Tracking known security vulnerabilities
in third-party components

Master’s Thesis

Mircea Cadariu

Tracking known security vulnerabilities
in third-party components

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Mircea Cadariu
born in Brasov, Romania

.y
4 Delft J
TUDelft 5y -

Software Engineering Research Group Software Improvement Group
Department of Software Technology Rembrandt Tower, 15" floor
Faculty EEMCS, Delft University of Technology Amstelplein 1 - 1096HA
Delft, the Netherlands Amsterdam, the Netherlands

www.ewl.tudelft.nl WWW.S1g.eu

www.ewi.tudelft.nl
www.sig.eu

(©2014 Mircea Cadariu. All rights reserved.

Tracking known security vulnerabilities
in third-party components

Author: Mircea Cadariu

Student id: 4252373

Email: m.cadariu@tudelft.nl

Abstract

Known security vulnerabilities are introduced in software systems as a result of de-
pending on third-party components. These documented software weaknesses are hiding
in plain sight and represent the lowest hanging fruit for attackers. Despite the risk they
introduce for software systems, it has been shown that developers consistently download
vulnerable components from public repositories. We show that these downloads indeed
find their way in many industrial and open-source software systems. In order to improve
the status quo, we introduce the Vulnerability Alert Service, a tool-based process to
track known vulnerabilities in software projects throughout the development process.
Its usefulness has been empirically validated in the context of the external software
product quality monitoring service offered by the Software Improvement Group, a
software consultancy company based in Amsterdam, the Netherlands.

Thesis Committee:

Chair:
University supervisor:
Company supervisor:

Company co-supervisor:

Committee Member:
Committee Member:

Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

Prof. Dr. Joost Visser, Software Improvement Group

Dr. Eric Bouwers, Software Improvement Group

Prof. Dr. Jan van den Berg, Faculty TBM, TU Delft

Assoc. Prof. Dr. Andy Zaidman, Faculty EEMCS, TU Delft

m.cadariu@tudelft.nl

Preface

While the name written on the first page is mine, I am only partially responsible for the
document you are currently holding in your hand. It is the output of many peopole’s efforts
and dedication and I would like to express my gratitude in the following lines.

I would like to thank Prof. Dr. Joost Visser, for welcoming me to conduct my master
thesis in the form of an internship at the Software Improvement Group (SIG) and for
his advice at multiple stages of the project. At SIG, I am very grateful to have had the
opportunity to work closely with Dr. Eric Bouwers, my daily supervisor, whose guidance
throughout the project I sincerely appreciate. I also thank Prof. Arie van Deursen, for his
academic supervision, thorough review of the thesis document and for all the Friday morning
discussions which have always resulted in the discovery of new avenues to explore within
the boundaries of my research topic.

It has been a great pleasure for me to grow professionally and personally in the SIG
environment surrounded by so many highly skilled professionals. A warm “thank you” in
this regard goes to Dennis Bijlsma, Theodoor Scholte and Axel Eissens, who have helped
me with technological aspects throughout my internship and provided me with valuable
improvement suggestions for the thesis document. I would also like to express my gratitude
for the numerous conversations with the members of the research department, which have
always had the result of challenging me with new perspectives. I also grew fond of the spirit
of camaraderie that was present among our team of interns.

Finally, I would also like to thank my parents and my girlfriend Merete, for their
continuous support and motivation.

Mircea Cadariu
Delft, the Netherlands
August 27, 2014

iii

Contents

(1.2 Research Contextl

(1.3 Problem Statement|
1.4 R rch Meth

1.5 Research Questions|

(1.6 Thesis structurel

Requirements for a method to track vulnerable components|

[2.1 Research Subjects|

[2.2 Interview phases|

[2.3 The requirements table|
2.4 Discussion|

2.5 Conclusionl

Vulnerability Knowledge Providers|

I D lection
[3.2 Vulnerability Information Elements|
[3.3 Comparison Matrix|
3.4 Discussionl
[3.5 Interviewing|

3.6 Conclusion|

The Vulnerability Alert Service|

4.1 Process description|

|4.2 The Vulnerability Checker|

|4.3 Vulnerability checker reliability|
4.4 Conclusion|

Known Vulnerabilities in software project dependencies|

[5.1 Research Questions|
[5.2 Software Subjects|

. ooling

AN LN B W

S O 0 00

12
13
13
15
16

18
20
25
29

31
31
32

CONTENTS

[5.4 Maven study design|

5.5 Maven study results|

[5.6 Proprietary projects study design|
I5.7 Proprietary projects study results|
0.8 Conclusion|

|6 Evaluating the Vulnerability Alert Service|
|6.1 Study design|
|6.2 Interview Findings|
|6.3 Observations Findings|
6.4 Discussion|
|6.5 Threats to validity|
6.6 Conclusion|

[7_Related Workl
(/.1 Known Vulnerabilities|

[7.2 Empirical Studies on Known Vulnerabilities|
[7.3 'The Security of Maven Components|

6 Conclusions and Future Workl
[8.1 Answering the research questions|

8.2 Future Workl

B graphy

|A Interview-Requirements Introductory Text]

B_Interview Forml

|C Requirements Formulation and Justification|

[D TInterview - Vulnerability Databases|

ID.1 Introduction|
D.2 Result

32
34
36
36
39

41
44
45
46
46
47

49
50
50

53
55

73
74

List of Figures

|1.1 Projects,third-party components and known vulnerabilities| 2
[1.2 Vulnerability Lifecycle]| 3
4.1~ The Vulnerability Alert Service| 17
|4.2 DependencyCheck scanning process| 22
B3 Exaple POM filq] 24
4.4 Jetty 6.1.20 in the POM file] 24
|4.5 Process for obtaining the ground truth dataset for recall study| 26
5.1 The study execution procedure] 33
[5.2 Frequency Distributions for number of components and number of vulnerable |
| components| 35
[5.3 Vulnerable vs Clean projects with regards to known vulnerabilities in their |
| dependencies| 37
[5.4 Distribution of the number of vulnerable libraries across proprietary software |
| projects| 37
[6.1 ~ Usefulness Evaluation Study Design| 42
(6.2 Usetul vs. Not Useful Alerts| 45

Chapter 1

Introduction

Nowadays, software underpins most of the important transactions that enable current busi-
nesses. These transactions have to be conducted in a safe and secure manner, otherwise
malicious attackers can leverage them to their own needs, which often results in severe
negative consequences for the users and product owners. Damages range from big financial
loss to losing the clients’ trust. One of the most resonating examples to illustrate the potential
losses comes from the electronic payments domain - in 2008, the payment processor of
Heartland Payment Systems suffered from an SQL Injection attack and relinquished access
to 134 million credit and debit cards [Sl]. The company lost 50% of its market capitalization
and spent over $42 million on settlement costs.

Given these potential losses, protection against security breaches is of paramount im-
portance. Traditional security defense mechanisms, such as anti-virus scanners, firewalls
or intrusion detectors, do not directly tackle the security problem, they only “clean up the
mess that unsecure software leaves” [23]. Therefore, these software tools target only the
symptoms of insecure software. Exactly like with the wellness of our health, fighting disease
symptoms, while neglecting the immune system in the long term is not adequate. To improve
the immune system, effort should be invested into developing more secure software in the
first place, through involving strong security awareness right in the software development
process [23]].

The OWASP Top Ten [10] is one initiative that promotes security awareness in the context
of software development. It assembles and describes the most critical software security flaws
that expose applications to malicious threats. Amongst its entries, we find at the time of
writing, Using Components with Known Vulnerabilities [8], as a result of the exploitation
risk they introduce. Despite this guideline, approximately 1 out of 4 library downloads from
the Maven Central Repository features a software component with a known vulnerability
[[75], despite OWASP’s guidelines that suggests avoiding them.

Known vulnerabilities, besides heavily downloaded, are also easy to track by attackers.
To illustrate this problem, consider Shoda a search engine which has been shown to be
useful in identifying Internet-facing industrial control systems [[17]]. In our context, it can
show the specific web server implementations that underpin active web applications. A

Thttp://www.shodanhq.com/, accessed May 2014

1. INTRODUCTION

simple keyword search query on Shodan containing the term Jetty 6.1.1 retrieves the Internet
addresses of 464 hosts that expose their online services using this open-source web server
[67] which features several known vulnerabilities (at the time of writing, associated with this
component are 7 known Vulnerabilitiesﬂ among which one is considered high severityﬂ). The
same mechanism can be used to enlist the machines which are suffering from the Heartbleed
vulnerabilit by querying for openssl. Thus, the ingredients for an automated large scale
exploit that targets hosts which run on third-party software with known vulnerabilities are set.
We can conclude that known vulnerabilities lower the bar for the skill required to successfully
exploit software systems, and malicious attackers do not think twice before exploiting this
low hanging fruit. Actually, studies show an increase in exploits after the vulnerability
disclosure as high as three orders of magnitude [16].

This is the status quo that we aim to challenge. Thus, the goal of this thesis is to propose
a method to continuously track known vulnerabilities in third party components of software
systems and assess its usefulness in a relevant context. The driving thought is that known
vulnerabilities are indeed widespread and easy to exploit, but they can also be leveraged for
benign purposes, such as to improve security awareness and ultimately determine corrective
measures that reduce the opportunity for security breaches.

1 Software
[] Libraries

<uses>
_ -

contain

Software System

Third-party

Known Security Organisations

Vulnerabilities
\

<uses> contain

<uses>
Vv)
N

Internally
Developed
omponents

Figure 1.1: Projects,third-party components and known vulnerabilities

Thttp://mvd.nist.gov/view/vuln/search-results 7adv_search=true&cpe=cpe%3a%2fa%3amortbay %3ajetty %3a6.1.1%3arcO
Zhttp://nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2009-4611
3http://heartbleed.com/

Definitions

1.1 Definitions

Nowadays, software systems include multiple components, some of which are developed
“in-house”, or by third-party organizations. Some of the third-party components have known
vulnerabilities, as shown in Figure[T.T] In this context, we explain known vulnerability and
component as used in the scope of this thesis.

1.1.1 Known Vulnerabilities

L Creation } [Discovervl (Av?‘l(lF:algilﬁtv }

Pre-disclosure Risk

biscl Vendor Patch
Isclosure Patch installed

Figure 1.2: Vulnerability Lifecycle

According to the ISO 27005 standard, a vulnerability is “A weakness of an asset or
group of assets that can be exploited by one or more threats”[34). An asset is “anything that
can have value to the organization, its business operations and their continuity, including
information resources that support the organization’s mission” . Vulnerabilities have
a lifecycle, which starts from its creation when it is introduced in the source code by the
developer, and finishes when a patch for it is installed, illustrated in Figure[T.2][28]. In the
context of this thesis, we focus on the Post-disclosure Risk segment, vulnerabilities that have
been disclosed and therefore considered publicly known. Among these, we consider vulnera-
bilities which have been assigned a CVE identifier, the most authoritative standardization
scheme for known vulnerabilities.

The Common Vulnerabilities and Exposures (CVE) identifiers were introduced in 1999 to
enable interoperability and comparison between the existing security tools at the time [1]] [40].
They are currently maintained by MITRE [7], an American not-for-profit organization that has
the responsibility, among others, to manage the research and federally funded development
centers.

1.1.2 Components

In the literature we can find many definitions for a software component. The most charis-
matic comes from Michael Feathers: “A component is an object in a tuxedo. That is, a

1. INTRODUCTION

piece of software that is dressed to go out and interact with the world” [11]. On a more
pragmatic note, Clements defines it as being “an implementation unit of software that pro-
vides a coherent unit of functionality” [24]]. Additionally, Szyperski stated that “software
components enable practical reuse of software parts and amortization of investments over
multiple applications” [[10].

Within this thesis, we focus on third-party software components as an instantiation of the
definitions provided by Clements and Szyperski. Therefore, we target components developed
within an external organization. They may be proprietary or open-source. Examples of
commonly used third-party components belonging to the Java ecosystem include libraries
such as Log4 but also frameworks such as Apache Strut We use Martin Fowler’s
definition of libraries and frameworks [?]:

A library is essentially a set of functions that you can call, these days usually organized
into classes. Each call does some work and returns control to the client.

A framework embodies some abstract design, with more behavior built in. In order
to use it you need to insert your behavior into various places in the framework either by
subclassing or by plugging in your own classes. The framework’s code then calls your code
at these points.

1.2 Research Context

The research presented in this thesis has been conducted within the Software Improvement
Group (SIG), a consultancy company based in Amsterdam, the Netherlands. Among its
services, it provides Software Risk Assessment [72], Software Monitoring [38] [39] and
Security Risk Assessment [77]. The professionals that enable SIG’s consultancy services
take the role of external quality evaluators for the software systems developed by the
client companies. The client companies range from banks to national public transportation
companies and governmental organizations.

The Software Monitoring service is used to track the evolution of the product quality
indicators throughout the software product’s development lifecycle [15]. At regular intervals,
representatives of the client companies upload the most recent version of the code base.
Alerts are produced on the detection of noteworthy maintainability specific measurements
deviations from the previously uploaded snapshot.

The alerts are aggregated in a user interface called the Monitor Control Center (MCC).
The MCC is staffed by technical consultants who after validating alert usefulness proceed in
conducting a root cause analysis of the signalled quality deviation. In case the root cause
analysis results in concrete and actionable findings, the technical consultants proceed to
communicate them to the designated responsibles within the client company.

Thttp://logging.apache.org/log4j/2.x/
Zhttp://struts.apache.org//

Problem Statement

1.3 Problem Statement

We formulate our research goal using the the Goal/Question/Metric template [[14]:

In this project, we aim to improve the the process of detecting security vulnerabilities in
software projects caused by known vulnerabilities in projects’ third party components, from
the viewpoint of a software evaluator, in the context of evaluating external software systems.

In the context of external quality evaluations, investigations to find vulnerable compo-
nents are tedious due to the moving parts inherent to the process — a multitude of projects,
programming ecosystems, components and vulnerabilities.

The pull-based method in which, at regular intervals, projects are proactively inspected
does not scale for this context. What scales, is the opposite approach, push-based, in which
events are generated that draw attention to the elements worthy of investigation. In line with
the maintainability oriented approach described in Section these events can be called
vulnerability alerts, and can signal the presence of a known vulnerability in a dependency
used in a software project. Our aim is to construct a tool-based mechanism that produces
such alerts to occur and evaluate their added value in our research context.

We consider the research to be successful if we gather enough evidence to support
the claim that the generated events are useful for the context from which they emerged.
Evidence of usefulness are indicators that the process has indeed improved, at least in terms
of efficiency, as parts of the process have been automated.

1.4 Research Method

Research activities in software engineering are differentiated by the type of problem they
tackle [26l]. With knowledge problems, the research approach entails collecting evidence
that fails to refute knowledge claims, through using, for example, controlled experiments
in which theories are probed. The other type of research topics are the so-called practical
problems, solved in a specific context, but for which analysis is conducted to understand the
potential to be generalized across the immediate research context. Our research task matches
the latter case. Therefore, we employ its corresponding research method.

Following Wieringa et al.’s guidelines for reporting on a practical problems [[73]][[74]],
we separate the research process in four phases: (1) problem analysis, (2) requirements
analysis, (3) solution design and validation and (4) solution evaluation. We group the research
questions according to these steps.

1.5 Research Questions

Our main research question is:

e How can we automatically produce useful alerts triggered by vulnerable compo-
nents found in software projects?

In turn, answering this question means answering the following sub-questions:

1. INTRODUCTION

e Requirements Analysis

— Which design considerations are important for methods to track components
with known vulnerabilities?

e Solution Design and Validation

— Where can we find vulnerability data?

— How can we produce alerts on discovering vulnerable components in software
projects?

e Solution Evaluation

— Are the produced alerts useful within the research context?

1.6 Thesis structure

Each research phase introduced in Section |1.4|is discussed in a separate thesis chapter. This
chapter is the output of the Problem Analysis phase. In Chapter 2, we present the important
design considerations that emerged from the Requirements Analysis research phase. In
Chapter 3, we survey the sources from which vulnerability information can be obtained
through manual or automatic means. The Vulnerability Alert Service, our tool-based process
to track known vulnerabilities in third-party components of software projects in the context
of external software quality monitoring is presented in Chapter 4. The rest of the chapters
contain empirical studies that focus either on the prevalence of the problem of depending
on components with known vulnerabilities in practice or on the usefulness of the proposed
solution in the research context.

Chapter 2

Requirements for a method to track
vulnerable components

Using the GQM method template [14], we define the second phase in our research project:

Our goal is to understand the important requirements for solutions to track vulnerable
components from the viewpoint of external quality evaluators in the context of external
software quality evaluations.

The mechanism through which we gather this information is interviews with the potential
users of the method selected from our research context. Researcher-administered interviewing
was selected as a method as it is a efficient way to capture the users’ opinion on the matter.
We borrow Polychniatis’s interviewing procedure as it was put in practice with good results
within the same context [53]]. This chapter presents the outcome of this study.

2.1 Research Subjects

The SIG consultancy services are executed by two types of professionals: technical and
general consultants. Technical consultants analyse software and report (technical) findings.
To reduce the workload an alert service performs an automated scan for noteworthy changes
every time new source code is uploaded, as descrined in Section Together with the
general consultants they translate these findings into practical advice for customers. Four
technical consultants and three general consultants were selected to participate in this stage
of the research process as subjects. The (slightly) larger number of technical consultants
compared to the number of general consultants can be attributed to the fact that monitoring
the presence of known vulnerabilities in third-party components of software projects falls
under the responsibility of the technical department and is in its nature a technical aspect
of software development. Nonetheless, we also wanted to capture the general consultant’s
opinion on the matter, so we also invited a comparable number for our interviews.

7

2. REQUIREMENTS FOR A METHOD TO TRACK VULNERABLE COMPONENTS

2.2 Interview phases

Each interview meeting consisted of three phases: an introduction phase followed by two
phases, one for gathering requirements and one for their prioritization. Interviews were
limited to 30 minutes, in order to focus the discussion and favor gathering the top of mind
requirements which would be considered the most important. In the next sections, we provide
details on the interview phases.

The introduction phase begun with the author’s personal introduction, for the purpose
of the interviewee getting acquainted with the interviewer. This was followed by a short
introduction of the research project aims and the goals of the current interview (the inter-
viewee received the introductory text included in Appendix [A]). This stage ended with a
question/answer period in which the interviewee could clarify any doubts. After all questions
were answered and the interviewee understood the context and the purpose of the current
activity, the interview progressed to the next stage. This introductory phase lasted for a
maximum of 5 minutes in order to allow enough time for the subsequent phases which
involve collecting research data through their responses.

The next stage had the purpose of establishing the requirements of the solution. The
form included in Appendix |B| was used. Firstly, the interviewer stated the question from
the form, and wrote down the interviewees responses in the form’s table. This phase was
constricted to 15 minutes, to allow ample time for the prioritization phase.

The final stage of the interview aimed at assigning priorities for the requirements, using
the MoSCoW method [51]. This method was chosen because it provided a structured
procedure for requirements prioritization. In addition, it is a well-known approach in the
research context, so using it removed the need for explanations. For each requirement
gathered in the first phase, the consultant assigned one of the following labels next to its
entry in the table:

e MUST (M)- A requirement that was highly important for the solution to be considered
a success.

e SHOULD (S)- An important requirement for the solution, but not vital to its success.
e COULD (C)- A “nice to have” requirement — not necessary but desirable.

e WON’T (W)— A requirement which had been agreed not to be integrated in the
prototype artifact, but could be considered in the future.

This step lasted until the end of the interview, therefore it was constrained to 10 minutes.
This time frame proved to be too large, as the subjects in most cases went through the
requirements list and assigned the priorities almost instantly.

2.3 The requirements table

An overview of the results from this research phase is presented in Table Each column
represents the subjects’ responses and each row presents the requirements gathered from the

Discussion

GC1 | GC2 | GC3 | TC1 | TC2 | TC3 | TC4
Up-to-date and reliable data source | M M M M M M
Filtering M S M S M
Multi-language support M S M M
Automation M S M
Scalability M M C
Severity Level M M
Ability to extend the data source S C C
Upgrade Suggestion S C
Ease of use S S
Upgrade Consequences W C
Accuracy M
Confidentiality M
Robustness C
Proprietary libraries C
Extensible to other technologies S C

Table 2.1: Requirements and their prioritization by consultants

interviews. For a detailed description of each requirement, we refer the reader to Appendix
When multiple consultants expressed the same demand with different wording, we merged
the description into a single representative term and searched for an established definition.
For example, when the interviewees said that libraries and known vulnerabilities should
“provide a usable ratio between true positives and false positives”, we considered that they
were referring to the concept of accuracy.

In each table cell, we inserted the priority rating — assigned by the consultant (represented
in the current column) to the requirement (represented in the current row). To be able to
rank the requirements according to their “general priority” in the table, we converted the
four priority levels pertaining to the MoSCoW method, to their integral number counterparts
(values ranging from 1 to 4). We then summed up all the cells in which the consultants
mentioned the respective requirement and assigned it a priority. After we obtained a sum for
all the requirements, we used this value to sort the requirements accordingly.

2.4 Discussion

From the consultants’ responses we observed that the most important requirement was to
base the solution on a high quality data source (up-to-date and reliable).

Through interviewing at SIG we also discovered a requirement that we would have not
thought about without being involved in the context of use. In the consultancy practice,
non-disclosure agreements are signed which disallow the consultants to offer information
regarding the subject software systems to third-parties. This brought up the confidentiality
requirement, where we were explicitly requested to only process information on SIG premises.

9

2. REQUIREMENTS FOR A METHOD TO TRACK VULNERABLE COMPONENTS

This means avoiding any external calls with information from the software systems, because
that leads to unwanted information disclosure towards third parties.

A rather surprising insight from the gathered data was that only one consultant (technical)
suggested accuracy to be a requirement. An important prerequisite of useful solutions are
signalling vulnerabilities in libraries which indeed are part of the input software systems. An
explanation for this omission might be that the consultants took the accuracy of the output
for granted, so they were inclined to think about more “compelling” requirements, instead of
correct matching to start with.

We also learned that filtering was another important function for the consultants. It was
expressed by the majority of subjects with high priority levels. Filtering allows the users
to flexibly declare which alerts are interesting and should be signaled or should be omitted.
Also, a smaller number of consultants selected multi-language support to be a high priority
requirement, which derived from the fact that they work with projects written in various
programming languages.

Scalability was suggested by half of the consultants, but each time with high priority. It
was proposed more often by technical consultants than general consultants. This is because
as technical consultants, they targeted their requirements not only on the function of the
tool, but also on construction attributes of it. Another example of the difference in focus
was the fact that more general consultants than technical consultants proposed the feature
of upgrading to a newer version of an outdated library, with a known vulnerability. They
desired firstly an indication that a newer version exists, and information on the consequences
of a possible upgrade.

2.5 Conclusion

In this chapter we presented the requirements for solutions for tracking known vulnerabilities
in software projects in the context of external product quality monitoring. We will use it in
the subsequent research steps as a frame of reference for screening relevant technologies.

10

Chapter 3

Vulnerability Knowledge Providers

We learned during the research step presented in the previous chapter that the most important
requirement for methods to track known vulnerabilities in software projects is to use an
up-to-date and reliable data source. This shows the importance of the quality of the data
source in the context of external software product monitoring. Therefore, we have conducted
a survey and comparison of the active publicly available vulnerability providers in order to
understand the current landscape with its viable options in the light of this requirement. We
also conducted an interview in order to understand what are the most important elements
that these vulnerability knowledge providers offer in order to obtain another reference point
useful for their critical evaluation. The findings of the interview along with the survey
are used to define the vulnerability data source that we will use throughout our research
project. This study was conducted also by Roschke et al. for a different purpose, attack
graph construction [59].

3.1 Database Selection

We obtain the databases set through a search engine using the query vulnerability database
(January 2014). We include every resource that we could find in which individual vulner-
abilities are stored in a structured manner. The vulnerability databases that we found and
included this study are:

e National Vulnerability Database (NVD) from NIST [49]

the Open Source Vulnerability Database [52]

e VDB from DragonSoft [25]

the advisories from Secunia [63]]

Symantecs SecurityFocus database [69]

Securiteam database [64]]

IBM Internet Security Systems XForce database [32]

11

3. VULNERABILITY KNOWLEDGE PROVIDERS

e Rapid7 vulnerability and exploit database [58]
e Carnegie Mellon‘s Software Engineering Institute Security Notes [[63]]

e HPI-VDB from the Hasso-Plattner-Institut [4]]

3.2 Vulnerability Information Elements

The vulnerability information elements are the names of the columns provided by the
vulnerability databases. We created the set of total vulnerability information elements
by collecting all the unique column names of our set of vulnerability databases. Each
description is taken from the vulnerability database documentation where existent, otherwise
we investigated a number of entries in order to be able to assign a relevant description.

o CVE identifier — uniquely identifies vulnerabilities across databases, described also in

Section[1.1.1](e.g.: CVE-2013-21637))

o CWE identifier - Common Weaknesses and Exposures identifier, it is used to label
vulnerability fypes [3] (e.g.: Missing Encryption of Sensitive Dat

e Impact - the type of attack that the vulnerability allows (e.g: Denial of Service)
e CVSS - the severity of the vulnerability [43] (e.g.: high)

e Description - a textual description of the vulnerability (e.g.: Cross-site scripting
(XSS) vulnerability in web/servlet/tags/form/FormTag.java in Spring MVC in Spring
Framework 3.0.0 before 3.2.8 and 4.0.0 before 4.0.2 allows remote attackers to inject
arbitrary web script or HTML via the requested URI in a default actiorﬂ)

e Solution - the solution to eliminate the vulnerability, e.g.: upgrate to the subsequent
minor version

e Attack From - where does an exploiting attack originate from (e.g.: remote site)

e Popularity - the number of people that viewed the vulnerability entry in vulnerability
database (for web-based interfaces)

e Discoverer - the entity or person that discovered this vulnerability

e Loss Type - the type of negative consequence that happens upon a successful exploit
(e.g: Availability, Confidentiality, Integrity)

o Similar Vulnerabilities - Other vulnerabilities which have been identified to be similar
with the current vulnerability

Uhttp://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2013-2165
Zhttp://cwe.mitre.org/data/definitions/311.html
3http://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2014-1904

12

Comparison Matrix

e OS - the target operating system

e CPE id - the common platform enumeration identifier which is used to identify
applications by specifying its vendor, product identifier and version, among others [21]
(e.g.: cpe:/a:springsource:spring_framework:3.0.1)

e Vulnerable Software - other ways for identifying vulnerable applications, other than
using CPE ids.

o Publishing Date - the date at which the vulnerability was introduced in the database

e Date Public - the date at which the vulnerability was disclosed by the vendor or other
entity

e Date Last Update - the date at which the entry in the vulnerability database was
modified

e Discovery Date - the date at which the vulnerability was discovered

e References - links to external urls, such as the vendor web page where the vulnerability
was first announced (e.g.: the link to the the bug tracker entries that developers created
for the vulnerability)

3.3 Comparison Matrix

Using the vulnerability information elements presented in the previous section we create a
Comparison Matrix presented in Table[3.1] In addition, we include in the table the number
of vulnerability elements, the number of records and whether or not the database maintainers
offer an XML export or other machine-processable means of consuming the data. We include
the XML export aspect aligned with the automation requirement presented in the previous
chapter.

3.4 Discussion

As we can see from the Comparison Matrix, some vulnerability databases identify their
contents using the standardized CVE identifier, while others use their own custom way.
Among these, some do however reference the respective CVE entry for the vulnerability in
the References.

Half of the vulnerability databases specify the impact of the vulnerabilities, thereby
providing the means to categorize the vulnerabilities according to the type of attack they
allow for (e.g: Cross-Site Scripting, Denial of Service). The majority of databases (7 out of
10) provide the severity of the vulnerability, by giving the standardized CVSS score used to
rate the severity of vulnerabilities [2].

Half of the vulnerability databases contain the “Attack From” element which states the
locality from which the attack allowed by this vulnerability could be expected - local or
remote.

13

3. VULNERABILITY KNOWLEDGE PROVIDERS

saseqere(q AIN[Iqeiau[nA :1°¢ 9[qeL,

ou

ou

ou

ou

ou

ou

ou

ou

ou

Sok

10dxa TINX

8LS8S

LE688

0268S

LSYS

1€L8Y

26001

L1268

SPI09AI JO "IN

01

el

el

‘[U[nA Jo IN

X

SAOURIJY

arepdn 1se1 QeqQ

dnqnd areq

R | R K

iR Rl Rl Ll

aeq Surystqnd

el Rl ke

Jos "u[nA

M| | X

darddo

SO

SU[nA Je[rurg

o

odA£y, Kyiqerournp

>

odA], sso1

JOISA0ISIq

fyremndog

woI] Joeny

uonn[os

ARl R R Re

uonduosaq

SSAD

M| XK

M| X

AR R A R A R A R R e

M| | R

joeduy

X

drdmD

X

X

X

X

X

X

drdAD

ddAIdH

IHS LdHD

Lpudey

9010-X

W[1INd9S

SNO0JAIINDAS

jjoguogeid

BIUNDOS

d4dASO

dAN

14

Interviewing

Out of all the databases, only two do not provide a textual description of a vulnerability.
This description could be used in order to understand, among others, the context of the
vulnerability, such as the preconditions or the postconditions of an attack. A description
of the solutions that could be applied to remove the vulnerability is included in all but the
SecurityFocus and SecuriTeam databases, this usually means a suggestion to upgrade to a
specific version in which the vulnerability was removed.

Two databases, Secunia Advisories and OSVDB propose a Popularity indicator, which
represents the number of times the web page for a specific vulnerability entry was displayed.

With regards to referencing the affected software by each vulnerability, most of the
databases have their own way of identifying the affected software, only NVD and HPI-VDB
use the standardized CPE (Common Platform and Enumeration) identifier.

Almost all the databases include the Publishing date, which means the date in which the
specific vulnerability entry was introduced in the database.

A smaller number of databases includes in addition the Date Public field, which could be
used to retrieve the date at which the vulnerability was firstly officially disclosed.

The Date Last Update value could be found in 6 out of the 10 considered databases, and
represents the date at which the specific vulnerability entry in the database was modified.

The NVD database from NIST is the only one which provides an XML export with
the database contents. The other databases provide only web browser access, therefore
leveraging the information contained in them would involve an intricate process which
includes HTML scraping. This brings forward the intuition that the other providers do not
publish their data to be retrieved programatically, even if they make it available to the public
through the browser.

Given the initial impression after the analysis, the NVD database seems a prime candidate
to be used as the data source for vulnerability information that we can use for the rest of
our research project. But this brings the question whether we miss out on some information
by not including the information from the other databases. What exactly can we miss
out? Firstly, the descriptive power of the vulnerabilities stored in the NVD database can
be increased by matching on the CVE identifier in multiple databases and augmenting
the vulnerability information elements in the NVD with the elements present in the other
databases for that CVE identifier. For example, the NVD CVE vulnerabilities do not contain
a Popularity attribute, but we may be able to provide it by linking with other databases by
CVE id. Secondly, in the other databases, there are entries that are not labeled with a CVE,
so including only the NVD database as knowledge provider could limit the total number of
vulnerabilities that can be retrieved.

3.5 Interviewing

In order to validate our choice, an interview was set up with an SIG consultant with extensive
experience in security assessments. We wanted to find out which are the most important
vulnerability information elements and see how many of them are contained in NVD.

15

3. VULNERABILITY KNOWLEDGE PROVIDERS

3.5.1 Design

The interview model employed is based on the MoSCoW [51]] method, because it provides a
structured approach to acquire data for prioritization pruposes. The elements that have to
be rated by the interviewee are all the possible vulnerability information elements that are
present in the range of vulnerability databases, which we are interested in understanding
their priority and hence their importance.

3.5.2 Results

The result of the interview is present in this documents Appendix [D} For the NVD database,
the interview subject gave the responses leading to the following aggregated results:

e MUST - 2/2 of the MUST elements are present in NVD
e SHOULD - 4/7 of the SHOULD elements are present from NVD
e COULD - 7/9 of the COULD elements are present from NVD

e WONT - 0/1 of the WONT elements are present from NVD

3.6 Conclusion

The conclusion that stems from this analysis is that we can confidently use the NVD database
throughout the rest of our research. The NVD contains most of the important vulnerability
information elements that describe a known vulnerability, so motivation to devise a solution
for unifying the vulnerability databases is supported only for the quantity of vulnerabilities
consideration.

16

Chapter 4

The Vulnerability Alert Service

In this chapter, we present the Vulnerability Alert Service, an event-based process for tracking
third-party components with known vulnerabilities in software projects throughout their
development.

We start this chapter with a series of steps which form the basis for the process. Some of
them are automated by a software application — a vulnerability checker, which we present
after the process steps. For presenting the vulnerability checker, we firstly show the rationales
involved in selecting one solution among the few alternatives identified. We then show the
way we extended it in order to be applied in our research context as part of the Vulnerability
Alert Service. Finally, we show the results of an assessment of the software tool with regards
to its reliability for the purpose of identifying vulnerable components in software projects.

Vulnerability Checker

Extract
dependency
Software Information Alerts
Project
 —
List of d d
Vulnerability R
Disclosures ‘
S
Matching
Legend dependencies with
vulnerability data
Data
b Operator
rocesg
Step

Figure 4.1: The Vulnerability Alert Service

17

4. THE VULNERABILITY ALERT SERVICE

4.1 Process description

The process is illustrated in Figure As process input we have two elements: a software
project and vulnerability data. Using Fawcett et al.’s activity monitoring problems [27)]
terminology, the inputs are derived from the positive activity indicators. For our context,
these are: a project is found to include a library with known vulnerabilities, or a vulnerability
was disclosed that is found to affect one of the libraries of the monitored projects.

This input is destined for the vulnerability checker which has two tasks: extract de-
pendency data, recognize them and match them with known vulnerabilities. The software
projects are input for the extracting task, which produces a list of recognized dependencies.
This list and vulnerability disclosures are input for the matching task.

Upon a successful match, the application generates an alert, which is consumed by a
human operator. After acknowledging them, the operator proceeds to filter the alerts based
on usefulness, and then reports them to the interested party.

After presenting the overall process, we proceed to explain the tasks of extracting,
recognizing and matching.

4.1.1 Extracting dependency data

We can extract dependency-related information from software projects from multiple sources.
Consider for example Java projects. We can use any of these sources, depending on the state
of the input project:

e bytecode — the set of instructions to be executed on the Java Virtual Machine resulted
by translating the Java application’s resources into executable format by the Java
compiler. It integrates the instructions originating from the custom code, but also from
the third-party code from which we want to extract dependency information.

e JAR files from the project’s directory — archive files to distribute Java resources to
be used in software projects. These can be used for gathering information about the
presence of third-party libraries and frameworks within the software application’s
filesystem directory. Relevant content can be obtained from the code contents or
manifest (documentation) files.

e import statements in source code — Java’s mechanism to include functionality from
different source files into the current source file.

o build manifest files — these files are processed by build management applications
when projects are being built, and they mention third-party dependencies in specific
locations.

The first approach intuitively implies that we are matching by “content”, so matching
on subsets of the application code. The second and the third imply that we try to match on
application “name”. The next step after extracting information from either of these sources
is dependency recognition.

18

Process description

4.1.2 Recognizing dependencies

Recognizing dependencies means translating the dependency list that was received after the

extraction process to a list of CPEs. The CPE identifiers are described in detail in [22]. For

example, the CPE identifier for the Java library Apache Commons FileUpload is:
cpe:/a:apache:commons_fileupload:1.0.

In the case we extract information from imports or build manifest files, we are working at
the same level of abstraction with CPEs — application names. If we want to use the bytecode,
then we are working with one level of abstraction lower. In this case, we have to determine
from which third-party component (represented by its CPE name) do specific code fragments
come from. One solution may be to build binary search engines such as Rendez-Vous, by
Khoo et al. [36].

Given these two possible approaches we selected name matching for the task of automat-
ically identifying vulnerable libraries. We weighted a set of positive and negative arguments.
We took into consideration the following positive arguments:

e the approach is more lightweight — less data to be processed and stored than when
working with snippets of binary code

e it removes the need to always obtain the source code of an application for which a
vulnerability is disclosed

e avoid the need to abstract from language-specific elements (e.g: compiler specific
meta-data in binary code)

The trade-off that we have to make is in terms of accuracy. Using the name-based
approach may result in for example, false positives as a result of naming incoherences. When
there are less elements used to describe a successful match (only applications names), then
it is harder to provide an accurate system than when with many elements (sets of bytecode
instructions belonging to applications).

At this step, we do not make reference to the requirements established in Chapter
Those are requirements for the integrated solution which includes the process. Here, we
address a trade-off that has to be made in the context of a specific part of the tooling that
automatically matches project dependencies with their known vulnerabilities.

4.1.3 Matching dependencies with known vulnerabilities

Each known vulnerability in the NVD database XML export specifies the application in
which it appears, using the CPE identifier. Therefore the next step from the list of CPEs to a
list of vulnerabilities can be constructed by retrieving all vulnerabilities for a specific CPE.

This name-based approach could be used, theoretically, across language ecosystems,
as names of applications represent invariants — many programming ecosystem guidelines
recommend using build management software in which dependencies are declared in build
manifests.

19

4. THE VULNERABILITY ALERT SERVICE

4.2 The Vulnerability Checker

Efficiency is increased through automation, and we have two options for integrating automatic
vulnerability checking in our process. We can either build a software tool that satisfies the
identified requirements from scratch, or we can conduct research to see what the state of
the art has to offer and select one from the available options. We have chosen the latter,
as the focus of the research study was to investigate the usefulness of monitoring projects
for known vulnerabilities using alerts in the given research context and not on building a
perfect tool. In order to make a tool selection, we have first created an inventory of existing
proprietary and open source alternatives for the vulnerability checker.

4.2.1 Alternatives

To identify existing proprietary tools, we used the following search query in the Google
search engine: scanner known vulnerabilities in third party libraries. The first 150 result
pages were inspected in detail. We also explored the links present in this set of result pages.

In order to find open-source alternatives, we used Github, a widely used web-based
hosting service for open-source software development. To keep the search generic, we used
the term “cve” in the search interface, receiving 257 results. We have analyzed the retrieved
suggestions and eliminated the ones which were not considered relevant to our use-case (the
ones which do not feature repositories for projects that are related to known vulnerability
scanning). We were left with 17 open-source projects that were considered relevant, and
added to the candidates list.

4.2.2 Selecting one of the alternatives

We have created two tables based on the alternative solutions. In the first table, the columns
represent the requirements that we previously gathered from the research context. In the
second table, the columns represent indicators of open-source project activity. The activity
was assessed by looking at three elements: how many users are subscribed to repository
changes notifications (watch and starred counters), how many people forked the repository
(the operation in which users start their own projects using the repository’s current state
as starting point), the number of pull requests in the past month, the number of commits
in the same time frame and the number of users which contributed throughout time to the
repository.

The first decision we took was to discard the proprietary solutions. Due to licensing
issues, using proprietary software would make it difficult for other researchers to reproduce
experiments presented in this research document. Speaking about experiments, proprietary
systems would also not allow potential needed modifications that would actually allow
experiments. Furthermore, proprietary systems do not enable us to learn about the underlying
method they use for implementing their features.

Using open-source software eliminates these problems. Therefore, we have decided to
adopt an open-source solution for our research. The specific tool that was selected is a result
of investigating the extent to which each open-source option satisfies the requirements (trace

20

The Vulnerability Checker

requirements to specific constructs in the source code) gathered from the research context
and how active it is. We decided that robustness should not be evaluated properly by only
looking at the source code, therefore we could not include it in our analysis results. For an
overview of these and the requirements-related considerations, we propose the tables on

page

Inspecting the tables we see the following trend: there are two categories of requirements.

The categories are evidently separate. The first category encompasses requirements which
most of the tools have: up-to-date data source, automation, ease of use, confidentiality. On
the other hand, the second group contains requirements that almost none of the alternatives
have: filtering, scalability, upgrade suggestions, upgrade consequences. These requirements
could be taken into consideration by tool builders, as our research shows that there is strong
interest in them, but at the moment tool builders do not consider them within the scope of
the tools they are developing. Feature-wise, OWASP Dependency Check contains most of
the features that we gathered from our research context.

Based on this analysis, we have selected OWASP’s Dependency Check to be used as a
vulnerability checker as it distinguished itself among the alternatives, as it features most of
the requirements and shows signs of a relatively active development community.

.

Application name Up-to-date DS. Filtering Multi-1 Ease of use Ext

tion Scalability

ible to other 1

SHdS

=)

Dependency Check v v v

Red Hat Victims

SafeNuGet

Retire JS

RubySec

CVE Search

Fidius

NENE

CVE Checker

ArchCVE

!

Rails CVE Engine

CVE Search Ruby

CVE Easy

| | |
AR RN
|
ARAE
B R R R R R R R AR
|

v
v
v
v
v
v
v
v
v
v
v

|
4!
NN

CVE Watch

£9

Application name Severity tiality Upgrade sugg. Upgrade cons. Accuracy

Robustness

Proprietary libs.

Dependency Check

SN

Red Hat Victims

SafeNuGet

Retire JS

RubySec

|
|
NESENENENE

CVE Search

Fidius

ENENANE
NENENENE

CVE Checker

ArchCVE

|
|
NENENE

Rails CVE Engine

I ENENENENENENENENENENfe
|
|

CVE Search Ruby

NENENENE
|

CVE Easy

2| 2| 2| 2| 2| 2| 2| 2| o o o | -

|
<!

|

|

|

CVE Watch

Commits/last month Comitters
40 6
5

Application Name Watch | Star | Fork
Dependency Check 27 62 31
Red Hat Victims 9 3 9
SafeNuGet 10 8 3
Retire JS 25 363 19
RubySec 56 180 27
CVE Search 10 33 21
Fidius 3 15 8
CVE Checker 5
Arch CVE 2
Python CVE Tracker 1
1
1
2

Merged Pull reqs/last month

-

(=]

—_
0

21

Rails CVE Engine
CVE Easy
CVE Watch

o|lo|o|o|o|o|o|of & of of o] w
[= =] =] o 0] wof ro] =| o] o

[=] el o] ol Rl o Rel el ol il 5]

4. THE VULNERABILITY ALERT SERVICE

4.2.3 OWASP Dependency Check

Legend

Knowledge
Base

Inverted
Index

Project source files dir

dependencies

Dependency info. collection

Dependency information

dependencies

CPE Identifier collection

v

q CPEs P

dependencies

Y

Vulnerabilities collection

Vulns
Database

C Vulnerabilities ?

Figure 4.2: DependencyCheck scanning process

OWASP Dependency Check fits into the Vulnerability Alert Service process as the
vulnerability checker application. It overlaps with the extract dependency data, recognize
dependencies and match dependency with known vulnerabilities steps outlined in Figure 4.1}
In terms of its software architecture, Dependency Check resembles the Pipes and Filters
pattern. The scanning process is represented graphically in Figure[d.2] The data that flows
through the application is composed of lists of dependencies. This list of dependencies is
received as parameter at each step of the scanning process, and every step is represented by an
analyzer. Every analyzer has a well-defined task: enrich the individual dependencies in the
list with analyzer-specific knowledge. Out of the box, it can extract dependency information
(using sources such as JAR files for Java-based applications (JARAnalyzer), DLLs for
C#-based applications, etc), recognize them using an Apache Lucene-based inverted index

22

The Vulnerability Checker

(encapsulated in a CPEAnalyzer) and match recognized dependencies with their respective
known CVE vulnerabilities (NVDCVEAnalyzer). We elaborate on each step below.

4.2.4 Extracting dependency information from build manifests

We can not always rely on the JARs being among the software project’s contents. Current
best practices suggest the usage of build management applications in which dependencies
are declared in build manifest files and integrated at build time. For this reason we extended
the already existing analysis functionality for extraction in the context of Java projects.

Maven is the most common build tool for Java systems, which means that we do not
exclude many projects on behalf of their build management tool. Therefore we provided the
ability to read Maven POM files for extracting dependency information encapsulated in the
POMAnalyzer.

POM files

The Project Object Model [6] contains all the configuration information for a project, includ-
ing dependency data. Using these files, developers can declare application dependencies on
third party libraries using an XML format. At build time, the POM files are inspected and the
declared project dependencies are downloaded from internal or external software repositories
(with regards to the organization under which the project is developed). The default and
principal location for external third-party components is the Maven Central repositoryﬂ

A POM file includes project dependencies either under the dependencyManagement
parent tag or under the dependencies parent tag. In the former case, we can specify
dependencies which will be inherited by children POM files (this feature is provided in order
to allow for POM refactoring for eliminating duplication). In the latter case, we specify
dependencies which can not be inherited by children POM files and are relevant only for the
current project.

An example of a POM file [50] is presented in Figure d.4] For the POM given as example,
the developers have included two third-party dependencies, namely, Acegi Security version
1.0.0 and the testing framework Junit, version 3.8.1. This information can be extracted from
within the “coordinates” tags — groupld, artefactld,version.

Extension implementation details

Based on the textual contents of POM files and using the specific XML schema for them,
relevant Java objects are created using JAXBE Through their getter methods, these objects
provide the necessary information about the input software project’s dependencies.

For this extension we benefitted from the fact that Dependency Check’s architecture
enables developers to integrate new analyzers through its plugin-based extension points.
We followed the template inferred from investigating the other analyzers and built the
POMAnalyzer.

Uhttp://search.maven.org/
Zhttps://jaxb.java.net/

23

4. THE VULNERABILITY ALERT SERVICE

<dependencies>
<dependency >
<groupld>org.acegisecurity</groupIld>
<artifactId>acegi-security</artifactId>
<version>1.0.0</version>
</dependency >
<dependency >
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency >
</dependencies>

Figure 4.3: Exaple POM file

4.2.5 Dependency Recognition

The inverted index enables efficient simple keyword-based matching. To show how it works,
we provide the example of Jetty (version 6.1.22), a popular Java open source web server.
In the Maven POM files, developers would integrate this component in the following way,
under the dependency tags, as discussed in Sectiond.2.4}

<dependencies>

<dependency >
<groupId>org.mortbay. jetty</groupIld>
<artifactId>jetty</artifactId>
<version>6.1.20</version>

</dependency >

</dependencies>

Figure 4.4: Jetty 6.1.20 in the POM file

The POMAnalyzer would extract “org.mortbay.jetty”, “jetty” and ““6.1.20”. They would
then be tokenized into the set: {“org”,“mortbay”,“jetty”} and a query will be formed with
its elements for index lookup. The query would retrieve a positive result: a CPE identifier
(cpe:/a:mortbay:jetty:6.1.20) as both its tokens (“mortbay” and “jetty”) are present in the

query. We place one under the other for better illustration:

24

Vulnerability checker reliability

org.mortbay.jetty jetty 6.1.20
cpe:/a:mortbay:jetty:6.1.20

4.2.6 Matching with known vulnerabilities

The list of CPEs are used to query an embedded data base which mirrors the NVD dataset. It
is used to retrieve the CVEs for each CPE in the list. After creating a list of matches it then
creates vulnerability reports in various formats such as HTML, XML or plain text.

4.3 Vulnerability checker reliability

At this point we have a software application which can be used on Maven projects to obtain
the known vulnerabilities associated with the set of third-party dependencies expressed in
the POM file. We were interested then in understanding how much can the output of this
tool can be trusted when being deployed to scan real software applications, before doing so.
Therefore, we have designed a study with the purpose to obtain insight on the tool’s reliability
using realistic inputs. This study is motivated also because accuracy was mentioned as being
a requirement.
Within the GQM [14] format, our goal for this study is:

The goal of this study is evaluating the tool’s reliability in the context of Maven applications
scanning from the perspective of the user.

The first thing we did when studying reliability is locate the process steps (extract,
recognize and match) which can generate wrong results in the vulnerability reports. Wrong
results may mean either a:

e false positive — a component which for which other component’s vulnerabilities are
assigned

e false negative — vulnerabilities are not successfully assigned to a project component
which for which the vulnerabilities should have been assigned

These faults can be created by the recognizing step, due to the fact that the organizations
that propose the identification schemes for CPEs and third-party components are
different. This means that differences in naming the same application may exist.
The other two steps, extraction and matching are straightforward. Extracting means
adjusting the tool such that it can extract dependency data from the build manifest files
for different programming languages. Matching means retrieving CVE vulnerabilities
for a CPE which is a facile task given that all the CVEs in NVD make referece to their
respective CPE, the applications which they refer to.

4.3.1 Precision and Recall

One way to study false positive and false negative rate is using the precision and recall
measures[41]]. Precision is the fraction of retrieved results which are relevant. Recall

25

4. THE VULNERABILITY ALERT SERVICE

26

is the fraction of the relevant results which are retrieved from the data set.

4.3.2 Study design

The precision study needs a dataset of third-party component identification elements
that may potentially output false positives after being used as input for scanning. From
the scanner output files, we create a list of matched pairs, in which one component
identification element list was matched with one or multiple CPEs. We manually label
a random selection of 50 matches as being either true positive or false positive, and
then aggregate these in order to get the false positive rate to be used in the formula for
Precision. The labelling procedure consists of looking for left-hand side elements that
would be more appropriate as a match for the right-hand side.

For studying recall, we need to contruct a dataset of components identification elements
for which we already know that it has already one or more CVE entries assigned. This
way, we can create specific inputs for which we expect the tool to flag vulnerabilities,
and see how many of the expected flags actually get raised. The false negative rate
will be determined by how many of these input elements do not get flagged, when in
fact they should have.

4.3.3 Datasets

Maven
component > Token set
identifiers

ntersection,
< >

Token set] All CPEs

A4

search.maven.org Common tokens NVD web interface

A4

Ground truth
dataset

Figure 4.5: Process for obtaining the ground truth dataset for recall study

We reused a dataset of 148,253 components hosted in Maven Central from previous
work [54] [56] [55]] by Raemacekers et al.

The procedure to find the Maven components for which we know that vulnerabilities
have been disclosed is illustrated in Figure d.5]and can be summarized in the following
steps:

— Tokenize the Maven components information elements into individual words and
constructing a set of tokens with them. By tokenization, we mean splitting the

Vulnerability checker reliability

strings at the “dot” character and removing the common prefixes, such as “org”,
“com”, which do not distinguish components. Example: groupid:org.acegisecurity,
artefactid: acegi-security, version:1.0.7 => add “acegisecurity” and “acegi-
security” to the set of tokens.

— In the same way, create a set of tokens which appear in the identification elements
for vulnerable applications. In this case, tokenization means splitting according
the colon character. Example: cpe:/a:acegisecurity:acegi-security:1.0.0
=> add “acegisecurity” and “acegi-security” to the set

— Execute a set intersection, and obtain the list of tokens which appear in both
token sets. Example: “acegi-security” and “acegisecurity”.

— Manually investigate the resulting intersected set and reconstruct the set of pairs.
Example:
(org.acegisecurity,acegi-security,
cpe:/a:acegisecurity:acegi-security)

Following this procedure, we have constructed our ground truth dataset, composed of
the previously mentioned pairs found.

4.3.4 Results
Precision

As we can see from Table 4.1} most of the matches are false positives. Among the total
of 50 matches, 7 were matched correctly, yielding a precision value of 7/50~0.14.

Maven Component CPE Type of match
mule-transport-jettymule.transports2.1.1 cpe:/ajetty:jetty:2.1.1 FP
alarm-snmp-raow2.jasmine.monitoring1.2.1 cpe:/azsnmp:snmp FP
jetty-ioeclipse.jetty7.2.0.RCO cpe:/ajetty:jetty:7.2.0.rcO FP
maven-jboss-pluginmaven1.3 cpe:/a:jboss:jboss FP
wicketapache.wicket].5-M2.1 cpe:/a:apache:wicket:1.5.m2 TP
acegi-security-jettyacegisecurity(.8.1.1 cpe:/a:acegisecurity:acegi-security:0.8.1.1 FP
apache.felix.karaf.shell.sshapache.felix.karaf.shell1.6.0 cpe:/a:ssh:ssh:1.6.0 FP
example-jetty-embeddedeclipse.jetty7.4.2.v20110526 cpe:/ajetty:jetty:7.4.2.v20110526 FP
struts2-coreapache.struts2.0.14 cpe:/a:apache:struts:2.0.14 TP
cvsjvnet.hudson.plugins1.2 cpe:/a:cvs:cvs:1.2 FP
org-netbeans-api-progressnetbeans.api cpe:/a:progress:progress:- FP
miniswicketstuff1.4.9 cpe:/a:minis:minis:1.4.9 FP
apache.servicemix.bundles.jetty-bundleapache.servicemix.bundles6.1.12rc1_1 cpe:/azjetty:jetty:6.1.12.rcl FP
acegi-security-tigeracegisecurity1.0.5 cpe:/a:acegisecurity:acegi-security:1.0.5 FP
util-fileow2.util1.0.22 cpe:/a:file:file:1.0.22 FP
xfire-aegiscodehaus.xfire1.2.6 cpe:/a:codehaus:xfire:1.2.6 FP
cargo-core-container-jettycodehaus.cargo0.7 cpe:/ajetty:jetty:0.7 FP
cargo-core-container-jbosscodehaus.cargo1.0-beta-1 cpe:/a:jboss:jboss FP
enunciate-xfirecodehaus.enunciate].9-RC1 cpe:/a:codehaus:xfire:1.9.rcl FP
mysql-connector-javamysgl5.1.16 cpe:/a:mysqgl:mysql:5.1.16 FP
jettymortbay.jetty6.1.12rc1 cpe:/ajetty:jetty:6.1.12.rcl TP
jquerywicketstuff1.4.9.2 cpe:/azjquery:jquery FP
vaadinvaadin6.4.0 cpe:/a:vaadin:vaadin:6.4.0 TP
flex-messaging-coreadobe.flex3.2.0 cpe:/a:adobe:flex:_sdk:3.2 FP
lift-paypalliftweb1.0.2 cpe:/a:liftweb:lift:1.0.2) FP
apache.servicemix.bundles.jetty-bundleapache.servicemix.bundles6.1.14_1 cpe:/azjetty:jetty:6.1.14.1 FP
jettymortbay.jetty6.1.14 cpe:/azjetty:jetty:6.1.14 TP
ssh-slavesjvnet.hudson.plugins0.13 cpe:/a:ssh:ssh:0.13 FP

27

4. THE VULNERABILITY ALERT SERVICE

tinymcewicketstuff1.4.9 cpe:/a:tinymce:tinymce:1.4.9 FP
apache.karaf.tooling.testingapache.karaf.tooling2.2.1 cpe:/a:apache:apache_test:2.2.1 FP
cas-server-support-openidjasig.cas3.2-RC4 cpe:/a:openid:openid FP
animation4j-coregemserk.animation4j0.0.8 cpe:/azjcore:jcore:0.0.8 FP
sisu-inject-beansonatype.sisu2.1.1-NEXUS-4312 cpe:/a:sonatype:nexus:2.1.1 FP
mortbay.jettyjetty5.1.5rcl cpe:/ajetty:jetty:5.1.5.rcl TP
nexus-maven-pluginsonatype.plugins1.3.2.1 cpe:/a:sonatype:nexus:1.3.2.1 FP
openejb-cxfapache.openejb3.1.1 cpe:/a:apache:cxf:3.1.1 FP
org-apache-derbykenai.nbpwr10.4.1.3-201002241055 cpe:/a:apache:derby:10.4.1.3.201002 FP
filecedarsoft.commons.old2.0.6 cpe:/a:file:file:2.0.6 FP
tiles-coreapache.tiles2.0.3 cpe:/a:apache:tiles:2.0.3 TP
selenium-perl-client-driverseleniumhg.selenium.client-drivers1.0 cpe:/a:perl:perl FP
example-jetty-embeddedeclipse.jetty7.4.0.RCO cpe:/ajetty:jetty:7.4.0.rcO FP
geronimo-axisapache.geronimo.modules2.1.4 cpe:/a:apache:axis:2.1.4 FP
fabric3-jettycodehaus.fabric30.6.5 cpe:/azjetty:jetty:0.6.5 FP
xbean-tigerapache.xbean3. 1 cpe:/a:tiger:tiger:3.1 FP
apache.karaf.shell.sshapache.karaf.shell2.1.4 cpe:/a:sshissh2:2.1.4 FP
jquerywicketstuff1.4.17 cpe:/a:jquery:jquery FP
cxf-rt-transports-http-jettyapache.cxf2.4.0 cpe:/a:apache:cxf:2.4.0 TP
ortbay.ftpjetty5.1.1RCO cpe:/a:ftp:ftp FP
jquerywicketstuff1.4.12.1 cpe:/azjquery:jquery FP
qpid-brokerapache.qpid cpe:/a:apache:qpid:- FP

Recall

As we can see from Table[4.2] the majority are correct matches. The recall value for

this dataset is 47/59~0.80.

Table 4.1: Precision Table

CPE

Maven Group ID;Artefact ID; Version

Matched

caucho:resin

com.caucho;resin;3.0.9

geoserver:geoserver

org.geoserver;geoserver;1.5.2

Jjasig:uportal

org.jasig.uportal;uportal;4.0.1

jeraft:jzlib

com.jcraft;jzlib;0.0.6

apache:shindig

org.apache.shindig;shindig;2.5.0

apache:syncope

org.apache.syncope;syncope;1.0.0

apache:sling

org.apache.sling;sling;2.1.0

redhat:resteasy

org.jboss.resteasy;resteasy-jaxrs-all;1.0.0

zkoss:zk_framework

org.zkoss.zk;zk;5.0.0

sun:javamail

Jjavax.mail;mail;

jgroups:jgroup org.jgroups;jgroups;3.0.0
netty_project:netty io.netty;netty;3.6.0
apache:james org.apache.james;james-project;1.8.2

neo4j:neodj

org.neo4j;neo4j;1.9.2

jsecurity:jsecurity

org.jsecurity;jsecurity;0.9.0

apache:solr

org.apache.solr;solr;1.0.0

apache:zookeper

org.apache.zookeeper;zookeeper

springsource:spring_framework

org.springframework;spring-core;3.0.0

apache:coyote_http_connector

org.apache.tomcat;coyote;1.1

apache:cloudstack

org.apache.jclouds.api;cloudstack;2.0.1

apache:myfaces

org.apache.myfaces;myfaces;2.0.0

apache:commons_fileupload

commons._fileupload;commons_fileupload;1.3

apache:jackrabbit

org.apache.jackrabbit;jackrabbit; 1.4

apache:tomcat

org.apache.tomcat;tomcat;8.0.1

apache:httpclient

org.apache.httpcomponents;httpclient;4.0

apache:continuum

org.apache.continuum;continuum; 1.1

apache:hbase

org.apache.hbase;hbase;0.92.2

apache:xalan-java

xalan;xalan;2.7.1

apache:axis

org.apache.axis;axis;1.3

apache:wicket

org.apache.wicket;wicket;1.4.0

xfire:xfire

xfire;xfire;1.2.4

apache:cxf

org.apache.cxf;cxf;2.4.0

vaadin:vaadin

com.vaadin;vaadin;4.1.1

apache:hadoop

org.apache.hadoop;hadoop-main;1.0.0

jfacets:jfacets

net.sourceforge.jfacets;jfacets;

apache:camel

org.apache.camel;camel;1.0.0

ENENESENENENENEN Aol ENESENENEN lal ENEN el it ENENENENEN il Il kel it Sl ENENENENEN Il AN

28

apache:struts

struts;struts;2.0.0

apache:tiles

org.apache.tiles;tiles;2.1.0

apache:archiva

org.apache.archiva;archiva;1.2

opensymphony:webwork

com.opensymphony;webwork;2.1.3

liftweb:lift

net.liftweb;lift;2. 1

apache:derby

org.apache.derby;derby;10.5.3.0

liferay:liferay_portal:::enterprise

com.liferay.portal;portal-web;6.1.2

apache:activemq

org.apache.activemq;activemq-core;5.4.1

codehaus:xfire

xfire;xfire-core;1.2.6

apache:commons»compress

org.apache.commons;commons-compress; 1.0

mortbay:jetty

org.mortbay.jetty;jetty;6.1.22”

apache:openjpa

org.apache.openjpa;openjpa;1.0.0

acegisecurity:acegi-security

acegisecurity;acegi-security;1.0.0

apache:geronimo

org.apache.geronimo;geronimo;1.0.0

Conclusion

apache:qpid org.apache.qpid;qpid;0.5
jruby:jruby org.jruby;jruby;0.5
apache:poi org.apache.poi;poi;2.0

apache:axis2
appfuse:appfuse
apache:cocoon
libvirt:libvirt
sonatype:nexus
jboss:seam

org.apache.axis2;axis2;1.6
org.appfuse;appfuse;2.0-rcl
org.apache.cocoon;cocoon;2. 1
org.libvrt;libvrt;0.9.12
org.sonatype.nexus;nexus;2.6.3
org.jboss.seam;seam;2.2.1

SN AN A ENENENENENENENENENENENANENENANENENENEN io

Table 4.2: Recall Table

4.3.5 Discussion

The approach can also be applicable to other build tools than Maven, with the condition
that they work in a similar fashion — third-party dependencies are included in build
manifest files by name which are read by the build tool at build time.

From what we can see, the precision value is low for Dependency Check in the context
of Maven component identifiers. This is the result of the naming overlaps that happen in
the case of Maven components: org.acegisecurity, acegi-security contains the
token “acegi-security” and “acegisecurity” but the same goes for org.acegisecurity,
acegi-security-jetty which would yield an incorrect match.

The recall is high, with only a few failed expected matches, we can be reasonably
confident that the tool would find most of the vulnerable libraries which should be
flagged.

How these values translate into actual usefulness in practice is still an open question,
because libraries are not of equal popularity, some appear more often in projects than
others.

4.4 Conclusion

This chapter has presented the elements of the Vulnerability Alert Service, our tool-
based process to track vulnerable components in the context of external software
product quality monitoring. We started with introducing the process steps, then
focused on the ones which are automated using a software tool. We then continued

29

4. THE VULNERABILITY ALERT SERVICE

to present the tool, describing the way we extended it in order to be applicable in our
research context in order to be evaluated. We ended the chapter with presenting the
results of the reliability study of the tool on a set of dependencies using the Precision
and Recall measures.

30

Chapter 5

Known Vulnerabilities in software
project dependencies

We wanted to investigate the prevalence of the problem of projects depending on
vulnerable components in practice, using open-source and proprietary systems. It is
important to understand whether this problem is common or not in practice and how
often it occurs in order to motivate automated or partially automated solutions such as
our Vulnerability Alert Service. If it is common, then solutions are welcomed indeed,
because they would contribute to solving more efficiently a prevalent software security
deficiency.

On the same note, if more libraries integrated in software projects mean more vul-
nerable libraries, then we have extra motivation for tooling. In that case, automatic
approaches would allow for fixing more problems than manual inspection in the same
unit of time, as it provides an efficient way to process modern software applications
with an ever-increasing number of third-party components.

5.1 Research Questions

Based on the previously stated objectives, we formulate two research questions:

— How prevalent is the problem of depending on third party libraries with known
vulnerabilities in practice?

— What is the relation between the number of dependencies and the number of
vulnerable dependencies in a software application?

5.2 Software Subjects

Our set of open source subjects are the software projects hosted on Maven Central,
a popular component repository for third-party open-source Java components. It is

31

5. KNOWN VULNERABILITIES IN SOFTWARE PROJECT DEPENDENCIES

basically the same dataset we used in Section[5.2] but now we do not consider their
dependencies, but the components themselves.

As proprietary systems we use systems currently or previously monitored or analysed
by SIG. We have included 75 proprietary systems in our study. They come mostly
from large Dutch companies which operate in the banking, public transportation,
governmental, consultancy, electronic payments and household utilities fields. Tech-
nologically, these projects are Java projects built with Maven which include their
third-party dependencies in POM files. For reasons of confidentiality, the source code
or POMs of our set of software subjects cannot be provided for replication. The sizes
of these projects in terms of lines of code range from 1759 to 968143, and in terms of
number of dependencies they range from 4 to 238.

The proprietary systems are used for answering the first question, not also the second
one. The reason for this is that in the case of proprietary systems, we do not have
vulnerability data about the proprietary libraries.

Another notable difference between the two datasets is the fact that our proprietary
systems are actual projects which make use of libraries in order to enable a higher-level
goal, while our open-source systems ones are libraries themselves. This introduces
differences in their size, and naturally to the amount of libraries both types of systems
use. It may also mean that they manage their dependencies differently.

5.3 Tooling

The OWASP Dependency Check tool [9] version 1.0.5 was selected to support the
vulnerability scanning. At the moment of conducting this experiment, this was the
current version of the application. It has been shown previously in this document that
this tool is an adequate option with regards to vulnerability scanning tooling for the
context of this thesis.

5.4 Maven study design

For the first question expressed in Section [5.1| we engage in a descriptive study to
obtain the prevalence rate for software projects with vulnerable components among
the total set of software projects. We target to obtain a simple value which shows
how many projects have at least one component with at least one known vulnerability
among all the projects in our dataset.

On the other hand, for the second question, the decision was to engage in conduct-
ing a correlation study to find the answer, as we are interested in characterizing a
relationship.

We provide a Github repository with the artefacts needed to replicate this stud

32

Uhttps://github.com/mcadariu/vuln

Maven study design

5.4.1 Hypothesis

Our null hypothesis for the second question is:

HO: The number of vulnerable libraries is not correlated with the number of libraries
in software projects.

Consequently, we define the alternative hypothesis:

H1: The number of vulnerable libraries is correlated with the number of libraries in
software projects.

5.4.2 Independent and Dependent Variables

The variables for our experiment refer to the set of third-party dependencies found
in the build manifest files of the subject software projects. For this study, the set of
dependencies come from their POM files.

Our independent variable is the cardinality of the set of dependencies. The depen-
dent variable is the cardinality of the set of vulnerable dependencies of projects, as
given by our vulnerability scanner.

5.4.3 Process

R SQL query > E'\ i') \ i > Maven project directories

Python script A A

My

. 8

Aggregated Vulnerability
Reports

OWASF Dependency

Vulnerability Reports Check

Figure 5.1: The study execution procedure

In order to research answers for the stated research questions, we need to go through a
series of steps, depicted in Figure 5.1}

33

5. KNOWN VULNERABILITIES IN SOFTWARE PROJECT DEPENDENCIES

34

— Create input data — acquire the software subjects and make inventory of depen-
dencies

— Scan the projects with the vulnerability scanner

— Prepare data for analysis — aggregate for each project the number of components
and the number of vulnerable components in separate columns and prepare
histograms with frequency distributions

These steps provide the input for the analysis procedure.

5.4.4 Analysis procedure

For the first question, we investigate the frequency distribution of the number of
vulnerable components per software project using a histogram.

For the second question, we need to conduct a correlation analysis. In order to select
the right statistical analysis, we need to understand first the distribution from which
our sample data comes from. After having insight on the distribution of our data we
can select the right statistical test.

5.5 Maven study results

Almost one out of five open-source software project includes one or more known vulnerabili-

ties in their dependencies.

This finding can be derived from the descriptive statistics tables that we show in

Table and

Nr. of projects | 12100
Min. nr. deps. | 1

1st. Quartile 2
Median 4
Mean 5.44
3rd Quartile 7
Max nr. deps. | 171

Table 5.1: Descriptive Statistics — Project Components

As we can see from Table the projects feature in general a small number of
dependencies. As well, we can see that the total number of projects is high. This will
contribute to the significance of the conclusions drawn.

From Table[5.2] regarding descriptive statistics if we consider the vulnerable compo-
nents of projects, usually they do not contain any vulnerability. When projects do have
vulnerable components, their number can amount as high as 22, the maximum value.

Maven study results

Nr. of projects with known vulns. | 2456
Min. nr. deps with vulns. 0
Ist. Quartile 0
Median 0
Mean 0.46
3rd Quartile 1
Max nr. deps with vulns. 22

Table 5.2: Descriptive statistics — Vulnerable Project Components

The frequency distribution of the number of vulnerable components found in projects
can be observed in Figure [5.2] The findings resemble the general observation that
dependencies follow a power law distribution. Almost all projects have fewer than 50

dependencies.
Distribution of the number of dependencies with vulnerabilitie Distribution of the number of dependencies
8
& 7] 11576 10718
=
8
S _
° 3
] =
S
o
=
8 -
o @
8 |
3
3
=
> > o
g g g 8
s 8 - g
g - g
[- o
o
S | <
o
<
=
= 8
8 - N
< 1132
380 6356156 4 4 0 0 0 0 0 1 0 0 0 1
o 1% 27 10 2 1 1 1 o0 2 o -
T T T 1
: ‘ ‘ ‘ ‘ o 50 100 150
0 5 10 15 20

Number of components
Number of vulnerable compoenents

Figure 5.2: Frequency Distributions for number of components and number of vulnerable
components

5.5.1 Hypothesis Testing

As we see in the histograms, our input data for the correlational study is not normally
distributed. Therefore, we can use the Spearman rank correlation test, because it does not
make any assumption with regards to the distribution of the data.

We use the tresholds proposed by Hopkins [31], therefore a significant correlation value
higher than 0.3 indicates a moderate correlation. A correlation higher than 0.5 indicates a

35

5. KNOWN VULNERABILITIES IN SOFTWARE PROJECT DEPENDENCIES

strong correlation. For the correlation to be significant, the p-value has to be lower than 0.01,
therefore there is less than 1% chance that the correlation value is due to chance.

By conducting this test, we observe that we have a moderate correlation of the number of
components and the number of vulnerable components (Spearman’s rho~0.32). This result
is statistically significant, as the p-value is less than 0.01, thus we can confidently reject the
null hypothesis.

5.5.2 Discussion

A confounding factor that may influence the validity of the conclusions drawn is the accuracy
of the tooling used to scan the projects’ dependencies. If it produces many false positives,
then the number of vulnerable components that are flagged may be larger than what it should
be. False negatives would lead to an amount of reported vulnerable components that is less
than what it should be.

The alternative would be manual analysis, which would be more accurate, but it is
infeasible to do considering the high amount of projects some of which include dozens of
libraries.

5.6 Proprietary projects study design

In order to analyze the proprietary projects we applied a procedure which includes automatic
and manual steps. In contrast with the procedure described in Section[5.4.3] this one includes
manual steps that have the purpose to curate the scan results to provide for more accurate
conclusions. In this study we look only at prevalence, as we do not have access to all project
libraries, for example the proprietary ones. The procedure consists of the following steps:

o Automatically scan projects — We used our vulnerability scanner to derive vulnerability
reports for each project showing the dependencies which have CVE vulnerabilities.

e Manually curate the output files — We have learned in Section 4.3 when the tool goes
wrong and produces a false positive and when it does not recognize a library with
known vulnerabilities. This knowledge was integrated in a manual process to curate
the project reports of false positives and false negatives. The reports were stored in a
simple text file. The smaller number of projects in our dataset compared to our study
presented in Section allowed this manual process to take place.

e Automatically aggregate the results — We have programmatically aggregated the reports
in order to present the results and allow for futher analysis in line with the goals of this
chapter.

5.7 Proprietary projects study results

’We found vulnerable libraries in 54 projects out of the 75 that we analyzed.

36

Proprietary projects study results

Clean projects

Nr of proprietary projects
with known vulnerabilities
in dependencies

Figure 5.3: Vulnerable vs Clean projects with regards to known vulnerabilities in their
dependencies

Frequency

Number of Vulnerable Components

Figure 5.4: Distribution of the number of vulnerable libraries across proprietary software
projects

Figure|5.3|provides a graphical illustration of the prevalence of the problem among our
data set.

With the histogram presented in Figure we seek to understand quantitatively the
frequent state of proprietary systems in terms of their vulnerable components. We see that
the most frequent case which happens in practice is that there is one vulnerable component
in a proprietary system. We can also observe that some proprietary systems have as many as
7 components with known vulnerabilities.

37

5. KNOWN VULNERABILITIES IN SOFTWARE PROJECT DEPENDENCIES

Vulnerable component | Nr. of occurences
Spring Framework 2.5.6 | 12

Apache POI 3.8

Spring Framework 3.0.6
Apache CXF 2.6.0
Apache Axis 1.4
Acegi-Security 1.0.3
Spring Framework 3.1.1
Spring Framework 3.0.5
Apache POI 3.6
Apache CXF 2.5.1

O| oo Q|| | K| W=
W W WA A A AW

—_
()
W

Table 5.3: Top 10 vulnerable components found in proprietary projects

Top 10 vulnerable components in proprietary systems

In Table we can see the ranking with regards to the number of occurences of specific
libraries across our dataset of software projects. By a good distance, the most common
library that we found in our projects is the Spring Framework version 2.5.6, which in the
Top 10 includes other versions being a very popular application framework in the software
development industry.

Spring Framework version 2.5.6 was found to be the most prevalent library with known
vulnerabilities accross the proprietary projects we have analyzed. Therefore we provide a
closer look into its vulnerabilities in the next section, also in relation with the vulnerability
date of discovery and fix date.

Spring Framework 2.5.6

This library has three known vulnerabilities:

o CVE-2013-6429 (severity:medium) — This vulnerability allows attackers to retrieve
the contents of arbitrary files using crafted XML input files on the application server
through the external entity resolution capability of Spring’s XML processor. Through
browsing its online description we find out that this vulnerability was found in 2010
and fixed in a release in the same year.

e CVE-2011-2730 (severity:high) EI— This vulnerability is documented by the discoverers
in a white paper By exploiting this vulnerability attackers can execute methods on
the application’s objects to get access to sensitive information. It was found in 2012
and fixed in a release in the same year.

Uhttp://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2013-6429

Zhttp://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2011-2730

3https://docs.google.com/document/d/1dc1xxO8UMFaGLOwgkykY dghGWm, GrOiCrxF sympqcE [editheading =
h.eimq2k jcg8r2

38

Conclusion

o CVE-2010-1622 (severity:medium) — this vulnerability allows for execution of ar-
bitrary code, but investigating the published exploitE] shows that this vulnerability is
intricate and not straightforward to take advantage of. It was found in 2013 and fixed
in a release in the same year.

In all cases, the fixes were released before the data at which we know that the projects
were still in development (as they were being currently monitored and snapshot dates
indicated the year 2014 and fixes were in 2010,2012,2013). Therefore, fixes were available
at the time of our analysis.

All the findings that were generated through our research such as the above one have
been gathered and are pending disclosure to the project owners after a thorough investigation.
At the time of writing it is unclear what the suitable disclosure procedure is, as some project
owners may be surprised if they are notified of aspects for which they did not request
explicitly.

5.8 Conclusion

The numbers that arose from our analysis are alarming. Projects which feature known
vulnerabilities as a result of their selection of third-party libraries cover the majority of
our total project set for proprietary systems. Even more, the majority of them depend on a
component which have high severity vulnerabilities that can lead to attackers having access
to sensitive information. This would have highly negative consequences if exploited. Also,
the fact that one out of six open-source projects have at least one known vulnerability in their
dependencies represents represents makes the alarming state more evident. Investment in
tooling that aids in detecting this problem in practice is worthwhile.

Thttp://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2010-1622
Zhttp://www.exploit-db.com/exploits/13918/

39

Chapter 6

Evaluating the Vulnerability Alert
Service

We have so far identified and diagnosed a practical problem in our research context and
proceeded to design and introduce a solution [73]]. An alert-based methodology which makes
use of software tooling to track vulnerable components was integrated in the daily operations
of our host company, and the first alerts have been produced. The alert’s contents are the
software project for which they are relevant, the CVE identifier and a link to their online
description from the NVD database.

We look to assess the alerts’ usefulness as perceived by prospective users of our method-
ology in our research context — the external software quality assessors that overlook the
software project in terms of its quality attributes throughout its evolution.

We use Gopal’s operationalization of the concept of usefulness [29]]. In his view, the
subjects of the study are useful if they are actively used in a decision making process. Where
applicable, we investigated whether alerts actually contribute to decisions specific for our
research context. This view was already successfully used in the same research context for a
different goal — metric usefulness evaluation [19].

The above considerations enable us to formulate our goal for the current research step,
following the GQM template [14]:

The objective of this study is to understand the usefulness of the vulnerability alerts, from
the point of view of external quality assessors, in the context of external quality-oriented
software monitoring of software projects.

6.1 Study design

For evaluation, we constructed a three-part evaluation study, as shown in Figure The
first step is embedding the monitoring process in the daily operations of our host company
and alerts are raised. The second part covers the task of collecting relevant information
from the research context with regards to the alert’s usefulness. This data is then used in the
subsequent step, data analysis.

41

6. EVALUATING THE VULNERABILITY ALERT SERVICE

Interviews

Embed Analyze

Observations

Data collection

Figure 6.1: Usefulness Evaluation Study Design

6.1.1 Embedding

Our embedding scenario mimicks the one used by our host company for monitoring the
evolution of quality attributes of software systems throughout time, described in Section[I.2]
For a period of time, every project which was uploaded on the premises of the host company
was given as input for the Vulnerability Alert Service process. The generated alerts are
redirected to the author instead of the Monitor Control Center.

6.1.2 Data collection

The data collection phase is split in two parts, distinguished by the aspect we want to focus
on in our evaluation. For the first part, we have taken the role of the person receiving the
vulnerability alerts (the operator, in the process described in Chapter[d)) and removed the false
positives. Some of these true positives were brought in attention of the technical consultants
responsible for monitoring these specific projects for which the alerts are relevant. In these
disclosure meetings, semi-structured interviews combining open and closed questions were
asked in order to offer preliminary insights on the added value of alerts in their context.

The second part of the data collection step is geared in the direction of an observational-
exploratory study, in the sense that we did not take the role of the operator to curate the alerts
in any way. For a period of time, the technical consultant responsible with observing the
Monitor Control Center for noteworthy events in the monitored projects was informed of
the alerts that were issued the day before, and he/she was asked to point out the useful ones
which were written down on a note. This way, we can get insight on the usefulness of the
alert methodology as a whole in their real context of use.

42

Study design

6.1.3 Analysis

The results of the first data collection step was subjected to a qualitative analysis. This
means we looked for patterns in responses and pointed out when there is agreement between
responses and when there is strong or weak disagreement. The design of the second data
collection step promotes quantitative analysis, due to the bounded range and specific response
options that the interviewees were offered to select. Here, we are interested in the proportion
of useful alerts among the total.

6.1.4 Timing

In contrast with the procedure for our requirements-gathering interviews, we do not limit the
time of the interview. The requirements interviews were bounded in order to capture the top
of mind in terms of requirements to identify the most important ones. With this study we
focus on obtaining rich evaluation related information from the interviewees.

6.1.5 Descriptive statistics

For an overview of the number of subjects (alerts and technical consultants) that we used as
input for the data collection, Table @ is shown. For the second data collection step, the one
in which observations are recorded, we do not provide ratios for the alerts/week and average
alerts per project as in the first one. The focus for that step is not on the process like in the
second, but on a bounded list of specific alerts.

Data collection step | Nr. of alerts | Nr. of TCs[lparticipating Nr. of projects
Interview-based 4 4 4
Observation-based | 449 4 34

Table 6.1: Descriptive statistics for the data collection steps

6.1.6 Questions
For the first data collection step, the following set of interview questions were created.
e Would you have investigated the presence of known vulnerabilities in third-party
libraries in the monitored projects without our method?
e Do you find this specific alert useful?
e Do you find the time taken to process alerts in this form to be adequate?
o What would be your action after acknowledging this alert?
e How soon after acknoledging the alert will you take action?
o What do you think will be the outcome of this action?

o What are other aspects that you considered besides the alert when analyzing what
would the resulting action be?

o Do you think this alert signals the presence of a class of problems with this project?

43

6. EVALUATING THE VULNERABILITY ALERT SERVICE

6.2 Interview Findings

We have grouped the technical consultants’ answers according to each question and aggre-
gated as described in Section |[6.1.3

Tracking dependencies with known vulnerabilities in the absence of our method.
The technical consultants responded that they would not do it. This can be explained by
practical reasons since doing it without a tool such as the VAS is very time consuming.
One pointed out though, that if he would consider security an important concern given the
purpose of the application, he would indeed conduct a systematic review of the project’s
dependencies to find weaknesses.

Usefulness of the alerts. All the interviewees found the proposed alerts useful. The
majority also specified that the alert itself is useful, but every alert should be followed by
a more in-depth analysis, to understand whether or not the vulnerability may indeed cause
compromise the application. It was not surprising that all the technical consultants found the
set of alerts useful, as they indicate potential exploits of the relevant software project.

One of the interviewees included mentioned the domain of the application as a result
of being notified of the vulnerability. The fact that the application deals with sensitive data
makes it an interesting application security-wise. This means that it features more interest
for security-related alerts of all kind. This enforces the idea extracted from the previous
answer, in which the purpose of the application also contributes to alerts being useful, as
they are more valuable when security is an important concern for the software application.

Another interviewee specified that the actual vulnerable functionality described in the
alert made it useful, as it relates to functionality that can be communicated to the development
team in a straightforward manner. He continued his remark saying that from his experience,
sometimes known vulnerabilities are more intricate and more difficult to turn into concrete
improvement advice.

Alert processing time. All technical consultants responded that the time it took them
for processing an alert was very short.

Action after acknowledging the alert. The technical consultants answered that they
would notify the clients of these findings. One interviewee added that he would send an
e-mail explaining that with a security scan a risk has been found, the library which can be
exploited, an example of a use-case in which it could occur and alternatives for minimizing
this risk. The other interviewees did not mention these aspects besides the notification.

Time between alert and follow-up action. None of the alerts presented were considered
critical, so times expressed by the technical consultants ranged from one week to two-three
weeks, depending on the agreed schedule for monitoring-related reports.

Expected outcome from the action. With regards to the outcome of the recommen-
dation, the subjects could not say for sure what the contact person will decide after being
notified of this security vulnerability, but they do expect a response from them. One intervie-
wee pointed out that they may investigate the possibility of upgrading to a newer version in
which the vulnerability is fixed. Another one added to this, that another solution would be
removing functionality.

Other aspects considered when deciding for a course of action upon being alerted.
As expected the subjects mentioned that they would look at whether or not the vulnerability

44

Observations Findings

description matches some functionality that the client actually uses. Other aspects that go
into their thought process, is as one interviewee mentioned, whether or not they can think of
a use-case in which they can put into context a potential security breach as a result of leaving
vulnerable libraries in the project scope. Another subject also indicated that he thinks about
how important security is as a quality attribute of the project under observation.

Class of problems. The majority of the subjects said that known vulnerability alerts
specific to a system shows that long-term maintenance is not a priority. One of them justified
this response using a project in which maintenance effort is not scheduled, as it will soon be
retired and a new system that is currently developed will take its place.

6.3 Observations Findings

350
300
250
200
150
100

50

Useful Not Useful

Figure 6.2: Useful vs. Not Useful Alerts

In Figure we show the number of useful alerts. As we can see, one third of the total
number of collected alerts are not useful, whereas two thirds were considered useful by the
technical consultants.

A distinguished contribution was communicating one of the ﬁndingsﬂ produced in our
research to the security officer at a large dutch banking organization. He was pleased with
this finding and insisted on the application of corrective measures to remove the security
vulnerability from their product. In addition, he expressed his interest in this type of findings
and encouraged the responsibles on behalf of our host company to continue contributing
with such security-related findings.

Thttp://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2010-3700

45

6. EVALUATING THE VULNERABILITY ALERT SERVICE

6.4 Discussion

During the interview sessions, we noticed how the technical consultants approach each alert.
In order to decide whether they are useful or not, they firstly confirmed the use of the libraries
and how the signalled library is used in the project. Whenever they actually found a trace of
the library in the project, even though the library was not referenced in the source code or
used only for testing purposes, they considered the alert to be useful. The reason is that even
though these findings do not make the application exploitable right now, it would be desirable
to remove this possible threat to prevent any future usages that may lead to vulnerabilities.

The quantitative study shows that there are more useful alerts. During our analysis, we
have found that a large part of the not useful alerts were triggered by a single false positive —
the MySQL connector Java library was mistakenly matched with vulnerabilities of an old
verision of the MySQL database. This amounted to over 100 false positive alerts that were
naturally discarded as being not useful. If we remove this element, the useful elements vs.
unuseful would be around 6 to 1.

This may appear in contrast with the earlier finding in which the tool provided many
false positives which would make for a low number of useful results. A possible explanation
may be that the false positives were generated because the input data contained libraries
which would not be often encountered in practice.

6.5 Threats to validity

In analyzing the threats to validity we consider the guidelines proposed by Wohlin et al. [[76].

6.5.1 Conclusion validity

Investigating conclusion validity means checking whether the results provided by the study
is convincing enough to support the conclusions drawn. The first evaluation step, the one
based on interviews, could have used more subjects — more participants, more projects,
more vulnerabilities. We used the triangulation procedure to increase the study’s validity
by combining the results of two studies, one based on interviews and one based on usage
observations.

6.5.2 Construct Validity

Questionnaires may reflect the researcher’s expectation for a specific answer [37]. It is
inevitable, as researchers, to have intuitions with regards to the expected answers when
preparing the question list, especially after preparing the interview materials. Nonetheless,
useful studies are the ones in which bias from the intuitions are avoided. If they are not, it
would negatively influence the validity of the answers and thus, the quality of the research
conclusions. We have attempted to overcome this type of bias by specifying clear and
unambiguous questions that do not suggest answers. A possible further improvement would
be to alternate positive with negative questions to break the answer momentum.

46

Conclusion

There is a risk of interviewer bias as a result of the fact that the author of the thesis is
asking the questions. This risk is considered minor, due to the fact that interviewees may
potentially use the proposed solution, therefore they will be inclined to give honest responses
because their future way of working may be influenced by the outcome of the current study.

Another situation in which researcher bias has to be avoided, is during the data collection
phase, specifically in our first data collection step, the one based on interviews. The author
conducts the interviews and then conducts an analysis based on them. This may influence the
validity of the conclusions in the sense that the meaning of the communicated information
by the interviewees may be distorted. Ideally, this type of interview would be conducted by
two or multiple researchers, and conclusions cross-validated. Furthermore, validation with
the interviewee could have been conducted at the end of the interview.

6.5.3 External Validity

With external validity we are interested in describing the potential to generalize the research
results outside the research context. The use of technical consultants coming from a single
company limits the generalizability. In order to generalize the results beyond the research
context, we have to replicate the experiment using subjects from multiple organizations
that resemble a more heterogenuous group. This was not possible for our research, as the
proprietary systems we used are confidential.

Another threat is the fact that we have used only Maven-based Java systems. Our
findings can be generalized to comparable technologies (Ruby when using Gems). These
technologies also require dependencies declared in specific files before build time, and the
way in which dependencies are declared is also similar — we input application names, which
can be extracted and matched with CPEs.

6.6 Conclusion

Our evaluation shows that our method produces useful security-related alerts consistently
originating from the presence of known vulnerabilities in third party libraries of software
projects. We arrive at this conclusion after an evaluation study which includes quantitative
and qualitative data analysis on the basis of industry systems and alerts triggered on their
behalf. We also show that despite the fact that the precision study conducted in Section4.3.1
did not come out very positive, it was because of the very general way of assessing this aspect.
For that study, we used any component that can be downloaded from the Maven Central.
In practice though, we see only a subset of components actually being used consistently in
software projects. The fact that we see more useful alerts than not useful shows that the
solution does not show high precision if we allow anything as input, but it performs well in
the context of common practice.

47

Chapter 7

Related Work

Our research primarily builds on prior work on the theme software product quality monitor-
ing [[15]]. We have also surveyed related literature on the major topis of this thesis. In this
chapter, we present previous reserach conducted on usages of known vulnerabilities, empiri-
cal studies that consider projects which feature known vulnerabilities in their dependencies,
and how Maven compoenents were studied from the software security perspective.

7.1 Known Vulnerabilities

We have used known vulnerabilities for project-centric empirical studies and for introducing
a monitoring practice for them in the context of external software product quality monitoring.
In addition, we investigated the usefulness of the method in our research context. In the
literature, we can find other usages of known vulnerability datasets. In this section we
present them. We grouped the related literature according to the type of knowledge the
papers propose related to known vulnerabilities. Therefore, we could identify four groups:
characterization, tooling, structuring vulnerability knowledge and modelling.

The papers on characterization have the goal to create descriptive knowledge on CVE
vulnerabilities. They approach the known vulnerability datasets from different angles for
the purpose of describing their characteristics under different views. Massacci et al., for
example, analyzed whether specific databases are adequate for being used in responding
the various research questions that researchers have engaged with [42]]. Neuhaus et al.,
used the topic modelling technique from natural language processing in order to provide an
overview of trends with regards to vulnerability types [48]. The vulnerability lifecycle, was
studied by Shahzad et al. in a large-scale exploratory analysis [66]. Scholte et al. [61] [62]
how known vulnerabilities regarding web applications have evolved through time in the last
decade. Regarding the patching behavior in response to vulnerabilities, Temizkan identifies
the elements which influence the release of a patch as a result of a disclosed vulnerability [[71].
Allodi et al. found that the vulnerability data in NVD is not a good predictor of actual attacks
in the wild [[13]]. In our work, we also look at the characteristics of the datasources, but for a
different purpose. We researched their fitness with regards to our stated goal in our specific
research context.

49

7. RELATED WORK

A series of papers have the goal to create a structured representation of vulnerability
data [47] [35]. This would make them easier to process by a computer. The authors use
techniques borrowed from the Semantic Web research field. By using data from the NVD,
our vulnerability dataset is structured, but if we would like to extend the method to be able
to track vulnerabilities in sources other than NVD, then these techniques will be worth
considering.

A set of papers use the vulnerability data for training various kinds of models which are
used for vulnerability-related predictions. Bozorgi et al.’s model rates vulnerabilities based
on chances to be exploited in the future [20]]. Alhazmi et al.’s model predicts the quantity of
undiscovered vulnerabilities in software applications [12]. Rahimi et al. propose a stochastic
model based on source code properties which is able to predict the rate of vulnerability
discovery [57]]. Finally, Zhang et al. investigated the predictive power of the entries of the
NVD database [[79]. This paper can also be classified as a characterization paper, but we
mention it in the modelling category because it serves this purpose.

7.2 Empirical Studies on Known Vulnerabilities

Xia et al. [78]] investigated the usage of outdated, third-party code with known vulnerabilities
in open source applications. Using a set of open-source components, they investigated their
usage among other projects. They used repository mining and code cloning techniques to
achieve this. Their study shows that many projects rely on outdated third-party dependencies
and that and that developers generally do not take corrective measures due to reasons such as
“we update when any problem happens to avoid introducing new bugs”, or “cannot update
because of multiple dependnencies and compatibility issues”. The empirical study conducted
differs from ours in the approach. Our approach is project-centric, in the sense that we
scan multiple projects to insight on the known vulnerabilities within them, while Xia et al.
adopt the component-centric approach, in which they trace usage of a set of components
throughout open-source projects. Nonetheless, both studies provide the same insight — this is
not an isolated problem, it appears often in software projects.

On the same note, in a recent publication from Aspect Security it is presented that 1
out of 4 downloads from the Maven repository is a component with at least one known
vulnerability [[75]. With our empirical study, we confirm the assumption that this high
number of downloads is reflected in many projects in practice include components with
known vulnerabilities.

7.3 The Security of Maven Components

Mitropoulos et al. [46] and Saini et al. [[60] use the Maven components in security-related
research. Using the FindBugs static analysis tool, they investigate the security vulnerabilities
of the components to create bug catalogs. Due to the fact that the Maven Central repository
contains different versions of the components, it allows studies that focus on the evolution of
security bugs over time as well [44] [43].

50

The Security of Maven Components

The primary difference with our work is that we focus on known vulnerabilities, while
the tool used in the previously mentioned papers finds security vulnerabilities by inspecting
the abstract program representation of the Maven componenets.

Another difference is in how we use the components for our work. We firstly used them
to study the reliability of the open-source vulnerability scanner that we leveraged in our
method to track known vulnerabilities in software projects in the context of external software
product quality monitoring. In addition, we use the Maven components as projects with
dependencies, in order to empirically study the prevalence of the problem of depending on
vulnerable libraries in practice.

51

Chapter 8

Conclusions and Future Work

This makes the following contributions:

e We define the problem of tracking vulnerable components in software projects in the
context of external software quality monitoring

o We present the prevalence of the problem in practice through an empirical study using
open-source and proprietary software systems

e We survey the current vulnerability knowledge providers, assess their fitness for our
purpose and motivate our decision to leverage one of them for our research

e We derive a set of requirements for methods to track vulnerable components

e We propose a method for tracking vulnerable components that partially integrates the
requirements

e We embed the method in the daily operations of our host company and evaluate the
usefulness of its findings with the potential future users of the method

Evidence for the relevance of our approach comes from the positive change we made
within the dutch banking organization’s application, described in Section It shows that
there is real interest in the industry in findings produced by the Vulnerability Alert Service,
which advocates its usefulness.

8.1 Answering the research questions

In this section, we revisit the research questions introduced at the beginning of this thesis
and present the answers.

In order to be able to respond to the principal question, we devised a series of sub-
questions that we answer first.

What are important requirements for methods to track vulnerable libraries in the
context of external software quality evaluations?

In order to answer this question, we have organized interviews with subjects coming
from the research context — technical and general consultants working for our host company.

53

8. CONCLUSIONS AND FUTURE WORK

The result of the interviewing sessions is a list of requirements along with their prioritization.
The most important requirement was considered having access to a quality datasource in
terms of its update frequency and coverage of vulnerabilities contained within. Part of the
requirements found their way into the software application that underpins the final solution.

Where can we find vulnerability data?

In order to answer this question, we have engaged in a survey to find the current
vulnerability knowledge providers. We created a set of vulnerability providers that we
compared using their contents. After understanding how do they compare with eachother,
we have devised an interview. This was done to help us understand the point of view of the
subjects selected from our research context on what is important to use from the total range
of information elements of the vulnerability providers. The decision that emerged from this
investigation is that the NVD database is adequate for our research purposes and will be used
throughout the rest of our project.

How can we produce alerts on the presence of known vulnerabilities in software
projects?

In order to select a software tool that produces these alerts automatically, we firstly surveyed
the state of the art in order to derive a list of candidate solutions. Then, the requirements
gathered from answering the previous research question were used to study the fitness
for purpose of each. In the end one open-source tool showed a good coverage of the
requirements and was selected to be used in our research project. Before integrating it in
the daily operations of our host company, we studied its reliability in terms of producing
useful alerts, using established measures from the Information Retrieval field — precision
and recall. As subject data for this study we leveraged the Maven dataset of open-source
components. We then proceeded to introduce the monitoring operation at our host company.
We introduced known vulnerability scanning as an extra automated regularly scheduled
investigation of a software system and alerts started to arrive, signaling the presence of
known vulnerabilities in client software systems.

How prevalent is the problem in practice?

The prevalence study had the goal to understand how common is the problem of depend-
ing on vulnerable libraries. For this, we considered two datasets containing open-source and
proprietary software projects. In order to quantify prevalence, we executed our vulnerability
scanner on the project set and aggregate the results.

Are the alerts useful?

We gathered a collection of alerts over a period of time and studied their usefulness with
the cooperation of the technical consultants, the prospective users of this method. In order
to study usefulness, we organized focused interviews on the basis of individual alerts but
also a long-raning observation phase in which we observe the technical consultants how they
process alerts.

Answering to all the sub-questions allowed us to answer the principal question:

54

Future Work

How can we automatically produce useful alerts in the context of signalling known
vulnerabilities in third party libraries in software projects?

The way in which we can produce useful alerts related to the known vulnerabilities
present in software applications is by integrating our process to track known vulnerabilities
in software projects. Its byproducts, security alerts, have been empirically proven to be
useful in our research context on a consistent basis.

8.2 Future Work

In our view, future work revolves mainly around replicating our study in the same setting
for confirming our findings, but also in a different setting, in order to understand the impact
of the context on the conclusions drawn. Another element of future work relevant for our
study are extensions to the contributions. In this chapter, we present the areas of study. For
these elements we consider that other researchers may find opportunities to extend the work
presented in this thesis.

8.2.1 Requirements Analysis

The Requirements Analysis research phase was based on the input coming from a population
drawn from a single company which offers consulting services on matters of software quality.
Further research can explore the changes brought in the gathered requirements by changing
the research context to, for example, software development companies which would like to
introduce tracking known vulnerabilities introduced by third party dependnencies in their
software development process.

8.2.2 Vulnerability Knowledge Provider

As our study has shown, currently, the NVD database has proven to be the most useful
vulnerability database for our research. This is due to its fitness for our research goal and
facile programmatic access. This database contains known vulnerabilities which have been
assigned a standardized CVE identifier. But for a vulnerability to be known, it does not
necesarily need to go through the process that leads to a CVE assignment. Some security
vulnerabilities are known before receiving a CVE, such as when users of open-source projects
signal security vulnearbilities. Ideally, tracking known vulnerabilities would mean indexing
every source of information that contains pointers to security threats.

8.2.3 Vulnerability Scanner

An open-source implementation of a known vulnerability scanner, Dependency Check, was
used in our research. Future work may use different vulnerability scanners in the same
context or a different scanner in the same context and analyze the changes in the outcome of
the study thus extending the body of knowledge of this topic. Also, extensions to Dependency
Check are welcome, that would cover the entire range of requirements elicited from the
research context, or other requirements if study replications result in gathering different

55

8. CONCLUSIONS AND FUTURE WORK

requirements. Furthermore, we can extend the reliability study to not only the Maven
ecosystem, but to Python’s PyPi, and Ruby Gems. Besides the complete set of requirements,
the ideal solution would also be capable of leveraging known vulnerabilities as they are
disclosed, as it may happen that vulnerabilities are disclosed during the regular scheduled
scans of software projects.

An interesting requirement that if solved, may produce much added value for the problem
domain is providing update consequences in the case there exists newer versions of detected
libraries in which known vulnerabilities are fixed. This may mean, for example, messages
such as “if you update library X to this specific version, you will remove this vulnerability but
as a consequence you have to update also libraries Y and Z”. In this regard, the application
of association rule mining techniques on a large relevant dataset such as the Maven projects
with all their versions may give an impression of how often this is the case in practice, how
many times the update of specific libraries lead to the update of the same others. The frequent
cases in which specific libraries were updated at the same time can be studied to see how
these situations can be recognized automatically and how can this functionality be integrated
in tools.

8.2.4 Prevalence studies

The prevalence studies that we conducted in order to understand how common is the problem
of depending on vulnerable components in practice can be extended to projects written in
different programming languages and built using different build systems. This would enable
us to understand whether the problem is prevalent across programming ecosystems or does it
represent a concern only for specific language ecosystems. In our study we focused on Java
projects built with Maven, but the study can be extended to for example, Python projects
which declare dependencies in requirements.txt files and use PyPi as a dependency manager.

8.2.5 Risk analysis

The question that we set with regards to the concept of risk analysis is whether or not by
having a library or framework with known vulnerabilities within the software system makes
the project exploitable. We have generally seen throughout our research that CVE data makes
reference to very intricate execution contexts in which the vulnerabilities can be exploited,
but quantitative data is needed to study this aspect using real software systems.

56

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Bibliography

About CVE identifiers. http://cve.mitre.org/cve/identifiers/. Last visited
2014-01-19.

CVSS Home Page at NVD NVD-CVSS. http://nvd.nist.gov/cvss.cfm. Last
visited 2013-12-02.

CWE description document. https://cwe.mitre.org/documents/views/
view-evolution.htmll Last visited 2014-08-07.

Hasso-Plattner-Institut — database for vulnerability analysis. Last visited 2014-08-03.

Heartland security breach. http://www.computerworld.com/s/article/
9176507/Heartland_breach_expenses_pegged_at_140M so_far. Last visited
2014-01-19.

Maven - POM Reference. https://maven.apache.org/pom.html. Last visited
2014-03-13.

Mitre homepage. http://www.mitre.org/. Last visited 2014-01-19.

OWASP - Using Components with Known Vulnerabilities. https:
//www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_
Known_Vulnerabilities. Last visited 2014-01-19.

OWASP Dependency Check Home Page. |https://www.owasp.org/index.php/
OWASP_Dependency_Check. Last visited 2014-03-13.

OWASP top 10 Home Page. |https://www.owasp.org/index.php/Top_10_
2013-Table of Contents. Last visited 2014-01-19.

Portland Pattern Repository: Component Definition. http://c2.com/cgi/wiki?
ComponentDefinition. Last visited 2014-01-19.

Omar H. Alhazmi, Yashwant K. Malaiya, and Indrajit Ray. Measuring, analyzing
and predicting security vulnerabilities in software systems. Computers & Security,
26(3):219-228, 2007.

57

http://cve.mitre.org/cve/identifiers/
http://nvd.nist.gov/cvss.cfm
https://cwe.mitre.org/documents/views/view-evolution.html
https://cwe.mitre.org/documents/views/view-evolution.html
http://www.computerworld.com/s/article/9176507/Heartland_breach_expenses_pegged_at_140M_so_far
http://www.computerworld.com/s/article/9176507/Heartland_breach_expenses_pegged_at_140M_so_far
https://maven.apache.org/pom.html
http://www.mitre.org/
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Top_10_2013-Table_of_Contents
https://www.owasp.org/index.php/Top_10_2013-Table_of_Contents
http://c2.com/cgi/wiki?ComponentDefinition
http://c2.com/cgi/wiki?ComponentDefinition

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

58

Luca Allodi and Fabio Massacci. A preliminary analysis of vulnerability scores for
attacks in wild. In Proceedings of the ACM CCS Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security, 2012.

Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience factory.
Encyclopedia of software engineering, 1994.

Dennis Bijlsma, José Pedro Correia, and Joost Visser. Automatic event detection for
software product quality monitoring. In 2012 Eighth International Conference on
the Quality of Information and Communications Technology (QUATIC), pages 30-37.
IEEE, 2012.

Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study of zero-day
attacks in the real world. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 833—-844. ACM, 2012.

Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins. Evaluation
of the ability of the shodan search engine to identify internet-facing industrial control
devices. International Journal of Critical Infrastructure Protection, 7(2):114-123,
2014.

Andre Bondi. Characteristics of scalability and their impact on performance. In
Proceedings of the 2nd international workshop on Software and performance, pages
195-203. ACM, 2000.

Eric Bouwers, Arie van Deursen, and Joost Visser. Evaluating usefulness of software
metrics: an industrial experience report. In Proceedings of the 2013 International
Conference on Software Engineering, pages 921-930. IEEE Press, 2013.

Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Beyond
heuristics: learning to classify vulnerabilities and predict exploits. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 105-114. ACM, 2010.

Cheikes Brant, David Waltermire, and Karen Scarfone. Common Platform Enumeration:
Naming Specification Version 2.3. NIST Interagency Report 7695, 2011.

Andrew Buttner and Neal Ziring. Common platform enumeration (CPE) specification.
http://cpe.mitre.org/files/cpe-specification_2.1.pdf. Last visited 2014-
04-30.

Brian Chess and Jacob West. Secure programming with static analysis. Pearson
Education, 2007.

Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures.
Tsinghua University Press, 2003.

DragonSoft. DragonSoft Vulnerability Database Home Page. http://vdb|
dragonsoft.com/. Last visited 2013-11-29.

http://cpe.mitre.org/files/cpe-specification_2.1.pdf
http://vdb.dragonsoft.com/
http://vdb.dragonsoft.com/

[26] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Se-
lecting empirical methods for software engineering research. In Guide fo advanced
empirical software engineering, pages 285-311. Springer, 2008.

[27] Tom Fawcett and Foster Provost. Activity monitoring: Noticing interesting changes
in behavior. In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 53—-62. ACM, 1999.

[28] Stefan Frei. The known unknowns. NSS Labs, 2013.

[29] Anandasivam Gopal, Tridas Mukhopadhyay, and Mayuram S. Krishnan. The impact
of institutional forces on software metrics programs. IEEE Transactions on Software
Engineering,, 31(8):679-694, 2005.

[30] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns. In 9th Conference on
FPattern Language of Programs, pages 1-9, 2002.

[31] Will Hopkins. A new view of statistics. Internet Society for Sport Science, 2000.

[32] IBM. IBM XForce IBM Internet Security Systems. http://search.iss.net/. Last
visited 2013-11-29.

[33] British Standard Institute. Information technology — security techniques — management
of information and communications technology security — part 1: Concepts and models
for information and communications technology security management bs iso/iec 13335-
1-2004. 2004.

[34] ISO/IEC. Information technology — security tecniques-information security risk man-
agement. ISO/IEC FIDIS 27005, 2008.

[35] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extracting cybersecurity
related linked data from text. In 2013 IEEE Seventh International Conference on
Semantic Computing (ICSC),, pages 252-259. IEEE, 2013.

[36] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. Rendezvous: A search engine
for binary code. In Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 329-338. IEEE Press, 2013.

[37] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of survey research:
part 3: constructing a survey instrument. ACM SIGSOFT Software Engineering Notes,
27(2):20-24, 2002.

[38] Tobias Kuipers and Joost Visser. A tool-based methodology for software portfolio
monitoring. In Software Audit and Metrics, pages 118—128, 2004.

[39] Tobias Kuipers, Joost Visser, and Gerjon De Vries. Monitoring the quality of outsourced
software. In Proc. Int. Workshop on Tools for Managing Globally Distributed Software
Development (TOMAG 2007). Center for Telematics and Information Technology
(CTIT), The Netherlands, pages 3—12, 2007.

[40] David Mann and Steven Christey. Towards a common enumeration of vulnerabilities.
The MITRE Corporation, 4(5), 1999.

59

http://search.iss.net/

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]

[52]

[53]

[54]

60

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to
information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Fabio Massacci and Viet Hung Nguyen. Which is the right source for vulnerability
studies? an empirical analysis on mozilla firefox. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics, pages 4—12. ACM, 2010.

Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the common
vulnerability scoring system version 2.0. In Published by FIRST-Forum of Incident
Response and Security Teams, pages 1-23, 2007.

Dimitris Mitropoulos, Georgios Gousios, and Diomidis Spinellis. Measuring the occur-
rence of security-related bugs through software evolution. In 2012 16th Panhellenic
Conference on Informatics (PCI), pages 117-122. IEEE, 2012.

Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios, and
Diomidis Spinellis. Dismal code: Studying the evolution of security bugs. In Proceed-
ings of the LASER Workshop, pages 37-48, 2013.

Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios, and
Diomidis Spinellis. The bug catalog of the maven ecosystem. In Proceedings of the
11th Working Conference on Mining Software Repositories, pages 372-375. ACM,
2014.

Varish Mulwad, Wenjia Li, Anupam Joshi, Tim Finin, and Krishnamurthy Viswanathan.
Extracting information about security vulnerabilities from web text. In 20171
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), volume 3, pages 257-260. IEEE, 2011.

Stephan Neuhaus and Thomas Zimmermann. Security trend analysis with cve topic
models. In 2010 IEEE 21st International Symposium on Software Reliability Engineer-
ing (ISSRE), pages 111-120. IEEE, 2010.

NIST. National Vulnerability Database Home Page NVD - Home. http://nvd.nist,
gov/. Last visited 2013-11-29.

Timothy M. O’Brien. Maven: The Definitive Guide. O’Reilly, 2008.

International Institute of Business Analysis. A Guide to the Business Analysis Body of
Knowledge. 2009.

OSVDB. Open Source Vulnerability Database Home Page. http://osvdb.org/.
Last visited 2013-11-29.

Theodoros Polychniatis. Detecting dependencies across programming languages.
Master’s thesis, Utrecht University, 2012.

Steven Raemaekers, Arie van Deursen, and Joost Visser. The maven repository dataset
of metrics, changes, and dependencies. In Proceedings of the 10th Working Conference
on Mining Software Repositories, pages 221-224. IEEE Press, 2013.

http://nvd.nist.gov/
http://nvd.nist.gov/
http://osvdb.org/

[55] Steven Raemaekers, Gabriela F. Nane, Arie van Deursen, and Joost Visser. Testing
principles, current practices, and effects of change localization. In Proceedings of
the 10th Working Conference on Mining Software Repositories, pages 257-266. IEEE
Press, 2013.

[56] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring software library
stability through historical version analysis. In 28th IEEE International Conference on
Software Maintenance (ICSM), pages 378-387. IEEE, 2012.

[57] Sanaz Rahimi and Mehdi Zargham. Vulnerability scrying method for software vulner-
ability discovery prediction without a vulnerability database. IEEE Transactions on
Reliability, 62(2):395-407, 2013.

[58] Rapid7. Rapid7 Vulnerability and Exploit Database. http://www.rapid7.com/db/.
Last visited 2013-11-29.

[59] Sebastian Roschke, Feng Cheng, Robert Schuppenies, and Christoph Meinel. To-
wards unifying vulnerability information for attack graph construction. In Information
Security, pages 218-233. Springer, 2009.

[60] Vaibhav Saini, Hitesh Sajnani, Joel Ossher, and Cristina V Lopes. A dataset for maven
artifacts and bug patterns found in them. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 416—419. ACM, 2014.

[61] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things changed now? an
empirical study on input validation vulnerabilities in web applications. Computers &
Security, 31(3):344-356, 2012.

[62] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Quo vadis? a study of the evolu-
tion of input validation vulnerabilities in web applications. In Financial Cryptography
and Data Security, pages 284-298. Springer, 2012.

[63] Secunia. Secunia Advisories. http://secunia.com/advisories/. Last visited
2013-11-29.

[64] Securiteam. Securiteam Database CVE. |http://www.securiteam.com/cves/. Last
visited 2013-11-29.

[65] SEI. SEI Security Notes Search Vulnerability Notes. http://www.kb.cert.org/
vuls/html/search/l Last visited 2013-11-29.

[66] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. A large scale
exploratory analysis of software vulnerability life cycles. In Proceedings of the 2012
International Conference on Software Engineering, pages 771-781. IEEE Press, 2012.

[67] Shoban Search Engine. Jetty 6.1.1 Keyword Search on Shoban. http://www!
shodanhg.com/search?g="Jjetty+6.1.1. Last visited 2014-04-30.

[68] Abraham Silberschatz, Peter Galvin, and Greg Gagne. Operating system concepts,
volume 4. Addison-Wesley Reading, 1998.

61

http://www.rapid7.com/db/
http://secunia.com/advisories/
http://www.securiteam.com/cves/
http://www.kb.cert.org/vuls/html/search/
http://www.kb.cert.org/vuls/html/search/
http://www.shodanhq.com/search?q=jetty+6.1.1
http://www.shodanhq.com/search?q=jetty+6.1.1

BIBLIOGRAPHY

[69] Symantec. Symantec Security Focus. http://www.securityfocus.com/
vulnerabilities. Last visited 2013-11-29.

[70] Clemens Szyperski. Component software: beyond object-oriented programming. Pear-
son Education, 2002.

[71] Orcun Temizkan, Ram L. Kumar, SungJune Park, and Chandrasekar Subramaniam.
Patch release behaviors of software vendors in response to vulnerabilities: an empirical
analysis. Journal of Management Information Systems, 28(4):305-338, 2012.

[72] Arie Van Deursen and Tobias Kuipers. Source-based software risk assessment. In
International Conference on Software Maintenance 2003, pages 385-388. IEEE, 2003.

[73] Roel Wieringa and Joel Heerkens. The methodological soundness of requirements
engineering papers: a conceptual framework and two case studies. Requirements
engineering, 11(4):295-307, 2006.

[74] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements en-
gineering paper classification and evaluation criteria: a proposal and a discussion.
Requirements Engineering, 11(1):102-107, 2006.

[75] James Williams and Anand Dabirsiaghi. The unfortunate reality of insecure libraries.
Aspect Security, Inc., March 2012.

[76] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer, 2012.

[77] Haiyun Xu, Jeroen Heijmans, and Joost Visser. A practical model for rating software
security. In SERE (Companion), pages 231-232, 2013.

[78] Pei Xia Makoto Matsushita Norihiro Yoshida and Katsuro Inoue. Studying reuse of

out-dated third-party code in open source projects. Computer Software (translated from
Japanese), 30(4):98-104, 2013.

[79] Su Zhang, Doina Caragea, and Xinming Ou. An empirical study on using the national
vulnerability database to predict software vulnerabilities. In Database and Expert
Systems Applications, pages 217-231. Springer, 2011.

62

http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/vulnerabilities

Appendix A

Interview-Requirements
Introductory Text

Developers, in their practice, tend to avoid “reinventing the wheel”. The strongest justification
for this behavior is the current time-to-market demands of the software industry. This results
in developers being inclined to firstly search for a third-party software library that covers
part of the project requirements, before attempting to develop the necessary functionality
from scratch. In some cases, library code makes up for as much as 80% of the total size of
the total project code [[75].

However, in software development, with regards to including third-party libraries in
projects, “you are what you eat”. Along with the desired functionality, we include the
library’s problems too, such as security vulnerabilities, which could be exploited by malicious
attackers to gain the full privileges of the application, for their own use. In a recent study,
researchers at Aspect Security analysed 113 million downloads from the Maven Central
Repository and declared that 29.8 million (26%) of the library downloads have previously
disclosed vulnerabilities[75]. In this context it should be noted that, probably, not all
downloaded dependencies were actually used as project dependencies in the development
process, but the fact that more than 1 out of 4 library downloads have a known exploitable
vulnerability illustrates the gravity of the situation.

‘What would be desirable in this context, is to establish and evaluate a method to au-
tomatically leverage disclosure data, to inform the developers of the known security risks
associated with their library selection throughout the evolution of a project, and inform them
of possible solutions, such as upgrading to a newer version in which the security vulnerability
was removed.

63

Appendix B

Interview Form

Question: What are the requirements for an artefact that would enable you to monitor the
presence of known vulnerabilities in third party libraries built as an extension to the Monitor

Alert System?

Requirement

Priority

65

Appendix C

Requirements Formulation and
Justification

In this appendix, we present a more detailed description of the gathered requirements. The
list below is not sorted.

Basic requirement —

Formulation:
The consultant shall be notified through an alert when:

o A vulnerable library is included in a snapshot (new snapshots of the current state of the
source code are received every week).

e A new vulnerability is disclosed that affects one of the dependent libraries of a moni-
tored project.

Justification:

Traditionally, consultants have to spend a large amount of time manually identifying library
versions and investigating security disclosure information sources at each snapshot upload.
These alerts alleviate them from manually keeping track of included libraries and vulnerabil-
ity information.

Up-to-date and reliable vulnerability data source —

Formulation:
The data source utilized shall always include the most recent vulnerability information,
coming from a reliable entity.

Justification:

Through implementing this requirement, the risk of omitting a disclosed vulnerability of
which the artefact is not aware of, is avoided. Furthermore, if the data source is coming from
a reliable entity it assures that consultants trust the artefact’s output and utilize it in their
practice.

67

C. REQUIREMENTS FORMULATION AND JUSTIFICATION

Accuracy —

Formulation:

In “automatic detection” use-cases such as ours — detecting vulnerable libraries — there
will be proposals in the artefact’s output which are relevant (true positives) or not relevant
(false positives). The solution shall provide a “useful ratio” between true positives and false
positives.

Justification:
False positives are to be expected, but they do not provide useful information for the consul-
tant and may also lead to useless investigations and time spent pointlessly.

Vulnerability Severity —

Formulation:
The report included in every alert shall contain indication of the vulnerability’s severity level.

Justification:
Knowing the severity of a vulnerability is very important in the consultancy practice, as it
allows the consultant to understand how large associated risk is.

Enriching the vulnerability data —

Formulation:

It shall be possible to manually extend the initial data source used by the artefact for including
new vulerability information on already existing libraries in the data store, or create new
library entries with respective vulnerability information.

Justification:
The consultants may read online sources, such as blog posts, and they should be able to
integrate the new information in the artefact.

Filtering —

Formulation:
It shall be possible to define custom filters that suppress alerts, according to defined custom
rules.

Justification:

This feature enables alerts pertaining to a specific library to be ignored, for instance, when
the consultant wants to “acknowledge” certain alerts so that they don’t reoccur at every
snapshot upload if the vulnerable library was not removed.

68

Multi-language support —

Formulation:

It shall be possible to support multiple programming languages — the initial range of lan-
guages that is to be supported is Java and C#, as the majority of currently monitored projects
are built using these programming languages.

Justification:
The projects evaluated by the consultants are written in various programming languages,
therefore the tool should have the ability to be applied in a broad range of situations.

Confidentiality —

Formulation:
The data source provider shall not be able to obtain information on which libraries/vulnera-
bilities the monitored projects include.

Justification:
In the extreme case, the information about the projects’ vulnerabilities could be used in order
to compromise the clients’ projects and buisnesses.

Ease of use —

Formulation:
The artefact shall be easily deployed to monitor a project.

Justification:

The consultants will not be inclined to use the artefact, and will resort to alternative solutions,
if it requires significant overhead to be deployed for monitoring a project, such as excessive
configuration.

Easily extensibile to other languages —

Formulation:
It shall be easy to extend the artefact to be used on a currently unsupported technology.

Justification:

This feature is important because there are instances where the consultants encounter a
project to be monitored being written in a programming language that they have not encoun-
tered before, so they should be able to easily extend the artefact to provide support for this
new situation.

69

C. REQUIREMENTS FORMULATION AND JUSTIFICATION

Robustness —

Formulation:

Robustness is “the ability of a computer system to cope with errors during execution
or the ability of an algorithm to continue to operate despite abnormalities in input or
calculations”[68]].

Justification:
This requirement prevents the situation in which, due to an error caused by one software
project, all of the currently monitored projects are affected.

Detect Outdated Libraries and provide upgrade suggestion —

Formulation:
The artefact shall be capable of indicating that a newer version of a used library is available,
in which the vulnerability is removed.

Justification:
This feature removes the need to manually investigate the version information of a library
and then check whether a newer version is available, that does not contain the vulnerability.

Detailed information about the consequences of upgrade —

Formulation:

In the context of a possible upgrade scenario, the artefact shall provide the consultant with
detailed insight into the consequences of upgrade, such as the cost of making the application
“compatible” with the new library version.

Justification:

This feature removes the need for the consultant to conduct a trade-off analysis, with regards
to the development consequences of upgrading to a newer version, before advising the client.
Scalability —

Formulation:

Scalability is “the ability of a system, network, or process to handle a growing amount of
work in a capable manner or its ability to be enlarged to accommodate that growth”[[18]].
Justification:

Scalability is important due to the fact that the number of projects that have to be monitored

is consistently increasing.

Proprietary libraries —

70

Formulation:
The system shall be able to signal the presence of known vulnerabilities in proprietary
libraries.

Justification:
Developers do not only utilize open-source libraries, but also proprietary libraries, therefore
the system should be able to accommodate for this fact.

Automation —

Formulation:

The amount of manual work that operating the artefact requires shall be kept to a minimum.
The ideal solution is automated, where possible.

Justification:

By reducing the manual work required to operate the artefact, we improve the consultants’
efficiency.

71

Appendix D

Interview - Vulnerability Databases

D.1 Introduction

The purpose of this research is to develop, implement and evaluate a method to scan and
monitor the presence of known vulnerabilities in third party dependencies of software
projects.

Vulnerability information is stored in so-called vulnerability databases, which collect the
publicly disclosed vulnerabilities coming from the application vendors and other entities.

Vulnerability information is encapsulated in these databases in a non-uniform manner - a
common schema is not enforced, and moreover their contents differs too. The first step of
the applied research method is to match the technical consultants requirements regarding
the vulnerability information needed in applying the security practice with the vulnerability
description contained in the vulnerability databases.

The result of this interview counts for understanding whether there is a need to unify the
vulnerability databases using the common CVE identifier to gain more descriptive power, or
using a single data source would suffice, given that the project has a finite deadline and not
all databases offer straightforward programmatic access.

I would really appreciate if you can rate the importance of each vulnerability description
element in the table found on page 3, labeling each as one of the following: MUST, SHOULD,
COULD, WONT. These values pertain to the MoSCoW method for software engineering
requirements prioritization, and are explained below :

e MUST: Describes a requirement that must be satisfied in the final solution for the
solution to be considered a success.

e SHOULD: Represents a high-priority item that should be included in the solution if it
is possible. This is often a critical requirement but one which can be satisfied in other
ways if strictly necessary.

e COULD: Describes a requirement which is considered desirable but not necessary.
This will be included if time and resources permit.

o WON’T: Represents a requirement that stakeholders have agreed will not be imple-
mented in a given release, but may be considered for the future. (note: occasionally the
word “Would” is substituted for “Won’t” to give a clearer understanding of this choice)

73

D. INTERVIEW - VULNERABILITY DATABASES

D.2 Result
MUST | SHOULD | COULD | WONT
CVEID X
CWE ID X
Impact X
CVSS X
Description X
Solution X
Attack From X
Popularity X
Discoverer X
Loss Type X
Vulnerability Type X
Similar Vulns X
OS X
CPE ID X
Vulnerable Software X
Publishing Date X
Date Public X
Date Last Update X
References X

Table D.1: Vulnerability Database Interview Results Table

74

	Preface
	Introduction
	Definitions
	Research Context
	Problem Statement
	Research Method
	Research Questions
	Thesis structure

	Requirements for a method to track vulnerable components
	Research Subjects
	Interview phases
	The requirements table
	Discussion
	Conclusion

	Vulnerability Knowledge Providers
	Database Selection
	Vulnerability Information Elements
	Comparison Matrix
	Discussion
	Interviewing
	Conclusion

	The Vulnerability Alert Service
	Process description
	The Vulnerability Checker
	Vulnerability checker reliability
	Conclusion

	Known Vulnerabilities in software project dependencies
	Research Questions
	Software Subjects
	Tooling
	Maven study design
	Maven study results
	Proprietary projects study design
	Proprietary projects study results
	Conclusion

	Evaluating the Vulnerability Alert Service
	Study design
	Interview Findings
	Observations Findings
	Discussion
	Threats to validity
	Conclusion

	Related Work
	Known Vulnerabilities
	Empirical Studies on Known Vulnerabilities
	The Security of Maven Components

	Conclusions and Future Work
	Answering the research questions
	Future Work

	Bibliography
	Interview-Requirements Introductory Text
	Interview Form
	Requirements Formulation and Justification
	Interview - Vulnerability Databases
	Introduction
	Result

