during its travel among different sites. This construct allows a nice
way to send things like questionnaires or even presentations. It is another,
rather elegant form of so called push-content.

Because the code executes in an email context, it is much easier to allow the
user control over responses that get send to the original sender, and for
instance a questionnaire based on this idea would be much easier to set up
than the equivalent web implementation.

The active mail is created by inserting the active content as a MIME
attachment in the message. The active content itself is writing in a language
called safe-TCL, a trimmed down, safer version of TCL#4, short for Tool
Command Language, a scripting language most seen on UNIX platforms.
This ‘dialect’ of TCL is created by removing possibly harmful primitives
(most notable those for manipulating files) and replacing those with safe
ones with limited functionality. Additionally, it defines some additional
primitives to allow for easy, generalised interaction with the user, and
sending of new email messages.

Conclusion

Software agents are a tough concept to grasp and define. We have chosen
to define it a very general manner, as an autonomous software component
that perceives, reasons and acts. While any piece of software can be thought of
to perceive reason and act, the autonomy is what makes such a piece of
software an agent. Where a ‘normal’ software program is largely used in a
request-response setting, an agent is more self-centred, and decides if and
when to respond, rather than just what the response will be.

Software agents always reside in some environment. As far as the agent is
concerned, this environment resides in a computer or computers, although

4TCL is sometimes pronounced as ‘tickle’ in the same way SQL is
pronounced ‘sequel’ for some silly reason.

22

Mobile Agents as a Distributed Application Architecture

the agent’s perceptions in this environment might have a source in the
physical world or the agents actions have a physical effect. When an agent
perceives, it perceives the state of its environment, which changes over time.
If an agent decides such a change is significant, it will take an appropriate
action. If the agent can only take this change immediately, the agent is a
purely reactive agent. If the agent can have different states as well, it can
‘remember’ things. A set of perceptions at different times can lead to a
certain action, or the agent can decide to take multiple actions after another.
Such an agent is called a proactive agent, because the actions of the agent are
not just the result of the current state of the environment.

An agent is often not alone in its environment, but shares it with other
agents. Such a system is called a multi-agent system. Those agents might be
on the same computer, but they don’t have to. If they are not, such a
system is thus a form of distributed computing, in particular suitable in
situations where there is not clear client-server relationship between the
different computers. Because a multi-agent system consists of many
autonomous components, it is capable of showing extremely complex
dynamic behaviour.

Inside an agent, we recognise five different components:

= The heart, which gives the agent its autonomy,
= sensors, allowing the agent to perceive,

= effectors, allowing the agent to act,

= Drain, allowing the agent to reason,

= memory, allowing the agent to remember and store things, thus giving
the agent state.

These components influence each other in a certain way, which gives rise to
the agent cycle:

1. Perceive,
2. Reason,
3. Act

We call a single execution of this cycle a beat.

We recognise three important types of agents: intelligent agents, mobile
agents and social agents.

Intelligent agents

Intelligent agents are agents that are able to respond in a ‘smart’ way in
many different situations. The brain of these agents is generally based on
some form of artificial intelligence.

Mobile agents
A mobile agent is an agent for which it is possible to move the agent, in its
current state, to another machine, where it resumes execution. This is a

Agents

23

fairly new and novel model of computing, which opens up some exciting
possibilities. The mobility makes the agent into a distributed computing
concept, which often overshadows the other aspects of the agent.

Social agents

Agents in a multi-agent system that explicitly communicate with each other
are called social agents. Social agents can ask each other agents questions or
ask it for help. Agents are often self-interested to some degree, which
means that they might not tell the truth to one another.

It is often useful to have the agents communicate using a well-defined
language, such as KQML/KIF. The use of an ontology, a sort of ‘common’
dictionary, can help avoiding ambiguities in the inter-agent communication.

24

Mobile Agents as a Distributed Application Architecture

CHAPTER 3

intelligence

intelligent agent

knowledge
representation

Intelligent agents

A very well known type of agent is the intelligent agent. Interestingly
enough, intelligence in relation to software is rarely defined in a solid
manner. It is sometimes related to human intelligence [1], but we will avoid
this since a computer program that is just as intelligent as, say, an ant, can
still be very useful, and, on the other hand, humans have been known to do
pretty dumb things occasionally.

A definition that we prefer is:
Intelligence is the ability to adapt to your environment.

See for instance [19], although we remember reading it in another source
many years ago. We choose this definition over others because it provides a
natural fit for agents: an intelligent agent is an agent that is able to adapt to its
environment. In other words, as the environment changes an intelligent
agent is able to adapt its behaviour to the new environment.

Arguably, this means just about any agent is an intelligent agent. Given an
environment that can be in two possible states, an agent that is able to
adapt its behaviour to both states is intelligent. Well, yes. The definition
relates intelligence to an environment, and for this very simple
environment, being able to handle both states is thus intelligent.
Nevertheless, we are most interested in intelligence in complex
environments with a very large number of possible states. An intelligent
agent is then an agent that is able to adapt to a large number of states of its
environment.

One thing that also pops up once you talk about intelligent agents is
knowledge representation. That is, the perceptions, the state, and the actions of
an agent are all represented in a common format, which allows the agent to
reason about them in a structured and presumably ‘intelligent’ way. This
common format might be something like first order predicate logic, or a set
of real numbers between 0 and 1. This also means the terminology changes
slightly. Instead of saying that the agent holds data, its holds knowledge.

Intelligent agents

25

3.1

rational agent

rationality

3.2

Rationality

Rationality is an important aspect of intelligence, although not the only one.
Emotion for instance, is anothers. Nevertheless, in artificial intelligence
literature the terms are often treated synonymous [1][2]. The advantage is
that rationality is much easier to define.

A rational agent has preferences about the state of its environment, and it
chooses action sequences that maximise the agents expected change of the
environment according to the preferences. So if the agent prefers the
environment to be in state X, a rational agent will choose an action
sequence that maximises the chance that the environment will be in state X
afterwards.

What is the rational thing to do depends on four things:[2]

= The preferences of the agent
= What the agent has perceived so far.

= What the agent knows about its environment. This is a combination of
what its sensors perceive and what the agent deduces from those
percepts.

= What actions the agent is able to take.

And given these four things, an ideal rational agent thus chooses the actions
with the best expected result. Note that we keep using ‘expected’ and
‘chance’. We always assume an agent has an imperfect view of its
environment, and hence it cannot be certain if its actions always have the
intended result. However, an action that doesn’t have the intended result
does not make the decision to take the action any less rational.

The last three points also give some nice pointers of how to make a perfect
rational agent more intelligent: Giving it more knowledge, equipping it with
better sensors, additional sensors, or better deduction skills, and enhancing
its possible actions. All these result in an agent that is better able to adapt to
its environment.

Beliefs, desires, intentions

A very interesting way to model the behaviour of a rational agent is using
Beliefs, Desires and Intentions (BDI) [4][5]. We will try to explain this
pretty complex matter.

A BDI agent’s state is differentiated in beliefs (what the agent knows),
desires (what the agent wants), and intentions (how the agent intends to
satisfy its desires). The beliefs, desires and intentions are all concepts stored
in the memory of the agent, and we explain what they are next.

5 Our Vulcan friends will tell you however, that emotion is overrated.

26

Mobile Agents as a Distributed Application Architecture

beliefs over facts

The reasoning of the agent is made up of four different processes: belief
revision, situation recognition, planning and activation.

Figure 4 shows the basic structure of an agent brain based on this model,
fitted to our previous model of the inside of an agent. Note that the heart is
omitted from this picture. This is because the current picture resembles a
single beat of a BDI brain. An agent built using BDI thus continuously
executes this beat.

Also, note that we explicitly are dealing with temporal matters here. The
memory contains historic beliefs, desires and intentions, which are updated
to current beliefs, desires and intentions by the processes shown in the
picture. At the start of the next beat, those current beliefs, desires and
intentions become the new historic ones.

brain

situation
recoginition

belief
revision

sensors

current
beliefs,
curent

current
! beliefs,
beliefs historic desires,

desires historic
intentions
l h, 4 l
memory memory memory memory

Figure 4: The process of beliefs, desires and intentions (one beat).

current current
intentions activateable

current
desires

historic
beliefs

Beliefs

First, beliefs. Beliefs are things the agent knows, things the agent believes to
be true. Beliefs are what is in the memory of the agent, together with the
input from the sensors. The historic beliefs are updated, using the sensor
input, by a process called belief revision. As the environment changes, so
do the beliefs of the agent about that environment.

We don’t want to get too existential here, but ‘beliefs’ is used in favour of
‘facts’ because the agent is thought to have an imperfect view of its
environment. It just doesn’t know or perceive everything. The environment
might in fact be different from what the agent believes it to be and there
might be other agents in the same environment that believe different,

Intelligent agents

27

SI0109))0

situation
recognition

planning

possibly even contradicting facts. To illustrate this, let us describe a scene
from an episode of Babylon 5 [6]:

A man has just woken up in an interrogation cell. The only light comes from
lights in the ceiling. An interrogator walks into the room, shrouded by the light
of an early morning sun. He asks the prisoner a few questions and leaves again.
Sometime later he returns and starts with ‘Good Morning'.

The prisoner answers: ‘It's not morning.’

‘How do you know?’

‘“There was no light shining through the door when you came in’.

‘Ah’.

Subsequently, the interrogator gets up and signals someone on the other side of
the door. We hear a click and the sunlight appears again.

Here we saw two different entities that both perceived the same
environment, yet had different beliefs about that environment. The prisoner
believed it was a certain time of day based on the light. The interrogator
knew better. Of course, this exercise was deliberate, used to mentally abuse
the prisoner.

Desires

On to desires. Desires are preferred future beliefs. A desire is satisfied once the
current set of beliefs includes that preferred belief. So for a single desire,
you prefer a future where you believe that desire is satisfied.

Historic desires are updated by a process called situation recognition, using the
current beliefs as input. Example: Suppose your current beliefs tell you
there is a shortage of nutrients in your body. Assessing this situation, you
desire to eat. Once you eat some time in the future, the desire is no longer a
desire, but a belief.

It is interesting to note that we humans use the temporal form of a verb to
denote the difference between a desire (and later on, an intention) and a
belief. Asin ‘I have eaten’ (belief) and ‘I want to eat’ (desire). This makes it
a bit difficult to see a desire as a future belief. We can do it by saying ‘I
desire to ‘have eaten”. Then, once you have eaten, you believe you ‘have
eaten’.

Intentions

Finally, intentions. Given a certain desire, you need to devise a plan that,
given the current beliefs, will enable you to satisfy that desire. Historic
intentions are updated to current intentions by a process called planning,
which uses the current desires and beliefs as input. Suppose you desire to
eat, and you currently believe you are in the living room, and there is bread
and peanut butter in the kitchen. Then a straightforward plan would be: ‘go
to the kitchen’ ‘make a peanut butter sandwich’, ‘eat sandwich’.

You now see that there are several ‘preferred future beliefs’ added to your
list of preferred future beliefs. These new preferred beliefs are your
intentions. Intentions differ from desires in that the only reason you prefer
them is to satisfy a desire. Also, they often are more concrete than desires.

28

Mobile Agents as a Distributed Application Architecture

plan

activateable
intentions

You desire to eat, and to satisfy that desire you intent to eat a peanut butter
sandwich.

Intentions might be hierarchical, that is, each intentions might consist of
several sub-intentions to achieve that intention. Intentions signify what the
active plans are that you are pursuing, and the tree of intentions associated
with a desire is the current plan for that desire.

Ultimately, the leaf nodes of a plan tree are intentions that can be satisfied
with a single activation of an effector. We will call these intentions
activateable intentions. The planning process marks those activateable
intentions that should be activated now in some way.

Activation

The final stage in this process, although not explicitly mentioned in the
original articles, is activation. In activation, those intentions marked for
activation are activated.

Now we have seen all the stages in the BDI process, let’s see how this
works out in an example. We start with the construction of a plan tree. This
occurs in one BDI cycle.

Intelligent agents

29

Beliefs Desires Intentions Beliefs Desires Intentions
Beliefs Desires Intentions Beliefs Desires Intentions
Beliefs Desires Intentions

Figure 5: The construction of a plan tree.

Figure 5 depicts the peanut butter sandwich example again.

= Step 1 shows the initial situation, with no beliefs desires or intentions
relevant to our example.

= Step 2 shows that after a belief revision, a new percept led to a new

belief H, for Hungry.

» Instep 3 we see that this situation is recognised, resulting in a desire E

for Eat.

= Next, in step 4, we have a top-level intention EP, for Eat Peanut

butter sandwich. This plan was selected, presumably using other beliefs

(not shown) about the current state of the environment, like that we
are near a kitchen with a supply of bread and peanut butter.

= The last step, 5, shows the plan fully fleshed out, with three sub-

intentions: BK for Be in the Kitchen, PS for Prepare Sandwich, and ES
for Eat Sandwich.

30

Mobile Agents as a Distributed Application Architecture

Assume for this example that BK, PS and ES are activateable intentions. In
reality, there would be a huge tree of intentions, ending in a hideously
complex set of intended muscle movements.

All these steps happened almost instantaneously, the immediate result of
the belief to be hungry.

The next diagram shows how this plan is then executed, moving forward in
time. Each of the steps illustrates the situation at the end of a cycle, right
before activation.

1 2

Beliefs Desires Intentions Beliefs Desires Intentions

)| [O
@) (=)(=) @)

Beliefs Desires Intentions Beliefs Desires Intentions

el

010

()(2) ()

Figure 6: The execution of a plan

= Step 1 is nearly identical to step 5 of the previous diagram. The only
difference is that the intention BK is dashed, indicating it is to be
activated next.

= Step 2 shows that the walk to the kitchen was successful, and is now a
belief.

= Step 3 shows the preparation of the sandwich worked as well, and we
now are going to eat.

» Finally, step 4 shows the plan worked. We have eaten a peanut butter
sandwich, and are no longer hungry.

Let's take a step back. What makes this model so different from ‘normal’
computation? After all, the plan tree looks a lot like a normal execution
stack of a program. Well, the difference lies two things:

» The agent ‘knows’ what it is doing. It knows its own plans, where in
normal code this is implicit.

Intelligent agents 31

3.2.1

3.2.2
BDI layers

= The three processes of belief revision, situation assessment, and
planning. These allow the agent to adapt itself to a constantly changing
environment.

Sure, a normal computer program might have some branching conditions at
several stages in the program, but all possibilities have to be anticipated by
the programmer beforehand. On the other hand, the BDI agent, by
devising its own plans, effectively determines its own programming, which

it can revise constantly as the environment changes.

A rational BDI agent

So how does one make a rational agent out of this? Well, recall rationality
requires that the agent have preferences about the world and choose actions
that maximise the preferences. For a BDI agent, this means the agent
should choose plans that maximise the expected satisfaction of its desires.

This opens up a whole set of options as to how and what to maximise. For
instance, in situation assessment, the agent might assign relative importance
to desires. It might be interesting to quantify a desire, so for instance
‘hunger’ could gradually become more, so the need to satisfy it becomes
more desirable. The planning process should thus try to choose a plan or
plans that maximise the expected satisfaction of the current desires. Which
plans that are could be highly dependent on the environment. Different
plans might have an expected success rate associated with it, which might
cause the agent to choose a ‘safe’ plan with a reasonable satisfaction over a
‘riskier’ plan with high satisfaction.

Also, time might be of importance. The agent might prefer a fast plan (with
a small intention tree) to a slower plan, even if that slower plan gives a
higher expected satisfaction of desires. Unfortunately, it is probably
impossible to construct a perfect rational agent. Even with a few
activateable intentions and limited beliefs the number of possible plans is
very large, even infinite, if time is not an issue. The agent should probably
be equipped with a set of plans with known expected future beliefs.

However, there are some interesting options. The agent could be given a
desire of ‘curiosity’ that allow it to just experiment with activateable
intentions in the absent of other desires. The agent could ‘learn’ from how
these intentions influenced its environment and record the new ‘plan’ for
future use. It could also try to revise old plans if a plan did not have the
desired result.

Stacking BDI layers

One of the articles we refer to: A pragmatic BDI Architecture [4], actually has
three BDI layers stacked on top of each other: The first layer is a reactive
layer, which allows the agent to quickly respond to pressing situations. It is
equipped with a limited set of situations that require immediate actions, and
corresponding plans. Essentially, it allows the agent to have reflexes. The

32

Mobile Agents as a Distributed Application Architecture

3.3

Lyotard

second layer, the local planning layer, works on higher level goals, and is
able to devise plans that are more complex. The third layer is the co-
operative planning layer, which allows it to co-ordinate its activities with
other agents. We think this is a very good approach, and maybe it can even
be generalised more:

BDI with feedback

We could introduce a feedback loop into the process described above.

It seems to us that such a construct could be used to create a very ‘smart’
agent, that is both able to respond quickly to critical situations, and able to
think deeply should the need occur.

At the end of the planning stage, the agent might decide to continue
‘thinking’ or take action. The absence of a clear expected satisfaction of
desires might be good indication to think a little further. Possible plans
might have raised some questions about the environment that the belief
revision process might be able to work on. This is very interesting because
it can quickly become very laborious to perform all belief revision up front.
To do the revision well, the revision process should do a lot of deduction,
which might take a long time if there is no clear focus.

Consider the prisoner example earlier on. The prisoner might have only
recorded the belief ‘light shining through door’ when the interrogator first
entered the room. When on his second entry, the interrogator said ‘Good
morning’ this created a desire to know the time of day. Planning might have
been unable to create a correct response given a desire to ‘answer
truthfully’. Restarting deduction, the prisoner deduces that it probably isn’t
morning, since the earlier light seemed to indicate morning, and the absence
of it now contradicts that. Therefore, the prisoner decided to contradict the
interrogator.

Would the prisoner have been more paranoid, which we can see as a desire
to know things for sure, the plan ‘contradict the interrogator’ might not
suffice either. A new cycle, now given the fact that the belief it was morning
was deduced indirectly, that contradicting the interrogator might be a bad
idea, and that they might try to play mind tricks on him, might result in a
plan to give a neutral answer.

Emotional agents

Computer programs that exhibit emotional behaviour are often deemed
impossible. Indeed, a common theme in science fiction is the inability of
robots to feel emotion, and what happens if they do. The core theme of the
movie Blade Runner [8] is renegade androids that refuse to be deactivated
and want to live a life of their own. Still, we have seen that it indeed is
possible to create agents that seem to respond emotionally.

The article An Architecture for Action, Emotion, and Social Behavior [7] describes
a system for emotional and social agents, centred on the construction of

Intelligent agents

33

3.4

adaptive agent

Lyotard, a simulated cat. Lyotard is able to interact quite believable with a
simulated world that includes other agents, most notably humans.

Lyotard’s actions in the world differ depending on its emotional state. For
instance, if a human tries to pet Lyotard, and Lyotard dislikes that human,
he will respond aggressively, by swatting or biting. If Lyotard likes the
human, he will allow the petting, and feel happier afterwards. All this is
accomplished by a system similar to that of a BDI agent described earlier.
We describe some of the basic mechanisms using the BDI terminology,
although in the reality the system is slightly different. Lyotard’s emotions
are modelled as set of internal beliefs, such as fear, anger, happiness and
love. These beliefs get their values depending on the environment the agent
is in, probably somewhere at the end of belief revision or at the start of
situation assessment. Lyotard will feel happy if his desires are satisfied, and
sad when the satisfaction fails. Hope occurs when he perceives a desire is
about to be satisfied, fear when a desire is threatened to fail. How much
these emotions are affected depends on how important a desire is. Lyotard
also associates a like or dislike with certain beliefs (which could be agents),
depending on past observed beliefs. Lyotard likes a human that previously
fed him and initially dislikes a new human.

Let’s quickly see how this results in the observed behaviour of Lyotard.

Lyotard is in a room, and a new human tries to pet him. Lyotard thus perceives
a new human, whom he dislikes. The human puts his hand towards him, which,
because of the dislike, threatens the ever active desire of ‘not to be hurt’. This
induces strong fear in Lyotard, which, results in anger towards the human, and
thus desires ‘not to fear’ and ‘revenge’. The planning process now has to select a
plan that will help satisfy those desires, and it selects a plan to ‘swat the human’
and ‘run away.” The successful execution of this plan results in a new
environment in a new room. This satisfies the desires ‘not to be hurt’, ‘not to
fear’, and ‘revenge’, causing its emotions to return to neutral again, although
Lyotard will still not feel happy.

Adaptive agents

An intelligent agent that is additionally able to adapt itself in response to a
changing environment is called an adaptive, or learning agent [1]. The
difference is thus that an intelligent, non-adaptive agent responds the same
way each time a given environment is encountered. An adaptive agent
might respond differently, depending on its past experience. Also, an
intelligent, non-adaptive agent might be baffled in the face of a new
situation, whereas an adaptive agent should be able to devise a new
approach. Or consider Lyotard the cat again. Our distrustful cat might
gradually learn that most new humans do him no harm when they try to
touch him, and he gets much more attention and food if he doesn’t swat
them on the first encounter.

We examine adaptive agents by again using the BDI formalism. This is one
of the reasons we like BDI so much: it is a very strong model for examining
many different aspects of intelligent agents.

34

Mobile Agents as a Distributed Application Architecture

plan revision

desperation

A non-adaptive BDI agent has a fixed set of plans, and it combines those in
intelligent ways to satisfy its desires. An adaptive BDI agent is able to create
entirely new plans, and thus change its own behaviour. To do so, the belief
revision process should be enhanced to include a plan revision, or learning
step. The Al literature [2], but also psychology and other social sciences,
recognise several different ways of learning. We examine a few of the more
common ones:

Learning by example

Suppose the agent perceives a change X in his environment, and another
change Y sometime later. This means there might by a cause-and-effect
relation between X and Y. If the agent records this observation and the rest
of the state of the environment in its memory, it could use this ‘plan’ at
some time later if it desires Y and is able to do X (either directly or by
another plan).

Learning by doing

This is a slight variation of learning by example. Instead of just observing
changes in the environment, the agent itself takes some action and watches
what effect that action has on its environment. In a simple case, the agent
could ‘randomly’ try some actions to see what the results are. This could
make sense if there is no plan available that could satisfy a certain desire. In
effect, the agent acts out of desperation.

A slightly more advanced version would be if the agent has a plan that could
satisfy a certain desire, but not all the conditions required by the plan are
met. This might for instance be a plan it got by learning from an example.
The agent could try the plan anyway, and see if it works or not. If it does, it
knows the plan works in the current environment as well, and it could use
some kind of inference process to adjust the plans conditions, like
generalising some conditions or removing contradicting conditions.

Teaching

The first two cases assumed the agent was on its own. But now suppose the
agent has other agents around it. (This makes this a case of social agents,
see 2.8.3) Let’s say we have two agents: a student, and a teacher. The
student agent learns from the teacher. Either party can initiate the learning
process. If the teacher initiates the learning, we get a model similar to a
school system. The student listens to the teacher, and assumes what it
learns comes in handy at some point. We can also have the student ask a
question, so ask for a way to satisfy some desire.

The actual learning can roughly take two forms: If the teacher influences
the environment, and the student observes the effects of this, we get
another case of learning by example. We can also have the teacher give the
student a new plan directly. In both cases, a new plan gets stored in the
agent’s plan library.

Intelligent agents

35

3.5

Conclusion

Intelligent agents are one of the most important and well-known types of
agents. We say an intelligent agent is an agent that is able to adapt to its
environment

To be able to reason about all it has perceived so far, an intelligent agent
uses a uniform way of representing this information (resulting from
percepts), called a knowledge representation.

A rational (intelligent) agent is an agent that has some preferences about the
future state of its environment, and takes the best (for some definition of
best) actions to get its environment into preferred states.

A very interesting technique is for creating intelligent agents is BDI: Beliefs,
Desires and Intentions. Together, these three sets of items form the state of
the agent.

The beliefs are what the agent has perceived so far, they represent the
current and historic state of the environment to the best of the agent’s
knowledge. The beliefs of the agent are updated by a process called belief
revision, which updates the set of beliefs based on the current perceptions.

After this, the agent performs asituation recognition step, resulting in set of
desires about the future state of the environment.

The next step is planning, in which the agent creates a plan, a tree of
intentions, for each desire the agent has. The leafs of each plan are
activateable intentions, intentions for which the agent knows it can take actions
that will make that intention happen.

The last and final step is then activation, in which all the actions
corresponding to all the activateable intentions are taken. Once the
environment is in the intended state, the intention becomes a belief, and the
execution of the plan continues.

An adaptive agent differs from an ‘ordinary’ intelligent agent in that it is able
to acquire and use entirely new plans. How it obtains these plans can take
different forms, such aslearning by example, learning by doing, or teaching.

36

Mobile Agents as a Distributed Application Architecture

CHAPTER 4

Modelling and agents

It is by now commonly understood that for all but the smallest applications,
you need to go through a thorough analysis and design phase prior to
writing code. An application often starts with a rough idea of what the
application is supposed to do. During analysis, this rough idea is fleshed out
into a thorough description of the functionality and requirements of the
application. A subsequent design then describes how the application should
be implemented. Research proves that doing solid analysis and design prior
to coding substantially increases the odds that the resulting application
meets the requirements, and it also improves the stability and
maintainability of the code.

All this does not mean however, that you cannot go back to a previous step
when already developing. It is very normal that during design you find that
something was missed in the analysis phase, which you then subsequently
update. In today’s fast paced world, it is often impossible to anticipate all
the requirements up front. It might also happen that during the
development of the system external factors change, calling for a change of
some part(s) of the system. When developing a large scale system, it is often
better to do a global analysis of the system, then design some core parts of
the system, code those, and then go back to designing other parts of the
system.

The propaganda above describes why you should do analysis and design
prior to coding. You might be wondering why we wish to discuss this in
this thesis. The reason for this is twofold: first, it is not immediately evident
how to model an agent based system, and we want to show a possible way it
can be done. The second reason is that, during the analysis and design of a
‘normal’ application, you might encounter hints that point to agent-like
behaviour of parts of the system. It could be important to look for those
hints, because we believe that modelling those parts as agents could make
designing the application easier.

Our modelling method is an enhancement of UML, the Universal
Modelling Language. UML in its current from is fairly new, so we quickly
introduce this modelling method for readers that might not be familiar with
it, and to make sure readers understand our notation conventions.

Modelling and agents

37

4.1

model

After this we introduce our enhancements to this modelling methods, and
in the process show what an agent based design looks like in (our version
of) UML. The most important addition is the distinction between animate
and inanimate objects, which allows us to model which pieces of a system
can act autonomously. Although this thesis is about distributed applications
and agents, we defer modelling distributed applications to chapter 4.

UML

There exist many different ways, or methodologies, to do analysis and
design. One of the common and well known ones is the Universal
Modelling Language (UML) and the accompanying methodology. UML,
like many other methodologies, lets you first develop a model of the system
prior to developing it. A model, to quote the well-known Dutch economist
Heertje, ‘is always less than reality, except for a super model, which is more
than reality’.

A model thus only shows the essential parts, providing the very important
‘big picture’. Because nothing is built yet, a model is much easier to change.
As implied here, UML is generally used to model software application. This
is not mandatory however. The most important aspect is that it allows you
to capture and analyse certain aspects of reality.

UML supplies a set of primitives to construct a number of different
diagrams, and the UML methodology describes how and when to use the
different diagrams. Most diagrams are generally accompanied by a textual
description that further clarify the elements in the diagram. Together, the
diagrams and descriptions make up a UML model. The good thing about a
UML model compared to some other methodologies is that it is very
resilient to change. Even if functionality changes dramatically, the effect on
the model is often little more than a few changes in some of the diagrams
and descriptions.

UML was created by ‘the three amigos’: Rumbaugh, Jacobson and Booch,
and is basically a nice, consistent union of each of the contributors own
modelling methods. UML is object oriented (OO), meaning it is based on
the simple idea that basically everything around us can be seen as an object,
and so it makes sense that if we want to model a system, we model it using
familiar objects as encountered in real life. For this reason, a UML model is
sometimes also referred to as anobject model.

One of the nice aspects of UML is that it that the same model can be used
throughout the lifetime of the application, from the first analysis all the way
through maintenance. The model is of course refined and changed as time
progresses, but you don’t have to switch to a new model once you enter a
different stage.

Even though UML is by far the best modelling language we know, it has
some gaps as it comes to modelling with agents. We think this is because
UML is grown from a base that largely focussed around the creation of

user-centred but otherwise passive applications. Luckily UML defines an

38

Mobile Agents as a Distributed Application Architecture

4.2

421
State, behaviour

422
class

instance

4.2.3

attribute,
method

parameter,
return value

extension mechanism to be able to tailor it to our specific needs. We have
tried to keep this extension as minimal as possible, because we do not
believe the world would be helped by us unnecessarily cluttering UML.

We briefly describe some of the methodology and diagrams but for a more
thorough description of it we refer to[34] or to one of the tutorials on the
subject, such as[35].

A crash course in OO terminology

As said, object orientation means thinking about the world in terms of
objects, and to do object oriented modelling means you model a system and
its behaviour by partitioning it in a set of interrelated objects, each with
specific qualities. Doing so provides a very useful abstraction away from
specific code or functionality.

State and behaviour

Formally, an object is characterised by state and behaviour. State means an
object has particular qualities, as a book has a title, an ISBN number,
contents, and a cover illustration. State can change over time, for instance
the pages at which a book is open can differ. Behaviour means the object
can be interacted with in a certain way, such as a book can be moved or
opened.

Class

Objects are thought of as belonging to a particular class. A class is a group
name for similar objects.

For instance, ‘Book’ can be a class, and most books have a title, and ISBN
number and the other qualities we mentioned above. An object of a
particular class is said to be an instance of that class, so ‘Lord of the Rings’ is
an instance of the class ‘Book’. When modelling, it is usually the class of an
object that is the most important, it determines how the system ‘sees’ the
object.

Methods and attributes

The state of an object is made up of zero or more named attributes,
behaviour is made up of zero or more named methods. Objects of the same
class share the same attributes and methods, but the value and of those
attributes and the exact behaviour of each of the methods might vary.

So for a book, we can have attributes ‘title’ and ‘ISBN number’, and
methods ‘move’ and ‘open’. ‘Lord of the Rings’ and ‘The Hitchhiker’s
Guide to the Galaxy’ both are books, but their attributes differ.

Methods have zero or more parameters, which influence the behaviour of
that method. The ‘read’ method might have parameters ‘page’ and ‘line’,

Modelling and agents

39

signature

42.4

abstraction

4.2.5

encapsulation

4.2.6

inheritance

abstract class

that determines which line you want to read. Methods also have a return
valug, the result of that method. A method ‘getTitle’ on a book would return
the value of the title attribute.

The name, parameters and return value of a method together are called the
signature of that method. A signature of a method is written by the name of
the method following a comma-separated list of parameters in parenthesis,
like this: ‘read(page,line)’

These few paragraphs quickly mentioned the basic principles of object
orientation. But OO also includes a few more advanced concepts, which we
will try to describe next.

Abstraction

Even though a real life object has many different attributes and methods,
you should only use those that are relevant to your model. This is called
abstraction. Abstracting away unnecessary details allows you to better focus
on the problem at hand. For instance, the text in a book is printed in a
particular font. If you are not the publisher of the book, then this is
probably not that relevant to you and so is not part of your model of the
book.

Encapsulation

How an object implements its behaviour or represents its attributes is only
of concern of the object itself. The object encapsulates its own state and
behaviour. This allows you to treat the object as a ‘black box’ if you are not
directly focussing on it.

Inheritance

Inheritance comes into play when you think of objects belonging to a
hierarchy of classes. For instance, our sun belongs to the class ‘Star’. But it
also belongs to the more general class of ‘celestial bodies’. Planets and
asteroids are examples of other classes that also belong to this same, more
general, class. The general class is called the baseclass or super class, the
specific class is called subclass or derived class. Inheritance states that a
subclass inherits the methods and attributes of its baseclass. The subclass
can introduce additional attributes or methods.

Suppose the class ‘Celestial Body’ has one attribute: ‘position’, modelling
the position of the body in the universe. Each object of class ‘Star’, ‘Planet’
or ‘Asteroid’ thus inherits this attribute. A planet and an asteroid might
include a method ‘move’ to update their position in the universe, and a
planet might have an additional attribute describing which star it belongs to.

In this example, there will never be an object that is just a celestial body. All
the objects belonging to that class will always be an instance of some sub
class. Such a class is called an abstract (base)class. It exists only to be able to
generalise certain qualities. An abstract class is allowed to have one ore

40

Mobile Agents as a Distributed Application Architecture

4.2.7

polymorphism

4.2.8

association

multiplicity

aggregation

4.3

use case

more methods that are abstract as well, meaning the class does not provide
an implementation for it.

Polymorphism

Polymorphism is a direct result of inheritance. Polymorphism means ‘being
able to take more than one form’, which in OO translates to ‘able to be
more than one class.” Any class that is a subclass of some base class is able
to be that base class as well. It inherited the methods of the base class, but a
sub class can choose to behave differently if it wants to.

Getting back to our celestial body example, suppose we abstract away the
fact that stars don’t really move, so we can add a method ‘move’ to the
‘Celestial Body’ class. This allows us to have a simple universe with moving
objects by periodically calling the ‘move’ method of each class. Each of the
classes ‘Star’, ‘Planet’ and ‘Asteroid’ behave differently for this method. The
star doesn’t move at all, the planet updates its position in relation to its star,
and the asteroid updates its position based on its current speed, direction
and proximity of other celestial bodies.

Association

Two classes can be associated with another, as the planet was associated with
a star in the previous example. This association can have a name, like ‘is the
sun of’ for stars and planets.

It is often important to know how many instances of the each of the classes
participate in the association. For instance, a particular star might be the sun
of three planets. In general, a star is the sun of zero or more planets. The
possible number of instances of each side of an association is called the
multiplicity of that side. For the ‘is the sun of’ relation, this means the
multiplicity of the star side is one, and that of the planet side is ‘zero or
more’. When speaking about the association, you put the least multiplicity
first, and connect them by ‘to’. So, ‘A star is the sun of 1 to zero or more
planets’ This might seem a bit convoluted at first, but it is very precise.

Adggregation is a stronger form of association. You speak of aggregation when
an object is part of another object, as an atmosphere is part of a planet.

Use cases

Now, with the OO terminology in our back pocket we can start analysing
the system at hand. After the initial brainstorming on the application,
analysis starts with developing use cases.

A use case is a textual description of a possible interaction with the system.
Each use case has a name, a short sentence describing what is accomplished
in the use case. For a word processor application, examples might be ‘open
file’, ‘enter text’ or ‘check spelling’. All use cases of a system should together
describe all the functionality of a system.

Modelling and agents

41

actor

system use case

43.1

use case
diagram

A use case is initiated by anactor, an entity (person or other system) outside
of the system to be modelled. Each of the steps in a use case is generally
considered to execute synchronously, that is, the actor or the system waits
while the other party executes the step.

If a step is inherently lengthy or might take a widely varying amount of
time, the continuation is a best modelled as a separate use case. In the mean
time, the actor can go off and do other things, so either initiate another use
case or not interact with the system at all. At a later point in time, the actor
then initiates the continuation use case, which would probably include a
check at the beginning that the lengthy operation is completed.

Suppose you are modelling a book selling web site like the famous
Amazon.com [30]. For a customer of the web site, a possible use case is
‘look up information on book’ another is ‘buy book’. The second one might
look something like this:

Buy Book

Customer selects book to buy.

System displays a payment and shipping options.

Customer selects payment and shipping option, and fills in payment details.
System displays a total order estimate and asks for confirmation.

Customer confirms order.

System verifies clients credit and displays order confirmation.

For this use case, the actor is thus ‘Customer’, who goes through a set of
steps with the result he or she has bought a book. Here, the Customer and
the System take turns, but this need not be the case. It might very well be
the actor does something simple, and the system goes trough a whole list of
complex steps.

The description above reflects various choices made for the system. If you
add the concept of a shopping basket, you need create two other, different,
use cases: ‘adds book to shopping basket’, and ‘buy items in shopping
basket'.

The description of this use case is still somewhat rough and for instance
doesn’t include what happens if the selected book is out of stock or the
customer has insufficient credit. Still, it is quite adequate for a first cut.

Use cases are not restricted to ‘target audience’ use cases. Equally
important, but often forgotten, are system use cases, those of employees
maintaining the system, such as ‘add new book’.

Use case diagram

Use cases come with a diagram, the surprise: use case diagram. A use case
diagram usually shows more than one use case. The diagram consists of
stick figures, the actors, and ovals containing the names of the use cases.
Arrows show which actors initiate which use case. For our book web site
example, this looks like this:

42

Mobile Agents as a Distributed Application Architecture

4.3.2

conditional
statements

if, while

Find info on book

Customer
Buy Book

Add Book

Employee

Figure 7: Use case diagram for book web site.

Here we see two actors: ‘Customer’, ‘Employee’, and three use cases, ‘Find
info on book’, ‘Buy book’ and ‘Add book’. The customer initiates the first
two use cases, the other the last.

A use case diagram of all the use cases for a system gives a quick overview
of the functionality of a system.

Conditional statements and inclusion

Suppose we do need to describe what happens if the book is out of stock.
For this, we need to include branching points in the use case, points where
the next steps differs depending on some condition. This is done by
introducing conditional statements into the use case.

There are two types of conditional statements: IF and WHILE. We print
both in capitals to clearly distinguish them form the rest of the text. Both
statements are followed by some condition, and the steps after the
conditional statements are only followed if the condition is true.

The difference between the two is that for an IF, the steps after the
statement are only followed once, while those after a WHILE are followed
as long as the condition holds. The steps after an IF can be followed by an
optional ELSE statement, which then means those steps are followed if the
condition doesn’t hold.

It is good practice to indent the steps after a conditional that should only be
executed if the condition holds. Now a second version of ‘buy book’ this
time with conditional statements:

Buy Book
Customer selects book to buy.
IF the book is in stock
System displays payment and shipping options.
Customer selects payment and shipping option, and fills in payment details.
System displays a total order estimate and asks for confirmation.
Customer confirms order.

Modelling and agents

43

System verifies clients credit
IF the customer has enough credit
System displays order confirmation.
ELSE
System informs the customer he or she does not have enough credit
ELSE
System informs the customer the book is out of stock

This use case description thus has two branching points, and as a result
three possible outcomes.

include Now, use case inclusion: a use case can include another use case. Inclusion
is indicated by putting in INCLUDE, followed the name of the other use
case. In a use case diagram, inclusion is indicated by an arrow pointing to
the included use case. Including another use case is useful to avoid
repeating an identical set of steps in different use cases. The common steps
are put in a separate use case, and all use cases that need those steps include
that use case. Let’s allow for the purchase of CD’s as well. Then all logic
after an item is selected in the same:

Buy Book
Customer selects book to buy.
INCLUDE Show payment options

Buy CD
Customer selects CD to buy.
INCLUDE Show payment options

Show payment options
IF the item is in stock
System displays payment and shipping options.
Customer selects payment and shipping option, and fills in payment details.
System displays a total order estimate and asks for confirmation.
Customer confirms order.
System verifies clients credit
IF the customer has enough credit
System displays order confirmation.
ELSE
System informs the customer he or she does not have enough credit
ELSE
System informs the customer the item is out of stock

And the accompanying use case diagram:

44 Mobile Agents as a Distributed Application Architecture

4.4

class diagram

Buy Book

Show shipping
options

Customer

Figure 8: Buying books and CDs.

Class Diagram

The class diagram is the most fundamental element of the UML
methodology. It shows which classes together make up the system, and
how those classes relate to each other. Optionally, the class description can
contain the methods and attributes of each of the classes. Larger
applications usually have multiple class diagrams, which for instance group
the classes by functionality or subsystem. There is nothing wrong with
including the same class on multiple diagrams, although generally only one
occurrence would have the methods and attributes of the class.

Once the use cases are at a reasonable stage, it is good to start on the class
diagrams. Creating a good class diagram takes practice, but a good head
start is to find all nouns mentioned in the use cases. Each of those nouns
could become a class on one of the class diagrams.

Examining the ‘buy book’ use case described earlier, we find the following
nouns: customer, book, payment option, shipping option, payment details,
System, total order estimate, order confirmation, order, credit. This gives
rise to the following class diagram:

Modelling and agents

45

Customer * Order = Payment Option 0,1 Payment Details|
- Placeq —|
credit estimate card type card number
confirmed selected expiration date
buy(Book)
confirm
calculateEstimate

I
9 *
2 Shipping Option
a2
b cost
T speed
Book selected
title
author

price

Figure 9: Class diagram for book web site example.

This diagram shows several of the aspects mentioned in 4.2. There are six
classes, each represented in a rectangle. Each rectangle is subdivided in
three sections: The first shows the class name, the second the attributes of
that class and the third has the methods. The lines between the rectangles
show the associations between the classes. The symbols at the ends of the
lines indicate the multiplicity of the relation. No symbol indicates ‘1’, a star
means ‘zero or more’ (‘many’), and 0,1 means ‘zero or one’.

This diagram is by far not the only class diagram possible for the book web
site, and reflects several choices we made. For instance, ‘order estimate’ and
‘order confirmation’ are not made into separate classes, but are considered
attributes of the ‘order’ class. Likewise, ‘credit’ is an attribute of ‘Customer’.
It is fairly common not to make ‘system’ into a class. You can think of all
the classes together forming the ‘system’ class. Or, in OO terms, the system
class is the aggregate of all the other classes.

Note that there are some attributes on the classes that do not directly
appear in the use cases. We added them to make the diagram a little more
interesting. You can imagine however, that if a ‘shipping option’ is
elaborated a little more in the ‘Buy Book’ use case, you need to know how
fast it is (i.e. three to two five working days’, or ‘overnight service’) and
what the costs of the option are.

Notice that the association between ‘Order’ and ‘Book’ is one to one.
Showing this to the client, he or she might say: 'Hey, but we want the
customer to be able to buy more than one book at a time.” At which time
you could reply ‘Ah, but then we need to change the functionality, and
allow the user to add items to a shopping basket.” Changing this
functionality creates two very different use cases. The effect on the class
diagram would be that the association between ‘Order’ and ‘Book’ changes
to ‘1 to many’, and maybe add an ‘add(Book)’ method to the order object.
This is a nice example of how a big change in functionality has only minor
impact on the object model.

46

Mobile Agents as a Distributed Application Architecture

44.1

4.4.2
stereotype

Inheritance and aggregation

Inheritance and aggregation are two of the concepts of 4.2 that we did not
show yet. As you might recall, polymorphism is a result of inheritance, and
you see it in this diagram:

Universe

1
onsists of

Celestial Body

Meteor

move()

Figure 10: Universe class diagram.

This diagram shows a couple of new elements compared to the previous

position

move()

Planet

Atmosphere

1 *
[—is the sun of—

move()

move()

one. Let’s start with the Celestial Body class. Notice that its name is written
in Italics. This is to indicate the class is an abstract class. The method name
in Italics means that the method is also abstract. The three classes Meteor,
Star and Planet are all subclasses of the Celestial Body class, shown by the

triangle at the end of the connecting lines. Because these have to be real
(not abstract) classes, they all provide an implementation of ‘move()’, as

shown.

The line connecting Atmosphere to Planet has a diamond on the end,
indicating an atmosphere is an integral part of a planet, or, Planet is an

aggregate of an Atmosphere and possibly other things (not shown). Finally,
notice that Universe is associated with zero or more Celestial Bodies. This is
an example of polymorphism. In reality, each Celestial Body is an instance

of one of the three sub classes. However, from the viewpoint of the
Universe, they're all Celestial Bodies.

Stereotypes
UML has a standard mechanism for categorising classes, called stereotyping.

By stereotyping a class, you indicate it belongs to a particular category

and/or has a special property. Stereotyping a class is similar to subclassing

it, but sort of on another dimension. Two classes that have the same
stereotype might not share any attributes or methods, and vice versa, a
subclass does not necessarily ‘inherit’ a stereotype of its base class.

An example stereotype is ‘singleton’. A class is singleton if there will never

be more than one instance of that class in a system. Another example is
‘interface’. A class is an interface if it is abstract and does not have any

attributes.

Modelling and agents

47

4.5

sequence
diagram

Interfaces are an incredibly useful construct. An interface is like a contract
between two classes. A class using an interface just sees that interface, it is
not aware of the specific class that implements (is a subclass of) the
interface.

In a class diagram, a stereotype is indicated by the stereotype name in
guillemets («,») below the class name, like this:

CacheManager Itemiser
<<singleton>> <<interface>>
*___ |
Cachedltems —1—

Item getltem()

Item gettem(Key)

Figure 11: stereotyped class.

The picture shows the ‘CacheManager’ class, which in this case holds some
sort of items. A cache is a typical example of an object that should only
have one instance in a system.

The ‘Itemiser’ presumably uses the cache to get some item instead of
retrieving them from some other source. There could be many Itemisers in
the system. They would all be a different class, but they would have the
same interface.

Sequence diagram

While an object diagram shows how objects relate to each other statically
(in space, if you will), a sequence diagram shows how several objects work
together in time to accomplish something.

A very frequent use of a sequence diagram is to show how a use case works
out once all the classes are defined. If the sequence diagrams can be created
for all the use cases, this is a good indication the class diagrams are
complete. However, it might still be advantageous to create additional
classes to split off functionality etc.

Let’s make a sequence diagram for the buy book use case (4.3.2), including
all the shipment and payment option selection:

48

Mobile Agents as a Distributed Application Architecture

activation

message

::BuyBook ::StockManager

CustJ)rnPr [[
buybook(...) |
inStock(book)
, in (book) -1
| no
yes
show notin stock ~~ |
| create(tbok) ::Order

::PaymentManag
er

create() ::ShipPayOption

S

0
L

. . =
show ship/ payment options

|
| setShipPayOptions(...)

r—r—'ﬁ

checkCreHit(orderamount)

insufficient

sufficient

setPaymentOption(option)

Place() |

displayorder confirmation
!

Figure 12: sequence diagram for 'Buy book".

This diagram might look pretty overwhelming at first. We will try to explain
all the subtleties that are in this diagram. The dashed vertical lines are object
lifelines. On top of the line is the name of the class (object) that is
represented on the lifeline. Time passes from top to bottom.

Most of the object lifelines have small filled rectangles superimposed on
them. Those are called object activations. They mean that, at that moment in
time, that object is activated (doing something). Please note that the length
of the activation is not an indication of the duration of the activation.

The arrows back and forth between the lines are messages. In this case, an
arrow from left to right is a method invocation, and an arrow from right to
left the return of that method call.

! N ' [
insufficient credit N
- setShippingOption(option) |
1
t

Modelling and agents

49

split

451

simple
messages

synchronous
message

asynchronous
messages

You see the lifeline for the ‘BuyBook’ object splits two times. Each split
means there are two possible sequences from that point on, and which is
followed depends on some condition. In this case, the branches correspond
to the branches in the use case description. The lines might join up again if
the sequence is the same for both paths after that.

With this explanation in mind, we hope you can follow the process of
sending placing an order for a book. Note that there are few extra elements
in this diagram that aren’t on the class diagram: One new class, ‘BuyBook’
manages the different actions needed to successfully complete an order. We
discovered we needed these items when we tried to draw this diagram. This
is a nice example of how an object model evolves, and how the different
diagrams influence each other. In a real design process, the next logical step
would be to revise the class diagram, but we will just move on.

Message types

The diagram above showed messages send back and forth, representing
method invocations. These are simple messages. Pure model wise, you could
have a simple message only one way. In practice however, a simple message
is always one back-and-forth pair. When we say ‘method invocation’, we
mean one such pair. The first message corresponds to the passing of the
parameters of a method, the second to the return value (even if there is
none) of the method being returned to the originating object.

Simple messages are not the only type of message possible however, there
are two other types, synchronous and asynchronous.

For synchronous, the activated object stays active, but waits for the other
object to return a message.

For asynchronous messages, the activated object also stays active, but doesn’t
wait for a return message, and there might be none.

Note that in both these two cases, there are two active objects at the same
time, which is why it is not simple. An example might help to clarify the
differences.

You, as a human are an actor, which means can send messages to other
objects. Suppose you need to cut up some mushrooms. There are three
options:

50

Mobile Agents as a Distributed Application Architecture

Simple

You take a knife and start cutting up the mushrooms yourself. You activate

the knife, which cuts the mushrooms. This is simple messaging.

::Knife ::Mushrooms

Ct{ef | |

cut(mushrooms |

1 :hl_

| cut() |

|

| B |

le

=~ I |

I

Figure 13: Cutting mushrooms with a knife.

Synchronous

You throw the mushrooms into the food processor, and press the button.
You wait for the mushroom to be cut up, and take them out. Here you see

you wait while the other object is doing something. This is synchronous

messaging, you wait for the ‘message’ of the food processor that it is done

cutting the mushrooms.

::FoodProcessol ::Mushrooms
Crlef | |
putin(mushrooms) |
1 :hl_
| |
| start | |

cut()

\l/

7\

Figure 14: Cutting mushrooms with a foodprocessor.

Modelling and agents

51

45.2

object creation

object
destruction

Asynchronous

You again throw the mushrooms into the food processor, but now you
start to peal some onions. If the food processor is done, and probably after
you are done with the onions, you pay attention to the mushrooms again.

::FoodProcesso ::Mushrooms :Onions
CILef | | |

putin(mushrooms) | |
1 :-I_

| | |
| start | |
l peel() l l
I I 3

cut()

| T P

| L

| done |

| | |

|

Figure 15: Peeling onions while the mushrooms are cut.

The advantage of asynchronous messaging is clear, the calling object can
continue doing something useful while some other object is doing
something for him as well. But you might be wondering what the need is
for synchronous messaging. Well, in some cases it just isn’t possible to
transfer the activation to another object, for instance if the object lives on
another machine. In that case the object on the sending machine has to wait
until a reply arrives.

Object construction and destruction

The sequence diagrams we’ve shown so far assume all the objects involved
in the interaction exist beforehand and continue to exist afterwards.
Sometimes however, a new instance of an object is created, or and existing
object is destroyed.

In a sequence diagram, object creation is shown by drawing the object box
halfway during the interaction at the moment of creation.

The destruction of an object is shown by ending the object’s lifeline with an
X.

52

Mobile Agents as a Distributed Application Architecture

4.6

state diagram

state change

The following sequence diagram illustrates both:

:Destroyable

destroy

~
—

X

create

newlyCreated

I
I
Figure 16: Destroying and creating an object.

State Diagram

We already said in 4.2.1 that the state of an object can change. If an object
can be in many states, and the behaviour of that object is different
depending on its state, it is useful to create a state diagram for it.

Note that in this context, a ‘state change’ does not mean just a change of
the value of some attribute. However, a change of an attribute value could
induce a state change. For instance, if the last money is withdrawn form a
wallet the wallet goes from ‘containing money’ to ‘empty’. A subsequent
attempt to withdraw money would obviously fail. This type of state changes
is modelled by a state diagram. A state diagram always contains the state
changes of a single object.

Let’s examine this by looking at the order class from the book web site
example, with the extra assumption that we are using a shopping basket,
and that in our system, shopping basket contents is modelled as an order.

Modelling and agents

53

state

initial state, end
state

state transition

substate

event

add book \

Filled

remove last boo|
Active purchase items

/dﬁ
h / Payment and
Paid Confirmed [in/stock AND shipping options

payment received credit OK] ™ selected

[not in stock OR

[timeout] credit not OK]

Shipped Cancelled

Figure 17: State diagram of book order

Impressive isn’t it?6 Well, let’s examine the elements in this diagram.

A stateis represented by a rounded rectangle, with the name written in the
middle. An ‘Order’ object can be in four different states:
active, cancelled, paid and shipped.

The filled circle is the initial state, pointing to the first state the object is in
upon creation. The filled circle with outer ring is anend state, in which the
object is destroyed.

Outgoing arrows indicate the possible state transitions from that state to
another. So in our example, an object starts in the ‘active’ state, then moves
to either ‘Cancelled’ or ‘Paid’. From ‘Paid’, the object transitions into
‘Shipped’.

The ‘Active’ state is special, because it has four substates. When ‘Active’, an
order can be ‘Empty’, ‘Filled’, ‘Payment and options selected’ or
‘Confirmed’. Substates are convenient to show an object can transition to
certain state from a set of other states. In this case, we want to show an
order can become ‘cancelled’ from any of the four sub-states.

Many of the transition arrows are adorned with text descriptions. These
descriptions show what event happens at the state transition. This might be
an event that cause the transaction, or something that happens when the
object enters the new state.

6 That is, if you hadn’t seen a state diagram before. Otherwise, you were
probably thinking ‘Huh, I've seen bigger’.

54

Mobile Agents as a Distributed Application Architecture

guard
conditions

4.7

4.8

Obiject oriented
programming

Three of the descriptions are written between square brackets ([,]), making
them guard conditions. A guard condition is a condition that needs to be met
for the transition to take place. So you see that for the ‘payment and
shipping options selected’ state, whether the order is cancelled or confirmed
depends on whether the books are in stock and the customers credit is
sufficient.

Other diagrams

UML has a few other diagrams that we do not cover in this chapter, mainly
because we do not expect to use them later on. Those are the collaboration
diagram, the activity diagram, the component diagram, and the deployment
diagram. For completeness, we briefly discuss what they are and they are
used for below.

Collaboration diagram

A collaboration diagram is a variation on a sequence diagram. Whereas the
sequence diagram emphasises time, the collaboration diagram shows the
relations between the objects spatially. As such, it is somewhat clearer
which objects interact with each other, and why. Because the time aspect is
very important with agents, we chose to use the sequence diagram over this
diagram.

Activity diagram

An activity diagram is an extended form of a state diagram, with explicit
support for decision making, signalling between different objects, and
concurrent paths. It is very useful for modelling business processes and
other flows of control.

Component diagram

Unlike most of the other diagrams, this diagram shows real life entities,
instead of abstract concepts. It shows which software components make up
a particular system once it is build. Although this is extremely useful, we
don’t really have a need for this in this thesis.

Deployment diagram

Finally, the deployment diagram shows which hardware components a
systems is made up of, and which software components are deployed on
that hardware. Again, this is far to deep into deployment to be of interest to
us.

Object oriented programming

We briefly want to discuss the relation between object oriented
programming and object oriented modelling. Object oriented programming
means you still treat a system as being composed of objects when
implementing it.

Modelling and agents

55

4.9

49.1
system actor

It is not strictly necessary to use an object oriented programming language
such as Java or C++ to do object oriented programming, but not doing so
forces you to do some pretty heavy wizardry yourself. Especially a feature
as polymorphism is pretty tough to implement using a non-OO
programming language, which has that and other features built in.

Doing object oriented analysis and design (OOAD) and not using an object
oriented programming to implement the system is downright silly. The
other way around is a little less odd, and effectively means the programmer
is building the object model on the fly, while programming. This can work,
but you miss out greatly on the oversight and ease of change you get when
doing OOAD first.

Apart from so called 4GL packages, most programming today is done using
an object oriented programming language, in particular Java or C++, so we
will focus on that. When showing code examples, we’'ll use Java as the
language of choice, because of its wide use and because it is one of the few
that has nice built-in support for multithreading, which we’ll need to create
animate objects (see chapter 6).

Using agents in modelling

As we said, UML is largely suited to model reactive systems, systems that
respond immediately to outside stimuli. This is especially apparent with use
cases. Use cases are supposed to cover all the functionality of a system, but,
at the same time, use cases are initiated by actors, which are always outside
the system. This means that if we have functionality that is initiated by the
system itself, we have no apparent way of putting this functionality into a
use case. As systems get larger and more proactive, this deficiency becomes
increasingly apparent.

A real-life example:

A system we recently developed allowed a user to create a list of interests on
which he or she would like to receive email alerts. The system would monitor
the incoming news, and send an email to the user if the topic of news item was
included in that users interest list. The model for that system included a nice use
case for the user updating his interest list, but a use case for sending out the
emails was suspiciously missing. The reason for this was simple: no user or
external system initiated the action, so the modellers were unsure how to put the
functionality in a use case. For this system, this omission was handled because a
description of this functionality appeared in a high-level functionality
description, and because we basically kept reminding ourselves the system had
to be capable of doing this.

The system actor

A simple solution to this dilemma would be to introduce a special system
actor, one that we allow initiating system functionality. We could use the
same symbol for this actor, but somehow the stick figure appearance of a
normal actor doesn’t feel quite right. We therefore introduce an additional

56

Mobile Agents as a Distributed Application Architecture

4.9.2

agent as an
actor

element, the system actor. Its current depiction is a stick figure in a box, but
we are open for better suggestions.

Let’s add an ‘order shipped’ email feature to our book web site:

Send order confirmation emails

The system actor checks the order database for newly shipped orders.

The book database returns a list of newly shipped orders.

For each order, the system actor requests the related user from the user
database.

The system actor sends a confirmation email to the user, informing the user his
order has just been shipped.

And an accompanying use case diagram:

_— —
Send order
confirmation
emails
~

System

Agents as actors

Notice that the system is making the decision to initiate this functionality
on its own, or autonomously. That sounds a lot like what agents do. So
what happens if we think of the system as consisting of a set of agents,
instead of just ‘the system’? Well, two things really. First, we can make each
agent a system actor, which allows us to group related system use cases, just
like normal actors group normal use cases. Second, we can make the agent
the target of a normal use case. This gives a first, high-level grouping of the
functionality of the system. This might not be that important for small
systems, but we think it is very helpful in larger, often distributed
applications. It allows us to make a piece of the application ‘responsible’ for
a block of functionality, much like we assign a responsibility to a person
when describing business processes.

Let’s assume an order agents sends out order confirmations once books
have shipped. In addition, we’ll have functionality to view information on
certain book, and have that include information about top selling books. An
agent based use case diagram for this kind of system could look like this:

Modelling and agents

57

agent stereotype

Buy book

Send order Order agent

Confirmation

Customer Get book statistics]

Get info on book

Info agent

Figure 18: Book application, agent based.

This picture looks a lot more dynamic than the previous one. The order
agent is actively sending out order confirmations, and the info agent is even
initiating a use case, ‘get book statistics’, on another agent. Modelling a
system like this allows us to much easier capture the dynamics of modern,
large, often distributed systems. It even allows us to easily capture the
functionality of large parts of a system that do not have any user interaction
all together. The key advantage is we get a simple, straightforward way of
showing asynchronous and autonomous components in the system. This is
very important, because it much clearer communicates the dynamics and
complexity of the system, and at an earlier stage in the design.

Unlike an actor, an agent is part of the system under examination. In fact,
this simple equation shows it all:

actor + object = agent

That is, an agent is both an actor and an object 7. We already argued in 4.9
that an agent is an actor, and, since it is part of the system being modelled,
it should be an object as well. To reflect this duality for an agent class, we
introduce a new stereotype, which is, predictably, ‘agent’.

OrderAgent InfoAgent
<<agent>> <<agent>>
placeOrder() getBookInfo()

sendOrderConfirmations()
getTopSellers()

Figure 19: Agents using 'agent’ stereotype

70ur ‘equation’ is just for illustrative purposes. It is not an equation in the
strict mathematical sense.

58

Mobile Agents as a Distributed Application Architecture

component

49.3

4.10

4.10.1

animate object

Only one object? Well, yes, an agent is a single, identifiable part of the
system, so it should be represented by one object. However, by their very
nature, agents are complex objects, so they might in fact be an aggregate of
several different objects. Another way to put this is to say an agent is an
(active) component. A component is a reusable set of classes that belong
together. For instance, Java beans and ActiveX objects are examples of
components. If agents use a standardised language such as KQML to
communicate, they even have the connect-and-use characteristic of
component-based software [36].

Different system types

When does it make sense to model using agents? To make this clear, we
recognise three different kinds of systems:

= Reactive systems, which do something only when someone or
something interacts with it.

» Proactive systems, which also employ some activities on their own.

= Agent based systems, which consist of several different components
that largely operate autonomously.

Simple single-user applications (systems) are often of the first category, and
UML is very suitable to model those kinds of applications.

However, as applications get larger and smarter, there is a need to recognise
autonomous components inside a system. A proactive system has a few of
these components, which we call agents, while an agent based system is
designed as consisting entirely out of such components.

UML is by itself not suited to model such applications, mainly because it
only deals with ‘just’ objects. Therefore, we introduce an enhancement to
object orientation and UML.: animate objects.

Animate objects

To show how agents affect the other parts of UML, we need to introduce
an additional concept, animate objects. Agents are an example of animate
objects, and this addition enables us to much clearer show the dynamics of
an agent based system. Other authors have also noted this omission from
object orientation, in particular in relation to agents. See for instance [36].

Introducing animate objects

In the real world, you can have inanimate (‘dead’) objects such as books,
rocks, couches and garbage cans, and animate (‘living’) objects like cows,
clocks, plants, computers, humans. The big difference being an animate
object can do stuff on its own, and an inanimate object cannot.

Modelling and agents

59

This ‘stuff’ can be as simple as to grow or to tick, or as complex as having a
conversation with another animate object. Note that to avoid ‘religious’
discussions whether something is alive or not we choose to use animate or
inanimate. Most people do not consider an alarm clock to be alive, but it
can still do stuff on its own: It will wake you at a certain time. It is this
distinction that is important.

We think it is very often useful to make this distinction when modelling as
well. An animate object is thus an object for which it is important that it
does something on its own, it has a degree of autonomy. Objects were
characterised by state and behaviour. An animate object adds autonomy to
that. We will call such an object an animate object, to distinguish it from a
normal (implicitly inanimate) object. The name ‘active object’ or
‘concurrent object’ is sometimes used in other literature.

Although object orientation by itself does not preclude animate objects,
objects tend to be inanimate by default. UML has actors as the key animate
elements, which interact with a set of generally inanimate objects that
together make up a system.

Consider you enter restaurant that works like this:

You walk into the restaurant take a seat. You call a waiter, and give him or her
your order. The waiter goes to the kitchen and tells the cook your order. The
cook goes out to various shops to get the ingredients for your meal, goes back
into the kitchen, prepares the ingredients and cooks the meal. The waiter, still
waiting?, picks up the plate and brings it back to you.

Sounds a bit odd? Well, this is how most (reactive) object oriented systems
work. However, it is not how a typical restaurant works. In a restaurant,
both the cook and the waiter are more proactive. The cook would probably
makes sure he orders in advance the necessary ingredients for all dishes on
the menu, and the waiter might see the table you are sitting on is no longer
empty, and call at your table without you asking. Also, the waiter probably
waits other tables while the cook is preparing your meal and that of other
people. Again, there are two different types of objects in this interaction.
You, the waiter and the cook are all animate objects, while the rest of the
stuff is inanimate.

Our distinction allows us to much easier model interactions like this,
resulting in more pro-active and dynamic systems. It makes modelling using
objects somewhat similar to creating business processes. Those processes
also tend to have a lot more dynamics and parallelism than the simple
sequence diagrams we’ve shown so far. People and machines might do
things in parallel, and initiate actions that are not directly motivated by
events happening. Since object orientation is supposed to model reality, it is
almost surprising that it is not very suitable to model interactions like this.

8 Well, they’re not called waiters for nothing ©

60

Mobile Agents as a Distributed Application Architecture

4.10.2

animate
stereotype

4.10.3

Class diagrams and animate objects

We argued above that the distinction between animate and inanimate
objects is very important, and hence we want to be able to show an object is
animate in our model. To do this, we introduce our own stereotype:
‘animate’. Stereotyping a class as ‘animate’ thus indicates that instances of it
are animate objects. Figure 20 shows a simple class diagram using this
stereotype.

Farmer 1 . Cow
<<animate>> ks <<animate>>
age
milk() eat()
sleep() « /| giveMilk
| |
= (9‘ *
3 —_—
>
| 1 [1
Farm Meadow
roof vegetation
door fence
bed 1 *
—belongs to— openFence()
openDoor()

Figure 20: Simple farm class diagram.

This diagram shows two animate objects, ‘Cow’ and ‘Farmer’, and two
inanimate objects, ‘Farm’ and ‘Meadow’. Notice that the methods on both
‘Farmer’ and ‘Cow’ are activities they can undertake on their own. We
expect this to be quite common. In the future, the need might arise to
distinguish the activities of an animate class from ordinary methods, but for
now we’'ll leave it like this.

UML does include some standard stereotypes that actually do mean the
object in question is an animate object, for instance, ‘process’ and ‘thread’,
and the standard business extension includes stereotypes like ‘actor’ and
‘worker’. In respect to those, the ‘animate’ stereotype can be seen as the
base class?® of all those stereotypes.

Sequence diagrams and animate objects

The real difference between animate and inanimate objects can be seen in
sequence diagrams. We illustrate this using as simple example: doing the
laundry.

9 Note that we now use a modelling concept to describe a construct in the
modelling language itself. It can be come even trickier: UML also defines a
stereotype called ‘stereotype’, which can be used to stereotype classes that

serve as stereotypes for other classes. Are you still with us?

Modelling and agents

61

In the old days, laundering was done by means of a tub of water, a washing
board, a brush, and soap. These objects are all inanimate. An animate
object, in this case a human, is needed to get any washing done.

Q

)\ ::Soap :Brush ::WashingBoard ©:Tub

::Clothing

W [
ap(clothes) |

rub(clothes) \J |

SO
I
I
I
5 T
brush(clothes)
]
T
I
I
I
I
I

<

rinse(clothes) |
]

flush()

I I
I I
I I
U [

Figure 21: Old-fashioned washing.

Nowadays, we put the clothes in the washing machine, add washing
powder, turn some dials, and push a button. The machine, which is an
animate object, happily starts washing while you walk away. You still need
to do something, but your presence is not required all the time.

62

Mobile Agents as a Distributed Application Architecture

::WashingPowde ::WashingMachi

Water ::Clothing
r ne
W#per | | | |
addTo(WashingMachine) | | |
|
| addPowder(...) | | |
I I I I
I I I I
F T I I I
add(clothes)
. : I I
_ | | |
| start | |
| takein() | |
| 1
| dissolve |
I I
T i > |
| < |
LN
| while program is not finished |
| wash()
I

Figure 22: Washing using a washing machine.

So far, so good. However, what if you create a model for the first example

like this:

Modelling and agents

63

magic activation

)\ ::Soap :Brush ::WashingBoard 2 Tub

::Clothing

wash(clothes) |

1]

[
o
_g .
<

brush(clothes)

I
I
~l
1 | cle?n()

\l/

)

rinse(clothes)

flush()

.
|
| _
.

Figure 23: Let the soap do the work.

Although nothing prevented you from making this diagram, it just doesn’t
work. The soap just doesn’t have any way of responding to your
asynchronous message. It would by like putting a note on the soap saying
‘please wash’ and hope someone passes by at some point that actually does
the washing. Now, in this example, you might be able to tell it wouldn’t
work like this, and model it differently.

The trouble is that for arbitrary classes, nothing in UML helps you to
determine which messages works and what will not. For the washing
machine in Figure 22, and the soap in Figure 23, there is a ‘magic’ activation
of the machine in response to the asynchronous message. Nothing in the
model tells you that it is capable of responding to this kind of message, and
why this works for the washing machine, but not for the soap.

The fundamental difference between animate and inanimate objects is their
activation model. As said, animate objects are autonomous, the can do
things on their own, they are always active. In contrast, Inanimate objects
live ‘on borrowed time’. That is, they need another animate object to
activate them.

Using the distinction between animate an inanimate objects, we can give
some simple rules as to how the different message types can be used:

64

Mobile Agents as a Distributed Application Architecture

two lifelines

= An object has to be activated to be able to send a message.
= Any object can send any message type.
= Animate objects can respond to any message type.

= Inanimate objects can answer simple messages, but can only respond
to synchronous or asynchronous messages when they are activated by
an animate object.

We will model the difference by giving an animate object two lifelines. The
first (left) one is the normal lifeline any object has, the second is the object’s
autonomy line, the object’s own activation. This second line will generally
start activated. Using this change, let’s see how the different message types
work out between the different object types. Note that the whole point of a
message is that something is done by the other object. An answer from the
other object might not always be required, but we’ll show the object
answering, to illustrate it really gets a chance to do something.

;:Animate

simple [

\/

1
synchronous
T
synchronous response
]

<
i I

|
asynchronous
I
asynchronous responsg
1

~

I L
Figure 24: Animate object responding to the different message types.

Modelling and agents

65

::Inanimate

;:Animate

simple [

\/

synchronous |

—

lL—

'™
synchronous response
B ———

asynchronous\I

\/

e

asynchronous response | |

Figure 25: Inanimate object responding to messages, with the help of

an animate object.

These two diagrams actually shows why ‘simple’ is such a good name for
the first message type. Because there are no animate objects are involved, it

looks a lot simpler.

Now, let’'s modify the washing machine example. The washing machine
obviously is an animate object, it does the actual washing on its own:

66

Mobile Agents as a Distributed Application Architecture

::WashingPowd ::WashingMachi
er ne

::Clothing

W#per I I I

addTo(WashingMachine) | |
-

==

addPowder() |

—

——

I
add(clothes)
|

takeln()

~
=

T
I
| start
I
I

—

I
I
| |
dissolve
I
,
[
I

,
I
|
N

N

. LN
while program is not finished

—

\i/

J

done

| | | wash()
I

I

I

Figure 26: Washing machine as an animate object.

This picture should make it a little more clear how interaction with an
animate object works. Of course, a modeller still has to know or decide
which objects are animate and which are not. You can make the clothes
animate objects and have them respond to asynchronous messages. That
still doesn’t make any sense. But at least with this convention, there aren’t
any ‘magic’ activations.

It seems a system with only inanimate objects can never be active. That’s
true to some degree. A system with only inanimate objects can only be
activated by an actor, which can be seen as an animate object outside of the
system modelled. The actor can pass its activation to an inanimate object,
and so start an interaction. Just look at the old fashioned washing example
again. A system such as that is purely reactive. It responds to actions of the

Modelling and agents

67

4.10.4

actor, but it does not answer back on its own. You can see in the diagrams
above that we need an animate object to send asynchronous messages back,
which can very well end up being sent to the actor. Such a system is a
proactive system.

Objects in different environments

There are occasions when one object (or an actor) is unable to transfer
activation to another object, even if it wanted to. There might be a physical
limitation, or there might be ‘rules’ against it. Example: ordering a drink in a
bar. Even though you could physically handle the equipment behind the
bar, doing so would probably mean you are thrown out of the bar. Let’s
make a sequence diagram out of this:

:Bartender :Vodka :Martini ::Shaker

::Olive-on-a-
stick

:Glass

"Wodka Martini, shaken, not strirredl

‘certainly sir'

poorin (shaker)

I
poorin(shaker)
!

' 1

shake()

1

putin(glass)

= 41

drink()
1)

Figure 27: Ordering a drink.

The dashed bar in the diagram literally represents the ‘bar’ in this example,
the border over which the actor0 cannot transfer activation. The bartender,
an animate object, responds to the messages of the actor and prepares the
actual drink. Another curious aspect is the destruction and creation of the
‘Glass’ object. We use this construct to show the object moves over the bar,
after which it can be manipulated by the actor.

10 Which in this case is an agent, though not the type we’ve been talking
about most of the time.

68

Mobile Agents as a Distributed Application Architecture

environment
border

separated
objects

4.10.5

If, as in this case, activation cannot be transferred, we want to say the
objects are in two different environments. In sequence diagrams, we will show
this by drawing a dashed bar, the environment border, between the two objects.
We’'ll call objects in different environments separated.

If two objects are separated, then the only communication possible is
synchronous or asynchronous messages. This then again implies that each
environment needs to have at least one animate object, one that responds
to those messages or activates inanimate objects for which the messages are
intended, allowing those to respond.

Animate objects in software

As illustrated in this chapter, UML is mainly used to model software
applications. A typical interaction diagram looks something like this diagram
depicting an interaction with a simple drawing application:

Drawing Node Curve

User |
edit()

U\

\l/
— — —

move()
1

reshape()

\i/

7\

Figure 28: Simple diagram of a drawing application.

The objects in a UML model become objects living in the computer’s
memory. Those objects cannot be directly manipulated by the (human)
actor using the application, at least not in the same way a human can
manipulate objects around them. To interact with the objects inside the
computer, a human uses the keyboard and other input devices to send
(electric) messages into the computer, and the computer sends video and
audio signals to the user. Again, we are dealing with objects in two different
environments. From the discussion above, this means there should be an
animate object in between somewhere, and there is. For a GUI based
application, there is an event-dispatcher, which receives events from various
locations and sends them to the appropriate window. Somewhat like this:

Modelling and agents

69

Event

Dispatcher DrawingWindow Drawing Node

“ET I I
mouseclick
| I I

mouseclicked()

I ‘I | edit() - |

drawing editable

mousemoved(...)

I
I
T | move()

| reshape()

put(redraw()) |

T

[l
1
< T |

redraw/() |
I =

curve changed shape
| I
ol

Figure 29: The same interaction, now showing an event dispatcher
and synchronous messages.

This interaction shows the explicit involvement of an event dispatcher and
a drawing window. We see that the user actually sends synchronous
messages, and that the drawing window returns those messages (by drawing
on the screen). In the first instance, the window automatically redraws itself.
On the second, the curve knows the interaction changed its shape, so it
issues a ‘redraw’ to the event dispatcher. While the drawing window would
probably be part of a real sequence diagram (in a later stage of the first
diagram) the event dispatcher would not. It is not part of the design of the
application, and would just unnecessary clutter the diagram, so they are
abstracted away.

Frequently, objects like this event dispatcher work in such a way that it
seems the actor can directly manipulate the other objects in the application,
which is why it is suitable to draw the interaction as shown in Figure 28.
Other technologies, such as distributed object technology or message
oriented middleware also employ these kinds of ‘dispatcher’ objects. We

70

Mobile Agents as a Distributed Application Architecture

thread

wanted to show them to illustrate that there are already many types of
animate objects in software today.

So what makes these objects animate? Simply put, an animate object in
software is an object and a thread, so:

thread + object = animate object

A thread, in UML terms, is a single string of activations through a system.
An application always starts with one thread, but it might spawn many more
during its running. (For a more detailed explanation of threads, see 6.3.1.)

The animate objects we mentioned, like the window event dispatcher,
generally have their own thread, and the thread is running in a tight loop
while it is not servicing any use case. For the web server, a user’s request
will actually be handled by a separate thread (animate object), which allows
the web server to start servicing another user’s request.

In sequence diagrams, the second lifeline in the diagram literally represents
the object’s own thread. The sequence diagrams are very suitable to model
the interaction between different threads. They allow you to show how the
interaction is supposed to go, and also illustrate which objects are
manipulated by different threads, and thus need very careful
implementation to make sure the interaction indeed goes as designed.

We have tried to get the animate objects out of obscurity because we
believe that employing more animate objects in software could make a
difference. Multiple threads are currently added to a program almost as an
afterthought, or at least not explicitly added to the UML model. It is often
thought that building multithreaded applications is difficult. This is true,
also because the animate objects we mentioned so far are fairly complicated
objects. However, this is also because their activation runs along many
different objects. Adding an animate object that does something on its own
makes designing that interaction relatively easier, at least easier than
integrating the same functionality into for instance the user’s interactions.

A typical example is spell checking in a word processor. Putting that
functionality in the sequences when the user enters characters is non-trivial,
each time the user enters a character, the application has to check if a word
has ended, and if yes, see if it is spelled correctly. It can’t take to long,
because otherwise the user doesn’t see the results of his keystrokes. But
adding a spell checker (animate object) to the application is not that hard,
the spell checker can just sit in a loop and each time check if a new word is
added to the document, and if yes, check the spelling of that word (or the
entire sentence). It can take as much time as it pleases (within boundaries)
because the user generally does not need immediate results. In essence, one
complicated sequence diagram is split into two simpler ones. The price is of
course that the spell checker and the GUI have to carefully synchronise their
access to the document, as we do not want the spell checker to flag a word
as spelled wrong when the user has just corrected it. Modern word
processors generally implement their spell checkers this way.

Modelling and agents

71

4.10.6

Technically, a thread does not have to be part of an object, but we have
found it advantageous to group them together and model using animate
objects. It gives the thread a ‘home’, and gives a very good way of display of
figuring out all the concurrency issues. Also, giving each animate object its
own thread isn’t the only way to get animate objects, there are a few other
ways, which we show in6.3.

Agents as animate objects

One of the main reasons we discussed animate objects so extensively is
because agents obviously are animate objects as well: they do things on their
own. When is something an agent and when ‘just’ an animate object? Well,
this is not so easy to say, given the wide applicability of the term agent. If
we do some math, we end up with;1t

agent — animate object &
actor + object — thread - object <
actor — thread.

So the difference between an agent and an animate object is equal to the
difference between an actor and a thread.

What is an actor more than a thread? It associated with a set of use cases.
We think if an object initiates use cases, it should definitely be called an
agent. If not, do so if it seems helpful. For instance, 2.5.1 mentions a type
of agent that is a character in a system. It even gives the alternative name
‘actor’ for that type of agent. So for such a system, it definitely makes sense
to label an object as an agent.

As soon as it makes sense to define use cases for an animate object, the fact
that it is an animate object is no longer an implementation detail. The object
provides then important functionality, it has a true responsibility within the
system. This is especially the case if the use case is has effect outside of the
system, that is, the agent sends messages to actors outside of the system.
Beware that this is a guideline, not a rule. Whether something is written and
included as a use case is ultimately a choice of the modeller, as is the choice
whether to call something an agent or not.

We said an agent consists of several different elements in 2.6. How are
those components reflected when we view the agent as an object? The heart
makes the agent autonomous, thus an animate object. The actions an agent
takes are reflected by the different use cases initiated by that agent. To be
able to take those actions, it needs sensors and effectors, which should be
reflected by methods on the object. The memory of the agent is, fairly
straightforward, represented by different attributes on the agent. Finally, the
brain. The brain itself cannot be reflected on an object diagram, However, a
state diagram (4.6) is a very useful tool to show when an agent does what.

11 Again, this might not hold in the mathematical sense. We belief this
outcome to be true nonetheless.

72

Mobile Agents as a Distributed Application Architecture

4.10.7

4.11

Agents and state

Animate objects and especially agents often have fairly complicated
behaviour, which often changes depending on their internal state.
Therefore, both are good candidates for getting a state diagram. Incoming
inputs might change the state the agent is in, causing it to take actions. Even
when the state doesn’t change, but the agent still takes action, this can be
shown by a transition into the same state (a degenerate state change), with
in its description the event and the action.

[New orders send]

Assemble email

list

All orders processec
[email server ready]

Send emails Ready to send

[email server busy]

Figure 30: State diagram for order agent sending emails.

This is a state diagram for the order agent in 4.9.2. The agent first collects
all new orders, then assembles a list of emails grouped by person. Once it
has processed all the orders, it is ready to send out all the emails. It then
tries to send all the emails. However, it might be that the email server is
busy, (or unavailable), so it temporarily becomes ‘Ready to send’ again.
Once it has send out all the emails, the agent becomes ‘Idle’ again.

Together, the state diagrams and sequence diagrams can describe how an
agent operates. The state diagrams show what happens when, and the
sequence diagrams detail what happens with each event.

Conclusion

In this chapter, we have shown how you can model with agents in an
object-oriented way. We have briefly skimmed over UML, the Universal
Modelling Language, and introduced a few additions to UML to better
enable us to model agent specific details.

UML consists of several types of diagrams, and the UML methodology
describes what to use each diagram for. UML is object oriented, meaning it
is based on the idea that everything can be seen as an object and thus
modelled as such.

= Use cases are used to describe all the functionality of the system. Each
use case describes a possible interaction with the system. Each use case

Modelling and agents

73

is initiated by an actor. Different actors represent different types (both
human and external systems) of the system modelled.

= Class diagrams show the different classes (objects) that together
make up the system. Each object has zero or more attributes,
information about the object, and methods, what the object can do.

= Sequence diagrams show how objects interact with each other. Each
use case should have a corresponding sequence diagram showing how
different objects in the system interact to provide the functionality
described in the use case.

= A State diagram shows how different events affect the internal state
(one or more attributes) of an object, which is useful to show if the
behaviour of the object varies depending on the internal state.

These diagrams could be created in this roughly this order, although the
UML methodology recommends an iterative approach. There are a few
other diagrams that we haven’t shown because we have no need for them in
this thesis.

We recognise three different kinds of systems:

» Reactive systems.
= Pro-active systems.
= Agent based systems.

The first only responds to outside stimuli, the second has some
autonomous components, while the third’s largely operates on its own,
asynchronous to outside events.

UML is by itself not very suited to model autonomous components, which
is why we introduced a few enhancements to UML. We (and others) say
that while it is true that everything can be seen as an object, it perhaps
makes sense to distinguish between two different types of objects, animate
and inanimate objects. It is fairly easy to see this distinction in real life as
well: inanimate objects don’t do anything by themselves, while animate
objects do things on their own. While UML or object orientation doesn’t
preclude the fact that objects do things on their own, the lack of modelling
capability means objects tend to be inanimate by default.

We introduced several enhancements to UML to allow us to model using
agents and animate objects:

= Anagentis both an object and an actor, which means it is able to
appear in use cases and initiate other use cases. As a guideline, animate
objects that initiate use cases are actors, they initiate functionality of the
system.

= Two stereotypes, ‘animate’ and ‘agent’ to distinguish those kind of
objects from other types of objects in class diagrams.

= Animate objects in sequence diagrams get an extra lifeline, to indicate
they can do things on their own rather than just being activated

74

Mobile Agents as a Distributed Application Architecture

(indirectly) by an actor. This also allows them to respond to
synchronous and asynchronous messages directly.

When objects reside in two different environments, we call them
separated. Two objects that are separated cannot transfer activation to
one another, only exchange synchronous or asynchronous messages.
We show the separation by introducing an environment border, dashed
bar, in a sequence diagrams.

Modelling and agents

75

76

Mobile Agents as a Distributed Application Architecture

CHAPTER 5

paradigm

5.1

distributed
computing

Mobile agent paradigm

We already mentioned mobile agents in chapter 2, and briefly said what they
are and what makes them so interesting. In this chapter we explore these
facts deeper, and explore what it means to use mobile agents as the
foundation for a distributed application. We consider mobile agents to be a
new and promising paradigm for building distributed applications. In order
to stake this claim, we show how mobile agents compare to other
distributed computing paradigms and how mobile agents create increased
flexibility and network awareness for distributed applications. After that we
illustrate all this with some sample mobile agent architectures and discuss
some interesting applications for which mobile agents can provide an edge.

Note that when we say paradigm, we mean it in a light sense, as ‘a
prototypical idea’, and not in the heavy sense associated with ‘paradigm
shift’. A new paradigm like this might cause a paradigm shift if it is widely
accepted as, in this case, a new and better way of developing distributed
applications, but it doesn’t have to.

Distributed Computing

Before we can discuss different distributed computing paradigms, we need
to explain briefly what distributed computing is in general, and what the
main issues are you face when designing a distributed application.

So what is distributed computing? In distributed computing, several computers,
connected by a network, work together to accomplish some task. Those
computers work together because it is more convenient or simply necessary
to do so. It is convenient if the other computer is better equipped to do
something (faster, more memory, less busy, etc.), and necessary when
neither has all the resources needed for the task. For instance, for displaying
a web page, one machine (the web server) has the page to display, but the
second (the machine running the web browser) has the screen to display the
page to the user.

Today’s world would be vastly different without distributed computing.
Browsing the web, reading and writing email, and multi-player network

Mobile agent paradigm

77

client-server

5.1.1

games all utilise some from of distributed computing, and most companies
today would be helpless without their computer network and the
applications that run on it.

The web browser example shows the most well known form of distributed
computing, that of client-server. A client-server system is partitioned in
clients, the pieces that drive the interaction, and servers, pieces that provide
particular services and passively wait for a client to interact with them.
Those clients are generally users behind a client application on their
machines. Distributed computing is more general, and does not assume any
machine plays a particular role. Still, it is often useful to call a machine
initiating some interaction the client, and the one responding the server.
These roles might very well be reversed in another scenario.

Advantages of distributed computing

There are many good reasons to do distributed computing, and most new
applications build today are capable of some form of distributed computing,
if it were only to connect to the company home page from the help screen.
We list a few of the most important advantages:

Physical distribution

The biggest advantage of distributed computing is without a doubt the
physical distribution of users and connected devices. It enables the creation
of ‘cyberspace’ and the resulting ‘death of distance’. That is, a well built
distributed application makes it just as easy to communicate to someone or
something on the other side of the planet as if that someone or something
was right beside you.

Load distribution/parallel processing

Another advantage is the distribution of processing among more than one
machine. With high-performance machines, it is often a lot cheaper to buy
two machines with power X than one with 2X. So it makes economic sense
to buy two (or many more) machines and invest a little to make them do
the processing together. Today’s processing needs are so substantial it is
impossible to do them on a single computer.

Take the new Star Wars movie ‘The Phantom Menace’. A single frame of
digital effects probably takes a few hours to render on a pretty powerful
Silicon Graphics machine. 95% of the film is digitally altered in some way,
and that’s an awful lot of frames. To render all those frames, Industrial
Light and Magic (ILM) uses a rendering farm, a huge cluster of equal
machines that can render many frames in parallel. Still, The Phantom
Menace used half (ILM does do other things) of that capacity for a whole
year.

Reliability

More machines can improve reliability and availability by having several
machines that can take each other’s place. The chance of them failing all
together is a lot less than that of the chance of failure for a single machine.
Also, you can easily take one offline for maintenance or upgrade and still
keep the application running. This is for instance crucial for today’s e-

78

Mobile Agents as a Distributed Application Architecture

5.1.2

commerce applications, which need to be up 24x7, since the Internet never
sleeps.

Specialisation

Using more than one machine means each machine can be best equipped
for its task. A database server above all needs big fast hard disks, a number
crunching machine needs an array of super fast processors, and a graphical
modelling workstation needs specialised 3D rendering hardware.

Issues with distributed computing

Distributed computing of course comes at a peril. Some things you take for
granted when designing a normal, stand-alone application suddenly
disappear when you do the same thing distributed. The most apparent thing
is that two pieces of a distributed application on different machines
inherently run in two different processes. (A process is a running instance
of a program on a computer. For more explanation, see 6.3.1.)

No shared state

First and foremost, two processes are totally oblivious of one another
unless they are enabled to communicate in some way. They could do so by
for instance reading and writing shared files on a disk, or by operating
system support for shared memory or named pipes. For two pieces of a
distributed application it is the same, but now the communication also
involves network communication.

Inherent concurrency

Second, two processes run independently, so there is inherent concurrency,
which makes it more difficult to co-ordinate and synchronise. However,
this concurrency, and the underlying autonomy is an advantage as well, as it
allows for parallel processing.

Semantics

Suppose the pieces of some operation are spread across several machines. If
one of those machines fails, the other machines, until the machine is
available again, have no way of finding out how far the crashed machine got
with its pieces of the operation. This means that the semantics of such an
operation are different depending if it is executed on one machine or
several. This is especially apparent with transactions, compound operations
that have to succeed or fail as a whole. Managing distributed transactions is
much more difficult than single machine transactions, and requires the
implementation of a complicated transaction protocol.

Platform differences

Finally one thing that is unique for distributed applications is differences in
terms of hardware or software, which means any communication between
two components on different systems has to be very well defined and
possibly translated to a format understandable to the rest of the system.

Mobile agent paradigm

79

5.1.3

5.14

Network communication

In the absence of a shared state, distributed applications rely on computer
networks to communicate with each other. On a physical level, there are
many options, like Ethernet, the telephone network, ADSL, fibre optics,
satellite links and radio waves, to name a few. No doubt newer, faster, and
further reaching methods will be devised, maybe some day allowing inter-
stellar communication at the same speed we can now conduct phone calls?2,
Even though network speeds are getting faster and faster, transferring a
chunk of data over a network is always an order of a magnitude slower, and
sometimes much more expensive, than accessing that data in the memory
of the computer. This means that the designer of a distributed application
has to pay careful attention how design decisions affect the network use of
the application.

Distributing a computation

Distributed computing means you distribute a computation. That sounds
rather trivial, but there is a little more to it. It means the designer has to
decide which pieces of a computation run on which computer, and as a
result of that, what and how much data needs to be transferred between
those computers. A poor design might result in prohibitively slow, network
hogging application, even though everything looks nice and clean on paper.

There is very little code that really has to reside on one machine or the
other. Only code that directly influences hardware needs to run on a
particular machine to execute, like code that read or writes to files, or
displays windows to the user. And even for these this is not always true.
Most modern operating systems allow an application to access a file on a
different machine with just about the same ease as a file on the local disk,
and there are even some (most notably X-windows) that make it seem to
the application it is displaying windows locally, while in reality that window
is shown on a monitor connected to another machine. This means the
designer in theory has a lot of freedom where to run some code. The trick
is how to use this freedom well.

Where to execute some code is a typical trade off situation between
processing and data transmission. Consider three pieces of a distributed
computation: A, B and C, and B needs the result of A, C needs the result of
B. Let’s say two computers involved in computation, and we put A on
computer 1 and C on computer 2. The choice is now where to put B.

12 Subspace communications ? Anyone ?

80

Mobile Agents as a Distributed Application Architecture

5.15

Computerl Computer2

050

OR

Computerl Computer2

O

Figure 31: Distributed computation. Where should B go?

If we put B on 1, processing for A and B takes place on computer 1, and
we need to move the result of B to computer 2. If we put B on computer 2,
we now need to transmit the result of A to computer 2, and processing for
B and C takes place on computer 2. Which of the two is better? There is no
easy answer. In the picture, we’ve made the second arrow in the process
bigger, and if take that to mean the result of B is bigger than that of A, than,
with all other things equal, B on 2 would be the preferred choice, because
that would minimise the network traffic between the two computers.

Unfortunately, all other things are seldom equal. B might be a very lengthy
computation, which puts a big strain on computer 2 if put there. Or it
might be desirable to have as little code on Computer 2 as possible. The
result of B might contain sensitive information, which should not travel
over a network. Or it might be hard to encode the result of A to travel over
a network, but encoding B’s result might be easy.

Even worse, this computation is unrealistically simple. A real computation
probably looks more like the sequence diagrams shown in chapter 3, and
even those are still pretty simple. If more than two computers are involved
(as is often the case), differences in network speeds between different
computer can make big differences. Of course hardly any system supports
only one single computation, so logical (and thus nearly always physical)
grouping of functionality, and re-use of sub-computations complicates
things. Availability of certain machines might spice up the picture. All in all,
to get it right you need to solve a hard, multi-parameter optimisation
problem, and that provided you can even gather the required information
beforehand, because it might be difficult to estimate data sizes and
application use.

Security

No discussion on distributed computing is complete without mentioning
security. For single computer applications, security is usually pretty simple.
If you are able to use the computer, you are generally allowed to do just
about anything. Sure, erasing the entire hard-drive might make the IT

Mobile agent paradigm

81

5.1.6

department extremely unhappy, since they have to re-install all the software
on it. Knowing that might make you think twice before taking such drastic
actions. But the point is, the computer will let you. For distributed
applications, it is seldom that simple. Many different people are able to
access machines running a piece of a distributed application, and what they
are allowed to do differs depending on their credentials.

Computer and network security is a huge and complex topic and in requires
a lot of attention when designing a distributed application. Still we refrain
from diving into it further, because ultimately security is about things you
cannot do, and we want to focus on things you can do. It suffices to say that
all of the technologies we mention further ahead also have extensive built-in
mechanisms to warrant proper security.

Guidelines for building distributed applications

After the previous discussion, you might be wondering how we were ever
able to build all those distributed applications in the first place. Well, we of
course deliberately painted a very cloudy picture. For a real life distributed
application, it is often very obvious where the truly hideous amounts of
information usually reside. A fairly common place is database servers, which
provide generic mechanisms for searching and filtering the data in them. If
those generic mechanisms are not enough, if for instance you need to find
pictures in a similar shade of blue, you either have to use a particular
vendor’s specialised database, rely on extension mechanisms of some type
of database, or hide the database server behind a specialised server process
running on or near the database server that can provide the functionality.

Most design methodologies (like object oriented methodologies, see chapter
4), encourage to group and reuse functionality. Putting such a group of
functionality together on one machine server means that the tight
interactions and data exchange within such a group naturally occurs on one
server. Another thing that often helps is various forms of caching
mechanisms, so making sure that data, once fetched from a remote system,
is reused by other computations instead of retrieved every time.

Of course, you do not have to build a distributed application from scratch.
There is a whole mass of technologies out there that can help in the
creation of a distributed application. Some examples are database servers,
web servers and browsers, mail servers, network file systems, groupware,
transaction monitors, and various forms of middleware.

Finally, a last thing that often helps is throwing money at it. If a server or
connection is seriously overloaded as a result of some design decision,
simply upgrading the server or connection, or adding one often makes the
problem go away. This is actually not as bad as it sounds, since buying a
more expensive machine might actually be cheaper than having the
developer optimise or redesign the suffering functionality.

82

Mobile Agents as a Distributed Application Architecture

5.2

process border

Modelling a distributed application

The modelling language UML and accompanying methodology we
introduced in chapter 4 can of course be used to model distributed
applications. The basic methodology does not change when an application
is distributed. Once it is time to decide how the different components will
be distributed it is probably a good idea to make different class diagrams
that show which objects go on which (type of) system. If you need to show
that two classes belonging to different systems communicate this can be
done by placing the one class in both diagrams. Like ‘Class3’ in the
following diagram:

Class1 Class2 Class3 Class4
method1() method1() method1() method1()
method2() method2() method2()

method3()
Class3

Figure 32: Two class diagrams for a distributed system, with a
duplicated class.

Of course, we would not have introduced our extensions in chapter 4 if we
did not intend using them in this and the following chapters.

Obijects in the different machines of a distributed application live in
different environments. This means, as stated in chapter 4, that they cannot
transfer activation to each other, but can only send synchronous and
asynchronous messages. This then again means that each machine needs to
have at least one animate object, one that either itself is involved in the
communication with other machines, or that periodically activates
inanimate objects to do so.

We will use our environment border (4.10.4) to show where messages
between objects cross process borders. Because the environment border
depicts the border between two processes, we will call it process border in this
case:

Mobile agent paradigm

83

5.3

5.3.1

Process

::Objectl Border ::Object2

:
|
N~ T

Figure 33: Sequence diagram with a process border.

We think it is important to show this difference, because, as we argued in
5.1.2, a message across a process border is a whole different ball game. By
making this difference explicit in the sequence diagram, we easily
distinguish the difficult messages from the easy ones, wonder if they are
indeed possible as we’ve drawn them, or what it takes to make them work.
As a general rule, we would probably want to keep the number of arrows
crossing a process border to a minimum.

Paradigms for distributed computing

Here we discuss and compare several different paradigms for designing
distributed applications. We will focus on what type of interaction the
paradigm supports between pieces on different machines, in what way they
make the different environments seem one. To this end, we use the object
interaction diagrams, which help show the difference between the different
paradigms. All these paradigms are high-level, in the sense that they assume
that communication is between the components is reliable and meaningful,
that is, a single message send to an object on another machine does not
need to be decoded and/or combined with other messages.

Together with each of the paradigms we discuss some technologies that
support building application based on the paradigm. Most of the
technologies we mention are collectively referred to as middleware. They
are called middleware because they ‘sit in middle’ of the different pieces of
the application and make them work together. Middleware doesn’t provide
any end-user functionality itself, it just helps address the various issues with
distributed computing in various ways, so the designer can better focus on
designing application functionality.

Distributed objects

Distributed object technology allows you to do distributed object oriented
programming. (See chapter 3 on object oriented programming) It enables
you to call methods on objects that are on another machine with the same
ease as calling methods on the same machine. This means interaction
between objects on different machines looks like this:

84

Mobile Agents as a Distributed Application Architecture

Process

:Objectl Border :Object2
methodl() !
| -~
I/ T
i |

Figure 34: Distributed objects interaction.

This is of course very convenient, because it completely abstracts away the
networking nightmare that goes on behind it, and makes it look like
Obiject2 was right beside Objectl. Two objects that were in different
environments appear to be in one.

It is not that easy to realise a distributed objects technology, especially
across different platforms. The distributed object technology has to make
sure that data passed to a method on a remote object still means the same
thing on the target machine. Since the machines don’t share any memory, a
reference to some piece of memory is meaningless on the other. Also,
different machines might represent the same thing differently. For instance,
a Sun Sparc puts an integer number (which is four bytes) in memory with
the highest byte first. An Intel machine believes the lowest byte should go
first. If you would just exchange the four byte piece of memory between the
two machines, chaos arises. For these reasons, distributed object
technologies require you to exactly specify the signature of each method of
a remote object, and they restrict the types allowed in a remote object’s
methods.

We now briefly mention some of the most important distributed object
technologies, hoping you don’t drown in the acronyms:

DCOM

DCOM is the Distributed (the D) version of COM, which stands for
Component Object Model, a programming language independent, standard
mechanism for calling objects defined by other programs. DCOM extends
COM by allowing the actual object to reside on a different machine.
DCOM is created and maintained by Microsoft, initially only available on
Microsoft platforms, although a few hazardous steps are taken to make
(D)COM objects callable from other platforms. DCOM is built on top of
the OSF DCE RPC protocol, whose nine capitals stand for Open Software
Foundation, Distributed Computing Environment 13 Remote Procedure
Call.

The signatures in DCOM are allowed to have primitive types, structures of
primitive types, pointers to the allowed types, arrays of allowed types, and
pointers to interfaces of other remote objects.

13 For those few of you that thought DCE stood for Dutch Computer
Enterprise, um, yes, well, that too, but not in this case... (Dragnet rules ! ©

)

Mobile agent paradigm

85

5.3.2

CORBA

CORBA is another nice acronym, meaning Common Object Request
Broker Architecture. Unlike DCOM, it is defined by a standards committee
(OMG) and from the start platform and language independent. As long as a
CORBA implementation, called a CORBA-compliant ORB (Object
Request Broker) exists for a particular platform, a program can call CORBA
objects on any another machine. CORBA ORBs use the GIOP (General
Inter-Orb Protocol) protocol to communicate, which, when implemented
on top of TCP/IP takes the name I1OP (Internet Inter-Orb Protocol).

Method signatures are similar to DCOM, but CORBA does not allow
pointers (because of the platform independence) and has a few more arcane
primitive types.

RMI

RMI is distributed objects for the Java Platform, as created by Sun
Microsystems. RMI stands for Remote Method Invocation, which is more
or less RPC (see DCOM) translated into object orientation lingo. RMI is
available for any platform for which a Java virtual machine is available
(although Sun had to fight a little to get Microsoft to implement it in their
virtual machines as well). Because of Java’s platform independence, Java has
some unique additional features, as described below.

Signatures are allowed to be primitive types, remote object references and
normal object references. The last is fairly fancy, and means objects can be
passed back and forth between machines. In the simple case, this creates
the same behaviour as the passing of structures (Java doesn’t have
structures) in the other two examples, but it offers more advanced feature:
mobile objects. RMI is able to send code along with the object’s data as
well, so the client machine or remote machine might receive the new code if
an object of an unknown type is passed to it. This same feature also allows
RMI to send code for remote objects to a client machine at run-time, which
minimises the amount of code required to be present at the client machine
at start-up.

Agents

Agents, as discussed in chapter 2, can of course be used to create
distributed applications. In fact, some of the examples we gave were
distributed applications. Agents, being animate objects, have a different
interaction model. Instead of the synchronous model shown above, we can
have asynchronous interaction, like this:

86

Mobile Agents as a Distributed Application Architecture

Process
Border
:Agentl :Agent2
I
| doX()
I ~
| doneX() |
I~ T
[} [}

Figure 35: Agents exchanging asynchronous messages.

Now, as shown, we have two asynchronous exchanges between two agents,
one initiated by each agent. This is delegation at work. Agent1 delegates the
task X to Agent2, which returns its results to Agentl when it is done.

While this interaction is slightly more complex that the previous, the agents
can execute tasks in parallel, and there is no open network connection
required in the mean time. This is especially an appropriate model for
distributed applications, because it allows us to take advantages of the
inherent concurrency of distributed systems.

The messages in the diagram shown are can use any technique, and for
instance use KQML/KIF (see 2.9 for message exchange.

If we combine distributed objects and agents, we get agents that can have
both activation and asynchronous messages, just like agents that live in the
same environment. In particular, we can have asynchronous operations
using activation, like this:

Process
Border
:Agentl :Agent2
I [|
| doX()
I =
doX
I | ~
| —
| doneX() |
[~ I I
X
I I
L
| i

Figure 36: Agents using activation for asynchronous messaging.

This approach has two advantages: An agent can choose not to accept a
message, and the other agent can take action on that immediately, rather
than having to wait for a response. Second, it allows both agents to expose

Mobile agent paradigm

87

5.3.3

remote
evaluation,
code on demand

a nice, well-defined interface, instead of having to use a generalised
messaging system.

Mobile code

Mobile code occurs when the data transported to the other computer is
there interpreted as code. This is very nice, because it means you can have
the computer do ‘new tricks’ on the fly. A very simple example is when you
execute a program whose code resides on a remote file system. It gets more
complicated however, if (and we see a reoccurring theme here) the machine
or platform of the remote and local machine are not the same. Also, we
only consider it to be really mobile code if the code is moved transparently,
without the user explicitly copying and installing or compiling new code.

There are two flavours of mobile code: remote evaluation and code on demand
The difference lies in which party initiates the action. With remote
evaluation, you send code to another machine to be evaluated there. This is
the model used by database servers, for instance: You send your query (the
code) to database server, which evaluates it and returns the results to you.
The reverse is code on demand, where you request code from another
machine and run it on your own. This the well known Java applet model:
the web server sends the code for the applet to your machine, and the
applet is run locally.

A mobile code interaction works as follows:

Process
Border
:Objectl :Server

request code for Object2 !

! code for Object T-I

create()

:Object2

method1()

Figure 37: Mobile code, code on demand.

How hard it is to move the code depends on two factors: the portability of
the code that is exchanged and the difference between the two platforms
that need to exchange code. Portability means on what other platform the
code can run without modification. Code portability is a sliding scale. The
further up the scale, the more the language avoids platform specific issues,
which means more portable. They downside is that the language is generally

88

Mobile Agents as a Distributed Application Architecture

less powerful, and more extra software is needed to run the code. Below we
explain some of the options: from less portable to very portable.

Machine code

The least portable, but most powerful, and requiring the least additional
measures, is machine code. (.exe or .dll files on the Intel win32 platform).
Machine code for Intel win32 of course only runs on Machines with an
Intel compatible processor running win95/98/NT. Still, since this is quite a
large slice of the computer pudding it is definitely an option. ActiveX
controls in web pages, for instance a tree control, use mobile code to work.
When loading a web page that contains an ActiveX control, the browser
also loads a .dll with the code for the control.

3GL

The next option is code in a third generation programming language (3GL)
such as C(++) or Pascal. This code needs to be compiled (translated into
machine code) before it can be run, and compilers for said languages are
available for most platforms. We have never seen this option used however,
perhaps because it is generally very hard to make code that will compile and
run flawlessly on many different platforms.

Java

A special case of a third generation programming language is the Java
language and platform. Java sits somewhere in the middle between machine
code and interpreted language, which is why it is listed here. Java code is
compiled into Java byte code, a sort of platform independent machine code.
Java code requires a Java virtual machine (JVM) to run, which is literally
that: a Java virtual (as opposed to real) machine makes a specific real
machine look like a machine that can run Java byte code. At run time, the
JVM interprets the Java byte code and translates it into the machine code of
that platform. This special construction allows Java code to run on any
platform that has a JVM, of which there are quite a few.

The most common use of this Java code mobility is with Java applets. Java
applets are small programs that are displayed with a web page, and allow for
enhanced interactivity. They are similar to the earlier described ActiveX
controls, but have surpassed those in popularity big time, largely because of
the platform independence and because they are easier to program.

Scripted languages

A scripted language is generally a more task specific programming language,
without the full power of a third generation language. Scripted languages
are, like 3GLs, human readable, but unlike 3GLs, are generally interpreted,
not compiled. At run time an interpreter program for a specific language
examines the code and executes the equivalent in machine code.

SQL is the standard language used to query relational databases and is the
living proof that mobile code is not as new as some of us might think.

JavaScript and VBScript are both scripting languages that can be embedded
into HTML pages. Both allow for simple interactivity on a web page. And

Mobile agent paradigm

89

5.3.4

are highly portable. They do lack the power a full programming language
like Java or C++.

Mobile objects

Mobile objects are sort of the flip side of distributed objects. Instead of
accessing an object remotely, you make it come to you, or send it to the
other side. Interaction looks like this:

:Objectl

Process
Border

getObject2(...)

:Server

:Object2

| —~

Object2

\y/

serialise

deseralise

:Object2

method2()

Figure 38: Mobile objects.

Now, this looks very similar to mobile code, but there is a big difference.
Now, Object2 already existed before, it had a certain state, and we have to
‘import’ the state of Object2 in another process.

To support mobile objects, you need two things: object serialisation and
mobile code. Object serialisation means you can write the entire state of an
object to a format that is transmittable over a network and can be used to
recreate the state of the object on the other side. Mobile code is needed if
the receiving side does not yet have the code of the object it got.

In theory, you could have just mobile objects, but we've seen it only in
combination with distributed objects. Combined, mobile objects allow the
inclusion of (non remote) object references in distributed object signatures.
This means you can execute a method on a remote object and pass it an
object you have locally as a parameter. The remote object then receives (a
copy of) the object, and can interact with it locally. Vice versa, a remote
object can return an object from a method, and you can then interact with it

locally.

90

Mobile Agents as a Distributed Application Architecture

X

5.4

agent space

They key technology currently supporting mobile objects is Java with RMI,
which is thus an extremely flexible technology for building distributed
applications.

The mobile agent paradigm

We've already mentioned mobile agents a couple of times, but now we
really mean business. Mobile agents are a new and very promising paradigm
for designing distributed applications. Mobile agents can be thought of as
the merger of mobile objects and agents. As such, it allows for building
extremely flexible, large-scale applications using the elegant idea of
partitioning the application in several agents that can freely move around
the network. Such an application consists of two basic sets of components:
mobile agents and agent spaces. We haven’t mentioned agents spaces
before, so we explain those first.

Agent space

An agent space is a hosting environment for mobile agents. Every node in the
distributed application has one or more agent spaces. The concept of an
agent space hosting agents is similar to operating system that ‘hosts’
applications. In fact, an agent space doesn’t have to be much more than an
operating system. The key additional service it provides over an operating
system is sending agents to other agents spaces and receiving an activating
mobile agents from other agent spaces. This picture says it all:

Agent corridor

Agent Space Agent Space

Figure 39: Mobile agents and agent spaces.

The picture shows two agents spaces, each with several agents. The spaces
are able to send and receive agents to each other. This creates a sort of
‘agent corridor’ depicted by the arrow in the middle. The corridor shows
one agent in transit. That agent has a dashed outline to indicate is it is not
active at the moment. Of course, this picture shows just about the simplest
topology possible. We want to allow an arbitrary number of agents and
agent spaces, arbitrary connectivity between different agent spaces, and an
arbitrary number of concurrent agents in a corridor. Also note that with
arbitrary connectivity we mean that a set of agent spaces doesn’t have to be
fully connected. There are very valid reasons for not connecting every space
to every other space. It might be advantageous to partition a large cluster of
agent spaces into work spaces and transit spaces. Work spaces allow for
many concurrent agents to do serious work, while transit spaces just

Mobile agent paradigm

91

54.1

provide connectivity to many different other spaces, providing dispatching
of agents, and for instance security features.

Itis fairly logical to equip an agent space with non-mobile services, possibly
implemented as (non-mobile) agents, that allow access to machine specific
resources and/or other systems, including databases, legacy systems, and
third party libraries installed on the machine.

Mobile agent

A mobile agent is an agent for which it is possible to move an active
instance of the agent to another process: another agent space. It depends on
the target process how difficult that is. It might be fairly easy when the
process resides on the same machine, but pretty difficult if the other
process is on a different machine, of a different type and running a different
operating system. We examine in Error! Reference source not found.
how to implement a mobile agent and using what technology.

Interaction model

Mobile agents obviously supports the same remote interaction models as
the normal agent paradigm does (asynchronous agent to agent, and possibly
synchronous agent to remote object), but because of the mobility, there are
several other ones. The most important one we shown below:

Process
Border
:Agentl :Objectl
I I
move
| T :Agentl |
XX | |
method1() |
| T =
| _
move |
:Agentl L |

T Xk |

Figure 40: Mobile agent interaction.

You could see this as the object oriented, asynchronous version of remote
evaluation. We don’t send just code, but an object, thus state as well. The
agent is able to autonomously interact with objects (or other agents) locally.
Depending on what the agent does with the results of that local interaction,
this could be vastly more efficient than doing the same thing through a
remote interface.

92

Mobile Agents as a Distributed Application Architecture

5.4.2

Also, the originating machine doesn’t need to be connected to the other
machine while the mobile agent does its work. It effectively delegated work
to an agent on the other machine that wasn’t there before.

The difference

What makes this interaction model so different from the other models
we've seen in the other paradigms? Well, it allows us to transfer the control
of a computation to another machine. This, combined with the other
interaction models, allows us to full control over the way processing and
data flow around the system. At each point in a computation we can choose
either to bring the data to us, or to bring the processing to the data.

We illustrate this using the distributed computation we’ve shown in 5.1.4.
Recall we had three pieces of a computation A, B, C, and A was on the first
computer, and C on A second, and B on either. The choice was where to
put B. If we make this into an object model, we create three different
classes, Objectl, Object2, and Obect3, with a method A(), B(), and C(),
respectively. Now, we need a fourth object to initiate the computation, to
string the three elements together. We’ve argued in 4.10.5 that this
activation ultimately has to come from some form of animate object. To
make this explicit, we will make this object an agent.

Note that we made a choice in how we placed the pieces of the
computation on different objects. The way we've done it is certainly not the
only way to place three pieces of a computation can be assigned to different
objects, but this way is the most illustrative.

Agentl Objectl
<<agent>>
AQ
Object2 Object3
BO C0

Figure 41: Three objects with each a piece of a computation.

Now, again the example says A on one computer, C on another, and B on
either. The computation is starts with A, so we assume that Agent1 resides
there as well. First, let’s put B on computerl. The object interaction
diagram looks like this:

Mobile agent paradigm

93

Process

Border

r

]

:Agentl :Objectl :Object2 :Object3
[A0 [[[
b ' | |

| e ° | |

| BA) _ |
I E |
LT | ce | |

|

|

|

Figure 42: Distributed computation, B on 1.

Now, looks nice and simple. Nothing wrong, nice clean design. However,
recall that the B was rather large, and we would prefer to have C(B) execute
on the other machine. Assuming we have a suitable object B on the second
machine, a simplistic attempt would be that we do it like this:

:Agentl

Process
:Objectl Border :Object2 :Object3
I I I
A() ~.1
I I
A

= ; I I
| B®W A I

_ |B I
| C(®) | |

T\

\/

Figure 43: Distributed computation, B on 2.

Unfortunately, now the situation is most probably much worse. Sure, the
first process is not taking care of the computation of B itself, but there are
two extra data flows, A to computer2 and B to computerl. As shown, there
is a needless flow of B back and forth. What do we do about this? Well, we
can redesign Object2, and have it compute BC instead of just B.

94

Mobile Agents as a Distributed Application Architecture

control

Process

:Agentl :Objectl Border | NewoObject2 :Object3
| o] I |
I 5 | |

| N | |

| | BC® N |
| | N e
| | | c]
| | | |

|

|

Figure 44: Distributed computation: B redesigned.

Now, we have what we want, the most optimal situation. It did however,
require a design change. By itself nothing bad, but this change was
necessary just because the initiating party wants to do a computation this
way. If there are many different objects or methods, we quickly clutter
computer 2 with a lot of modified objects, and a lot of methods. We would
have Object2 compute BCD, DG, B*10+2G, etc, whatever we cook up for
a kind of computation on computer 1. Is there an alternative? Yes, and its

called mobile agents:

Process

:Object3

v

L

Figure 45: Distributed computation, mobile agent style.

Border
Agentl :Objectl
I I
AQ
I i 3
| A
| move
X >< | :Agentl :Object2
| | B(A
I | ®
| e)
~ T
| | c(®)
| | |
| mov | B |
:Agentl | | T |
| X X |
']

We see now we have the same interaction as the previous example, but
without a redesign. The difference now is that we move the control of the

Mobile agent paradigm

95

54.3

computation to the other machine, instead of just the pieces of the
computation. The picture shows also Object2 at the same level with agent,
which could either mean the agent brought it from Computer 1, or even
that it created it locally on computer 2.

Of course, for this to work, the object driving the computation of course
has to be a mobile agent. But, the use of a mobile agent here means you can
change the distribution of the computation by a simple code change in the
agent, namely where you put the move instructions, instead of a possibly
drastic design change of the objects involved on the other side. We could
even defer the move decision to run-time if we wanted. And note that we
don’t have to do the move.

Finally, can we do this with mobile objects instead of mobile agents? To
some degree, yes. If we equip the remote computer with a generic
mechanism that allows you to send it an object it will activate and send
back, you get a synchronous, object oriented version of remote evaluation.
By its very nature, such a mechanism and such an object are very similar to
agent spaces and agents. However, it still not as clean. The reason for this is
that a normal object cannot move itself to another machine, because to
move it, it needs to be inactive, but to move itself, it needs to be active.
That'’s a classic catch-22. Now, it could send a copy of itself, but you can
imagine that quickly gets messy. Other options result in different designs
that work some scenarios, but we do not believe any would be anywhere as
simple as mobile agents. Mobile agents get around the move dilemma
because their autonomy allows them to support an asynchronous
interaction model, in which they can return control to the caller and then
issue the move.

Advantages

We don’t pretend mobile agents are the silver bullet solution to all
distributed computing applications. We do believe mobile agents provide
some unique advantages that make it a worthy candidate solution for a
distributed application architecture. To help such a decision we now look at
some of the most important advantages of mobile agents, which the
application architect will have to wager against the disadvantages presented
thereafter. It is impossible to make a complete list of both, since any
specific situation might make might make a minor plus into the big
difference, or a small drawback into an insurmountable problem.

Minimal network traffic
A mobile agent is able to access resources locally, which can improve
system performance and reduce network load.

Network disconnection

An agent space does not have to be permanently connected to the network.
You can connect, initialise some agents and disconnect again. Connect
again later (possibly at another location) to see the results (if any).

Transport transparency
The mobile agents paradigm provides transport transparency, that is, it
hides how the transport of agents is implemented. Interesting enough, it

96

Mobile Agents as a Distributed Application Architecture

5.4.4

footprint

does so without requiring location transparency, thus without hiding where
data resides

Simple services

Because a mobile agent can access things locally, we can keep a server
interface simple. There is no need to smarten up the server to allow for
more efficient client access. A mobile agent smartens up a server ‘on the
fly'.

Minimal code base

Once an agent space is present, we can move in any code to a machine on
an as-needed basis. Agents and related objects can be moved in once the
need arises.

Late tuning

Tuning the distributed application to the network can be done at the last
moment, not affecting the design of the application, and it could even be
done on the fly.

Parallel processing
Agents execute asynchronously, so different agents dispatched to different
locations execute in parallel.

Disadvantages

Mobile code requirements

The requirement for the agent to be mobile puts quite some stress on the
code the agent is implemented in. It cannot be just any odd programming
language or machine language because that might not run on the destination
space.

Remedies: section 5.3.3 describes requirements for mobile code as well as
some existing examples.

Mobile state requirements

The mobility of the state poses the same difficulties, and thus possibly the
same limitations to the state type and values as those of the parameters of
distributed object methods.

Remedies: the obvious solutions are the same as those for distributed object
methods. If an agents is viewed (and implemented) as an object, object
serialisation could help.

Agent space footprint

The footprint of an application is the amount of space taken up by the
application on disk and/or memory. The code to move and run agents
increases the footprint of (non-functional) application code, which could be
prohibitive.

Remedies: For devices (i.e. handhelds, hardware with embedded chips) for
which this is a problem, it is probably best to avoid having it host agents.

Mobile agent paradigm

97

5.5

But then, the only thing need up front is an agent space, which means we
can bring in new code on the fly which does not have to remain installed. If
it is still prohibitive, a device could participate with an agent based
application having it connecting it to a full-blown machine near the device,
for instance have a PDA connect to a PC.

Security

Security for distributed applications is already pretty challenging. Agents
increase the complexity because both the agent space could be threatened
by a malicious agent and an agent could risk being dissected by a malevolent
agent space. Receiving an agent on your machine sounds surprisingly lot
like a having a virus run on your machine.

Remedies: The security of mobile agents has been extensively covered in
the literature [14][29]. For instance digital signatures, authorisation and
encryption could help here, like with many other security issues. The risk of
malicious agents can be reduced by choosing an agent implementation
language that is interpreted and with restricted functionality and/or build in
security mechanisms, such as a scripting language or Java. Also, the security
is only very troubling if we cannot trust the code of the agent. If we can,
like in corporate network settings or because the agents are an integral part
of the application, it becomes a lot less worrying.

Mobile agent architectures

We now want to show some ways the mobile agents can be used as the base
architecture for a distributed application. We use class diagrams to display
the different topologies. Stereotypes on the classes show the different roles
in the architecture. We use generic names like Agentl, Agent2 to show
different classes of the same stereotype.

We have included normal and dashed association lines in the diagram to
show the difference between an architectural and functional association,
respectively. That is, the solid lines show the basis of the architecture, while
the dashed lines are just to indicate a possible association based on
functionality.

All the architectures we show have the same ‘Front-end’ class in common.
This could be either a front-end user application or a ‘server’, so serving as
the outside boundary of the system.

Service agents

The first architecture we show is not utilising mobile agents yet, only
normal agents. It serves as a good reference and starting point for the other
architectures.

98

Mobile Agents as a Distributed Application Architecture

Front-End . _

<<agent>> [—1— LookupService

I T

| I

! |

Do e

! |

Agentl Agent2 Agent3

<<agent>> <<agent>> <<agent>>
' 1 T |
S L !

Figure 46: Service agents.

This is a basic distributed agents architecture each machine in the system is
equipped with one or more permanent, service-like agents. The Front-end
is also an agent (Each user would have its own instance of an agent) to
highlight the inter-agent interaction that can take place. The agents would
all use a lookup service to find each other and initiate the communication.

This is sort of the agent version of client-server, which thus support for
delegation and a clean model for inter-server communication.

Front-End . . .
<<active>> [—1— CreationService

i ! T 1

! | 1 1 1

| * T * *

e
L L 1 I
Agentl Agent2 Agent3
<<mobile agent>> <<mobile agent>> <<mobile agent>>

Figure 47: Mobile task agents.

Now, picture looks the same, but the roles are slightly different. We now
have creation service instead of a lookup service, so we now have a front-
end that is no longer an agent, but simply a shell around a particular agent
space. An agent who wants to interact with the front-end (so possibly the
user) could do so by directly communicating with the user. Each of the
agents is thus truly an agent, completely autonomous and equipped with
everything it needs to do its job. It is sort of like a mini-application by itself.
The ‘Front-End’ object is allowed to disconnect from the network while the
agents are roaming around and doing their work. One agent creating
another can result in parallel execution.

Mobile agent paradigm 99

Front-End

| e .)
<<active>> 1 CreationService

1 1.1
*° * *

I I I
Agentl Agent2 Agent3
<<mobile agent>> <<mobile agent>> <<mobile agent>>
T T T T T
1 | et A== —————— 1
* * | * * *
1 1 I 1 1
I I ! I I
I I : I P ———————— -

I I | I |
I I b !
| 1-———- 1--————————————— 1 1 1
— i L
Servicel Service2
<<service>> <<service>>

Figure 48: Mobile task agents and services.

This architecture extends the previous one by the explicit inclusion of
services, or servers. Unlike the first diagram, these objects do not need to
be agents, because the mobile agents can turn them into specific agents on
the fly. By separating out the service functionality, we can make the mobile
agents leaner, and we can better focus on their task. This could be a very
typical enterprise application.

100 Mobile Agents as a Distributed Application Architecture

5.6

Front-End N .
<<active>> —*—1— LookupService
—_——_——_———— *—
ServiceAgentl TR creates- — e TaskAgentl
<<agent>> Ll tos——— ! <<mobile agent>>
creates : !
| uses
! I
! I
. | N S
ServiceAgent2 | Q. creates —— — | : uses Tasl_(AgentZ
<<agent>> | ____ 1 ___%._] <<mobile agent>>
1|
1|
1|
[
[
. [I
ServiceAgent3 | . __ T TaskAgent3
<<agent>> <<mobile agent>>

Figure 49: Service agents and mobile task agents.

Finally, we can have both service agents and task agents. Now, we only
allow agents to create mobile agents, which in turn could use other service
agents. This reduces the possible control distribution somewhat, but we can
have the Service agents as mediators, and for instance provide purely
synchronous interaction to the front-end. We can also trim down the
mobile agents even further, because they don’t need any client interaction
code. They just know how to talk to their ‘master’ service agent.

Existing mobile agent technology

Although not as plentiful as some of the more established paradigms
described in 5.3, there are several technologies that directly support mobile
agents. We briefly discuss several below:

TeleScript

TeleScript, by general magic [37], was one of the first mobile agent
implementations. TeleScript is an agent scripting language that runs in
TeleScript engine, the agent space for TeleScript agents. One of the unique
aspects of TeleScript is that its execution can be stopped at any point in
time and transferred to another engine. The programmer only issues a
‘moveTo’ instruction, and does not have to take any other special care.
TeleScript is a proprietary language, but general magic recently released
Odyssey, a Java implementation with much the same features.

Mobile agent paradigm

101

5.7

Aglets

Aglets are IBM Japans implementation of mobile agents. ‘Aglet’ is a
concoction of ‘agent’ and ‘applet’, which exemplifies that agents are like
little applications and that aglets are implemented in Javal4. Aglets runinan
Aglet server, but unlike TeleScript, Aglets are implemented in a normal
programming language. The aglet server also comes with an extensive
security mechanism that makes it safe to run untrusted aglets on your
server.

CORBA mobile agent facility

The OMG [39], the organisation that defines and maintains the CORBA
standard, is attempting to standardise (some aspects) of agent technology.
This effort, appropriately called MASIF, (Mobile Agent System
Interoperability Facilities) [40], defines how agents could be managed and
transferred in a CORBA setting, and also standardises the naming of agent
systems, locations, and the agents themselves. This way, agents written in
the same language, so for instance, Odyssey agents and Aglets, could move
themselves to servers that implements the MASIF specification. Effectively,
this means an Odyssey server could run and manage aglets, and vice versa.
Together with a CORBA ORB, this gives a very powerful standard to build
open (non vendor-specific) agent systems.

ObjectSpace Voyager

Voyager is a family of products with build-in support for mobile agents
[41][42]. The simplest version is what ObjectSpace likes to call an agent-
enhanced orb. That is, the VVoyager orb is not just able to handle request for
remote objects, but can also receive agents that are instantiated for remote
execution. Top of the line is the Voyager application server, which in
addition supports Enterprise Java Beans, Distributed transactions,
centralised server management and other advanced application server
features.

Possible applications

In 5.4.3 we described the advantages of mobile agents. Here describe how
those advantages can be used to create some very desirable features
available for applications based on mabile agents. We then elaborate on the
applications, in two mayor settings: Mobile agents on the Internet, and
Enterprise applications.

Parallel processing

Agents provide quite a natural metaphor for parallel processing: A co-
ordinating agent spawns many copies of a task agent that works on part of
the computation. If each of these agents is a mobile agent, we enable true
massively parallel processing.

14 Curiously enough, an aglet is also the hard plastic bit at the end of a
shoelace.

102

Mobile Agents as a Distributed Application Architecture

Intelligent messaging

Mobile agents can be seen as a form of intelligent messaging, the agent
being the message. The autonomy of the agent could enable the message to
find its own optimal route, wait until a machine is up or connected to the
network, or dynamically retrieve data as the receiver requests it. This is also
an interesting way you could create a 24x7 illusion for a not-24x7 system.
Doing some sort of transaction means sending the intelligent message. For
the sender this is ‘end of story’, but if the target system is unavailable, the
message will try delivering itself until it is received.

Load balancing

In computing, load balancing means a set of machines that can do the same
tasks co-ordinate to make sure each is taking a roughly equal share of the
joint load. This ensures optimal response time for all users of the system.

Suppose a mobile agent can ask the space it is running in how busy it is, and
can pose the same question to other agent spaces. If another space is much
less busy, the agent can decide to move to the less busy server. This is
highly decentralised, and thus highly scalable option for load balancing.
Alternatively, the space could be made responsible for balancing its load
with other, ‘close’ servers. Close should be taken quite liberally, and could
be defined by the system administrator, or for instance determined by
bandwidth between the servers. In any case, we mean it would not have to
co-ordinate with all servers in the cluster to perform successful load
balancing.

Fail-over

Losing a transaction because of some failure of some component can be
quite disastrous. Fail-over refers to a set of techniques to overcome this
failure by having some other component take over in the event of failure.
Mobile agents can provide a method for overcoming server failure. Upon
creation, an agent spawns a copy of itself and sends it to another space on
another server. The copy stays inactive and receives ‘heartbeats’ of the
active agents. When the original agent dies because of server failure, the
dormant agent misses the heartbeats of that agent, and wakes up, becoming
active, and probably making a copy of itself and sending it to another
server.

Of course, state updates have to be send to the inactive copy. A simple way
would be to send a new copy each time and destroy the old one. A slightly
more advanced way is to use normal inter-agent communication to update
the copy.

Semantic routing

Semantic routing is more or less the result of the network awareness
argument above. The mobility of the agents allows us to define an optimal
execution path for a particular agent, based on the data requirements of the
agent. For each piece of the computation, we can choose to send the agent
to another place, or to retrieve the data remotely. Either the programmer is
in control of this, issuing ‘move agent’ instructions as part of the
computation, or a smart mechanism build into the agent spaces knows
when and where to move the agent.

Mobile agent paradigm 103

5.7.1

Semantic routing could be very valuable for applications that need to run on
a set of machine which have wide geographical dispersion and/or big
differences in network bandwidth in between machines.

Mobile agents on the Internet

There are many articles out there that describe mobile agents in relation
with e-commerce. They propose to allow user agents with a task such as
‘get me a cheap flight to Hawaii in June’ to travel to any server on the
Internet and hop from server from server and finally returning to the user
with a set of possible flights or even with the cheapest flight already
purchased. While this is definitely possible, there are many issues with it,
and it is both to too limited and too generous.

Too limited because, as we argued, there are many other possible
applications of mobile agents, most notable in the area of enterprise
computing.

Too generous because allowing arbitrary pieces of code to roam around a
network puts huge strains on the security system, and even extends into the
legal area. Suppose a server is compromised by some agent. Who is
responsible: the entity owning the machine? The entity who wrote the
agent? What about the server the agent came from? And what if the origin
of the agent is unknown or forged?

We can almost hear the lawyers rubbing their hands together after the first
rampaging agent on the loose. Because of all these security implications,
many of those papers focus on how to overcome those, which is
unfortunate, because they make mobile agents seem unnecessarily complex.
Also, for such a service to succeed, you need an existing infrastructure of
agents spaces on Internet servers. There is no clear incentive for e-
commerce providers to add such a server to their Internet offerings. They
would prefer it if the client, and preferably in person, visits them and only
them, instead of them and a number of competitors. And even if they
would the security implications would make them think twice.

Does this mean we should forget about mobile agents and e-commerce?
Absolutely not. Let’s take one step back: why should a client want this type
of services: because of the comparison, the asynchrony, and to side-step
bandwidth limitations. But to do that, the agent doesn’t really need to travel
to each server, but just to a permanent server on the Internet. It could
engage in ‘normal’ distributed computing interaction with the other servers,
a most obvious choice being the same method a real person uses: the web
interface. This means there is a clear opportunity for third parties to start
hosting client agents. Because they provide the agents, and the agents only
travel between the client and the hosting service, the security requirements
are much less. An obvious candidate for a client agent hosting service
would be an Internet portal.

If we forego the comparison aspect a bit, it is also interesting for an e-
commerce provider to allow mobile agents travelling between the client and

104

Mobile Agents as a Distributed Application Architecture

5.7.2

Internet servers. Such agents could offer similar asynchronous services
and/or provide customisation and high degrees of interaction.

Summarising, mobile agents definitely have a future for the client side of e-
commerce. We believe that by restricting the mobility of the agents you can
provide many of the advantages without all of the issues associated with
arbitrary mobile agents.

Enterprise scale applications

The ever-growing need for more and more integrated information within
companies warrants the creation of ever larger, enterprise scale applications.
A core concept in this area is ‘business logic’. A piece of business logic is
code encapsulating a piece of business functionality for the enterprise. For a
bank this could ‘withdraw money form account’ or’ create savings account’.
For a book retailer this could be ‘get list of books in stock’ or ‘ship order’.
A current trend is to put this business logic in a middle tier layer, that is a
set of network servers that host and expose this business logic in some way.
The enterprise application consists then of simple applications on the client
side that employ the business logic to get the job done, or, another trend, of
aweb server that presents the application on web pages so the application
can be used through a web browser.

Existing applications often employ middleware-like application servers and
CORBA for robustness and structure. We think mobile agents could prove
to be an interesting option in this area. The ‘mobile’ of the mobile agents
can be use to provide application server-like abilities and the ‘agent’ part a
good metaphor for structuring the application in agents. For some ideas of
how an enterprise application could be structured using agents, see the
examples in chapter 2.

The ‘mobile agents as application server’ idea warrants some further
explanation. We believe it could be extremely interesting to consider a
mobile agents based application server. A cluster of machines with smart
agents spaces that are able to do load balancing, fail-over and request
routing as described above could be made into a pretty robust and highly
scalable application server. It could be ‘the TCP of application servers’. This
is a pretty bold statement, but let us explain. We do not mean that we think
a mobile agents application server would be nearly as widely used or
standardised as TCP is. What we do mean is that it could have the same
robustness and efficiency as that which TCP made so popular. A TCP
network is able to route requests as efficiently as possible, is able to recover
from data loss, and as network use changes and servers are added or
removed, the network automatically ‘reconfigures’ itself to the new
situation. There is no centralised control, which means failure of some
machine or set of machines hardly ever results in failure of the network.

It is this kind of behaviour, but then at the application level, that we think
can be achieved using mobile agents. Service agents (holding business logic)
can be strategically distributed across the network. As the network
environment changes the served agents can be moved or copied to better
serve the new situation. Individual requests can be created as an agent, and

Mobile agent paradigm

105

5.8

be subject to semantic routing, meaning optimal execution efficiency.
Components requiring fail-over can use a strategy such as described in the
beginning of this section. Like with TCP, there is no centralised control,
resulting in a very robust and very scalable system.

We would very much like to experiment building a system using these ideas,
although this thesis is not the place, as building such a system is quite time
intensive and complicated, and we lack the time.

Conclusion

We have described several different paradigms for the design of distributed
applications. Each paradigm improves on the previous by giving the
designer more flexibility in partitioning the logic over different components.

The first paradigm, distributed objects, basically requires your design to have a
static distribution of objects in the system. Each of the machines in the
system needs to be pre-equipped with the code for the classes it needs, and
inter-machine communication is limited to primitive types, although that
might take the form of a few specialised objects if your try hard. By itself,
there is nothing wrong with all this, and many distributed applications are
build using this paradigm, like ‘traditional’ client-server applications.

The agents paradigm still requires a static distribution of objects in the
system, but it allows for a more dynamic interaction between the different
pieces, by enabling a structured form of asynchrony. It also provides a
better metaphor for the inherently passive ‘server’ concept.

Now, mobile code. Mobile code allows a more dynamic distribution of
objects. It is most often employed in a client-server setting, to equip a client
with new functionality. Once the client has a basic framework to support
mobile code, new functionality can be send to the client as needed. For the
web, this ‘framework’ is thus the web browser supporting scripting
languages (JavaScript, VBScript) and applets (Java applets, ActiveX
controls). By itself, the allocation of objects remains static, but the designer
has more freedom of where to put the objects, and is better able to take
advantage of the client’s processing power.

A big change occurs if we put distributed objects and mobile code together:
we get mobile objects, we are able to send instances of objects (rather than
code to create a new instance) to other machines on the network. The
distribution of objects becomes completely dynamic. Sure, we can simulate
mobile objects to some degree using the other paradigms, but the
underlying technology cannot directly support it. A design using mobile
objects thus consists of at least a few objects that stay put on each machine
(or in each process) that participates in the application, and a bunch of
objects that roam freely between those objects.

At the very end, we get mobile agents. Mobile agents allow us to not only
move around objects, but the control of a computation as well. This creates
a solid foundation for applications that need to be very network aware, and

106

Mobile Agents as a Distributed Application Architecture

allows for disconnecting clients, delegating tasks, and parallel processing.
Servers can be kept simple as they are enhanced on the fly by an agent
visiting them.

Mobile agent paradigm 107

108 Mobile Agents as a Distributed Application Architecture

CHAPTER 6

6.1

Implementing agents and mobile

In the previous chapters we have shown many possible applications of
agents and mobile agents. But how do you go about implementing those,
and what technologies could you use to support you? In this chapter we
show some ways (mobile) agents can be built, and point out some issues
and considerations.

Implementing a basic agent is not that hard. It might take some effort to
implement good sensor and effector logic, such as reading out a hardware
device or sending emails. But all that kind of logic is inherently domain
specific, and is not really necessary just because you want your system
agent-based. Therefore, we restrict ourselves to explaining how to get basic
agent behaviour, how to create a shell in which an agent can be placed.

The code examples in this chapter use Java as their programming language,
mainly because Java is widely used nowadays, and has nice built-in
threading functionality. It is definitely possible to use the same kind of
implementation in other general purpose programming languages.

Agent implementation strategies

Because agents are such a broad terrain, and the agent concept is so flexible,
there is no single ‘right’ way of implementing agents or mobile agents. We
want to distinguish three different basic strategies for implementing
(mobile) agents: scripted, based on a framework, and DIY, or: Do It
Yourself. These options range from relatively simple and fast to implement,
to more time-consuming but very powerful.

Which strategy is the most suitable for a particular situation is hard to say.
Generally, if there is a script language or framework that suits your needs, it
is the preferred choice. However, if it means making heavy compromises
you should not be hesitant to bite the bullet. The DIY section should give a
good impression on the advantages and perils of a DIY implementation, as

Implementing agents and mobile agents 109

6.1.1

scripted agent

6.1.2

framework

well as some pointers to non-agent technology that could help such an
implementation.

Scripted agents

The simplest is a scripted agent. Such an agent can be constructed by
writing code for the agent in a dedicated, often proprietary agent language.
This code is then interpreted in a runtime environment for that agent
language.

A simple, imaginary example would be something like:

STATE:
News = HTTPDATASTREAM www. r eut er s. conl news)

CCDE:
I F News. changed() AND News.contai ns(“CATP") THEN
DI SPLAYALERT(“Reuters has news on Canbri dge”)

The idea is that this agent would display an alert message to the user as
soon as a news page at Reuters is updated and contains news on Cambridge
Technology Partners (CATP). To run this agent, the agent environment
would first initialise the state of the agent (in this case the news stream)
after which it would periodically run (interpret) the code piece of the agent.

The advantages of this kind of approach is that it is very fast and easy to
build the agent, since you only have to create the ‘brain’ logic of the agent.
A disadvantage is that if the agent language doesn’t allow you to sense the
data you want, or take the actions you want, you are out of luck, or have to
add that to the environment in some way.

Some not-agent applications also allow for this kind of ‘agents’ to enhance
their functionality. For instance, Microsoft Outlook allows you to create
‘inbox assistants’ to sort your mail in separate folders. In this case, the
agents are constructed using a GUI, but the idea is the same.

TeleScript of General Magic [37]is a good example of an agent scripting
language. It is a generic, but proprietary language that allows you to create
(mobile) agents.

Using a framework

More powerful, but thus more complicated, is when you write an agent in a
generic programming language such as C++ or Java, or in a more
specialised language such as Lisp or Prolog. A framework is a set of pre-built
components that can be used to build a certain style of applications.
Current research shows a lot of frameworks and architectures for building
agents (see [1]), so chances are there is one that will suit your desired
application.

110

Mobile Agents as a Distributed Application Architecture

6.1.3
do it yourself

The main difference between a framework and scripted agents is that when
using a framework, you use a ‘no limits’ general programming language,
often the same as that in which the framework itself was written.

Even if there is no existing framework that can help, it is probably a good
idea to create a basic, supporting framework for the agent application. We
also took that approach when developing our prototype.

We listed some mobile agent technologies in section 5.6. Two of these,
IBM’s Aglets [38] and ObjectSpace Voyager [42] fall into this framework
category. Aglets are an agent specific, free framework for mobile agents,
with features to host untrusted agents and even an agent locator application.
Voyager on the other hand is a full-fledged commercial product, referred to
as an ‘agent enhanced object request broker, which can be used to build
distributed applications that include (mobile) agents.

DIY

As said: Do It Yourself. Build everything yourself, using a general
programming language, possibly using some existing, not agent specific,
technology to get started. This is of course by far the hardest, longest to
develop way of developing agents, but it might be the way if none of the
existing frameworks suits your needs.

It is also possible you have just found that there are a few components of a
system that need agent-like behaviour, but you are not really building an
agent-based application. We referred to this earlier as a pro-active system. If
the behaviour of those agents is not that complicated you can build those
agents using a few elementary programming techniques. In any case, it is
probably a good idea to look at other agent systems and carefully examine
the underlying idea’s and technologies. There will no doubt be a few that
can be very helpful in supporting your implementation.

The basic problem that you need to solve when doing a DIY agent
implementation is creating autonomy. Agent frameworks would already
have taken care of this for you, but here you are on your own. Creating
autonomy is not explained in a few lines, so we defer this to a separate
section: 6.3.

Further, if the agents need to be mobile, as described in chapter 5, we
describe in section Error! Reference source not found. how this can be
accomplished.

Just because there is no agent framework or agent scripting language to
support you doesn’t mean your are on your own completely. Many
technologies could support building an agent application. We review a few
of them:

Object oriented programming languages

The most basic option. We have already shown in chapter 4 that agents fit
in an object-oriented view of software. Such a model is easily translated into
an object oriented programming language. Agents generally are complex

Implementing agents and mobile agents 111

6.2

entities, which means it is probably wise to divide its logic over several
objects. In other words, and agent is a component (see 4.9.2). One object
should represent the agent to the rest of the system, and harnesses the
autonomy. This object is then a ‘facade’, (see also the fagade pattern in [43])
and uses other objects for the implementation of for instance sensors and
effectors. There’s more on this in section 6.2.

Distributed objects

Many agent applications need to be distributed across several machines.
Then distributed object technology (see 5.3.1) can help. An additional
advantage is that these technologies are equipped with a lookup mechanism
for finding remote objects. Such a mechanism quite naturally poses as a way
to find specific agents in the system.

Messaging systems

Autonomy means asynchrony. Therefore, many agent systems require some
sort of messaging systems to enable inter-agent communication. This could
be accomplished using some sort of middleware such as MQ-Series, or
could for instance based on some implementation of JMS, the Java
Messaging System API.

We envision it might also be possible equip each agent with an SMTP
mailbox, or on a single system, a simple home-made message queue. One of
the fun things about agents is that there is a lot of flexibility in how you add
such capabilities to a system. You can make each agent able to talk using
some messaging technology, make it a system service, or create a messaging
agent that relays communication to other agents. This more or less
forebodes 6.2.2.

Application servers

An application server can provide quite a natural hosting environment for
agents. They provide a solid runtime framework for multi-user (or multi-
agent) applications, and often provide base functionality an agent might
need, such as database access and logging. A disadvantage might be that
you are tied to a particular threading model. You need to rely on
mechanisms within the application server to provide the agents with their
autonomy. It is interesting to note that for instance Lotus Domino [43] uses
the term ‘agent’ for its basic processing components. Whether those
‘agents’ fit under our definition of agent is a bit dubious. Sometimes such
an agent can really function as an autonomous component, but it other
settings it is just activated when something has to happen, for instance the
display of a web page.

Basic agent models

In chapter 4, we mainly shown how to model using agents, but to create an
agent application from scratch, you need to model the agents themselves as
well. Recall from chapter 2 we defined an agent to have five basic
components, sensors, effectors, a brain, a heart and memory. How do you
put those components in an object model?

112

Mobile Agents as a Distributed Application Architecture

6.2.1

Heart, brain, and memory

In order to perform its work, the agent has to execute a continuous cycle to
sense, reason and effect. We call this cycle the ‘beat’ cycle, reflecting that
that cycle executes in a single beat of the agent’s heart.

Simple agent
For a simple agent, this looks like this:

Heart —_|
<<active>>

Senso\ } Agent
1

sense() | beat()

Effector >*-

effect(...)

Figure 50: A simple agent.

From this picture, the brain and memory components are suspiciously
missing. For this model, the brain is thought to be an integral part of the
agent, inside the beat() method. The absence of memory indicates that this
is a purely reactive agent. In a real agent, the sensors and effectors would be
concrete instances of certain classes, and by no means would they need to
have a common ‘Sensor’ or ‘Effector’ base class. This is done here just for
illustrative purposes.

The arrows indicate the beat cycle, driven by the heart. You might be
wondering how the heart object functions. In a simple case, the heart object
can be a thread. There are a few other ways this might work, and we explain
how in section 6.3.

Now, the ‘beat’ method. How this looks for this simple agent is best
explained in a code example:

cl ass Agent

{

Sensorl _Sensorl;
Sensor2 _Sensor 2;

Effector _Effectorl;
Effector _Effector2;

voi d beat ()

{

String SensorQutputl _Sensorl.sense();

Implementing agents and mobile agents 113

int SensorCQutput2 _ Sensor?2.sense();

i f (SensorQutputl. equal s(“Sorething”) ||
(Sensor Qut put 2 == 4)

{
_Effectorl.effect(.);
}
if (SensorQutput2 > 17)
{
_Effector2.effect(.);
}
}
}

As can be seen in this example, the ‘brain’ of this agent is formed by a set of
conditional statements that trigger an effector. This example by far doesn’t
show all possible options. It is entirely possible some sensors have other
result values, more than one effector is triggered in one conditional, a case
statement is more effective, conditionals are nested, etc.

A more complex agent

You can imagine that for a complex agent, the conditionals in the beat()
method quickly become unwieldy, making them hard to understand and
difficult to maintain. Also, those rules are fixed, so there is no way
adaptation, or learning, can happen without the programmer’s intervention.
With agents this complex, you want to create a separate brain object,
capable of doing the reasoning. This kind of agent is probably an intelligent
agent, and that brain would use some kind of Al technique, such as a neural
network, the BDI formalism (3.2), or a predicate based
deduction/induction method. This thesis it not the place to discuss or
recommend those techniques, but the references section point to plenty of
possibilities, especially [1] and [2]. In a picture, it looks like this:

114

Mobile Agents as a Distributed Application Architecture

Heart
<
Sensor Agent
>
sense() 1 memory
beat()
1—
Effector <>*_|_
effect(...)
Brain k>
reason(memory)

Figure 51: A more complex agent.

No mayor additions, just a brain object and the addition of memory as part
of the agent’s state. What specific form the memory takes is largely dictated
by whatever components the brain uses to reason with. The role of the beat
method now becomes somewhat different. Instead of being the brain of the
agent, it is now responsible of transforming sensor input into memory
updates, triggering the brain, and translating the output of the brain to
effector activation. It no longer does any reasoning, put purely provides

mapping.

It might be that the brain updates the memory. So if for instance the
memory is a set of formulas in predicate logic, that set can be different after
the brain has reasoned with it. A new beat method could look like this:

cl ass Agent

{
Sensorl _Sensorl,;

Sensor2 _Sensor 2;

Ef fector _Effectorl;
Ef fector _Effector2;

doubl e[] _Menory()
Brain _Brain;

voi d beat ()

{
String SensorQutputl _Sensorl.sense();
i f Sensor Qut put 1. equal s(“ Somnet hi ng”)

{

Implementing agents and mobile agents 115

_Menory[0] = O0.45;

}
i f Sensor Qut put 1. equal s(“ Somet hi ngel se”)
{
_Menory[0] = 0.9;
}
_Menory[1] = _ Sensor2.sense();

_Brain.reason(_Menory);
if (_Menmory[10] > 0.9)

_Effectorl.effect(.);

}

if (_Menory[1l1] > 0.9)

{ _Effector2.effect(.);
} }

In this example, the memory consists of an array of floating point numbers.
The brain that takes these numbers as input as for instance a neural
network would. We assume here that the brain places its results in memory
locations after 10. What effector should be activated is then determined by
inspecting these memory locations. Again, this is just an example, and the
memory might be a lot bigger, the activation conditions might be different,
or several memory elements together determine the activation of one
effector. However, if this mapping of memory values to effector activation
becomes too complex, the brain isn’t doing enough reasoning on its own.

Adaptive agents

Now, adaptive, or learning agents. Adaptive agents require the brain to get a
chance to modify itself. Although for some type of brain implementations,
this might be an integral part of the reasoning process, it is useful to make
the distinction.

Note that an agent might require that its sensors input includes the results
of effector activation. However, to program this, it is a little easier to
assume the effectors return the result of the activation, which is then stored
in the memory of the agent. Otherwise, effectors have to double as sensors,
and have to remember the result of the previous activation.

cl ass Agent

{
Sensorl _Sensorl;

Sensor2 _Sensor 2;

116

Mobile Agents as a Distributed Application Architecture

Ef fector _Effectorl;
Ef fector _Effector2;

doubl e[] _Menory()
Brain _Brain;
voi d beat ()

{
String SensorQutputl _Sensorl.sense();

i f Sensor Qut put 1. equal s(“ Sonet hi ng")

{
_Menory[0] = O0.45;

}

i f Sensor Qut put 1. equal s(“ Sonet hi ngel se”)

_Menory[0] = 0.9;

_Menory[1] = _ Sensor2.sense();
_Brain.learn(_Mnory);
_Brain.reason(_Menory);

if (_Merory[10] > 0.9)

{
_Menory[20] = _Effectorl.effect(.);
}
if (_Menmory[11] > 0.9)
{
_Menory[21] = _Effector2.effect(.);
}
}

Here we see an additional call to a ‘learn’ method on the brain, and that

memory after position 20 is updated to reflect the result of the activation. A
tricky aspect to be aware of is that both the ‘learn’ and the ‘reason’ method
might affect the memory, which could influence the learning process. If this

undesirable, care must be taken that the learning process learns from an
older copy of the memory not affected by reasoning.

6.2.2 Effectors and sensors

There are several ways an agent can relate to its sensors and effectors, and

we want to show a few of the most common ones:

Implementing agents and mobile agents

117

Integrated

Like the model presented in chapter 2, here the sensors and effectors are
really part of the agent. However, sensors and effector classes can still be
utilised by different agents, like this:

<>—
Sensorl
Agentl
<<agent>>
——
Sensor2
<>—
<
Effectorl
Agent2
<<agent>>
Effector2
<>—

Figure 52: Sensors as part of the agent.

Shown are two agents: ‘Agentl’, using ‘Sensorl’, ‘Sensor2’ and ‘Effectorl’,
and ‘Agent2’, using ‘Sensor2’ and ‘Effector2’. We use the same topology in
the next examples as well. In this case, each agent has its own instance of
the sensors and effectors. This model makes the agent fully autonomous in
every sense, since it doesn’t have to rely on anything else to do its job.

Sensors and effectors as services

It is also possible to think of those sensors and actions as passive ‘services’
in the system. That way, the services provide the functionality, and the
agents are what make the whole thing ‘tick’.

118 Mobile Agents as a Distributed Application Architecture

—1—
Sensorl
<<service>>
I —
e Agentl
. <<agent>>
Sensor2 1
<<service>> 1
—1—
Effectorl
<<service>>
L *x___|
Agent2
. <<agent>>
Effector2
<<service>> 1

Figure 53: Sensors as services

The picture looks very similar to the first, but there are some fundamental
changes. Now, the sensors and effectors are stereotyped as ‘service’ by
which we mean they are a system-wide services, generally single-instance.
One instance of such an object is constructed at start-up, and it stays there
as long as the system is up, a bit like an in-system server. As a result, the
sensors and effectors are no longer part of the agent, but part of the system,
and many agents might relate to the same service. A design like this makes
sense if the agents need to use resources that are inherently machine bound
or require machine-wide management of scarce resources.

Agents using agents

A third option is to equip each agent with a limited action and/or sensors.
The agents would then rely on each other to provide the system’s
functionality. Like this:

Implementing agents and mobile agents 119

federation

6.3

Sensorl Ko—
Agentl
<<agent>>
Effectorl <>—|7
Sensor2 Ko——
Agent2
<<agent>>
Effector2 Ko——-

Figure 54: Agents using each other.

Compared to the first picture there is only line of difference, Agentl is not
connected to sensor2, but to agent2. There is a substantial difference in
concept however. This is a very primitive example of a federation of agents.
‘Federation’ is a relatively new term in software, and used for more or less
autonomous computing devices that work together to provide a system that
appears as one. In Sun’s terms: ‘“The network is the computer’. A federation
of agents is similar, but now the ‘devices’ are strictly software.

In this setting, if an agent cannot do something himself, he will delegate it
to another agent. Which agent something is delegated to can even be
decided at run-time. There are systems that use a ‘blackboard’ on which
agents can place requests services. Other agents can look on the blackboard,
and propose, even bid, to offer the service [45].

Creating autonomy

We think autonomy is the core of what agents are all about. In this section,
we describe how this autonomy can be achieved in a computer system. If
each agent resides on its own computer, this doesn’t take any additional
effort, since the computer is already autonomous, or animate, by itself. That
is, the computer is able to operate by itself without any help. Sure, normally,
it just sits there passively responding to your commands, but if you have a
screensaver installed, you know that the computer will, by itself, decide that
it hasn’t been interacted with for a while, and enlighten the room with a

120

Mobile Agents as a Distributed Application Architecture

6.3.1
process

thread

nice animated aquarium?, So if the computer’s sole purpose is running an
agent, it can and will show autonomous behaviour.

It gets a little more difficult if the computer has to run more agents
simultaneously. You need a way to distribute the control over the CPU in
such a way that each agent is perceived to behave autonomous. Before we
can explain what the options are, we need to explain a little about processes
and threads.

Processes and threads

A running instance of a program on a computer is called a process. A process
includes all the code and data of a program currently working with in
memory. Double-clicking the Netscape icon on a Windows system starts
Netscape Communicator, and at that moment Windows is running a
Netscape Communicator process. Older operating system such as MS-DOS
could only run one process at a time, but modern operating systems allow
multiple, simultaneous processes. Those processes are isolated, meaning that
they cannot normally read or write in each other’s memory. This is
important, because it means a process cannot accidentally or purposely
affect the other processes, which could cause those processes to crash or
malfunction.

On a multi-processor system, the computer might be running some
processes truly in parallel, but generally, the operating system pretends it is
running the processes in parallel by very quickly switching between all the
currently running processes. This is referred to as multitasking

Initially, a process has one thread. Thread is short for ‘thread of execution’.
A thread is a possible route through the code of a program. If, in slow
motion, and on a separate monitor, you could see the code of the program
your computer is running, the thread would be the continuous highlighting
of the lines of code the computer was executing. If you don’t do anything,
to computer would probably be looping through a few lines, and if you
press a key, you see the highlight jump out of the loop to process that
keystroke, possibly update the screen, and continue in the loop.

Many operating systems allow you to start additional threads in a single
process. This is very convenient, because, like your computer (pretending)
to be running more than one process, the program can more easily do more
than one thing at a time. For example, newer word processors check the
spelling of your text while you type. If you have to program that using only
a single thread, that is possible, but nasty. One reasonable way is after each
keystroke to check if the word was completed, and if yes, check it for
spelling. However, checking the spelling of a word might take some time, in
which you cannot respond to keystrokes, which could be very annoying to
the user. The solution for this should be obvious, namely starting an
additional thread for the spell checker. This has a number of nice
advantages, namely the logic for the character input thread gets less

15 or some swirly figures, the latest movie hit, or scantily clad men or
women. Whatever preferences.

Implementing agents and mobile agents 121

multi-threading

6.3.2

master process

complicated, and it doesn’t have to wait for the spell checking to complete.
The operating system will take care of the character input and spell checker
thread taking turns.

Running multiple threads, or multi-threading, comes at a cost however. If
two or more threads at the same time access the same piece of memory, this
can have undesirable or even disastrous results. Take the word processor
example again: if the spell-checker thread is checking a word while the user
is modifying it, the spell checker is probably checking the wrong word for
correctness. And if that word is deleted, chances are you get a dreaded ‘blue
screen of death’, or its equivalent on a non-windows system. To prevent
this kind of drama, there is ‘thread synchronisation’. Thread
synchronisation is all about making sure one thread can get exclusive access
to pieces of memory. It if often difficult to determine where and how to do
thread synchronisation, which makes multi-threaded programming in
potential much harder than normal, single threaded programming.

Interesting enough, the agent computing model provides a possible solution
to this. Because agents are autonomous, they can easily send and receive
asynchronous messages. Now, if each agent guards his own piece of the
memory, each agent can safely modify and read his own piece memory and
send messages with results to other agents (provided the agent itself is
single threaded, but we’ll get to that.) Of course, the message queues
themselves still need thread synchronisation, but at least that is highly
localised. The bad thing about this is that on a pure message based system,
you miss out on rich method naming and type checking. For this reason, we
use a ‘mixed’ approach in our prototype.

Agent threading models

For the discussion above, we can now derive four different options for
running several agents on a single computer:

= Single Process, single threaded.
= Single Process, thread pool,

= Single Process, multi-threaded.

= Multi-process.

The autonomy the agent generally increases with each option. The first
three have a single process that controls the agents. We will call this the
master process.

Each option is accompanied with a UML class diagram and a code example
that shows the basic differences in terms of agent and master process. Each
code example includes an agent with the earlier mentioned ‘beat’ method
that contains a cycle of the agents work. To simulate the autonomy of the
agent, this method has to be called continuously.

122

Mobile Agents as a Distributed Application Architecture

Single process, single threaded

The option with the least autonomy. This might be your only option if the
OS you are running on does not allow multiple threads or processes. It is
also the preferred option if the agents have to be synchronised in time, as is
often the case in simulation or animation. If you implement some fancy
priority and time scheme, agents can have more control over when the are
run, and your are edging towards option 3. An extra advantage of this
approach is that there is no need for thread synchronisation, since there
only ever is one thread.

Master Agent

<<process>>
E —
beat
. 0

main()

Figure 55: Single process, single threaded.

Fairly simple, One master, many agents, the main method of the master (a
process) driving the agents. The master process runs in a continuous loop.
Only one agent is shown, although in reality there would be many, each
activated in turn.

:MasterProcess :Agent
u while(true) |
o |
~N
| S |
| beat()
T

| —

N~
| |
| o |

Figure 56: Master process activating the agent.

cl ass Agent

{

public abstract void beat();

}

cl ass Master

{

Implementing agents and mobile agents 123

private Agent[] _Agents;

public static void main(string args)

{

while (!_Stop)
{
for (int counter = 0;counter <
Agent s. | engt h; count er ++)
{
_Agents[counter].beat();
}
}

}

Single process, thread pool

thread pool A little more freedom. The master process still keeps a tight lid on the
threads the agents are allocated, but now it runs each ‘beat’ in a different
thread. This gives an agent a little more freedom, because it can takes as
long as it wants during its ‘beat’, knowing that doing so will still allow other
agents to run as well.

Threads are a scarce and thus precious resource on an operating system, so
this is a good option if you need to run a lot of agents on the same system,
as it allows multiple agents to share the same thread. Application servers
often employ a mechanism similar to this, both to save time creating
threads, and to avoid having too many threads at once.

Master Agent
<<process>> —1—|_
1 beat()
main()

*—1—‘ |

x 0,

1

I .

AgentThread

<<thread>>
runAgent(Agent A)

run()

Figure 57: Single process, thread pool.

This option adds a set of ‘AgentThread’s to the design. As shown in the
next sequence diagram, the main process continuously keeps the
‘AgentThread’s and thus the agents active, but the run() method of the
Thread only activates the agent once, not in a cycle.

124 Mobile Agents as a Distributed Application Architecture

:Master Process :Thread :Agent

u while(true) | |
N | |

~N
N
N

| D | |
Agent
| runAgen ():J_| |

| run agent
| ~

| beat()

5 [—
ol

Figure 58: Master process activates threads in a thread pool.

cl ass Agent

{

public abstract void beat();

}

cl ass Agent Thread extends Thread

{
protected bool ean _free;
protected Agent _Agent;

public runAgent (Agent A)

{ _Agent = Agent;
_free = fal se;
i)ubl i ¢ bool ean isFree()
{ return _free;
} public void run()
{ while (!_stop)
{

if (! _free)

{

_Agent . beat ();
_free = true;

}

el se

{

Implementing agents and mobile agents 125

sl eep(.);
}

}

cl ass Master
{
private Agent[] _Agents;
private Agent Thread[] _Threads;

public static void main(string args)

{

while (!_Stop)
{
for (int counter = 0;counter <
Agent s. | engt h; count er ++)
{
for (int counter2 = 0;counter2 <
_Threads. | engt h; count er 2++)
{
if (_Threads[counter2].isFree())
{
_Threads[counter?2].
runAgent (_Agent s[counter]);

}
}

}
}

Single process, multi-threaded

This is where you give an agent its own thread. You can choose whether
you let the agent start its own thread, or if the master process creates the
thread and then hands it over to the agent. In any case, the agent is now
owner of its own thread, which it can run or sleep as it sees fit, and it can
rely on the underlying operating system to distribute processing time fairly
among different agents. It's good to note that having the agent start its own
thread is very convenient if the master process is not really dedicated to
supporting agents, but an agent just happens to be part of the whole.
Having it start its own thread makes to object part of the master process,
but otherwise fully autonomous. Note that the agents are still in the same
memory space, so they can easily talk to each other.

126 Mobile Agents as a Distributed Application Architecture

Master Agent Thread
<<process>> <<thread>>

1 beat()
main() _*J_ |_<> run()

Figure 59: Single process, each agent its own thread.

We see here that the thread becomes part of the agent. The run () method
of the thread keeps the agent ‘beating’. What the main() method of the
master does is not that relevant anymore.

:Master Process :Agent

u while(true)
\\\

|

|

|

N N

beat()

I\

while(true)
\\\

|

|

| e s,
//

I I

Figure 60: Master process and agent run independently.

cl ass Agent inplenents Runnabl e

{
public Agent ()
{
new Thread(this).start();
}
[').ll,lb| ic abstract void beat();
public void run()
{
while (!_Stop)
beat () ;
}
}
}

cl ass Master

{
private Agent[] _Agents;

public static void main(string args)

Implementing agents and mobile agents 127

/'l create agents here

Multi process

Finally, you can decide to make each agent a stand-alone application. This
might be an option when the agents really live and die with the machine, or
when each agents has to be implemented in totally different software /
programming language. The agent is a normal application, so it can do
anything it just so pleases. However, it is more difficult for two agents to
talk to each other, as they have to interact using some from of inter-process
or inter-machine communication.

Agentl Agent2
<<process>> <<process>>
main() main()
beat() beat()

Figure 61: Agents as separate processes.

This looks simple enough. We show two agents for clarity. There does not
have to be a relation between the two.

=3

:Agen

u while(true)
\\
N
|
|
|

N

beat()

U\

e

I

Figure 62: Agent as a process.
The code is for a single agent is also pretty simple:.

cl ass Agent

{
public abstract void beat();

public static void main(string args)

{

128

Mobile Agents as a Distributed Application Architecture

while (!_stop)

{
beat () ;

6.4 Creating mobility

To get mobile agents, two problems need to be solved. First, two (or more)
agent spaces should be able to communicate, in order to find out about
each other and send the mobile agents back and forth. The second problem
is to realise the mobility of the agent, to find a way to recreate the agent in
another agent space. The first is relatively easy, but the latter definitely not.

To get two agent spaces to talk to each other, many of the distributed
computing paradigms/technologies described in 5.3 will do the trick. You
could use TCP/IP and a self-created protocol for communication, and, on a
small network, IP-multicast (which is like TCP, but broadcast to many
computers at once) to make the agent spaces find each other. Less
complicated to program, but requiring additional technology, is to use a
distributed object technology like RMI or CORBA to make each agent
space a distributed object. An additional advantage would be that the look-
up services provided by those technologies could be used to locate other
agent spaces.

A big choice to make is whether the mobile agent should be scripted, or if
the agent should be programmed in a general-purpose programming
language, generally the same as the one used to program the agent space.

The first option means the agent space essentially becomes an interpreter
for the agent language. Some instructions in that language would cause the
agent space to stop interpreting the agent code and forward the agent in its
current state to another agent space. This approach has the clear advantage
that you can fully control what the agent can and cannot do. The
disadvantages are the scripting language is yet another programming
language, and it is very difficult to anticipate everything a programmer
might want to do in the agent. However, there are existing implementations
that use this approach, most notably Safe-Tcl [10] and TeleScript [37].

If we choose a general programming language as the language for the agent,
the problems become more or less reversed. We have to find out how we
can make sure the agent can run in another agent space, and what the
programmer should refrain from doing to maintain agent mobility.

To find out what it takes to create a mobile agent, we view the agent as an
animate object. An animate object has state, behaviour and autonomy (see
4.10.1), and each of those aspects should be recreated in another process,

the other agent space.

Implementing agents and mobile agents 129

6.4.1

object
serialisation

Moving state

The first hurdle is to recreate an agent’s state on another machine. If both
the current and the other machine are of the same type and run exactly the
same software, this could be fairly easy. The current state of the agent could
be copied from memory and send across the wire. However, if that state
includes references to other memory locations, that memory should be
copied as well, and we quickly run into the same trouble as before. The
issue we have here is hardly new. A similar problem occurs if you want to
store an object persistently, on a storage medium. Fortunately, the problem
has been solved before many times, in various ways.

If the agent is scripted, you need to make sure that each data type you
define is translatable in some format that is transmittable over a network
and can be recreated in the target agent space. You could define your own
encoding scheme, or, rely on the encoding of some distributed computing
technology.

If you implement your agent spaces as CORBA objects, you could define
the agent state as a structure of arrays of CORBA types. The agent’s state
variables in the scripting language would map to individual entries in that
structure.

For agents written in a general-purpose language, you could use the same
trick, but the agent creator has to provide the means to encode and decode
the agent state to the transmittable form.

A similar option is to use object serialisation. Both (D)COM?16 and Java
provide a way to encode an object’s state into a stream of bytes and back. If
the object holds references to other objects, those are encoded as well. The
only catch is that the combined state of all those objects ultimately has to
consist of primitive types that can be encoded. This means that arbitrary
pointers are off limits, and for instance references to network sockets or
local files as well. An additional advantage is that a serialised object can
easily be written to disk as well. This is very convenient if you want to shut
down an agent space without moving all the agents out first, or to provide
fail-over for the agent space.

This option is available both for scripted and non-scripted agents. For
scripted agents, it is not really the variable itself that is serialised, but rather
the data structure representing that variable in the interpreter.

If we use RMI (Java) to implement the agents and provide inter-agent space
communication, the use of serialisation would be automatic. If the agent
object is marked as ‘serializable’, the Java virtual machine will attempt to
serialise it. For DCOM it would not be automatic, but it is definitely
possible to get the same effect by implementing custom marshalling on the
agent object.

16 COM refers to this as ‘structured storage’ but the idea is the same.

130

Mobile Agents as a Distributed Application Architecture

6.4.2

6.4.3

6.5

Moving behaviour

In order to get the same behaviour for the agent, the receiving agent space
should of course run the agent using the same code as the originating space.
In a controlled environment (say an internal network) we could assume
each agent space has the code of all the agents in the network available.
Upon receipt of the agent, it could simply recreate the agent object using
the readily available code.

However, in a more general case, you would need mobile code (see section
5.3.3). That is, the receiving space should be able to request the agent’s code
from the originating space. Of course, it should be able to run it as well. For
a scripted agent, this is fairly easy, since both spaces interpret the same
agent language. For a non-scripted agent, it is slightly more difficult
depending on the portability of the code. On a Win32 platform, we could
make sure each agent’s code resides in its own DLL, and we could enable
the agent spaces to transmit those DLLSs to each other. For Java, it is still
fairly easy because the target machine by definition is able to run the same
code as well. Again, RMI will automatically transmit an object’s code to the
other virtual machine if it doesn’t have it yet. For DCOM, it could be made
part of the custom marshalling.

Moving autonomy

So far, the agent simply was a mobile object, but the final step is to
transport the aspect that is unique to agents: autonomy. Unfortunately, this
is also the hardest, at least in its most general form. For a scripted agent, it
is possible, by serialising the internal state of the interpreter (as related to
the agent) and sending it along with the agents’ state (and code). The
TeleScript language we mentioned before does just that. For a non-scripted
agent, you would want to send the thread running the agent, in its current
state, but this is prohibitively difficult, and would require operating system
support. Even in Java it is not possible, because each JVM implementation
has to implement threads in its own way.

Not all hope is lost however. We think there would rarely be a need to be
able to move the agent at every possible moment in its execution. Generally
the agent initiates the move itself, and its programmer can take necessary
measures to make sure the agent can resume execution based on its object
state (so not including any local variables). The ‘beat’ method concept
described in 6.2.1 can help, as we can move the agent in between beats:
Once a beat has ended, we can stop the thread, serialise the agent, send it to
another space, deserialise it and start a new thread there. The agent
wouldn’t miss a beat.

Mobile agent pattern

Based on the idea’s of the previous section, we now present a mobile agent
design pattern. It defines the roles and responsibilities of the two pieces of
the mobile agents paradigm: mobile agents and agent spaces. We follow the

Implementing agents and mobile agents 131

same structure as in the standard book on design patterns [43]. Each
pattern is described in a number of sections with fixed names:

= Class - gives a basic categorisation of the pattern.

= Motivation — describes the underlying ideas of the pattern.

= Applicability — states in what situation the pattern can be used.
= Structure — shows a class diagram with the participating objects.

= Participants — gives a textual description of the roles of each class in
the pattern.

= Collaboration —shows how the participants interact together.

= Consequences— describes what the resulting behaviour is of a system
using the pattern, and lists possible attention points.

= Implementation — shows a code example of the pattern.

And now the description of the mobile agent pattern:

Class
Object behavioural

Motivation

To enable autonomous objects, referred to as agents, to move to another
machine and continue their task there. This can be advantageous if there are
differences in availability and bandwidth between machines in the network,
or to provide the object local access to resources on several machines,
which could substantially reduce network traffic. The pattern allows for a
very flexible computational architecture where running tasks can be moved
around at will.

Applicability

Allows for increased network flexibility and availability. For instance, a
continuous task can be moved off a user’s machine onto a central server,
after which the user can disconnect. If the user reconnects, possibly on the
another machine, the task can move to the user again, and interact with him
or her. It also provides an alternative for distributed servers: instead of
anticipating and exposing all possible uses of the server the server could
receive mobile agents, bringing with them their own code to interact with
the primitives available on the server. It can be viewed as a generalisation of
the query mechanism as employed by database servers. It is also a possible
model for massively parallel computing, where the task is initially created on
one machine, and subsequently moved to many servers for parallel
computation, after which they move back again with the results.

132

Mobile Agents as a Distributed Application Architecture

Structure
connected to

AgentSpace 1

createAgent(...)

thread createThread()
receive(MobileAgent A)

* move(Agent A,AgentSpace AS)
stopAgent(MobileAgent A)

Figure 63: Mobile agent pattern.

Participants

Agent Space: a process that hosts the agents.

MobileAgent

start(IAgentSpace S)

stop()

Mobile Agent: the autonomous object that can move between different

agent spaces.

Collaboration

This pattern supports three basic operations: creating new agents, moving
agents and stopping agents. We describe each with a sequence diagram and

accompanying text.

Implementing agents and mobile agents

133

Create New Agent

:AgentSpace
Actor

I
H createAgent(...)
| -

| create(...) :MobileAgent
| |

| =< |

| start() |

| | createThread() |

| thread | |

| | start |

| |

IAdmlnlstratlon

I I

Figure 64: Create a new agent.

What makes this operation non-trivial is the fact that the agent has to be
given its own thread, which has to be started. It is not strictly necessary to
give the agent its own thread, but then this interaction is replaced with
similar operations to register the agent some sort of multitasking
mechanism. In addition, we don’t want the mobile agent to start its own
thread for security and control reasons. This construct allows the agent
space to keep a watchful eye over thread allocation.

134

Mobile Agents as a Distributed Application Architecture

Stop Agent

Actor

H [
stop(...)

T =

|

_—

:AgentSpace :MobileAgent
I
] |
stop(...) |
stop() - |
| stop

Figure 65: Stop mobile agent.

UA

T
dministration

X X

Again, what is a bit of work is having the agent stop its thread. In addition,

we show two activation lines for the agent space, to indicate it needs a

separate thread to stop the agent. This is because we want the agent to be
able to stop itself, and without a separate thread, this becomes cumbersome

to implement. Also it is generally a good idea to have the starting and
stopping of agent threads is handled by a separate thread, for the same

reasons as described above.

Implementing agents and mobile agents

135

Move Agent

1
I Source: Process Destination:
:MobileAgent AgentSpace Border AgentSpace
| |
! moveAgent(...)| ! !
1 ~
| [- | |
move
I		
stop()		
Stop		
	serialize agen	
[i i ' , | |
>< >< | recieve(agent) - |
I])
| | desFriaIize :MobIIeAgent
. | |
| | T | |
startagent
| | EN | |
start() | |
| ~ T T -~
createThread(| |
| | |
| | thead | |
1
| | start |
| | |
' 0
I L I

Figure 66: Move mobile agent.

This last operation is largely a concatenation of the previous two: we see the
agent is first stopped in the source space, and started in the destination
space. The agent itself, being an autonomous object, initiates this operation.
The one thing extra in this picture is the ‘receive’ method, but it entails a

lot. It requires there is inter-process communication possible between the
two agent spaces, and that the agent’s state and behaviour can be
transmitted in some form to the other agent space. These two points are

not addressed by this pattern, but the previous sections describe several
possible ways this can be accomplished.

Consequences
This pattern shows how to simulate the move of an active, autonomous
object to another process, something that is generally not supported by

136

Mobile Agents as a Distributed Application Architecture

6.6

programming languages and/or operating systems. It does mean that the
moved object is able to resume execution solely based on its object state,
and any data it wishes to take with it should be kept in that state.

Implementation

Implementing this pattern in Java (using RMI) is fairly straightforward,
thanks to Java’s excellent support for multi-threading, object serialisation
and the portability of Java code. However, as discussed above, it should
definitely be possible to implement this using other languages/platform,
either by creating a scripted agent language or largely simulating the
behaviour of Java’s RMI.

Special care must be taken with the thread creation and destruction. For
instance, Java will not allow a thread handling a remote call (as the thread
handling the ‘receive’ on the destination space) to create a new thread. This
means this task should be delegated to a separate thread, as shown in our
interactions.

Sample code
We will not put sample code here, but the base classes for the prototype in
chapter 7 implement this pattern, so that code should suffice.

Conclusion

In this chapter, we showed how agents and mobile agents could be
implemented. We identified three different ways you can implement agents:
scripted, using a framework, or do-it-yourself (DIY).

Scripted

A scripted agent is written in some kind of (currently) proprietary agent
language, such as TeleScript. Applications such as Microsoft Exchange also
allow for the creation of ‘scripted’ agents, although those are defined using
a GUI. The big advantage of this type of agents is that they are relatively
easy to create, since most of the complexities are hidden away in the run-
time environment running the agents. The turn side of this method is of
course that the agent scripting environment might not offer all the features
required, which at best leads to possibly complicated enhancements to the
agent scripting environment.

Agent Framework

Another option is to develop agents using some kind of agent software
framework, such as IBM’s Aglets. The difference between such a
framework and an agent scripting environment is that with a framework,
the agents are developed in a normal, full-fledged programming language,
often the same language as the framework itself is developed in. The big
advantage of this approach is that it is a ot easier to add features to the
agents that are not offered by the framework itself, thanks to the full power
of the programming language.

Implementing agents and mobile agents 137

DIy

Still, it might be that none of the existing frameworks or scripting
environments suits your needs, either because they don’t have some crucial
features you need, or because they don’t integrate well with some other
technology you might need. The only option left is then to develop the
agents yourself, in a general purpose programming language, such as Java or
C++. Just because no framework can help, doesn’t mean you are on your
own completely. We named several types of technologies that we think
could help building an agent based application. Most notably:

= object oriented programming languages
= distributed objects
= messaging systems

= application servers

The remainder of this chapter focussed on various implementation
strategies for D1Y agents.

We first showed how the various components of an agent: the heart, the
brain, the memory, the sensors, and the effectors can be modelled in an
UML model. In the simplest case we see the brain and the memory as an
integral part an agent class, with separate classes for the various effectors
and sensors. The heart can be a thread, or some other autonomy
mechanism, as described later in the chapter. For intelligent agents, it makes
more sense to separate the brain and the memory, and have the brain
influence the memory. The agent class then makes sure that the sensor
outputs are placed in the memory, that the brain performs the reasoning,
and that changes in memory state are translated into effector activations.

Seeing the sensors and effectors as part of the agent is not the only
approach however. For larger systems, it might make more sense to
separate the sensors and effectors into services, which can be used by
multiple agents and even by non-agent applications. And another ways is to
make a particular kind of sensor or effector be part of one single agent, and
have the agents utilise each other to get to various inputs or actions. Such a
system is sometimes referred to as a federation of agents.

We listed four basic options for creating multiple autonomous agents in a
single system: single process, single-threaded; single process, thread pool;
single process; multi-threaded; multi-process.

Single process, single threaded — is simple in the sense that there are no
multithreading issues. A single thread activates all the agents, one at the
time. The disadvantages is that each agent has to voluntarily give up control
after a short amount of time, otherwise the other agents can’t do anything
in the mean time.

Single process, thread-pool — allows each agent to a lot more
independently, while still limiting the amount of threads in the system. This
is very good approach, but a thread-pool is non-trivial to implement.

138

Mobile Agents as a Distributed Application Architecture

Single process, multi-threaded — means you simply give each agent its
own thread. This is relatively simple, and you in effect entirely rely on the
underlying operating system to make sure each agent gets a chance to run.

Multi process — means that you see each agent as an independent
application. This makes sense if the agent for instance has to come up or
down with the computer itself, or if there are several agents on the same
machine that are implemented using a different technology. A disadvantage
is that it is a lot more cumbersome to enable the different agents to
communicate.

Next, we showed how to create mobile agents. This entails three things, we
have to move the state of the agent (its data), the behaviour of the agent (its
code), and the autonomy.

Moving state means the data the agent maintains has to be transferable to
another machine, so encoded and decoded in some kind of standard data
format. Distributed object technology provides convenient ways of doing
this, a process usually referred to as serialisation.

Moving behaviour implies mobile code, code that in some way can be
executed on the machine receiving the agent. Section 5.3.3 discusses this
topic in detail. The java platform form a particular good example of this,
since java bytecode can run on any platform for which there is a Java
Virtual Machine (JVM).

Moving autonomy is the toughest of the three. It means moving a running
thread to another machine, something that is only supported in some very
high-end, special purpose operating systems. This means we have to ‘trick’
this feature in some way. We do this by taking advantage of the ‘beat’
method concept, and have the agent only move after a single beat
terminates. The one disadvantage this has is that it is not completely
transparent to the agent programmer that the agent is moved. He or she has
to save any state he or she wants to maintain in the agent’s state, and write
the ‘beat’ method in such a way that it can resume its task for the beginning
of the ‘beat’ method. Still, we believe this is a small price to pay for having
autonomous agents.

Finally, we presented the mobile agents design pattern, which consolidates
both the use and implementation of the mobile agents in the standard
design pattern format.

Implementing agents and mobile agents 139

140 Mobile Agents as a Distributed Application Architecture

CHAPTER 7

7.1

7.1.1
Octarine

Mobile user agents framework

With all the foundations firmly laid, we are now ready to show how
everything fits together, by designing and building a prototype mobile
agents application. Our application consists of two main parts: Octarine: a
generic framework for supporting mobile user agents, and WebWatcher: A
web front-end to the framework together with a set of ‘Internet service’
agents. We choose this application over the other options mentioned in
chapter 5 because it is not that difficult to build, and the mobility of the
agents is very visible. When designing this application, we followed the
basic methodology of chapter 4, although note that while the actual design
went through several cycles, we only present the final results here.

Application description

Here we describe the basic functionality of the prototype application,
divided in to three parts, the Octarine framework, the WebWatcher
application and the WebWatcher agents.

Octarine

Octarine is a framework that hosts agents that perform routine tasks for a
user, with those agents able to jump back and forth between the user’s
machine and a central server. We called it Octarine after the eighth colour,
the colour of magict? [23], because we like to think the moving of the
agents is a bit magical. An interesting thing is the agents are neither just
client, nor server, but both. Each agent can be thought of as a little
application, that dependent on what it has to do next, runs on either the
client or the server.

This picture shows the basic context:

17 Octarine is described as a sort of greenish yellowish purple, and can only
be seen by wizards and witches.

Mobile user agents framework 141

Server space,
user space

7.1.2
GUI

Octarine Server Space
Agent
Agent Userl
User2
Agent
Agent
Userl @

Eﬂt Corrdo<

Octarine Space, Octarine Space,

Userl User2
Agent
User 1

Figure 67: Mobile user agents.

It is just a slight refinement of the mobile agent picture in 5.4. We now
recognise a server space and user spaces, and we have labelled each agent
according to its owner. The server space obviously runs on a central server,
and the user spaces run on the client machines. The user can connect and
disconnect this space from the central server as he or she sees fit. An agent
belonging to a certain user will never move to the user space of another
user, at least not in the current setting. We of course want to support an
arbitrary number of users, but we show just two for simplicity.

WebWatcher

The WebWatcher application is a web front-end to the framework, tailored
for Internet enabled agents, and enabling the agents to interact with a user
using a Graphical User Interface (GUI). To accomplish this, WebWatcher
includes a user space that is enhanced to provide these facilities.

Because WebWatcher is web-based, it allows a user to access his agents
from anywhere he or she pleases, without first having to install software.
Using the interface, the user can create new agents, view the status of his or
her existing agents, edit an agent’s parameters, and stop an agent. While the
user’s overview page is open, the user’s agents can contact the user if they
want to.

Usability of the application would increase further if the user could
optionally install an application that runs on his or her machine
permanently. This would allow the agents to alert the user at all times,
however, that requires too much additional effort at this time.

142

Mobile Agents as a Distributed Application Architecture

7.1.3

smart bookmark

7.2

The agents

Now, the agents. The initial design of this application includes just two
types of agents, the WebWatcher agent, which shares its name with the
application itself, and the FileFreak agent. Both of these agents are Internet
enabled agents, they need an Internet connection to operate.

WebWatcher

The WebWatcher agent is a kind of smart bookmark. The user gives it an
URL to watch, and the WebWatcher will alert the user if the text on the
page has changed. This saves the user tremendous effort in revisiting a page
over and over again, and finding there is nothing new to report. For this
prototype, this is all we will do, but there are plenty of possibilities to
enhance this, by making the alert depend on a specific text appearing, have
it include image changes, or have it monitor a whole tree of pages.

FileFreak

FileFreak is a download assistant. Instead of the having the user wait ages
while a download trickles through at far less than the connection speed, the
FileFreak will download the file, and deliver it to the user full speed. The
user can disconnect as soon as the agent is installed, and will be alerted as
soon as the download is complete. Of course, for this to work, the
bandwidth between the agent space server and the user has to be sufficient,
otherwise nothing is gained.

These are just two agents this application can support, but there are many
others: We can make a tailored agent that watches auction sites for items
the user wants, or presents stock quotes in a neat little package. We can
have an agent searching e-commerce sites for the best price of a product,
implement the over-used travel agent, etc.

Technology selection

It should be pretty obvious what technology we use to implement this
application. We already argued in Error! Reference source not found. that
Java (using RMI) has many nice features that make it fairly easy to
implement mobile agents, so Java is our pick for the Octarine framework.
This also means the WebWatcher user space is build as a Java applet.
Keeping with the Java theme, we use Java Servlets to respond to and
generate the HTML pages for WebWatcher,

Now a context diagram, showing the basic software components, how they
relate to each other, and using what technology:

Mobile user agents framework 143

Octatine Server (java)

Server GUI

(AWT)

Server Agent Space)—

/_x
=

Web Server~__—

Servlets(java)

\@é

o
'_
= Internet \
T \ \77
Web Browser > /
HTML Pages Applet(java)

Figure 68: Context diagram.

The grey boxes show the basic software components, the Agent Space
server, the web server, and the web browser. The white boxes show what
sub-components live inside those components (note that the agents are
omitted from this picture). The text in the arrows shows which
protocols/technologies are used for communication between those
components.

The Web Server and Agent space server need to reside on the same
physical machine, because an applet is only allowed to contact the server
from which it originated. However, for a production system, there are some
(router) tricks to work around this limitation.

7.3 Use cases

The previous sections described the basic functionality of the application.
Now we do so more thoroughly, by describing use cases for each of the
possible interactions with the system. We use the same division in three
components again, but in a slightly different order, which makes more sense
for a user’s point of view.

144 Mobile Agents as a Distributed Application Architecture

7.3.1 WebWatcher application

The WebWatcher application consists of six use cases, which mostly deal
with various agent administration tasks.

Create new user

Activate new

show user's
agents
WebWatcher use

Figure 69: Interface use cases.

Create new user

User selects to become an application user

Site presents a user name and a double password prompt

User types in username and the password twice.

Site verifies that the user name doesn't exist, that the passwords match, and
creates a new user entry.

The user is returned to the home page.

Log in
User access the site
Site presents password prompt
User fills in username and password.
IF (the username and password are correct)
Site grants access.
INCLUDE (Show user’s agents)
ELSE
Site presents an error screen.
The user is returned to the home page.

Activate new agent

User selects to activate a new agent

Site presents a list of possible agents classes
User selects desired agent

INCLUDE (Show user’s agents)

Mobile user agents framework 145

Edit agent

Site presents a list of the user’s agents.

User selects agent to change

Site sends edit request to Server Space for agent.
INCLUDE (Show user’s agents)

Stop agent

Site presents a list of the user’s agents.
User selects agent to stop

Site asks to confirm the stop

User confirms the stop.

Site stops the agent.

INCLUDE (Show user’s agents)

Show user’s agents

The site presents a screen of all the user’s agents. This screen also includes the
applet hosting the agents. From this screen, the user can exercise the various
agent administration tasks and of course interact with his or her agents.

7.3.2 Agents
Here we describe the two types of agents the user can create. The
WebWatcher agent that can watch a web pages for a user and report
changes, and the FileFreak agent that can assist in downloading large files
on congested networks.
WebWatcher agent
Edit WebWatcher
User
present alert
check web page

WebWatcher agent
Figure 70: Web watcher use cases.
Note: Although ‘present alert’ is only included in ‘check web page’, it is
presented separate because it has an additional beneficiary, the user.

Edit web watcher

User selects to edit the WebWatcher (Or creates a new WebWatcher)

Web watcher moves to the user’s space.

Web watcher presents a dialog with the URL it is watching

The user changes URL to watch.

146 Mobile Agents as a Distributed Application Architecture

Web watcher moves back to the server.

Check web page
WebWatcher requests the web page it is watching
Web server returns web page
WebWatcher compares web page to old web page
IF page is different

INCLUDE (present alert)

Present alert
WebWatcher shows a dialog with the URL to the (now changed) page to user.
IF (The user wants to follow the link)
User clicks link.
ELSE
User dismisses dialog.

FileFreak Agent

initialise FileFreak

Edit
FileFreak

User Present alert

Retrieve file

FileFreak Agent

Figure 71: FileFreak agent use cases.

Edit FileFreak agent
User selects to edit the FileFreak (Or creates a new FileFreak)
FileFreak moves to the user’s space.
IF (a file is retrieved)
INCLUDE (Save File)
ELSE
INCLUDE(Initialise FileFreak).

Initialise FileFreak

FileFreak presents a dialog with the URL to the file to download.
User changes the URL.

FileFreak moves back to the server.

Save File
FileFreak agent displays save file dialog.

Mobile user agents framework 147

User directs the FileFreak to a folder where the file should be placed.
FileFreak agent saves file to disk.
FileFreak agent terminates.

Retrieve file.

FileFreak Agent starts FTP or HTTP session with server that holds the file.
FileFreak Agent gets file.

INCLUDE(Present alert)

Present alert
FileFreak agent moves to user’s space
FileFreak present a dialog with a message that the file is now ready for retrieval.
IF the user wants the file now.
INCLUDE (Edit FileFreak)
ELSE
User dismisses dialog.

7.3.3 Octarine Server
The use cases for the Octarine server can be divided into four categories:
Those initiated by other agent spaces, by the agents, by remote clients of
the server, and by a server administrator. We discuss hem in that order. A
few use cases are marked with a + sign. This is to indicate that the initial
prototype will not have this functionality in this way. They have been
included nonetheless, because we figured they describe how the system
should work.
Other spaces
Receive agent
Get agent space
info
Other agent space .
Register other
space

Figure 72: Octarine server, other spaces use cases.

Receive agent

The other agent space sends an agent to this agent space

Server receives the agent, reconstructs it and confirms the reception.

Server activates the agent.

Get agent space info

Other agent space requests info on this space.

Server returns info uniquely identifying this space.

148 Mobile Agents as a Distributed Application Architecture

Register other space
Other agent space registers itself with this space.
Server asks info on other space and adds it to the list of connected spaces.

Agents

move agent

store agent

Octarine agent

stop agent

Figure 73: Octarine server, agent use cases.

Move agent

The agent asks the current agent space to move it to another agent space
When that space is available, the agent space stops agent and sends it to the
destination agent space

Destination agent space receives the agent and starts it.

Store Agent
Agents asks to be stored in persistent storage
Server stores agent to persistent storage.

Stop agent
Agent asks to be stopped.
Server stops the agent.

Mobile user agents framework 149

Remote client

Remote Clients

Get Agent types

Create new agent

Get user agent
Info

edit agent

stop agent

Figure 74: Octarine server, remote client use cases.

Get agent types
Remote client asks available agent types.
Server returns a list of the available agent types

Create new agent
Remote client asks to create a new agent
Server creates the new agent.

Get user agent info
Remote client asks a list of a user’s agents
Server returns a list of that info on those user’s agents

Edit agent
Remote client asks to edit an agent
Server sends edit request to agent.

Stop agent
Remote client asks to stop a particular agent
Server stops that agent.

Administrator

Note: The use cases whose names start with a plus are included for
completeness, but are not implemented in the prototype.

150

Mobile Agents as a Distributed Application Architecture

Stop Server
show Agents

Stop Agent

Administrator

+Add agent type

+Remove agent
type

Figure 75: Octarine server, administrator use cases.

Start server
Administrator starts server
Server starts,

Server loading all agents from persistent storage

Server registers itself with RMI registry.

Stop server
Administrator asks server to stop.
Server removes itself from the RMI registry.

The server shuts down, stores all agents, refuses new requests, and stops.

Show agents
Administrator asks for a list of all agents

The server presents a list of all the agents in the system.

Stop agent

Administrator selects agent to stop
Server asks to confirm the stop
Administrator confirms the stop.

Show logs
Administrator selects to view logs

The server presents a screen with log entries.

Mobile user agents framework

151

7.4

741

+Add agent type

Administrator selects to add new agent type

The server presents an open dialog.

The Administrator selects the .jar files to add.

The server integrates the new agent type in to the agent base.

+Remove agent

Administrator selects to remove an agent type.

The server presents a list of all the present agent type.

Administrator selects agent class to remove.

Server asks to confirm the removal, warning if there are outstanding agents of
this type and if there are connected user spaces with this type of agent in them.
Administrator confirms the removal.

Server removes all instances of this agent type, and removes the agent from its
agent base.

Class Diagrams

Now we present the class diagrams for the Octarine server and
WebWatcher application. We start bottom up, from the Octarine base
classes, and build up from there, ending with the web interface. The class
diagrams all went through roughly three iterations: We first created an initial
class definition based on the use cases. Then we developed object
interaction diagrams for all the use cases, which let to the addition of most
of the methods on the objects. A final run led to some refinement and
streamlining of the object relations and methods.

Octarine base classes

Serializable Remote
Agentinfo IOctarineAgent Spacelnfo ISpaceRemote IOctarineSpace
<<interface>> <<interface>> —*-L <<interface>>
user user 1
agentlD start(IOctarineSpace) spaceType Spacelnfo getSpacelnfo() getSpacelnfo()
description stop() SpacelD boolean receive(IOctarineAgent A) moveAgent(...)
edit() * i eRemote) log(String)
getAgentinfo() T storeAgent(IOctarineAgent A)
*| Current Space stopAgent(IOctrarineAgent A)
T Identifies Is connected to
OctarineAgent |
<<agent>> 1
user OctarineSpace
agentiD 1 <<active>>
Hosts

Figure 76: Octarine base classes.

These classes are essentially an instance of the mobile agent pattern (6.5),
but with some added flavour to make it all work. The design is centred on
the three interfaces ‘1OctarineAgent’, ‘1OctarineSpace’ and ‘ISpaceRemote’.

152

Mobile Agents as a Distributed Application Architecture

The agent space and the agents only know about each other based on these
interfaces, which makes sure no class specific dependencies are introduced.
We have separated the remote interface ‘ISpaceRemote’ from the
‘IOctarineSpace’, because only those methods should be exposed when the
Octarine space is accessed remotely.

‘OctarineAgent’ is an abstract base class for Octarine agents. It implements
the start and stop methods, but leaves the rest to the derived class. We use
the ‘single process, multithreaded’ autonomy model from 6.3.2, so each
agent has its own, dedicated thread.

‘OctarineSpace’ is an abstract base class for Octarine spaces. It implements
the functionality for receive agents, the stopping of agents, moving of
agents.

The two info classes: ‘AgentInfo’ and ‘Spacelnfo’, are just simple
informational structures that uniquely identify agents and agent spaces,
respectively. They serve as a simple ‘persistent reference’ implementation.
They are ‘serializable’, so they can be sent to another machine.

Mobile user agents framework 153

7.4.2 Octarine Server classes

Remote Serializable

] i

IOctarineServer
OctarineSpace AgentHomelnfo
*
getAgentHomes()
A getAgentinfo(...)

createAgent(...)
stopAgent(...)
editAgent(...)

IAgentHome

—1.
_I__*_ | 1o0—*— IOctarineAgent

createAgent()

T getinfo()

OctarineServer OctarineServerGUI
<<process>>

stop() I main()

getAgentDetails()

RMIRegistry

ILogListener

log(....)

Figure 77: Octarine server

The core of this picture is the ‘OctarineServer’ class, which implements the
remaining functionality of the ‘IOctarineSpace’ interface, as well as the
‘IOctarineServer’ interface, which holds the methods exposed to remote
clients of this server. It delegates logging functionality using a Listener
interface, which in our case is implemented in a GUI class (not shown).

The ‘l1AgentHome’ interface is an application of the factory pattern. We use
a home interface (and implementing object) to construct new agents. In this
way, the server only has to know about a set of home interfaces, and
doesn’t care about any specific types of agents. The ‘home’ naming is
inspired by a similar construct in Sun’s Enterprise Java Beans [46]. The
‘AgentHomelnfo’ class is again a simple information class uniquely
identifying a certain home interface.

We won’t say too much about the ‘OcatrineServerGUI’, since this thesis is
not about building Java GUIs. It suffices to say it enables administrative use
cases, and consists of a few more classes than shown here. It is a process,
and its main tasks are to interact with the administrator and keep the GUI
updated.

154 Mobile Agents as a Distributed Application Architecture

7.4.3

744
servlet

Octarine Applet classes

Applet OctarineSpace

OctarineApplet AppletSpace

<>J_ showdialog(...)

Figure 78: Octarine applet.

Of course, the applet is fairly simple. We’ve tried to keep it as lean as
possible, because this component has to be downloaded to the user. The
applet is composed of a very simple applet implementation and a simple
‘AppletSpace’, derived from the ‘OctarineSpace’ base class. What is
interesting, is that it implements the ‘showDialog’ method, used by the
agents to communicate with the user.

The Applet uses the RMI registry to locate the server and register itself with
it.

Servlets

We now show the servlets that make up the WebWatcher front-end. Servlets
is a Java technology that allows you to extend the functionality of some web
servers. A servlet is mapped to the name of a certain folder on the web
server. Normally, when the folder (or a file in the folder) is requested by a
client, the web server would return that folder, or the file in that folder. If
there is a servlet mapped to the folder however, the web server will instead
activate the servlet and pass the requested URL to it. The servlet is expected
to return a stream of bytes, which is send to the client by the web server.

The application also includes quite a few classes that facilitate the
generation of dynamic screens, but those have not been included here.

Mobile user agents framework 155

HttpServlet

A
Login NewUser Main ShowNewAgents CreateNewAgent
doGet(...) doPost(...) doGet(...) doGet(...) doPost(...)

instantiates
1

WebWatchertContext |

<<singleton>>
_l— OctarineServer

verifyUser(...) verifyUser(...)
createUser(...) createUser(...)

UserRegistry

Figure 79: WebWatcher servlets.

The WebWatcher front-end consists of four servlets, and two helper
classes.

The ‘Login’ servlet authenticates a user and allows access to a user’s
personal agents. The ‘NewUser’ servlet creates a new user in the
application. ‘Main’ generates the main screen, listing a user’s agents, and
also making sure the ‘OctarineApplet’ on the main screen knows which
user’s agents it should accept. ‘ShowNewAgents’ queries the server for the
available agent types, and displays a selection list on the screen.
‘CreateNewAgent’ creates a new agent for a particular user.

The ‘UserRegistry’ is a simple property-file based user database, keeping
usernames and passwords used by the application. The Login servlet
instantiates a ‘WebWatcherContext’, which represents the common
memory of the WebWatcher application. All other servlets can access this
same context object. This construct allows us to avoid duplicating logic in
all the servlets. The ‘WebWatcherContext’ for instance keeps a reference to
a ‘UserRegistry’ object and to the ‘OctarineServer’.

The following picture shows the relations between the screens and the
servlets of the WebWatcher application.

156

Mobile Agents as a Distributed Application Architecture

7.5

751

L Start Screen M Login Invalid username/ J

Password

ShowNew Create New
Main Screen
lain Screel Agent Screen

Usemame and

CreateNew password
User combination not

accepted

T

Figure 80: WebWatcher page flow.

Here we see that the basic flow of the application is rather simple. From the
start screen, you can either login, or register as a new user. Once logged in,
you interact with the application through the main screen, which ‘loops’
into itself, with one exception, the creation of a new agent shows a screen
with a list of the available agents.

Points of interest

The complete prototype entails quite a few sequence diagrams and a few
hundred lines of code. We could of course list and discuss all of those here,
but this document is big enough as it is. We thought it would be a better
idea if we picked a few interesting sections of code and show how the
mobile agents concept works out in practice.

One thing we did not introduce before was the inclusion of a use case oval
in a sequence diagram. It corresponds to an ‘INCLUDE’ statement in a use
case description. It means that at that point, interaction continues on the
sub use case.

Main screen

Most of the action of the application happens on the main screen. The
main screen shows the user’s agents, and contains the ‘OctarineApplet’. The
sequence diagram for this use case, ‘Show user’s agents’ is as follows:

Mobile user agents framework 157

CreateNew
Agent

—_—
Web OctarineServer:s
:Main < get user agent >
WWUser info
|_| doGet() | \l_/
[7 |
| =

4

| | prepare applet |

| display main screen |

—

T B |

Figure 81: Display of main screen.
The code for this looks like this:

cl ass Main extends servlet

public void doGet(HttpServl et Request
request, H t pServl et Response response) throws
| CExcepti on
{
WebWat cher Cont ext Cont ext =
WebWat cher Cont ext . get Cont ext () ;
Htt pSessi on S = request. get Sessi on(fal se);
if (S ==null)
{
Cont ext . _Engi ne. di spl ay(new Error Screen("No
sessi on"), response);
return;
}
try

{
String UserNane =
(String)S. get Val ue(USERNAVE) ;
Iterator Agents =
Cont ext . _Server. get Agent | nf o(User Nane) .iterator();
Cont ext . _Engi ne. di spl ay(new
Mai nScr een(Cont ext . _Mai nScr eenFi | e, new
StringScreen(User Nane) , new
Agent Dat aScr een(Cont ext . _Agent Dat aFi | e, Cont ext . _Agent
RowFi | e, Cont ext . _SeparatorFil e, Agents)), response);
}
catch (Renot eException E)

{

158 Mobile Agents as a Distributed Application Architecture

7.5.2

Cont ext . _Engi ne. di spl ay(new
Error Screen("Unable to reach Cctarine Server.
pl ease try again later."),response);

}

The first thing the servlet does it getting a reference to the
‘WebWatcherContext’, to get access to all the application specific data.
Throughout this and code you see references to ‘Context._Engine’ and
various ‘Screen’ classes. These are classes to facilitate the display of
dynamic?8 html pages. This design was created before we familiarised
ourselves with Java Server Pages (JSP). If we would have known JSP at the
time, we would have used that instead.

We see the servlet first checking if there is a session, and if not, display an
error page. It then proceeds to get the user name from the HttpSession, and
retrieving the user’s agents from the Octarine server.

The user name, which is also passed to the applet is inserted into the
‘MainScreen’, as well as an ‘AgentDataScreen’ containing the user’s agents.

Agent creation

As the use case shows, the creation of an agent happens in two stages, first
the user is presented with a screen describing all the agents types. The user
selects one, and that an agent of that type is subsequently created. This
reflected in the sequence diagram for this use case.

18 This is dynamic as in containing information specific to the current user,
not in the HTML 4.0 sense of dynamic.

Mobile user agents framework 159

Web
:ShowNewAgents

OctarineServer:
get home info

:CreateAgent

|_| doGet() |

|
|
1

isplay list of agent types

N o

doPost()

display main screen

1]

(

OctarineServer:
create new agent

LAY

Figure 82: Servlets: create agent.

R

So far, nothing special. Two servlets, one responding to the screen listing

the different agents available, and one for creating the agent. The really

interesting stuff happens in the two server use cases. The functionality in

‘get home info’ is a lot like ‘get agent info’, which we’ve already shown
when discussing the main screen. Let’s look into ‘create new agent.’

160

Mobile Agents as a Distributed Application Architecture

)

-

Process .
Border :IOctarineServer :IAgentHome

Remotk Client [

I_‘createAgent(HomelD) |

create :IOctarineAgent

I
I
|
createAgent()
I
I
I

[T |
startagent

I

I

I :

| | | |

| | |

sltart() | |
I
I
I

T
createThread()
]

thead |
1

\/

| start

T i

Figure 83: Server: Create new agent.

There are two things to note about this: first, the use of ‘| AgentHome’ as a
factory for the agent, and second the actual starting of the agent by a
separate thread of the ‘OctarineSpace’ (the base class). The consequence of
this is that while the agent is created, it might not yet be started when
control returns to the servlets. That is something we need to take into
account there.

In code, this is what some of it looks like:

First in the RemoteServer: (The piece of the Octarine Server implementing
the remote interface.)

public class RenbteServer extends
java.rm .server. Uni cast Renot eObj ect inplenents
| renot eSer ver

{
publ i c bool ean createAgent (java.lang. String
Honmel D, String User)

{
| Agent Hone Hone =
(1 Agent Horre) _Ser ver. _Agent Horres. get (Honel D) ;
if (Home == null)
{

Mobile user agents framework 161

_Server. | ogWarni ng("recei ved creation
request for unknown agent honme ID " + HonelD +".");
return fal se;
}

| Cct ari neAgent Agent =
Hone. cr eat eAgent (gener at el D(Honel D), User) ;
if (Agent == null)
{
_Server .| ogError("Agent Hone did not create
an agent");
return fal se;

if (! _Server.receive(Agent))
{
_Server.logError("Server failed to accept
new agent");
}

return true;

}

We see the RemoteServer first creating a new agent using the agent’s home
interface, and then making ‘_Server’ (the actual OctarineServer class)
‘receive’ the agent. This is the same method that is used to send an existing
agent to the Octarine Server. From the point of view of the server, there is
no difference between a newly created agent and an existing one.

The really interesting stuff happens in the ‘OctarineServer’ (or actually its
base class):

public abstract class COctarineSpace extends
Uni cast Renpt eCoj ect i npl ements | Cctari neSpace,
| Renpt eSpace, Runnabl e

{
publ i c bool ean receive(l Cctari neAgent A)
{
| ogl nfo("Agent received for User: '"" +
A getUser() + "'");
synchroni zed (_I ncomni ng)

{
_lIncom ng. add(A);
try
{
_Inconing.wait();
}
catch (I nterruptedException E)
| ogWarni ng("Wait intterupted.");
}
}
| ogl nfo("Agent started for User: '" +

A getUser() + "'");
return true;

162 Mobile Agents as a Distributed Application Architecture

The ‘OctarineSpace’ adds the agent to a list of incoming agents, and then
waits on the incoming list until the ‘OctarineSpace”’s main thread actually
activates the agent. This way, a client can be sure the agent is really running
once the method call ends.

The actual start happens in the ‘OctarineSpace”s main thread:

public void run()

{

synchroni zed(_I nconi ng)

{

Iterator | = _Incomng.iterator();

while (I.hasNext())

{
| CctarineAgent A = (I CctarineAgent)l.next();
_Agents. put (A get AgentInfo()._AgentlD, A);
A start(this);
| ogl nfo("Agent started.");

}

_Incom ng. clear();

_Incomi ng. noti fyAll ();

}

The ‘OctarineSpace’ adds runs through the list of newly added agents, and
then adds the agent to its own internal list of running agents. The agent is
then started, the incoming list is emptied, and all the waiting threads are
notified.

7.5.3 Editing an agent

Responding to the edit request in the servlet and on the server is relatively
straightforward, so we won't show it here. It does get interesting in the
server. Each agent implementation can be slightly different, but sequence
diagram shows how it’s done in the WebWatcher agent, which should be
fairly typical:

Mobile user agents framework 163

Process

Border . .
orde :I0ctarineServer :WebWatcher :OctarineAgent

Remote Client

| [[[[| |
|_| editAgent) | | | | | |

| ey || o

| I i 3 | | |
edit
| | | 41— | |
| | | move(User Space)
: ! =L stop |
| | | move() | ‘ﬁ
(I)
| moveAgent | | | |
4

Figure 84: Edit agent (WebWatcher).

You see that as a result of the edit request, three asynchronous messages get
send: the ‘edit’ the agent sends itself, a ‘stop’ as side-effect to the move, and
a ‘move agent’ as a result of the move request. Here’s how that works out
in code:

public bool ean edit()

{
_Edit = true;
nove(new Spacel nf o(Spacel nfo. ST_USER, _User));
return true;

}

Two things happen: the flag *_Edit’ is set, which will cause the agent to pop
up and edit dialog upon arrival, a ‘move’ is executed, and the ‘Spacelnfo’
constructed in this way means ‘A user space that has that the user of this
agent associated with it.’

Here’s the ‘move’ method, in the base class, ‘OctarineAgent’:

public void nmove(Spacelnfo Sl)

164 Mobile Agents as a Distributed Application Architecture

_Stop = true;
_Space. noveTo(SI, this);

}

The ‘_Stop’ flag is set, and the ‘OctarineSpace’ hosting this agent is asked to
move the agent to the other space. Because the ‘_Stop’ flag is now true, the
agent will stop running after the current beat finishes. This means an agent
also issues the ‘move’ itself, and knows that on the next ‘beat’ it will be in
the new space.

‘moveTo’ in ‘OctarineSpace’:

publ i c bool ean noveTo(Spacelnfo SI, |CctarineAgent
A
{
synchroni zed (_Qut goi ng)
{
Iterator | = _Qutgoing.iterator();
while (I.hasNext())
{
if (((QutgoingEntry)l.next())._Agent == A)
{
return fal se;
}
}
_Qut goi ng. add(new Qut goi ngEntry(Sl, A));
}

return true;

}

The first bit is just to make sure the agent did not already issue a move
request. The core is the *_OutGoing.add’ call that adds an entry to the
‘Outgoing agents’ queue.

What happens to those three messages? Well, each of those gets picked up
by another thread, the ‘stop’ message cause the agent’s thread to stop, as
shown in the code example in6.3.2. The addition of the ‘move agent’ has
the following effect: (In ‘OctarineSpace:run()’, object thread)

synchroni zed(_Qut goi ng)

{
synchr oni zed(_Spaces)
{
Iterator | = _Qutgoing.iterator();
while (I.hasNext())
{

Qut goi ngEntry O =

(Qutgoi ngEntry)l.next();
Iterator 12 = _Spaces.iterator();
while (12.hasNext())

{

Mobile user agents framework 165

Connect edSpace CS =

(Connect edSpace) | 2. next () ;
bool ean Move = false;
//decide if this is the space to nove to..

/] deci sion nmade.

if (Mve)
{
try
{
O _Agent.stop();
if
(CS. _Space.receive(O _Agent))
{
I.renove();
_Agents.renmove(O. _Agent);
}

}
catch (Renot eException E)

{
| ogError (E. get Message());
}

}

It works roughly as follows: for each entry in the queue, the list of
connected spaces is searched for a space that matches the space the agent
has to move to. (The matching logic is omitted because made this code
segment rather long.). If that space is found (move is true), the agent is
stopped, and send to that space. Then this space is cleaned up, by removing
the agent from the queue and from the current agent list.

At this moment, the agent has arrived at its current destination, the user
space. After the agent is activated (as shown in Figure 66), the agents ‘beat
method of WebWatcher gets a chance to run again:

]

protected void beat ()

{
if (_Edit)
i f (_Space. get Spacelnfo()._User. equal s(_User))
{
WA\Panel P = new WAPanel (_URL);
i f (_Space. showbi al og(P))
{
_URL = P.getURL();
}
nove(new
Spacel nf o(Spacel nf o. ST_SERVER, nul 1)) ;
}

166 Mobile Agents as a Distributed Application Architecture

}

If the *_Edit’ flag is set, the agent first checks if it indeed is in its owner’s
space, and if yes, construct a new panel with the URL it is currently
watching. It then asks the user space to display a dialog to the user. If the
user confirmed the change, the current URL is updated. After showing the
dialog, the agent moves back to the server space.

754 WebWatcher at work

The following diagram sequence diagram shows the WebWatcher at work.
If it needs to notify the user, it displays a dialog to the user. Its core
operation is the retrieval of a web page, and moving to the user space if that
page has changed.

Mobile user agents framework 167

WebWaxcher
| AN
| if notify AND
current space ==
| user space
| create :WebWatcherNoti
| T fation
~ I

showDialog()
1

:IOctarineSpace

WWWServer

X

f retrieve page

T

if page changed
move(User Space)
I

_-

=T 1
moveAgelnt

T 1

U

| /

(

Figure 85: WebWatcher at work.

Now the equivalent piece in the WebWatcher’s ‘run’ method:

public class WbWt cher extends CctarineAgent

{

public void run()

{

168

Mobile Agents as a Distributed Application Architecture

755

if (_Notify)
{
if
(_User. equal s(_Space. get Spacel nfo()._User))

{
WebWat cher Noti ficati on P = new
WebWat cher Noti fication(_URL);
_Space. showbi al og(P);
_Notify = fal se;
nove(new
Spacel nf o(Spacel nfo. ST_SERVER, nul 1)) ;

}

try
| ong Val ue = parse();
if (Value !'= _CheckSum
{

_Notify = true;

}

}

catch (Exception E)

{

}

The first should look familiar, it is nearly identical to the code to edit the
agent : if the agent is in its users space, it shows a dialog to the user, clears
the flag that shows triggered the display of the dialog, and moves back to
the server space. Note that both the ‘edit’ and ‘notify’ code are examples of
effectors. You can think of the panels (dialog windows) as the actual
effectors if you will.

The second bit is the core brain of the agent. It makes a call to its one
sensor, the ‘parse’ method, and compares the result of it with the previously
recorded value. If it is different, it set’s the '_Notify’ flag, which in time
triggers the mechanism shown above. The actual code in the parse method
is quite complicated, and involves setting up sockets, initialising HTML
parsers and a few other interesting bits. Its implementation is left as an
exercise to the reader.19

Applet initialisation

The most interesting stuff happens in the ‘init’ method of the applet. This is
where it sets up its user space and registers itself with the Octarine Server:

19 There | We've always longed for an opportunity to say that !

Mobile user agents framework 169

[
Process

:OctarineApplet Border :OctarineServer
init() I
create :AppletSpace |
register()
]

\|/

N\

Figure 86: Applet initialisation.

And in code:

public class CctarineAppl et extends Applet
{

public void init()
{
try

{
Conponent C = getParent();

while (!(C instanceof Frane))

{

C = C getParent();
}

_Server =

(1 Renot eSpace) Nami ng. | ookup(" www. webwat cher . coni Cct
arine/ Cctari neServer");

_Space = new
Appl et Space(get Par anet er (USER), (Frane) C, _Server, _Se
rver. get Spacelnfo());

_Server.register(_Space);
System out. println(_Server. get Spacel nfo()._Type);
}
catch (Exception E)
{

}

170

Mobile Agents as a Distributed Application Architecture

We first see the applet finding the parent frame it is in, since the user space
needs a frame to display dialog windows. It then looks up the server using a
standard RMI call. The user space is initialised with the user ID by getting it
from the applets’ initialisation parameters. Finally, the user space is
registered with the Octarine server. From this moment on, the applet might
receive agents from the server.

7.5.6 Server start-up

The last piece we want to show is the start up of the Octarine server
application. An administrator start the application, which gets the whole
thing rolling:

:RMIReqgistry

Adminisgrator

start

:OctarineGUI

create

:OctarineServer

|

load agent homes

|

load agents

A
I\j

:RemoteServer

I
I
| register()
I
I

I
T | |
I

T
I
I
I
I
I
| create
|
I
I
|
I
I

Figure 87: OctarineServer start-up

This is start-up expands over the constructors of several objects, for which
the code is shown below:

public class CctarineGJ extends Frane

{
public CctarineGQU (String title)
{
try
{

Mobile user agents framework 171

_CctarineServer = new
Cct ari neServer (_LogVi ew) ;

catch (java.rm . Renpot eException E)

{
}
}
This shows the construction of the actual server object in the constructor
of the GUI. The _LogView parameter passed in is a callback that is used to
show log messages in a log message window.

cl ass CctarineServer extends CctarineSpace

public CctarineServer(ILogListener L) throws
Renot eExcepti on, java. net.UnknownHost Excepti on

{
super (Spacel nf 0. ST_SERVER, nul |)
_LogListener =L
| oglnfo("Cctarine Server Initialising");
| oadAgent Hones() ;
| oadAgent s();
try
{

Nam ng. rebind("/ Cctarine/ Octari neServer", this);
}
catch (java. net. Ml formedURLException E)
{
}
loglnfo("Initalizing renote server");
_Renot eServer = new Renot eServer (this);
| oglnfo("Cctarine Server Initialisation

done. ");
}

}

This shows the constructor of the ‘OctarineServer’. The first thing that
happens is the initialisation of the base class. Note that we pass in the type
of space, in this case ST_SERVER. The base class is generic, and doesn’t
know whether it is a server space or not. The next thing that happens is the
loading of the different agent homes available, and the loading of current

172

Mobile Agents as a Distributed Application Architecture

7.6

7.6.1

agents from persistent storage. Finally, the ‘RemoteServer’ is initialised,
which makes this server visible to the outside world.

Conclusion

In this chapter, we showed the design and implementation of a mobile
agents based application. This application consists of two parts: Octarine, a
generic mobile user agents framework, and WebWatcher, a Web front-end
build on the framework, supporting two types of agents. The first agent,
also called WebWatcher, works as a kind of smart bookmark, informing the
user when a certain web page has changed. The second is FileFreak, which
can take care of downloading a large file on a congested network, and then
forward it to the user full-speed.

Design process

For the design of the application, we roughly followed the methodology as
outlined in chapter 4. We started with a high-level description of the
functionality and requirements of the application. From this, we derived
which technologies we were going to use to build the application. In this
case, we chose Java/RMI for the Octarine framework, and servlets and an
applet for the WebWatcher front-end.

We then detailed the functionality of the application in a set of use cases.
These use cases included use cases for user’s using the agents and agents
using the Octarine server and whatever other resources they needed. The
use cases were used to do a first pass of developing the class diagrams for
the application.

For the Octarine framework, we additionally used the mobile agent design
pattern found in chapter 6. As we defined sequence diagrams for all use
cases, we made sure that the use cases could be implemented using the
classes in the object diagram. As we built the sequence diagram, we
modified the class diagram to add or modify methods on the classes that
were needed by the sequence diagram.

At this point, we had enough information to start the implementation of
the application. We highlighted some of the more interesting pieces of
code:

We showed how the main WebWatcher screen, the screen displaying all a
user’s agents, is build by querying the Octarine server and building and a list
of the user’s agents.

An agent is created by selecting an agent type and creating a new instance of
that type of agent. The new agent then by itself decides to move to the
user’s machine and interact with the user directly.

A running WebWatcher agent uses an HT TP socket to retrieve a web page
(only the HTML) from a web server. It then compares a digest of the web

Mobile user agents framework 173

7.6.2

7.6.3

page with a digest made earlier. If the digests are not identical, it asks the
server to be moved to the user’s machine. If the user connects to the server,
it will transport the agent to the user’s machine.

At start-up, the server has to load and activate a set of persisted agents from
disk. Only when they are all activated the server announces its availability to
other machines.

Reflection on the methodology

During the design process, we clearly saw the advantages of the additional
modelling constructs we introduced in chapter 4.

Without allowing agents as actors, describing how the agents interacted
with the server part and other parts would have been awkward. We would
have to include those descriptions in other use cases, were they would have
been out of place.

The sequence diagrams without the double lifelines would have been a lot
less clear, since activations originating from different threads would have
mingled, and there would have been ‘magic’ activations all over the place.

The future of WebWatcher

WebWatcher is at its current state still very much a prototype application.
Still it is useful, and it should be on-line by the time you read this:

http://webwatcher.remmie.com

From a functionality perspective, we would like to create more types of
agents, and would want to be able to run a permanent version of a user
space on a user’s machine, as a stand-alone application. With that in place, it
would also make sense to make the agents or the agent spaces a little
smarter, so they can run on the user’s machine when he or she is on-line.
This could off-load the central server substantially.

Currently the ‘displayDialog’ method is embedded in the main
‘OctarineSpace’ interface. For an architecture perspective, we would want
to design a more generic mechanism for agents to query the capabilities of
the different agent spaces in the system. An agent could then pick an agent
space that can service its needs, and go there. Upon arrival, it should have a
simple, yet dynamic mechanism to access the required capability.

174

Mobile Agents as a Distributed Application Architecture

CHAPTER 8
Conclusions

We have reached the final stage: the conclusions. We first revisit the goals
we set in section 1.3, to see whether we succeed in doing what we set out to
do. Then, in a final conclusion, we state the most important results from
our discussion. We end with some future directions, showing what we
could end up with if we pursue the mobile agents idea even further.

8.1 Goals revisited

In Chapter 1, we established a number of goals, or, more accurately, one
goal and a number of sub goals. These were;

We want to present mobile agents as a distributed application architecture, as a
paradigm for building software systems running on interconnected
computers. We want to present everything agent specific necessary to build such
an application, so we discuss what agents are, what mobile agents are,

how a (distributed) software system can be designed and modelled using
agents, and how an agent based system can be implemented.

Have we reached these goals? We will look at each piece of these goals in
turn:

We want to present mobile agents as a distributed application architecture, as a
paradigm for building software systems running on interconnected
computers.

This goal is addressed in chapter 5, where we show mobile agents as a
distributed computing paradigm, and compare it with several well-known
distributed computing paradigms. This chapter also lists the most important
advantages and disadvantages of mobile agents, and shows several sample
architectures for distributed applications based on mobile agents.

We want to present everything agent specific necessary to build such an
application...

Conclusions 175

8.2

This is of course a fairly bold statement, and impossible to satisfy if taken to
its most general form. However, we worded it like this to emphasise that we
did not just want to have a theoretical discussion on agents, but to take it all
the way to the implementation level. This is elaborated on in the four sub
goals that follow. Indirectly, this goal is satisfied in chapter 7, which shows
the construction of an agent-based application from a general idea all the
way to the implementation.

...we discuss what agents are...

This is covered in detail in chapter 2 and chapter 3. Perhaps in the light of
the overall goal, a little elaborate. However, there, are two obvious aspects
to mobile agents, the mobility, and the ‘agentness’. In chapter 2 and chapter
3, we emphasise the agent aspect, which thus show the possibilities of
autonomous agents, and especially the intriguing possibilities of intelligent
agents.

...what mobile agents are...

We introduce mobile agents in chapter 2, and the full implications of the
mobility aspect are covered in chapter 5.

...how a (distributed) software system can be designed and modelled
using agents,...

We cover the modelling of agent based systems extensively in chapter 4,
where we introduce several enhancements to the UML modelling language
to facilitate modelling using agents. The distributed aspects of this, so
distributed systems based on agents, and mobile agents, are discussed in
chapter 5.

... and how an agent based system can be implemented.

How agents and mobile agents can be implemented is covered in chapter 6,
which also highlights that unless you build everything yourself, it is not yet
possible to get create mobile agents in their most general form.

Final conclusions

We have looked at both agents and mobile agents in detail:

agents

The term ‘agent’ in software has a very broad meaning. We concluded that
an agent is an autonomous piece of software that perceives, reasons, and
acts. This is fairly abstract concept. To make it more concrete, you can give
a certain role to the agent, and that role might vary wildly. ‘Agents’ is more
a perspective, a way of looking at and thinking about software a certain way.
From a software architecture perspective, an agent is just a computer
program. It does become interesting however, when you think of a software
system consisting of several agents, and use that concept to design a larger

176

Mobile Agents as a Distributed Application Architecture

8.3

software system in a certain way. It makes sense to think of a software
system in terms of agents if the system needs to behave (partially)
autonomous and thus asynchronous with respect to its users.

Because agents are autonomous, they need to make decisions on their own.
This makes it very logical to use artificial intelligence techniques for the
agent’s reasoning mechanism. We've illustrated how the BDI (Beliefs,
Desires, and Intentions) formalism can be used to create rational agents that
act quite convincing in their environment and towards other agents.

mobile agents

In contrast, mobile agents are almost purely a software architecture
construct. The concept consists of two parts: the mobile agents themselves,
and mobile agent spaces, which are a hosting environment for the mobile
agents. Building a software system using mobile agents substantially changes
the way an application behaves on a computer network. Instead of having a
fixed, predetermined place where certain code executes, a system build
using mobile agents can freely choose (within limits) where certain code is
executed.

A simple gain from this is that it is possible to dispatch an autonomous task
(the agent) to another computer, and in the mean time the originating client
can disconnect and perhaps reconnect somewhere else. Just like a normal
agent, the mobile agent by itself decides what to do and now also where to

go.

A more advanced gain is that it is possible to optimise execution based on
the current network configuration. Agent spaces can be local access points
to diverse sources of data, with the agents travelling between those access
points to accomplish their task. Those access points can provide very
rudimentary access to the data, because the agents can bring their own logic
to process the data. It is almost the mirror image of traditional distributed
computing. Instead of systems build to lug around large amounts of data
for remote processing, mobile agents move small amount of code and data
around for local processing.

An additional interesting observation is that where it doesn’t make sense to
normal agents for an application with synchronous (user) interaction, it
could still make a lot of sense to architect such a system using mobile
agents. We could make (part of) the user application a mobile agent, and
have it move to the appropriate machines to do its work, and then come
back.

Future directions

We have covered many fairly new topics, most of which are currently
actively researched. This gives us plenty of opportunities to suggest future
directions. For instance, emergent behaviour in adaptive multi-agent systems,
where the system as a whole starts to show behaviour that was not ‘put in’
there, is a fascinating topic. We will restrict ourselves to a few future

Conclusions

177

8.3.1

8.3.2

8.3.3

directions that are in a direct line with the main topic: mobile agents as a
distributed computing architecture:

Agent programming languages

In chapter 6, we've shown how we can implement agents and maobile agents
using existing technology and programming languages. Unless you use one
of the (currently) proprietary and non-general agent languages, you need to
use some sort of framework. While this works, this is similar to writing an
object-oriented program in a procedural language like C. As such, it requires
much more discipline and understanding by the programmer. In addition,
agents need an asynchronous communication method, which is not really
embedded at the language level in current programming languages. In the
case of mobile agents, we’ve seen we cannot move a thread in its current
state to another machine. This means we cannot get the complete semantics
(seamless migration) of the agent paradigm. This could also be solved by
language support for mobile agents.

Some first initiatives have been taken in this step, with the first proprietary
(mobile) agent scripting languages and for instance an agent programming
language in [47]. We would like to see agent support in (a dialect of) Java or
C++.

Asynchronous computer interaction

Most people interact with computer programs in a synchronous way. You
issue a command, wait, and view the result. In contrast, humans often
interact with other humans in a largely asynchronous fashion. If you ask
someone to do something for you, your rarely sit around and wait for this
person to complete this task. Instead, you go and do something else
yourself, and rely on the person to get back to you with the results. If it
takes too long, you would inquire about the task with the other person, who
would be able to tell you how far he or she currently is in completing the
task.

Agents allow us to have the same interaction model with a computer.
However, this might take quite some change on the human side of things.
We would have to learn to ‘trust’ the computer, and we need to find a way
to instruct the agent, to give the agent some high-level description of the
task you want accomplished. In turn, the agent should be able deduce what
you mean, and figure out what assumptions were implicit in your request,
and how it should take care of the details of your request. All in all, plenty
of room for investigations into agent architectures, human-agent
communication, and human-computer interaction.

Improving performance with mobile agents

We’ve shown in section 5.4.2 how mobile agents can give a performance
gain by executing a distributed computation more efficiently. This of course
almost screams for a benchmark test, comparing the same application using
a ‘conventional’ architecture to the same application using mobile agents.
Assuming the mobile agent version gives better performance, it would also

178

Mobile Agents as a Distributed Application Architecture

8.3.4

be interesting to compare the mobile agent version to a fully (statically)
optimised version of the application, to see how much overhead the mobile
agent version brings with it.

Another way to improve performance is using caching, keeping a copy of
frequently needed data ‘near’ an application. Whereas normal systems can
be are optimised using strategically placed caches in various places in the
system, a mobile agents system could (additionally) cache the agent code for
optimal execution. Since code almost by definition changes a lot less often
than data, and the amount of code generally much less than the amount of
data such a cache is much more efficient. If we assume code is cached
throughout the system, then, given a suitably long operation time, we can
ignore the effort lost for moving around code.

Hiding mobile agents

As introduced, mobile agents are yet another way to deal with the
complications of distributed computing. Mobile agents gives a system
designer additional flexibility in designing the system, and at the same time
offers an additional way to improve performance over other distributed
computing architectures. But mobile agents still doesn’t solve many issues
associated with distributed computing. Without help by the surrounding
system, an agent programmer still has to decide when to move the agent. A
first step in the right direction could be an agent application server, which
monitors executing agents and dynamically move them near the data they
need.

We think the best thing would be to completely hide all the distributed
computing complexity from the programmer, and have the system take care
of it. We could build a very clever (Java) virtual machine that makes a set of
networked computers look like one single network virtual machine. Data is
accessible from different physical nodes, but only the network virtual
machine has to know where. The threads in such a system are implemented
as mobile agents, which means they can take their execution with them and
continue elsewhere. Statistical analysis on the executing code could
dynamically determine the optimal execution strategy, which of course can
change depending on network status. If we take this to the limit, we get a
sort of network version of pipelining and branch-prediction as used in
modern microprocessors, not to optimise a single processor, but a whole
network of them. With this in place, we could truly say: ‘The network IS the
computer.’20

20 This phrase is used by Sun Microsystems to describe why we should push
for open standards, why Java is so great, etc.

Conclusions

179

180 Mobile Agents as a Distributed Application Architecture

References

Note: The titles with a * behind them also appear in [1].

[1] Michael N. Huhns and Munindar P. Singh (editors); Readings in Agents.
Morgan Kaufman, San Francisco, USA 1998. http://www.mkp.com

[2] Stuart J. Russell and Peter Norvig; Artificial Intelligence; A modern approach.
Prentice-Hall International, 1995.

[3] Lewton to llsa in Discworld Noir; GT Interactive, London.1999
http://www.gtgames.com

[4] Klaus Fisher, J6rg P. Miiller and Markus Pischel; A pragmatic BDI
Aurchitecture. Intelligent Agents 11: Agent Theories, Architectures and
Languages. pages 203-218. Springer-Verlag 1996.*

[5] Anand S. Roa and Michael P. Georgeff; Modeling rational agents within a
BDI architecture. Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning. pages 473-484. 1991.*

[6] J. Michael Straczynski; Intersections in Real Time. Babylon 5 episode 4.18.
PTN CONSORTIUM 1997. http://www.babylon5.com

[7] Joseph Bates, A. Bryan Loyall and W. Scott Reilly; An Architecture for
Action, Emotion, and Social Behavior. Artificial social systems: Fourth
European workshop on Modeling Autonomeous Agents in a Multi-Agent
World. Pages 55-68. Springer-Verlag 1994.*

[8] Ridley Scott (director) Philip K. Dick(original novel), and Hampton
Fancher; Blade Runner, Warner bros. 1982.
http://us.imdb.com/Title?0083658

[9] Alan Pope; The CORBA Reference Guide. Addison Wesley 1997.

[10] Nathaniel S. BorenStein. Email with a Mind of its Own: The Safe-Tcl
Language for Enabled Email. Proceedings of the IFIP International Working
Conference on Upper Layer Protocols and Architectures. (ULPAA). pages
389-402. 1994 *

[11] E. H. Durfee, D. L. Kiskis and W.P. Birningham; The agent architecture of
the University of Michigan Digital Library. IEE Proceedings-Sofware
engineering, Vol 144, No. 1, Feb. 1997, pages 61-71. 1997.*

[12] Justin Cassel, Catherine Pelachaud, Norman Badler, Mark Steedman,
Brett Achorn, Tripp Becket, Brett Douville, Scott Prevost and Mathew

References 181

Stone; Animated conversation: Rule-based Generation of facial expressions, gesture and
spoken intonation for multiple conversational agents. Proceedings of the ACM
SIGGRAPH Conference. Pages 413-420. Association of Computing
Machinery, Inc. 1994.*

[13] Nicolas Negroponte; Being Digital. 1995.

[14] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, New York, USA 1995.

[15] B. Chaib-draa; Industrial applications of distributed Al. Communications of
the ACM, pages 49-53. Association of Computing Machinery, Inc. 1995.*

[16] Jyi-Shane Liu and Katia P. Sycara. Multiagent Coordination in Tightly
Coupled Task Scheduling. Proceedings of the First International Conference
on Multiagents Systems. Pages 181-188. American Associating for Artificial
Intelligence. 1996.*

[17] Henry Kautz, Bart Selman, Michael Coen Steven Ketchpel and Chris
Ramming; An Experiment in the Design of Software Agents. Proceedings of the
National Conference on Artificial Intelligence. pages 438-443. American
Association for Artificial Intelligence. 1994.*

[18] Brian A. Stone and James C. Lester; Dynamically Sequencing an Animated
Pedagogical Agent. Proceedings of the First International Conference on
Multiagent Systems. pages 181-188. American Association for Artificial
Intelligence. 1996.*

[19] http://www.newhorizons.org/trm_intelligence.html, New Horizons
for Learning, Seattle, WA, USA, 1997. http://www.newhorizons.org

[20] Ramesh A. Patil, Richard E. Fikes, Peter F. Patel-Scheider, Don
McKay, Tim Finin, Thomas Gruber and Robert Neches; The DARPA
knowledge Sharing Effort: Progress Report. Proceedings of the Third
International Conference on Principles of Knowledge Representation and
Reasoning. pages 77-787. 1992.*

[21] Mark E. Cutkosky, Robert S. Engelmore, Richard E. Fikes, Michael R.
Genesereth, Thomas R/ Gruber, William S. Mark, Jay M. Tenenbaum and
Jay C. Weber; PACT: An Experiment in the Integration Concurrent Engineering
Systems. IEEE Computer 26(1), pages 28-38. 1993.*

[22] Ebay Inc. http://www.ebay.com

[23] Terry Pratchett; The colour of magic. Colin Smythe Limited, Great Britain
1983.

[24] Brent Sommers; Agents: not just for Bond anymore. JavaWorld April 1997.
http:.//www.javaworld.com/javaworld/jw-04-1997/jw-04-agents.html

[25] Bill Venners; Solve real problems with aglets, a type of mobile agent. JavaWorld
May 1997. http:.//www.javaworld.com/javaworld/jw-05-1997/jw-05-

hood.html

[26] David Chess, Benjamin Grosof, Colin Harrisson, David Levine, Colin
Parris and Gene Tsudik, Iterant Agents for Mobile Computing. IEEE Personal
Communications 2(5) pages 34-49 1995.*

182

Mobile Agents as a Distributed Application Architecture

[27] Dag Johansen, Robbert van Renesse and Fred B. Schneider; Operating
System Support for Mobile Agents. Proceedings of the 5th IEEE Workshop in
Hot Topics in Operating Systems. IEEE Computer Society Press,
Washington D.C., USA 1995.*

[28] Daniela Rus, Robert Cray and David Kotz; Transportable Information
Agents. Proceedings of the international conference on Autonomous
Agents, pages 228-236. ACM Press, NewYork, USA 1997.*

[29] David Chess, Colin Harrison, and Aaron Kershenbaum; Mabile agents:
Aure they a good idea? IBM Research Report, RC 19887, 1994.

[30] Amazon.com. http://www.amazon.com

[31] Jeffrey S. Rosenstein, Gillad Zlotkin; Designing conventions for automated
negotiation. Al Magazine 29-46. 1994,

[32] Mark R. Cukosky, Robert S. EngelMore, Richard E. Fikes, Michael
R.Genereseth, Thomas R. Gruber, William S. Mark, Jay M.Tenenbaum and
Jay C. Weber; PACT: An Experiment in Integrating Concurrent Engineering
Systems. IEEE Computer 26(1), pages 28-38 1993 *

[33] Yezdi Lashkari, Max Metral, Pattie Maesl; Collaborative Interface Agents.
Proceedings of the National Conference on Artificial Intelligence. Pages
444-449, 1994*

[34] James Rumbaugh, Ivar Jacobson, Grady Booch; The Unified Modeling
Language Reference. Addison-Wesley 1998.

[35] Joseph Schmuller; Sams Teach Yourself UML in 24 Hours. Sams
Publishing 1999.

[36] Mario Tokoro The society of obects. In Addendum to the Proceedings
of the International Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA). Pages. 3-11. 1993.*

[37] General Magic. http://www.genmagic.com

[38] IBM Japan’s aglets. http://www.trl.ibm.co.jp/aglets/

[39] The Object Management Group._http://www.omg.org

[40] Randy Fox; MASIF Revision. The Object Management Group 1999.
http://www.omg.org/cgi-bin/doc?orbos/98-03-09.pdf

[41] ObjectSpace Voyager.
http://www.objectspace.com/products/prod\Voyager.asp

[42] Graham Glass; Overview of Voyager: ObjectSpace’s Product Family for State-of-
the-Art Distributed Computing. ObjectSpace 1999.
http://www.objectspace.com/products/documentation/VoyagerOverview.

pdf

[43] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides; Design
Patterns: Elements of Reusable Object Oriented Software. Addison Wesley
Longman 1994.

[44] Lotus Domino. Lotus Development Corporation 1999.
http://www.lotus.com/home.nsf/welcome/domino

References

183

[45] Philip R. Cohen, Adam Cheyer, Michelle Wang, Soon Cheol Baeg; An
open agent architecture. In Proceedings of the AAAI Spring Symposium on
Software Agents. 1994.*

[46] Enterprise Java Beans. Sun Microsystems, Inc. 1995-2000.
http://www.javasoft.com/products/ejb/

[47] Yoav Shoham; Agent-oriented Programming. Artificial Intelligence 60(1)
pages 51-92. 1993.*

184 Mobile Agents as a Distributed Application Architecture

