Portfolio Management Using Value at Risk:

A Comparison Between Genetic Algorithms and

Particle Swarm Optimization

éﬁﬁ.\u. S UNIVERSITEIT ROTTERDAM

Valdemar Antonio Dallagnol Filho

Supervised by Dr. Ir. Jan van den Berg

Master Thesis Informatics & Economics

July 2006

Dedicated to my parents, Lourdes and Valdemar.

Acknowledgements

First I would like to thank my supervisor Dr. Ir. Jan van den Berg for his help and

invaluable insights. It was really a pleasure to work with him.

Furthermore, T would like to thank my family for their love and unconditional

support: Lourdes, Valdemar, Luciana, Paulo, Rodrigo and Lucas.

Finally, there were many people that I met during my brief stay in Rotterdam who

made my experience abroad unforgettable. Thank you for all the fun, my friends!

Abstract

In this Thesis, it is shown a comparison of the application of Particle Swarm Op-
timization and Genetic Algorithms to risk management, in a constrained portfolio
optimization problem where no short sales are allowed. The objective function to be

minimized is the value at risk calculated using historical simulation.

Four strategies for handling the constraints were implemented for PSO: bumping,
amnesia, random positioning and penalty function. For GA, two selection operators
(roulette wheel and tournament); two crossover operators (basic crossover and arith-

metic crossover); and a mutation operator were implemented.

The results showed that the methods are capable of finding good solutions in a
reasonable amount of time. PSO showed to be faster than GA, both in terms of
number of iterations and in terms of total running time. However, PSO demonstrated
to be much more sensible to the initial position of the particles than GA. Tests were
also made regarding the number of particles needed to solve the problem, and 50

particles/chromosomes seemed to be enough for problems up to 20 assets.

il

Contents

1 Introduction

2 Risk Measures

2.1 Introductiono
2.2 The Mean-Variance Approach
23 Valueat Risk o
2.3.1 Parametric Method oo 0oL
2.3.2 Historical Simulation Method
2.3.3 Monte Carlo Method
2.4 Coherent Risk Measures

3 Nature Inspired Strategies for Optimization

3.1 Introduction L
3.2 Particle Swarm Optimization
3.3 Genetic Algorithms Lo
3.4 Conclusion L

4 Experiment Set-Up

4.1 Data Collecting
4.2 Model Building L
4.3 Experiment design Lo

10

12

14

16

17

19

19

20

25

29

30

5 Empirical Results

5.1 The objective function

5.2 Consistency of the algorithms

5.3 Speed of algorithms Lo oo

5.4 Sensitivity to initial position

5.5 Influence of the number of particles / chromosomes

6 Conclusions

A Summary of the data used

B Tables with results

C Pictures with results

References

iv

35

35

36

40

40

41

45

47

51

58

67

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

5.1

5.2

Al

C.1

C.2

C.3

Efficient frontier of risky assets
Minimum variance and tangency portfolios
Two distributions with the same VaR but different CVaR

VaR and CVaR of portfolios of 2 assets

Feasible solution space for portfolio optimization with 3 assets
Particle bumping into boundary
Example of chromosomes with binary and real encoding
Basic crossover e
Whole arithmetic crossover

Mutation operator Lo

Contour plot showing the VaR of a portfolio with 3 assets

Example of random initial position of particles

Distribution of daily returns of Verizon, for two different horizons

Optimal portfolio weights, using different objective functions and differ-
ent horizons for thedata 0.

Typical run of PSO using bumping strategy

Typical run of PSO using amnesia strategy

11

13

22

23

25

27

28

28

37

44

48

C4

C.5

C.6

Typical run of PSO using random positioning strategy

Typical run of GA using roulette wheel selection and whole arithmetic

CIOSSOVEYL« . o v ot o o v e

Typical run of GA using tournament selection and basic crossover . . .

vi

List of Tables

Al

A2

B.1

B.2

B.3

B.4

B.5

B.6

B.7

Average returns of the companies 49
Standard deviations of the returns of the companies 50
Comparison of different risk measures 51
Consistency of PSO and GA for portfolios with different sizes 52
Speed of PSO and GA for portfolios with different sizes 53
Influence of the initial position on the consistency 54
Influence of the number of particles on the consistency 55
Consistency of PSO and GA considering a big number of particles/

chromosomes H6

Speed of PSO and GA considering a big number of particles/ chromosomes 57

vii

Chapter 1

Introduction

The main idea of this Master Thesis is to check the applicability of Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) to risk management. A portfolio
containing multiple assets reduces the overall risk by diversifying away the idiosyncratic
risk. Tt is therefore good to consider as many assets as possible, with the limitations
of the costs of maintaining such a varied portfolio. Calculating the optimal weights for
the portfolio may be a computationally intensive task and thus it is interesting to find
heuristic optimization methods that are fast and yet reliable. To test the performance
of PSO and GA in this task, subsets of the stocks of the Dow Jones Industrial Average
are used here and the percentage of the investment put in each of the assets (weights)
is defined by minimizing the Value at Risk (VaR) of the portfolio. Moreover, the
constraint of no short-sales is added, which means that none of the weights can be

negative.

Value at Risk is a measure of risk that tries to determine the maximum loss of a
portfolio for a given confidence level. The VaR may also be interpreted as the quantile
of a distribution - the value below which lie ¢% of the values, for a given time horizon.
Although some people argue that it is not a good measure of risk, because of its lack
of coherence (see section 2.4), it is much used in practice, especially considering the
BIS (Bank for International Settlements) requirement (Hawkins, 2000).

To solve the optimization problem of minimizing the variance (another common
measure of risk), quadratic programming has often been used. But when the problem
includes a large number of assets or constraints, finding the best solution becomes more
time demanding. In these cases, different approaches have been employed, including
PSO and GA. Xia et al. (2000) used a Genetic Algorithms for solving the mean-variance

Introduction 2

optimization problem with transaction costs. Chang et al. (2000) focused on calculat-
ing the mean-variance frontier with the added constraint of a portfolio only holding
a limited number of assets. They have used three heuristics to solve this problem,
including a Genetic Algorithm. Finally Kendall Kendall & Su (2005) maximizes the
Sharpe ratio using Particle Swarm Optimization, but for only a very limited number
of assets. It was not found in the literature articles applying GA or PSO to portfolio

optimization using VaR, which shows the relevance of this Thesis.

The Particle Swarm Optimization algorithm is based on the behavior of fishes and
birds, which collaboratively search an area to find food. It is a systematic random
search like Genetic Algorithms in the sense that the algorithm moves through the
solution space towards the most promising area, but the exact path is not deterministic.
PSO has a population consisting of various particles, with each particle representing a
solution. The particles are all initialized in the search space with random values for the
weights and the velocities. Then they ‘fly’ through the search space, with the velocity
in each iteration determined by a momentum term plus two random terms associated
with the best solution found by the particle and to the best solution found by all the
particles in the population. If some constraints are imposed, it is possible that at some
point particles will try to cross the boundaries of the feasible space, mainly because of
their momenta. There are different strategies to assure that the solutions found remain
feasible. In this work, four of them are implemented and discussed: bumping, amnesia,
random positioning and penalty function (see section 3.2 for more details about the

strategies).

Genetic Algorithms are techniques that mimic biological evolution in Nature. Given
an optimization problem to solve, GA will have a population of potential solutions
to that problem. To determine which are better fit in a given generation, a fitness
function (the objective function of the optimization) is used to qualitatively evaluate
the solutions. After using some selection strategy to choose the best chromosomes of
the population, offsprings are generated from them, hoping that the offspring of two
good solutions will be even better. One major decision in GA is the way the solutions
are encoded. In this work the real encoding is used, with the genes consisting of real

numbers and representing the weights for each of the assets (see section 3.3).

GA uses special operators (selection, crossover, mutation), and the design of these
operators is a major issue in a GA implementation and usually is done ad hoc. In
this work, two selection operators (tournament and roulette-wheel selection) and two

crossover operators (basic crossover and whole arithmetic crossover) are implemented.

Introduction 3

A mutation operator to assure genetic variability was also implemented. GA may also
use elitism to make sure that the best solutions of each generation survive intact into

the next generation.

To implement the algorithms, the software Matlab® version 7.0 was used. To
estimate the VaR of a given portfolio, it was used the historical simulation method.
This method has as advantage that it does not requires the simplifying assumption
that the underlying distribution is normal, and yet does not add much computational

burden.

The two characteristics that were used to evaluate the performance of the algorithms
are the consistency (ability to always arrive at the global optimum of the problem) and
the speed of convergence to the best solution. It was also investigated the influence of
the number of particles/chromosomes on the quality of the solutions; and the sensitivity

of the algorithms to the initial position of the particles/chromosomes.

This Thesis is structured as followed: chapter 2 makes a review about risk and
possible measures of it: variance (section 2.2), value at risk (section 2.3) and conditional
value at risk (section 2.4). Special attention is given to VaR and to three ways of
calculating it: the parametric method, the historical simulation method and the Monte
Carlo Method.

The next part (chapter 3) deals with Nature inspired strategies for optimization, in
particular Particle Swarm Optimization (section 3.2) and Genetic Algorithms (section
3.3). It is shown the basics of these methods, together with strategies for handling

constraints of the portfolio optimization problem.

Chapter 4 explains the experiment set-up. Section 4.1 describes the data used in
the empirical part. Section 4.2 describes the parameters chosen for the optimization
methods and the initialization procedure. And in section 4.3, the design of the exper-
iments is discussed. Finally in chapter 5, the results of the experiments are presented

and discussed.

Chapter 2

Risk Measures

2.1 Introduction

Finding a general definition of risk in the literature is hard, as points Holton (2004),
who defines it as an “exposure to a proposition of which one is uncertain”. He em-
phasizes that there are two components of risk: exposure and uncertainty. In general,
there is exposure to a proposition when there are material consequences from it. As
pointed by Holton, the test to be see if there are material consequences is: “would we
care?” Or in other words “if we immediately considered the proposition, would we have
a preference for it to be true or false?” 1t is possible that a person is exposed to a
proposition without even knowing about it. Take the example of children playing with
sharp knives - they are exposed to the possibility of getting cut, even though they are
unaware of it. The second component of risk, uncertainty, means that the person does
not know whether a proposition is true or false. Probability may be used as a metric
of uncertainty, although it only quantifies perceived uncertainty. Very often the word
risk is used meaning probability and measuring only negative risks. However, in the
Risk Management area, risk is used to refer to a combination of the probability of an

event happening together with the possible outcome of that event.
Knight (1921)! distinguishes risk from uncertainty:
“But Uncertainty must be taken in a sense radically distinct from the fa-

miliar notion of Risk, from which it has never been properly separated. The

term ‘risk’; as loosely used in everyday speech and in economic discussion
?)

! Available online at: http://www.econlib.org/library/Knight/knRUP.html

http://www.econlib.org/library/Knight/knRUP.html

Risk Measures 3

really covers two things which, functionally at least, in their causal relations
to the phenomena of economic organization, are categorically different. (...)
The essential fact is that ‘risk’ means in some cases a quantity susceptible
of measurement, while at other times it is something distinctly not of this
character; and there are far-reaching and crucial differences in the bearings
of the phenomenon depending on which of the two is really present and op-
erating. (...) It will appear that a measurable uncertainty, or ‘risk’ proper,
as we shall use the term, is so far different from an unmeasurable one that
it is not in effect an uncertainty at all. We shall accordingly restrict the

term ‘uncertainty’ to cases of the non-quantitative type.”

Financial risks, as defined by Jorion (2001) are “those which relate to possible
losses in financial markets, such as losses due to interest rate movements or defaults
on financial obligations”. It is part of the job of financial institutions to manage the
financial risks, so that they are kept into tolerable levels. In order to manage the
risks taken, some metrics are needed. In this chapter, three possible risk measures are
explained: the mean-variance framework, the Value at Risk (VaR) and the Conditional
Value at Risk (CVaR). The VaR has a special importance after the Basel Capital Accord
of 1998 and the later amendments, which set capital requirements for commercial banks
to guard against credit and market risks; and allow banks to use their own VaR models

to calculate the capital required.

The remaining of this chapter is structured as follows. Section 2.2 gives a quick
review of the mean-variance approach introduced by Markowitz. Although it may be
shown that the scope of application of the Markowitz framework is limited to some spe-
cial cases, it is still used in practice and it is a standard in introductory risk textbooks.
Section 2.3 explains the Value at Risk and three ways of calculating it: the parametric
method (section 2.3.1), the historical simulation method (section 2.3.2) and the Monte
Carlo method (section 2.3.3). Finally, section 2.4 explains the concept of coherent risk

measures and defines a coherent risk measure: the Conditional Value at Risk.

2.2 The Mean-Variance Approach

Harry Markowitz introduced in 1952 the concepts of Modern Portfolio Theory
(MPT) and because of his innovative ideas was awarded in 1990 the Nobel Prize, to-

gether with Merton Miller and William Sharpe. Prior to his seminal article, investors

Risk Measures 6

usually assessed the risk and rewards of each of the securities individually when con-
structing a portfolio. The risk involved was considered an adjustment needed to the
expected returns and was calculated ad hoc (Szego, 2002). The securities that offered
the best rewards with low risk where used to construct a portfolio, which means that
eventually an investor could end up with a portfolio of securities all from the same sec-
tor, just because they seemed to have good risk-reward characteristics when considered
individually. This intuitively is not a good decision, because if there is a crash in the

sector, all of the eggs would be in the same basket.

Markowitz insight was that instead of evaluating the securities individually, what
should be evaluated was the risk of the overall portfolio. To assess the risk of the
individual securities, Markowitz proposed to use the variance of the returns, and in
the case of a portfolio, the risk should be measured by using the covariance between

all pairs of investments (Markowitz, 1952).
The variance of the returns is defined by:
o% = B [(X ~ B[X]Y]. (21)
where X are random returns. The covariance is defined by:
cov(X,)Y)=o0oxy = E[(X — E[X))(Y — E[Y])], (2.2)

where X and Y are random returns. It should be noted that cov(X, X) = o%. With

the pairwise covariances it is possible to build the covariance matrix:

01,1 012 ... O1N
021 029 ... O2N
0= (2.3)
UN71 ON2 .- ON,N
Given a portfolio with N stocks; n; shares invested in each stock (i = 1,2,..., N)
and being the prices per stock given by vy, vs, ..., vy, the value of the portfolio is:

N
i=1

The weights of the investment in each asset are given by:

niv;

% ’

Ww; =

Risk Measures 7

where it should be noted that: N

> wi=1. (2.6)

=1

The vector of weights and the vector of expected returns are defined respectively

| [] _E[Rl]_ |
W= uiQ and = E[RQ] = M:2 . (2.7)
LUN _E[RN]_ _MN_

The expected return of a portfolio can be calculated by:

ER) = p, = Zwiui =T, (2.8)

To reduce the risk of a portfolio, it is interesting to include securities with returns
that move in opposite directions, so that if one performs badly, there is another one
that performs well to compensate for that. Thus the risk of the overall portfolio is
reduced. The use of the covariance between the returns of the securities in a portfolio

allows this assessment.

The risk of the portfolio, measured by its variance, is calculated by:

U; = Z Zwiwjaiyj = ﬁTQﬁ (29)

i=1 j=1

It is possible to find a portfolio that minimizes the risk for a given expected return,
or stated differently, a portfolio that maximizes the expected return for a given level of
risk. A portfolio with this characteristic is called an efficient portfolio. The set of all
efficient portfolios form the efficient frontier. Figure 2.1 illustrates a typical efficient
frontier. All efficient portfolios lie in the upper part of the solid line (in black) and all
the others lie in the area delimited by it. The lower part of the solid line (in gray) form
the boundary of the area with the feasible portfolios, but the portfolios in that region
are obviously not efficient, because it is always possible to find another one with lower

risk for the same expected return.

Calculating the portfolios on the frontier can be done through an optimization

problem stated as:

i

min(o,) = Z Z ww;o; j, (2.10)
J

Risk Measures 8

o

Figure 2.1: All possible portfolios are in the area shaded in gray. The upper part of the
parabolic region (black line) is called the efficient frontier of risky assets and is formed

by the portfolios which minimize the variance for a given expected return

subject to:

N N
R, = Zwiri and Zwi = 1. (2.11)
i=1 i=1

In the case where no short sales are allowed, there is the extra constraint:

0<w <1. (2.12)

The portfolio optimization problem can also be written as the dual problem where

the return is maximized given an investor’s desired level of risk.

Two interesting portfolios in the efficient frontier are the minimum variance portfo-
lio and the tangency portfolio. The minimum variance portfolio is simply the portfolio
that has the minimum variance among all other portfolios, not considering the returns,

and is the portfolio A in figure 2.2.

To define the tangency portfolio it is necessary to first define the Sharpe ratio. The
Sharpe ratio combines the information from the mean and the variance of an asset and
is defined as:

Sy = ——, (2.13)

Risk Measures 9

>

o)

Figure 2.2: Efficient frontier of risky assets (solid line) and capital allocation line with
riskless asset (dashed). Portfolio A is the portfolio with minimum variance and portfolio

B is the tangency portfolio with maximum Sharpe ratio

where S, is the Sharpe ratio of the portfolio, R, is the return on the risky portfolio
and Ry is the risk-free rate. R, — Ry is the excess return of the portfolio and o, is
the standard deviation of the returns. The Sharpe ratio uses excess returns instead of
nominal returns because instead of showing how much return it is possible to get from
a risky portfolio, it shows how much extra return you may get for going from a riskless

to a risky position.

In figure 2.2, point B denotes the portfolio with maximum Sharpe ratio. By making
a portfolio that combines the risky portfolio B with the risk-free rate, we have the return

over the investment defined by:
R, = (1 —p)Rs + pR,, (2.14)

where p represents the proportion of the money that is invested in the risky portfolio
with respect to the amount that is invested in the riskless position. This equation
generates the capital allocation line, shown as a dashed line in figure 2.2, which allows
the investor to choose the level of risk he is willing to assume by simply changing the
proportion of the investment between the riskless asset and the tangency risky portfolio

(which remains constant).

The main problem of using the Markowitz mean-variance framework is that it is

only suited to the case of elliptic distributions (distributions where the equity-density

Risk Measures 10

surfaces are ellipsoids). This is the case of the normal or the ¢-distribution with finite
variances. A symmetric distribution is not necessarily elliptic. The use of this frame-
work with assets that present returns defined by non-elliptic distributions can seriously

underestimate extreme events that may cause great losses (Szego, 2002).

2.3 Value at Risk

Value at Risk (VaR) is a measure of risk that tries to determine the maximum loss
of a portfolio for a given confidence level and holding period. It allows managers to
say: “we are X percent certain that we will not lose more than V dollars in the next
N days” (Hull, 2002). Being X a real-valued random variable; Fx(z) = P[X < z] the
cumulative distribution function associated to it; and Fy'(a) the inverse function of
Fx(z), the VaR for a confidence level of (1 — «) is defined as (Inui & Kijima, 2005):

VaR(_q) = —Fy'(a) = —inflz | Fx(z) > o]. (2.15)

Figure 2.3a shows a normal probability density function of returns of a portfolio for
a given time period (for example, 1 day), with the VaR for a confidence level of 95%.
VaR does not tell how much will a portfolio lose in that time period, but it shows that
statistically only in 1 day out of 20 (5% of the days) the losses of a portfolio will be
larger than the VaR indicated in the figure. The Conditional Value at Risk (CVaR)

will be detailed in section 2.4.

The VaR may be interpreted as the quantile of a a distribution - the value below
which lie ¢% of the values (Bodie et al., 2005). For the normal distribution, it is easy
to calculate the VaR. For example, considering ¢ = 5% (a confidence level of 95%),
the VaR will lie 1.65 standard deviations below the mean, and may be interpreted as

if with 5% of probability there will be a loss equal than or larger than VaR.

Although in Figure 2.3a the distribution was considered to be normal, the VaR
framework is not limited to this case. The normal distribution is a commonly used
simplification to make the calculations easier. However, considering the distribution
to be normal may significantly underestimate the risks involved when the actual dis-

tribution has “fat tails”.

VaR is a standard measure of risk for banks, which usually use confidence levels of

99%, according to the BIS (Bank for International Settlements) requirement (Hawkins,

Risk Measures 11

5% | 95%
——

|
-CVaR -VaR Mean

(a) VaR of a normal distribution with 95% confidence level

5% | 95%
—|—

|
-CVaR -VaR Mean

(b) VaR of a skewed distribution with 95% confidence level

Figure 2.3: Two distributions with the same VaR but different CVaR. Conditional
Value at Risk (CVaR) is the expected loss given that we are in the ¢% left tail of the

distribution. It is treated in more detail in section 2.4

2000). However, the highest is the confidence level (the closer to 100%), the rarer are
the events situated on the left of the VaR in the probability distribution. This way,
this events will be more unlikely to have happened in the past and to be present in
the historical data used in the model. Thus, it will be harder to do accurate forecast

about these extreme events in the future.

VaR calculations assume that the portfolio composition will not be changed over
the holding period. The most common choice for holding periods in banks is 1 day. BIS
prescribes a 10-day holding period for VaR calculations, but it allows banks to calculate
this value by multiplying the bank’s 1-day VaR by the square root of 10, which is valid

if market moves are independently distributed over time (Hawkins, 2000).

The popularization of VaR in the Financial world is mainly due to JPMorgan,
which in the late 1980s developed a VaR system that encompassed all the company,
modeling hundreds of risk factors. Quarterly, a covariance matrix was updated with

historical data; and daily the risk represented by the positions taken by the company

Risk Measures 12

were assessed and presented in a Treasury meeting. The clients of the company became
interested in the system and instead of selling the software, JPMorgan opted to publish
a methodology and distribute the calculated covariance matrix. The service was named
RiskMetrics® (Holton, 2003, p. 18).

However, there are some critiques to the use of VaR as a risk measure (Szego, 2002):

e it lacks subadditivity, in such a way that portfolio diversification may lead to an
increase of risk (see section 2.4 for an explanation of coherent risk measures; and
Tasche (2002) for an example of the lack of subadditivity in VaR);

e it is non-convex and has many local minima, making it hard to be used in op-
timization problems. Figure 2.4 shows the VaR of a portfolio of two assets, as
a function of the weight, allowing to visualize the existence of local minima. It
is also possible to see that the portfolios obtained are different depending on
the risk measure used - minimizing VaR and estimating it with the parametric
method, the best w is found to be 0.46, while using historical simulation, the
best w is found to be 0.32; and minimizing CVaR using historical simulation the
best w is 0.50;

e it may provide results that are conflicting at different confidence levels.
Despite the critiques that the use of VaR receives from the academic literature, the

use of VaR is prescribed by regulatory agencies because it is a compact representation

of risk level and allows the measurement of downside risk (Szego, 2002).

To calculate the Value at Risk, three possible methodologies are (Holton, 2003, p.
3):

e parametric method;

e historical simulation method;

e and Monte Carlo method.

2.3.1 Parametric Method

The parametric method relies on the assumption that the risk factors follow a

known probability distribution. Suppose that the returns of the assets of a portfolio in

Risk Measures 13

2
1ol VaR - Parametric

e VaR - Hist. Sim
TR CVaR - Hist. Sim.
1 7 --.....__ -----__--

—
o)}

VaR /CVaR (%)
> o

s,
///////
///////
///////
////////
lllllll
1 2 R e
yyyyyyyyyy
yyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyy
il
1 1 —/\‘,

Figure 2.4: VaR and CVaR of portfolios of 2 assets, showing the existence of local
minima for the VaR calculated using historical simulation. The two stocks used in
the portfolio are American Express Co. and American International Group Inc., in-
cluding 1250 data points with daily frequency (approximately 5 years), starting on
6/jun/2001. The proportion of the portfolio invested in American Express Co. is w

and the remaining (1 — w) is invested in American International Group Inc.

an 1-day period follow a normal distribution:
Ry ~ N(pp, 0p)

with R, being the stochastic returns of the portfolio. The 1- and 10-day VaR of the

portfolio with a 99% confidence level are:

VaR,(1,99%) = 2.33 0, V (2.16)
VaR,(10,99%) = V10 - VaR,(1,99%) (2.17)
=V10-2.330, V.

Obviously given a same holding period and assuming that the distribution of returns
is normal, the problem of finding the portfolio that minimizes the Value at Risk is the
same as the problem of finding a portfolio with minimum variance, no matter which

confidence level is being used.

Risk Measures 14

By what was said, it would be expected that portfolios calculated by minimizing the
VaR using the parametric method and considering the distribution of returns to be nor-
mal will be less conservative than portfolios calculated using non-parametric methods
with the actual (or approximated) distribution of returns, because the normal distri-
bution considers that extreme events are very improbable to happen. Returns lower
than 4 standard deviations from the expected return, for example, have a probability
of happening of only 0.003167%. However, there is evidence that individual returns
distributions show fat tails, implying that extraordinary losses happen more frequently

that predicted by the normal distribution.

On the other hand, if it is considered a well-diversified portfolio with many different
risk factors, even if the risk factors distributions are not normal, the central limit
theorem says that the resulting distribution of returns of the portfolio will converge to
a normal distribution. This way, it may be considered that the portfolio returns follow
a normal distribution, as long as the portfolio is well diversified and the risk factor

returns are independent from each other (Crouhy et al., 2001, p. 193).

2.3.2 Historical Simulation Method

Historical simulation is another approach to calculating the Value at Risk, which is
more flexible than the parametric method. Because of the simple intuition behind, it
is widely accepted by management and trading communities. Besides that, it has the

advantage of easily handling options in the portfolio (Best, 1998).

The flexibility of historical simulation comes from the fact that it does not assume
that the returns follow any specific distribution. Therefore, historical simulation will
produce higher VaR numbers for distributions with fat tails than the ones obtained

when using the parametric method and assuming an underlying normal distribution.

It is possible however that a particular scenario of the risk factors that would
produce a large loss is not present in the historical data used for simulation. This is
more likely to happen when using short periods in the time series. For this reason,
many banks prefer to use Monte Carlo simulation instead of historical simulation (Best,
1998).

The procedure used to calculate the VaR of a portfolio using historical simulation

is given below:

Risk Measures 15

1. Consider a portfolio of N assets defined by a vector of weights:

T
UT[)>: Wo,1 Wo2 ... WoN . (218)

2. For every asset price or risk factor involved in the problem, obtain a series of
returns for a given time period (for example, 500 days). In the case that log-

returns are used, they are calculated as follows:

e = log 2, (2.19)

DPki—1

where 74, and py, are respectively the return and price of the asset £ at time £.

3. Consider each of the days in the time series of returns as a scenario for possible
changes in the next day. As there are IV assets, each day ¢ of historical data will

form a scenario defined by:
T

?t) == 7“1715 T2,t Ce TN,t . (220)
It is important to notice that from this point on the scenarios 74 are no longer
seen as time series, but just as a set of different possible realizations of the random

vectors E}, obtained from historical data.

4. Apply each of the scenarios to the composition of the portfolio today, i.e., do not
apply the price changes in cascade? to the portfolio. This means that the result

of the application of scenario ¢ to the portfolio is:

T
W1 Wwo, €Mt
T2,t
Wt,2 Wogo €7
W, = T = "~ . (2.21)
'S
Wy, N wo,N €Mt

Note that although the notation wy, is used to represent weights in the portfolio,
they will not be normalized in this procedure, in such a way that 22[:1 wyy for
k # 0 may be different than one.

5. The log-returns of the portfolio for each of the scenarios are calculated as:

N
R; = log (Z wtik> , (2.22)
k=1

remembering that 315 woy = 1

2Cascade (from the Merriam-Webster Online Dictionary - http://www.m-w.com): “something ar-
ranged or occurring in a series or in a succession of stages so that each stage derives from or acts

upon the product of the preceding”

Risk Measures 16

6. Sort the portfolio returns (R;) for the various scenarios into percentiles.

7. The VaR will be the return that corresponds to the desired level of confidence.
For example, if there are 500 days and a level of 99% confidence is desired, the
VaR will be the fifth worst return of the portfolio.

It is important to note that each scenario of changes is applied to the composition of
the portfolio today and not in cascade. This is done because if the changes were made
in cascade, the percentage value changes would no longer refer to the original portfolio
value. And also the proportion between the assets in the portfolio would change in

relation to one another.

The main drawback of historical simulation is that it relies completely on the par-
ticular realization of a stochastic process represented by the set of historical data
available. Thus, it should be believed that the events that happened in the past are a
good representation of what will happen in the future. Events like a market crash or
periods of extremely volatility present in the historical data may jeopardize the results
obtained by the method. Another problem of the method is that it depends on data
availability. If one year of data is used, 250 data points will be present. In the Monte
Carlo simulations, for example, at least 10000 scenarios are generated. The use of
small samples may not represent the distribution well enough and interpolation may
be necessary(Crouhy et al., 2001, p. 206-212).

2.3.3 Monte Carlo Method

The Monte Carlo method was invented by Stanislaw Ulam in 1946 (Eckhardt, 1987)
and covers any technique of statistical sampling used to approximate solutions to quan-
titative problems. In the method, the random process under analysis is simulated re-
peatedly, where in each simulation will be generated a scenario of possible values of the
portfolio at the target horizon. By generating a large number of scenarios, eventually
the distribution obtained through simulation will converge towards the true distribu-
tion. A good description of the method can be found, for example, in Holton (2003,
cap. b).

As advantages of the method, Crouhy et al. (2001) mentions the fact that any
distribution of the risk factors may be used; the method can be used to model any

complex portfolio; and it allows the performance of sensitivity analyses and stress

Risk Measures 17

testing. As disadvantages it may be mentioned the fact that outliers are not incorporate

into the distribution; and that it is very computer intensive.

2.4 Coherent Risk Measures

Considering that a risk measure may be defined as a relation p between a space
X of random variables and a non-negative real number R, a coherent risk measure

p: X — R must satisfy the following four properties (Artzner et al., 1999):

Translation invariance: p(X + «-7r) = p(X) — «, for all random variables X, real
numbers «, and rates of return r on a reference instrument. It implies that with
the addition of a riskless return « - r to the portfolio, the risk p(X) decreases by

Q.

Subadditivity: p(X;+X3) < p(X;)+p(X3), for all random variables X; and X5. The
interpretation given to this property is that “merger does not create extra risk”,
or that by splitting up a company, the risk could be reduced. Any positively

homogenous functional p is convex if and only if it is subadditive (Szego, 2002).

Positive homogeneity: p(AX) = A\p(X), for all random variables X and real num-
bers A > 0. It should be noted that the consequences of lack of liquidity due
to a position size, which may influence risk, should be taken into account when

computing the future value of a position.

Monotonicity: X; < X, implies p(X;) < p(X3), for all random variables X; and Xs.

Given the set of properties above, VaR can not be considered a coherent measure
of risk. For example, only in the special case when the joint distribution of returns is
elliptic VaR is subadditive; and in this case the portfolio that minimizes the VaR is

the same that would be obtained by simply minimizing the variance.

As an example of a risk measure that may be proved to satisfy the aforementioned
four properties, and thus to be coherent, is the Conditional Value at Risk (CVaR), also
called Mean Excess Loss, Mean Shortfall, or Tail VaR. It tries to answer the question:
“if things do get bad, how much can we expect to lose?” (Hull, 2002). CVaR is the
expected loss given that we are in the ¢% left tail of the distribution. Being X a

real-valued random variable; fy(x) the probability density function associated to it;

Risk Measures 18

and z, = VaR(i_), the CVaR for a confidence level of (1 — a) is defined as (Inui &
Kijima, 2005):

CVaR(_q) = —EX|X < —VaR(l_a)]

_ _é/ o fy(2)da (2.23)

— 00

Some characteristics of CVaR are:

e it is more conservative than VaR (CVaR(p) > VaR(p), for any portfolio p);

e it is convex, which makes portfolio optimization easier. Figure 2.4 is an example

where CVaR is clearly convex;
e it is coherent risk measure in the sense of Artzner et al. (1999);

e it is a better representation of the risks involved in extreme events. For example,
in in Fig. 2.3, two portfolios exhibit the same VaR, but clearly the portfolio

shown in Fig. 2.3b is riskier than the one shown in Fig. 2.3a;

e linear programming can be used for optimization.

Chapter 3

Nature Inspired Strategies for

Optimization

3.1 Introduction

Computer Science and information technology always used biological and natural
processes as a source of inspiration. Some examples of Nature Inspired strategies
for problem solving are Artificial Ants Colonies, Swarm Intelligence and Evolutionary

Computing.

In this research it is given special attention to two systematic random searches in-
spired in Nature: Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).
Both algorithms are intrinsically parallel, which means that they explore several loca-
tions of the solution space at the same time. Many other algorithms for solving the
same kind of problems are serial and can only explore the solution space of a problem
in one direction at a time. Another notable strength of PSO and GA is that they
perform well in problems for which the search space is complex - those where the ob-
jective function is discontinuous, noisy, changes over time, or has many local optima.
Most practical problems have a vast solution space, which are impossible to search
exhaustively; the challenge then becomes how to avoid the local optima. PSO and GA,
by their characteristic of exploring simultaneously different parts of the solution space,
are less prone to converge to these local optima. Finally, these algorithms are flexible
to handle constraints, which may be implemented more easily, when comparing to the

‘standard’ optimization techniques.

Nature Inspired Strategies for Optimization 20

3.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was introduced by Kennedy &
Eberhart (1995) and is based on the behavior of fishes and birds, which collaboratively
search an area to find food. It has links to Genetic Algorithms and Evolutionary
computing, but does not suffer from some of the problems found in Genetic Algorithms,
such as: the iteration with the group improves the solution, instead of detracting the
progress; and PSO has a memory, which is not the case of Genetic Algorithms, where

even if elitism is used only a small number of individuals will preserve their identities
(Eberhart & Kennedy, 1995).

PSO has a population consisting of various particles, with each particle representing
a solution. The particles are initially positioned randomly in the search space (i.e.
assigned random values for the weights). It is desirable that the particles are initially
well spread to assure a good exploration and minimize the risk of getting trapped into

local optima.

Apart from position, a particle in the PSO also have a wvelocity, which is also ini-
tialized randomly. The velocity determines in which direction a particle will move and

how far it will go. The position of particle ¢ in the next iteration is calculated as:

POS; di+1 = POS;as + vel; gy, (3.1)

with vel; 4,11 being the velocity of particle 7 in dimension d at iteration ¢, calculated
by:

vel g1 = wy - veli g + c1r1(pbest; g — posiaz)

+ cora(gbesty — posiay), (3.2)

where wy is a weight which gives the particle momentum; r; and ry are random numbers;
c1 and ¢ are scaling constants; pbest; 4 is the best position of particle 7 in dimension d in
all previous iterations; gbesty is the best position of the entire population in dimension
d in all previous iterations; and pos; 4, is the position of particle ¢ in dimension d at
time £. This formulation is usually referred to as Particle Swarm Optimization with

Inertia. w; is here defined as:

Wmaz — Wmin . Zf, (33)

N

with wpee and wp, being the value of w; for the first (¢ = 0) and last (t = N) iterations

Wy = Wmax —

respectively, considering wy,az > Wpmin- N is the total number of iterations and ¢ the

number of the present iteration.

Nature Inspired Strategies for Optimization 21

In equation (3.3) it is possible to see that the momentum influence is higher in
the beginning of the search, decreasing linearly until the end of the search, when it
becomes less important to the direction of flight, comparing to the influence of pbest,; 4
and gbest,. Higher values of w; increase the exploration of the search space, because
the direction of flight of the particles will be guided mainly by the previous values of
the velocity (remembering that the initial velocities are random). On the other hand,
lower values of w; mean more exploitation of “good” regions in the solution space,
because the particles will tend to move to the direction of the best solutions found

both locally and globally.

To increase the exploration of the solution space, in this implementation random
numbers 7; and 7y are drawn from independent uniform distributions ranging from
(p; — 1) to p;, with p; € [0,1] and ¢ € {1,2}. For this particular implementation
of the algorithm, p; and ps were chosen to be both equal to 0.9 in such a way that
r1,7m9 € [—0.1,0.9]. Of course, the better exploration of the solution space comes at the
cost of reducing the exploitation of promising areas, as some particles may be diverged

to the opposite directions of pbest; 4 and/or gbest,.

There are other formulations to calculate the acceleration of the particles, for ex-
ample, the constriction factor method (CEM), proposed by Clerc (1999), or the use of
neighborhoods of particles (Eberhart & Kennedy, 1995), but these strategies are not

used in this work.

In the case of the portfolio selection problem, a solution consists of a set of weights
for the various assets in the portfolio. If there are N possible assets to choose from,
then a solution in the search space will contain N — 1 weights. Being w; the weight for
the asset 7, the weight of the last asset is simply determined by manipulating equation
2.6 into:

N—-1
wy = 1— Zwi, (34)
i=1

As it is a very common constraint in real life, especially in emerging markets
(de Roon, 2001), the optimization problem treated in this work does not allow short
sales, which means that the weights of the assets in the portfolio cannot be negative.

In the case of portfolios with N assets, the feasible solutions space is delimited by

Nature Inspired Strategies for Optimization 22
A

)

0)]

@3 /]

Figure 3.1: Feasible solution space for portfolio optimization with 3 assets

hyperplanes with equations:

wlz(),

wy-1 =0,

N-1
d wi=1. (3.5)
=1

In the specific case with 3 assets, the feasible solution space is depicted in Figure
3.1, corresponding to triangle with vertices in the points (1,0, 0), (0,1,0) and (0,0, 1).
As one of the weights may be calculated by knowing the other two (see equation (3.4)),
the algorithm may concentrate in finding a solution lying in the shaded area of the

figure, and calculate afterwards ws.

There are different strategies to make sure that the particles abide to the imposed
constraints and each has its advantages and disadvantages. Two conventional strategies
to make sure that all the particles stay within the feasible space are here called bumping

and random positioning (Zhang et al., 2004).

The Bumping strategy resembles the effect of a bird hitting a window. As the

particle reaches the boundary of the feasible space, it ‘bumps’. The particle stops on

Nature Inspired Strategies for Optimization 23

Figure 3.2: Particle bumping into boundary

the edge of the feasible space and loses all of its velocity. Figure 3.2 shows a particle
bumping into a boundary. The initial position of the particle was p; and the position
for the next iteration was calculated to be p;.,. However, p;1; is outside the feasible
solutions space, having ws < 0. To avoid that the particle enters the infeasible space,

it is stopped at p}, , defined by the weights recalculated as:

Wyt

Wy a1 = Wayg + Vg - ford=1,...N -1 (3.6)

Wag — Wdt+1

where wq; is the weight d of the particle in the last iteration; wgs41 is the weight d of
the particle without bumping; wj, ., is the weight after bumping; v4 is the velocity of

particle d. The weight wj ., is calculated by:

N-1
I . !
W+l = 1- § Wi t+1s (3.7)
i=1
as usual.

It should be clear by looking at Figure 3.2 that (3.6) comes from triangle similitude,
where the distance between p; and p,1; is the hypotenuse and w;; — w; ;41 is one of the

cathetus.

Nature Inspired Strategies for Optimization 24

After bumping, in the next iteration the particle will gain velocity again, starting
from velocity zero and applying (3.2). If the gbest is near the edge of feasible space,
then bumping makes sure the particles remain near the edge and thus near the gbest.
However, because of the loss of velocity caused by bumping into the boundaries, the
particles may get ‘trapped’ at the current gbest and not reach the real global optimum,

resulting in a premature convergence to a sub-optimal solution.

The random positioning strategy simply changes the negative weight into a random,
feasible weight, and normalizes the weights so that they add up to one. This strategy
increases the exploration of the search space, when comparing to bumping. The pre-
mature convergence, which may occur with bumping, does not occur here. However
the opposite may be true for random positioning: there will no convergence to the real
global optimum at all. Especially if the optimal solution is near the boundaries of the
feasible region, it may happen that particles approaching it will be thrown back into
different and worse areas. And when they fly back towards the promising area, if they
try to violate a constraint they will be thrown again to a random position. Thus the
particles may get stuck in a loop and never be able to come to a stop at the optimal

solution.

Hu & Eberhart (2002) come with a different strategy, henceforth called amnesia.
With the initialization all the particles are feasible solutions. But during the iterations
the particles are allowed to cross the boundaries and fly into the infeasible space.
However the particles will not remember the value of the objective function of the
solutions found in the infeasible space and if they find a better solution, it will not be
recorded neither as pbest nor as gbest. Because of this pbest and gbest will always lie
inside the feasible space and thus the particles will be attracted back there. A downside
of amnesia may be the fact that the particles ‘waste time’ flying in infeasible space,

which in some cases may result in an inefficient search.

Finally, it may be used the penalty function strategy, which is well known in op-
timization problems. It consists in adding up a penalty to the evaluated objective
function of a particle if it is located outside the feasible space. If the penalty is big
enough, the points explored outside the feasible area will not be remembered as op-
timal solutions. In this implementation, the penalty added to the objective function
is 1, which adds a loss equal to 100% of the capital of a portfolio located outside the

feasible area.

Nature Inspired Strategies for Optimization 25

Gene Gene

A ——

[T]o]o]1]0]0] [0.10]134]200]3.14]272]
Chro?x:)some Chr(;1:some

(a) Binary encoding (b) Real encoding

Figure 3.3: Example of chromosomes with binary and real encoding

3.3 Genetic Algorithms

A Genetic Algorithm is a search technique to find solutions to optimization and
search problems. One of the first references to it was made by Holland (1975). It uses
concepts inspired from biological evolution such as inheritance, selection, crossover and
mutation. In a GA a population of candidate solutions is simulated and, like in Na-
ture, only the best individuals survive and are able to transmit their genes to the next
generations. The individuals are usually referred to as chromosomes. Commonly the
chromosomes are represented as binary strings, but there are other possible encodings,
such as the real encoding (Arumugam & Rao, 2004), where each gene in the chromo-
some is a real number. The real encoding allows the algorithm to search for a solution
in a continuous space, rather than in a discrete search space. Each element of a chro-
mosome is called a gene, and depending on the choice of encoding, may be a binary
digit or a real number, for example. Figure 3.3 shows an example of two chromosomes,

using binary and real encoding.

The algorithm starts with a population of random individuals and the evolution
happens in generations. In each generation the fitness of the individuals is evaluated
and accordingly selected for being recombined or mutated into the new population.

The steps of a Genetic Algorithm may be summarized to:

* Initialize population with random individuals
* Repeat
* Evaluate the fitness of the individuals in the population
* Select pairs of individuals to reproduce, according
to their fitness
* Generate new population, through crossover and
mutation of the selected individuals
* Until terminating condition (e.g. number of iteratioms,

solution found that satisfies a criterium, etc)

Nature Inspired Strategies for Optimization 26

In a generation, the individuals have their fitness evaluated. The function that
quantitatively assigns a fitness value to an individual is the objective function of the
optimization, which is tried to be maximized. The fitter individuals are more likely to
be selected for reproduction. However, the selection processes is usually stochastic, al-
lowing that some less fit chromosomes are selected for reproduction, trying to keep the
diversity of the population and avoiding premature convergence to sub-optimal solu-
tions. Two well known methods for selection are the roulette wheel and the tournament

selection.

In tournament selection pairs of individuals are randomly chosen from the larger
population and compete against each other. For each pair, the individual with the
larger fitness value wins and is selected for reproduction. Roulette wheel selection is
a form of fitness-proportionate selection in which the chance of an individual being
selected is proportional to the amount by which its fitness is greater or less than its

competitors’ fitness.

Reproduction in Genetic Algorithms is done through two operators: crossover
(sometimes called recombination) and/or mutation. In crossover, two ‘parent’ chro-
mosomes are recombined hoping that mixing good solutions will result in even better
ones. On average, the fitness of the population will increase, as mainly the best indi-
viduals are chosen for breeding from the previous generation. Mutation is an operator
used to assure genetic diversity in the population, resembling biological mutation. Its
purpose is to avoid that the individuals in a population become too similar to one
another and converge to local minima. It also avoids the fact that if a population is

too homogeneous, the evolution may become too slow.

Designing the operators for selection, crossover and mutation is a major issue in
a GA implementation and many times is done ad-hoc. Two different selection meth-
ods were implemented in this work: the tournament selection and the roulette wheel
selection. A more in-depth look of these methods can be found in Goldberg & Debb
(1991).

Two different crossover operators were implemented, and named as: basic crossover
and whole arithmetic crossover. Both are crossover operators commonly used for real-
coded GA, mentioned for example in Blanco et al. (2001). Each crossover involves two
parents, that were selected via the selection operator, and the crossover combines their
genes to produce two offsprings. The basic crossover picks a random point the parent’s
chromosomes and then swaps the genes of the parents after that point. Figure 3.4 gives

an example of the use of this operator, supposing that the random point for crossover

Nature Inspired Strategies for Optimization 27

. Normalized

Parents Offspring Offspring
0110504 0.1106(02 0.1110.67(0.22
02106(02 02(05(0.1 025]0.63(0.13

Figure 3.4: Basic crossover

was chosen to be after the first weight. As the solutions may violate the constraint that
the weights add up to one after the swap, the weights must be normalized to get the final
offspring. Normalization, however, may bring an extra impact on the weights, because
it moves the particle in the search space (and thus increases the randomness), resulting
in an increase of the exploration of the space and in a reduction of the exploitation
of good solutions. However, as a new offspring’s weights can sum up to no more than
2, normalizing the weights will in the worse case result in dividing the weights by 2,
which seems acceptable. The nonnegative constraint however will never be violated

with this crossover, because nothing is subtracted from the weights.

The whole arithmetic crossover is designed to be used with real encoding, instead of
binary encoding. The first offspring will be calculated as a fraction p of the values of the
genes of parent 1 and 1 — p from parent 2, with p € [0, 1]. The second offspring will be
the opposite, being composed as a fraction 1 — p of parent 1 and p of parent 2. Figure
3.5 gives an example of the use of the whole arithmetic crossover, using the same
parents as the ones used in Figure 3.4 and supposing that p = 0.6. The advantage
of this operator is that it automatically holds to both constraints: the weights stay

positive and add up to one.

With both crossover methods presented, there is a transfer of information between
successful candidate solutions: individuals can benefit from what others have learned,
and solutions can be mixed and combined, with the potential to produce an offspring
that has the strengths of both its parents. Of course in the course of evolution it may
happen that individuals with a bad fit are generated, but they may be easily discarded
from one generation to another, so eventually the population of solutions will become
fitter.

Nature Inspired Strategies for Optimization 28

Parents Offspring

0.6x
04« l0.14]0.54] 032]

Dax 10.16[0.56 [0.28]
0.6%

Figure 3.5: Whole arithmetic crossover

0.1104]10310.0]0.2
-0.1 +0.1

0.1{0.3]0.3(0.0{0.3

Figure 3.6: Mutation operator

Finally, there is the mutation operator, which is analogous to the mutation of living
beings that happens in Nature. The mutation operator in GA causes an alteration in
an individual’s chromosome. In the way it was implemented here, two genes (weights)
are chosen randomly to be altered by adding a small value to one and subtracting the
same value from the other. Figure 3.6 gives an example of the use of the mutation
operator, supposing that the second and the fifth genes were chosen to be mutated,
with the random value 0.1 chosen to be subtracted from the second gene and added to
the fifth gene.

When applying the mutation operator, the two constraints imposed must be re-
spected (no negative weights and the sum of the weights being equal to one). To make
sure that the weights of a solution add up to one, if a subtraction cause a weight to
become negative or the addition causes a weight to become larger than one, the value
of that weight is set to zero (or one respectively) and all the weights of the solution

are normalized.

Nature Inspired Strategies for Optimization 29

To avoid that the best solutions are lost throughout the evolution process, by the
application of crossover and mutation to each generation, the elitism strategy may be
used. Elitism assures that the best n solutions of a generation (in this implementation,

n = 1) are transmitted untouched to the next generation.

3.4 Conclusion

From what was shown in this quick review of the methods, it is expected that
when applying them to the portfolio optimization problem, PSO will present a more
focused search than GA, with more emphasis in the exploitation of promising areas
than the exploration of the whole search space, because of the way that the position of
the particles are updated based on the global and local optima. However, some extra
exploration may be introduced by tuning the values of p; and p, mentioned in section
3.2. The use of the random positioning strategy is also a way to increase the exploration
of the solution space. It is also expected that the PSO will be more dependent of the
initial position of the particles. If they are not well spread in the solution space,
it is more likely that it will converge to local optima. Again, the random positioning
strategy may contribute to avoid this pitfall. However, given that the initial position of
the particles is ‘good’, the other boundary handling strategies (bumping, amnesia and
penalty function) will probably show a better performance than random positioning, in
particular if the global optimum is near the boundaries of the feasible solution space.
Amnesia and penalty function should perform similarly, as both allow the particles to
fly out of the feasible solutions region, not recording (or penalizing) the solutions found
there.

From GA it is expected that the whole arithmetic crossover operator result in a
better performance than the basic crossover, because it seems to preserve better the
knowledge existent in the parent solutions. The basic crossover probably will introduce
more randomness to the search and reduce the exploitation of good regions in the
solution space. Based on the literature, it is not expected a superior performance from
neither the tournament nor the roulette wheel selection. It also expected that GA will

show more robustness to initial conditions, due to its higher inherent randomness.

Chapter 4

Experiment Set-Up

4.1 Data Collecting

For the empirical part of this research, data was collect from the Yahoo! Finance
web site!. It was used the adjusted close price with daily frequency from all stocks in
the the Dow Jones Industrial Average? (DJIA), which includes 30 major stocks in the
U.S. market, with the split and dividend multipliers prescribed by the CRSP (Center
for Research in Security Prices) standards. Data was gathered from 05/Jan/1987
to 30/May/2006 (approximately 19 years), totalizing 4895 data points, but for the
experiments subsets of it were used. The adjusted price series was used to calculate
the log-returns of the stocks, according to equation (2.19). It was noticed that the
historical series downloaded from Yahoo! Finance had some missing data points, and
to correct it data extracted from the Datastream® database was used. Datastream
data was not used directly because a series adjusted for split and dividends was not

available.

A summary of the data is shown in Tables A.1 and A.2. It is visible that depending
on the horizon chosen, the return and risk associated to the stocks may vary significa-
tively. For Verizon, for example, daily returns can vary from 0.006% when using 10
years of historical data, to -0.015% when using only 1 year; and daily risk (measured

by the standard deviation of returns) can vary from 0.399% to 0.831%, for 1 year and

'http://finance.yahoo.com
?http://www.djindexes. com
3Datastream is a database provided by Thomson Financial, containing stock market data, company

accounts and economics time series. http://www.datastream.com/

http://finance.yahoo.com
http://www.djindexes.com
http://www.datastream.com/

Experiment Set-Up 31

10 years horizon respectively. Figure A.1 shows clearly how the distribution of returns

change with the change according to the horizon used.

4.2 Model Building

Both PSO and GA are algorithms that depend on good initial positioning of
the particles in the solution space. If it was known beforehand in which region the
global optimum is located, the algorithms would converge much faster with the parti-
cles/chromosomes located initially in that area. However, as there is no a priori knowl-
edge of the best region, it is interesting to have the particles/chromosomes well spread
in the feasible solutions space. To allow for a fair comparison between the methods,
the same procedure was used to initialize the position of the particles/chromosomes of
both methods, with steps listed below:

1. Generate vector:
T

§=|12 - N|,

where N is the number of assets in the problem.
2. Generate vector §', by making a random permutation of the vector §.

3. Generate weights in the sequence determined by §’. Each weight is a random
number from an uniform distribution, ranging from zero to one minus the sum

of all the weights already attributed for that particle.
4. Normalize the resulting vector, making the sum of the weights add up to one.
This way, the first weight generated (wy (1)) belongs to the interval [0, 1], the second
weight belongs to the interval [0, 1 — wgy ()], the third to [0,1 — (wyq) + we(2))], and so

on. It should be noted here that w,;) refers to the weight indexed by the i-th element

of the vector 5.

As an example, imagine the case with 3 assets. For a given particle, a possible

vector §' generated could be:
=l T
s=13 1 2 ,

which means that the first weight to be initialized will be the one corresponding to the

third asset, the second weight to be initialized corresponds to the first asset and finally

Experiment Set-Up 32

the weight corresponding to the second asset will be initialized. The first weight will be
a random number in the interval [0, 1], for example, 0.7, resulting in the (incomplete)

vector of weights:

ﬁ:[o 0 0.7]T.

In the next step, the weight corresponding to the first asset is initialized with a
random value in the interval [0, 0.3], for example 0.2. The weight of the second asset
is initialized last, with a random number belonging to the interval [0, 0.1], for example

0.05, resulting in the (non-normalized) vector of weights:

T

o= [0.2 0.05 0.7

To normalize the weights, the vector W is divided by the sum of all the weights (in

this case, 0.95), resulting in the normalized weight vector:

T
=102l 005 074 | .

Li-Ping et al. (2005) recommend that for the PSO, the population size for a higher
dimensional problem should not be larger than 50 particles, and for a less complicated
problem, a population of 20 to 30 particles should be enough, with 30 particles being
a good choice. It was noticed that 30 particles seemed to be not enough for the
problem under analysis, so for most of the experiments, the size of the population was
chosen to be 50 particles. GA was compared to PSO always using the same number of

particles/chromosomes for both algorithms.

The parameters of PSO were tuned empirically, and the following values were cho-

Seln:

Winae = 0.9,

Wmin — 04,

Experiment Set-Up 33

For the penalty function strategy, a value of 1 was chosen to be added to the
objective function when the solution was unfeasible, which means adding a loss of
100% of the capital invested.

The parameters to be tuned in GA are two probabilities. The first is the probability
that a crossover will be performed on two selected chromosomes and the second is
the probability that a mutation will happen on the offspring of two solutions. The
probability of a crossover occurring was chosen to be 0.8 (80%) and of a mutation 0.01

(1%).

It was noticed that the population in the GA algorithm tended to become very sim-
ilar after a certain number of iterations. It is interesting that the population converge,
but at the same time having equal solutions in the population reduces the exploration
of the solution space without adding to exploitation. It was then implemented that
when a new generation was calculated the algorithm checked if there were redundant
individuals, with 4 digits precision. If any redundant individuals were found, they were
mutated with a probability of 100%.

For calculating the Value at Risk and the Conditional Value at Risk, it was chosen
a confidence level of 95%. This means that taking 2 years of data (500 data points)
and applying the historical simulation method, 25 data points will be located to the
left of —VaR (see Figure 2.3). Higher confidence levels would require a larger number

of data points and could significantly slow down the experiments.

4.3 Experiment design

The experiments run were basically of two types: one designed to test the con-
sistency and the other designed to test the speed of the algorithms. Consistency is
here defined as the ability to always find the optimal solution. This measure is needed
because both PSO and GA have random components, and it may happen that one
performed better simply because it was lucky. For a given number of assets in the
portfolio (sets of 5, 10 and 20 assets were used), 5 subsets of assets were randomly
picked from the stocks in the Dow Jones Industrial Average. The reason why several
random subsets of the original 30 assets set were generated is to test the performance of
the algorithms under different objective function landscapes. Each strategy for bound-
ary handling of PSO and GA was run 5 times over these sets, to try to eliminate the

influence of a lucky initial solution. The algorithms were run for a number of iterations

Experiment Set-Up 34

that was big enough for them to converge. The average number of iterations needed by
a certain strategy to find a solution that is within 0.1% of the best solution found on
that particular run was calculated and presented as N;;. This measures if the conver-
gence of the algorithm to the neighborhood of the best solution is quick or not, in the
sense of number of iterations of the algorithm, not considering the time to calculate
each iteration. The standard deviation of the number of iterations needed was also
calculated, and presented as on. Next, it was calculated the average error between
the best solution found by the algorithms in each run, compared to the best solution
found by the different strategies on all runs (considered to be the global optimum of
the problem), for a particular set of assets. The results are presented as Zy,x, and the
standard deviation of this measure is presented as o.. The last two measures show how

good the algorithm is to find the global optimum of the problem.

The second test was designed to examine the speed of the different strategies. The
algorithms were run again 5 times for each of the 5 subsets of assets randomly picked
and the average time per iteration (¢/it) was calculated. As it is interesting to know
how long an algorithm takes to converge, it was assumed that if N/, = Ny + 20y
iterations were executed, the algorithm would be able to arrive within 0.1% of the best
solution that would be found in a particular run approximately 97.7% of the times
(considering a normal distribution of N;;). N was taken from the consistency test run
with the same parameters. The total time needed for the algorithm to converge was

presented as .

All algorithms were implemented in Matlab® version 7.0. The experiments were
performed on two workstations Dell® Optiplex® GX260 with a Intel® Pentium® 4
2.4CGhz processor, 1Gb RAM and 80GB hard drive; and on a HP® Pavilion® notebook,
zv6000 series, with a AMD® Athlon® 64 3200+ Processor, 512Mb RAM and 80Gb hard

drive.

Chapter 5

Empirical Results

5.1 The objective function

A crucial question when trying to measure risk is how much data should be used,
or in other words, how long in the past should one go. If it is desired to test the
risk to extreme events, a large horizon should be chosen, as it is more likely that they
happened in the past. However, data from the distant past may be not representative
of the present, as companies’ strategies and the market conditions change. For this
work 2 years of data (500 data points) were used. This choice seemed to be realistic
to the problems found in the real world and did not demand excessive computer time

to run the experiments, when comparing to larger horizons.

To illustrate the effect of choosing different horizons for the input data, portfolios
with 5 assets (stocks of 3M, Citigroup, Coca-Cola, Gm and Microsoft) were optimized
for different risk measures (variance, VaR calculated with historical simulation, and
CVaR calculated with historical simulation), and the optimal weights found are shown
in Figure C.1. It is visible that if a horizon includes (or not) a especially bad year for a
company, this will be reflected in the weights of the portfolio, and eventually a company
will not even be included in a portfolio. This is the case of GM, that is not included
in a portfolio with the variance minimized, using 2 years of past data. Depending on
the risk measure used, the composition of the portfolio may change drastically, as is
the case of portfolios generated with 5 years of data. With that horizon, the weight
of Coca-Cola stocks in the portfolio that minimizes the variance is 50.1%; minimizing
the VaR it is 69.7%; and minimizing the CVaR it is 35.6%.

Empirical Results 36

Figure C.1 shows that portfolios generated by minimizing the variance or by mini-
mizing the CVaR are more similar than those generated by minimizing the VaR. This
happens probably because CVaR is smoother, as it is calculated through an integral
(see equation 2.23), and the variance is related to the more ‘well behaved’ part of the
distribution of returns. VaR, on the other hand, is calculated in an area of the distribu-
tion that is more sensible to extreme values and to the fact that a discrete distribution
is being used. This fact is confirmed by checking Table B.1, where 5 assets were chosen
from the stocks in the DJIA and portfolios were optimized with this 5 assets for the
three different risk measures. The resulting portfolios had the risk measured according
to the other risk measures, and the difference is shown in the table. The best portfolio
obtained by minimizing the variance had the CVaR 0.12% worse than the one obtained
directly by minimizing the CVaR; and the portfolio obtained by minimizing the CVaR
had a variance only 0.09% worse than the variance of the best portfolio obtained by
minimizing the variance. However, portfolios obtained by minimizing the variance and
by minimizing the CVaR had a VaR respectively 5.56% and 5.09% worse than that of

the portfolio obtained by minimizing the VaR, confirming what was said before.

The use of VaR with historical simulation presents a challenge to any optimization
method, because of the complex objective function landscape. Figure 5.1 shows the
contour plot of the value at risk of portfolios with 3 stocks: 3M Co., American Inter-
national Group Inc. and E. I. DuPont de Nemours & Co., calculated using historical
simulation with 2 years of data. It is visible the existence of several local minima, with
the global minimum located in w; = 0.26 and wy = 0.08, where VaR equals 0.0059.

When more dimensions (more assets) are added, the complexity increases even more.

5.2 Consistency of the algorithms

The first experiment run was designed to test the consistency of the algorithms
(see section 4.3) for solving the portfolio optimization problem. PSO and GA were
executed with 50 particles/chromosomes, for portfolios with different sizes (5, 10 and
20 assets). Table B.2 presents the results of the experiment. PSO using the bumping
strategy showed the best performance when comparing with the the other strategies
of PSO and with GA, when analyzing the number of iterations needed to converge to
a solution (N;;) and also to the standard deviation of this measure (o). The average
error between the VaR found by this strategy and the best solution (Zy,z), which shows

if the algorithm got trapped into local optima or did not converge at all, has the same

Empirical Results 37

Figure 5.1: Contour plot showing the VaR of portfolios composed by stocks of 3M Co.,
American International Group Inc. and E. I. DuPont de Nemours & Co., calculated
using historical simulation with 2 years of data. w; is the weight of investment in 3M,
wo is the weight of investment in Am. International. The amount invested in DuPont is
equal to 1 —w; —ws. The triangular shaped area with dashed line delimits the feasible

solutions area.

order of magnitude of the other strategies, except when using 20 assets, when it was
slightly higher than GA.

PSO using the amnesia or the penalty function strategy showed comparable results
as expected, both in terms of number of iterations needed to converge and in terms of
the errors comparing to the global optimum. This is not surprising, as the way they
are implemented lead to similar search behavior. The two strategies took longer than
bumping strategy to converge to a solution, because the particles tend to ‘waste time’
outside the feasible solutions space. The quality of the solutions found were comparable
to the other algorithms for 5 and 10 assets and lower than the other strategies for 20
assets, as visible in the Zy,z (higher values of v,z mean lower quality/consistency).
This may be due to the fact that in the first iterations, which in general are more

exploratory for PSO, many solutions found are not feasible.

Empirical Results 38

PSO using the random positioning strategy had a bad performance when comparing
to the other strategies with respect to the number of iterations to converge to a solution.
The explanation to this is that if the solutions are near the boundaries of the feasible
solution space, it is very likely that the particles approaching the area will eventually
try to cross the boundaries and be thrown into a random position away of it. This
makes it harder for the algorithm to converge. The average errors to the best solution
(Evar) are slightly lower than the other algorithms, due to the increased exploration

performed by the strategy, showing better exploratory power.

Analyzing the performance of the Genetic Algorithms in Table B.2 it is visible that
its performance was worse than Particle Swarm Optimization, when speaking of the
number of iterations needed to converge. The explanation is the fact that PSO is a
much more focused search, while GA presents more randomness. The additional ran-
domness in GA results in a larger exploration of the search space, which especially for
a higher dimensional problem (as it is the case of the portfolio optimization with 20
assets) results in solutions closer to the global optimum (lower Zy,z). It shows that GA
seems less likely to converge to local minima than PSO, exception made to the random
positioning strategy of PSO. However, the performance of the random positioning strat-
egy for PSO seemed to be worse than the performance of GA, especially for a higher
number of assets. Comparing the different operators used in GA, the basic crossover
performed better than the arithmetic crossover, which is surprising, because it was
expected that the arithmetic crossover would be better to preserve the knowledge ex-
istent in the population. However, the whole arithmetic crossover shows an ‘averaging
effect’ on the solutions that make GA lose part of its exploratory power. Comparing
the different selection strategies, the tournament selection performed slightly better
than the roulette wheel selection, but no strong conclusion can be made. The com-
bination of roulette wheel selection with whole arithmetic crossover showed the worst
performance of all the strategies, regarding the number of iterations to converge in all
portfolio sizes, and also regarding zy,x for 20 assets. The possible explanation for this
is that this combination reduces the exploratory capacity of the GA, without adding

much to the exploitation.

It is also noticeable that calculating N}, = Ny + 20, which gives the number of
iterations needed to converge in 97.7% of the times (considering a normal distribution
of Nit), GA will not have converged until the limit of 2 000 iterations was reached. The
values of N/, can be seen in Table B.3. Therefore, the €y, observed for GA in the
portfolio optimization with 20 assets may be the result of a brute force search. It may

be said then that the algorithms may show a better consistency (lower y,z), but this

Empirical Results 39

comes at a high price (N},).

To investigate how the solutions found by the algorithms improve through the
iterations, the evolution of the best, average and worst solutions were recorded and
shown in Figures C.2 (for PSO with bumping strategy), C.3 (for PSO with amnesia
strategy), C.4 (for PSO with random positioning strategy), C.5 (for GA with roulette
wheel selection and whole arithmetic crossover), and C.6 (for GA with tournament
selection and basic crossover). It is also presented the largest, average and smallest
Euclidian distance between the particles/chromosomes in each iteration. The Euclidian
distance between two points P = (py,...,p,) and @ = (g1, - - -, ¢,) in the n-dimensional

space is defined as:

(5.1)

Through the use of the Euclidian distance it is possible to visualize if the algorithm
is converging to a point, or if it is still searching for solutions in different areas of
the solution space. It shows this way how is the trade-off between exploration and
exploitation in a strategy. The same set of 5 assets (3M, Citigroup, Coca-Cola, Gm
and Microsoft) was used for generating the pictures, running with a population of
50 chromosomes/particles. The graphs show the results of a specific run, which is
considered to be a typical run. It should also be noticed that the evolution of the best
solution refers to the best solution in the population. For GA this graph will always
be decreasing, as elitism is used. For PSO, this is not the case, however if a better
solution was found in a past iteration, it is recorded as the global best and will not be

lost, even if none of the particles is located at that point in ulterior iterations.

Figure C.2a shows the evolution of the fitness of the best individual, the average
individual, and the worst individual of the population using PSO with bumping strat-
egy. Visibly the search is very focused, with all the population quickly converging to
the best solution. Figure C.2b shows this convergence where all particles eventually
converge to the optimal solution, except from an occasional wandering of some particles

in early iterations.

Figure C.3 shows the evolution of the solutions of PSO using amnesia strategy. It is
clear in Figure C.3b that in the beginning of the optimization some particles are out of
the feasible solution space. This may be seen by noticing that the maximum distance
between two particles inside the feasible solution space is v/2 ~ 1.41 (see equation
5.1, remembering that the sum of the weights is equal to one) and right in the first

iterations the biggest distance is larger than that. The penalty function strategy gives

Empirical Results 40

similar results and because of this was not presented.

Figure C.4 shows the performance of the PSO using random positioning strategy.
It is visible in the pictures how it presents problems to converge to a solution. Both the
largest and the average distance between the particles, seen in Figure C.4b are much
bigger than those seen in the other strategies. The evolution of the solutions seen in
Figure C.4a also shows that although the average VaR of the population seems to be

decreasing, the convergence is very slow.

Figure C.5a shows the evolution of the fitness of the population using roulette wheel
selection with arithmetic crossover. It is visible that the VaR of the average solution
approaches quickly the VaR of the best solution, provoking a lack of diversity. This
is better seen in Figure C.5b, where the distance between the chromosomes (i.e. the
diversity of the population) is much lower than what is observed for example in Figure
C.6, which shows a typical run of GA for the same assets, but with tournament selection

and basic crossover.

5.3 Speed of algorithms

The second test performed was a test designed to measure the speed of the algo-
rithms, as described in section 4.3. PSO and GA were executed again with 50 parti-
cles/chromosomes, for portfolios with 5, 10 and 20 assets. The results are presented
in Table B.3. For all sizes of portfolios, the Particle Swarm Optimization needed less
time per iteration than Genetic Algorithms, and the difference in the time needed per
iteration increases with the number of assets in the portfolio. For portfolios with 5
assets, GA needed circa 30% more time per iteration; for portfolios with 10 assets, it
needed 45% more; and for portfolios with 20 assets, it needed 70% more. The average
time to solve the optimization problem is much lower for PSO than for GA, which is
not surprising given the lower time per iteration needed in PSO, and the higher number

of iterations needed to solve the problem (NN},) for GA.

5.4 Sensitivity to initial position

One problem with PSO is the sensitivity to the initial position of the particles.

It is a more focused search, with less randomness in the process, so if some of the

Empirical Results 41

particles are not initialized near the region where the global optimum is located, it is
unlikely that the algorithm will ever converge to it. To evaluate this sensitivity, another
consistency test was executed, but now instead of using the procedure for initializing
the position of the particles described in section 4.2, a worse one was used. In the
start of each run, one of the ‘corners’ of the feasible solution space was chosen and the
particles were initialized concentrated in that area. Figure 5.2a shows a typical initial
position generated for a portfolio with 3 assets using the procedure described in section
4.2 and Figure 5.2b shows an initial position of particles generated by concentrating the
particles in a small area of the feasible solution space (bad initialization). The results
of the experiment are shown in Table B.4. It is visible that as the number of dimensions
in the problem increase, the performance of the PSO is degraded. For portfolios with
20 assets, the v,z of PSO is over 70%, which shows that the algorithm is not capable
of finding the global optimum when there is a bad initialization of the particles. An
exception is made for the random positioning strategy, that can overcome this problem,
by the added randomness introduced through the boundaries handling strategy, but for
large portfolios this strategy was barely able to converge at all (N;; was very close to the
maximum number of iterations allowed), showing that the good results for v,z were
mainly due to brute force random search. GA presented a performance similar to the
one obtained with a good initialization of the chromosomes, regarding gy .z, showing
that the increased exploration of the search space provided by the algorithm makes
it more robust to bad initial positions. However, the number of iterations needed to

converge was higher than the one needed for a good initialization of the chromosomes.

5.5 Influence of the number of particles / chromo-

somes

Even though the aforementioned work of Li-Ping et al. (2005) recommend a pop-
ulation not larger than 50 particles for PSO (with 30 particles being a good choice),
it was noticed during the experiments that the number of particles used could play
an important role. To further investigate this question, the consistency of the algo-
rithms was tested using portfolios with 10 assets and with different number of parti-
cles/chromosomes: 10, 50 and 250. The results are presented in Table B.5. Zy,z and
the associated standard deviation (o.) decrease significatively with the increase in the

the number of particles. This effect was expected as a larger region of the solution space

Empirical Results 42

is explored in the initial iterations, when a larger number of particles is present. The
number of iterations needed to converge decreases slightly for PSO using the bumping,
amnesia and penalty function strategies when increasing the number of particles. This
happens because as there are more particles, if they are well spread in the solution
space it is more likely that one of them will be closer to the global optimum, and thus
less iterations are needed to reach it. PSO using random positioning strategy showed
no improvement in the number of iterations to converge, reinforcing the idea that it
finds the best solution mainly due to random search. For GA, increasing the number
of particles did not seem to alter much the number of iterations needed to converge,
except for the combination tournament selection/basic crossover, which had a large
reduction in both v,z and o.. This combination showed to be the best for GA in the
previous experiments, but further research should be made to investigate the reason of

the significant increase of performance when running with 250 particles.

Another question that was investigated is whether it is better to use a large number
of particles and few iterations or a few number of particles and run the algorithm for a
large number of iterations. To try to answer this question, a consistency test was run,
for portfolios of 5, 10 and 20 assets, running with 2000 particles for a maximum of 50
iterations, with the results shown in Table B.6. A speed test based on the results of the
consistency test was also run (see Table B.7). The idea of running only for a maximum
of 50 iteration was to compare equivalent methods, in the sense that running with 50
particles and 2000 iterations a maximum of 10000 portfolios are checked and running

with 2000 particles for 50 iterations the same number of portfolios are visited.

Analyzing the results it is seen through &y, and o, that the ability to get near the
global optimum increased considerably, confirming what was already seen in Table B.5.
PSO with random positioning strategy and GA with roulette wheel selection and basic
crossover showed a performance that is worse than the others for large portfolios. The
decay in comparative performance for PSO with random positioning happens because
with a large number of particles, there is already a big exploration of the solution space
in early stages of the search, so the main strength of random positioning (exploration)
is not so strongly needed. The results on Table B.7 show that, except for PSO using
random positioning strategy, the time needed to converge is much larger using 2 000
particles than using 50 particles. This can explained by the fact that in the first
iterations, PSO still has a big influence of the random velocity with which the particles
were initialized, due to the momentum term. Just after a certain number of iterations,
the velocities will better reflect the attraction exerted by the local and global bests.

However the time per iteration is much larger when using a large number of particles,

Empirical Results 43

and in this way the total execution time of the algorithms will be penalized by the
initial ‘non-focused’ search. For GA a similar explanation exists, as in the beginning
the diversity in the population is large and it is very likely that offsprings will be
generated from not very fit individuals, wasting precious time in the beginning of the
search. So, the idea of visiting the same number of portfolios by reducing the number
of iterations and increasing the number of particles/chromosomes do not add to the

algorithm performance.

Empirical Results

‘\
“‘
.
(YN
08r @ ~
o %o
° .
° & .
] &
06 . N
%N [] “‘
[° o
0.4} "
° "
o ° .
° .
° .
02t ® o ° ° .
' I
. . . \“‘
° o © ‘a,
0 9 _. L L ..!
0 0.2 04 0.6 0.8 1
a

(N
- ““
- "‘
- “‘
0.8} .
- “
- ““
- "‘
06¢ .
- "
QY .
] .
“

04}
0.2¢

0 1 L

0 0.2 04

@y

(b) Bad initialization: particles are concentrated in a region

Figure 5.2: Example of random initial position of particles

Chapter 6

Conclusions

In this Thesis, it was shown the application of Particle Swarm Optimization and
Genetic Algorithms to risk management, in a constrained portfolio optimization prob-
lem where no short sales are allowed. The objective function to be minimized was the

value at risk calculated using historical simulation.

Several strategies to handle the constraints were implemented and the results were
compared. For PSO, it was implemented the strategies bumping, amnesia, random
positioning and penalty function. For GA, two selection operators (roulette wheel and
tournament); two crossover operators (basic crossover and arithmetic crossover); and

a mutation operator were implemented.

The results showed that the methods are capable of finding good solutions in a
reasonable amount of time. PSO showed to be faster than GA, both in terms of number
of iterations and in terms of total running time, which is explained by the more focused
search performed by PSO. However, PSO demonstrated to be much more sensible to
the initial position of the particles than GA, and if a bad initialization is made, it is

very likely that PSO will not converge to the global optimum.

Regarding the strategies used for PSO, bumping seems to be the best in terms
of speed, followed closely by amnesia and penalty function. The random positioning
strategy did not perform well in this sense, presenting problems to converge to the best
solution, although it was more robust to the initial position of the particles and the

superior exploratory power allowed a good consistency comparing to the others.

GA showed to be able to find good solutions too, but was worse than PSO in terms

of speed. However, its less focused search (larger randomness) makes it less prone to

Conclusions 46

be trapped into local minima, especially if the population is not initialized with the
chromosomes well spread in the feasible solution space. The basic crossover showed to
be better than the whole arithmetic crossover, preserving the diversity of the population
and thus the exploration of the solution space. The combination tournament selection
with basic crossover was somewhat better than the other strategies and, in the other
hand, the combination roulette wheel selection with whole arithmetic crossover was

the worst.

Tests were also made regarding the number of particles needed to solve the prob-
lem, and apparently using a big number of particles increments the consistency of the
algorithms to find the global optimum, but at the cost of a big increase in computa-
tional time. Using 50 particles/chromosomes seemed to be enough for problems up
to 20 assets. The bottom line is that consistency of the algorithms to find the global

optimum can be increased, but this comes at a high price: longer execution times.

As suggestions for further research, it is proposed:

e Evaluate the performance of the algorithms with the inclusion of criteria to detect

on-the-fly the convergence.

e Find a reformulation of the optimization problem, such that the solution found is
less sensible to the use of different horizons of data, i.e. use a multi-criteria opti-
mization that minimizes the objective function calculated over different horizons

of data.

e Investigate how to use PSO/GA to add adaptability to portfolio management

when dealing with different horizons.

e Check the effect of including the Constriction Coefficient proposed by Clerc
(1999) in the performance of PSO for risk management.

e Test different encodings of the solutions for GA, for example the more traditional

binary encoding.

e Compare PSO and GA with traditional methods.

Appendix A

Summary of the data used

Summary of the data used

48

Density

Density

120

100 -

80

60+

40

0
-0.04

120

-0.03

-0.02 -0.01 0 0.01 0.02 0.03 0.04
Returns (%)

(a) Including 1 year of historical data

100 -

80r-

60+

40

0
-0.04

-0.03

-0.02 -0.01 0 0.01 0.02 0.03 0.04
Returns (%)

(b) Including 10 years of historical data

Figure A.1: Distribution of daily returns of Verizon, for two different horizons

Summary of the data used 49

Table A.1: Average returns of the companies used in the experiments, for different

horizons of the data, with daily frequency

Company 1 year 2 year 5 year 10 year
3M 0.018% 0.002% 0.015% 0.020%
Alcoa 0.026% 0.007% -0.008% 0.016%
Altria 0.018% 0.042% 0.021% 0.021%

American Express 0.024% 0.018% 0.015% 0.027%
Am. International 0.014% -0.016% -0.009% 0.018%

AT&T 0.027% 0.016% -0.009% 0.007%
Boeing 0.047% 0.053% 0.011% 0.013%
Caterpillar 0.075% 0.060% 0.038% 0.029%
Citigroup 0.010% 0.011% 0.005% 0.031%
Coca-Cola 0.001% -0.010% 0.001% 0.001%
DuPont -0.013% 0.005% 0.002% 0.006%
Exxon 0.013% 0.032% 0.014% 0.022%
GE -0.009% 0.013% -0.008% 0.018%

GM -0.020% -0.038% -0.019% -0.001%
Home Depot -0.008% 0.007% -0.008% 0.021%
Honeywell 0.024% 0.022% -0.002% 0.010%
HP 0.061% 0.038% 0.006% 0.011%
IBM 0.009% -0.006% -0.012% 0.022%
Intel -0.071% -0.035% -0.017% 0.013%
Johnson & Johnson -0.017% 0.008% 0.008% 0.019%
JP Morgan 0.036% 0.018% 0.001% 0.013%
McDonalds 0.013% 0.022% 0.006% 0.008%
Merck 0.012% -0.025% -0.020% 0.006%
Microsoft -0.017% 0.002% -0.011% 0.021%
Pfizer -0.025% -0.030% -0.017% 0.014%
Procter & Gamble -0.002% 0.004% 0.022% 0.018%
United 0.029% 0.036% 0.017% 0.028%
Verizon -0.015% -0.003% -0.013% 0.006%
Wal-Mart 0.003% -0.012% 0.000% 0.024%

Walt Disney 0.018% 0.022% 0.000% 0.008%

Summary of the data used 50

Table A.2: Standard deviations of the returns of the companies used in the experiments,

for different horizons of the data, with daily frequency

Company 1 year 2 year 5 year 10 year
3M 0.429% 0.477% 0.588% 0.708%
Alcoa 0.674% 0.665% 0.908% 0.975%
Altria 0.459% 0.489% 0.735% 0.919%

American Express 0.464% 0.429% 0.797% 0.945%
Am. International 0.425% 0.597% 0.771% 0.823%

AT&T 0.388% 0.400% 0.789% 0.870%
Boeing 0.566% 0.560% 0.845% 0.930%
Caterpillar 0.691% 0.655% 0.787% 0.916%
Citigroup 0.352% 0.377% 0.781% 0.968%
Coca-Cola 0.315% 0.389% 0.542% 0.733%
DuPont 0.470% 0.466% 0.666% 0.829%
Exxon 0.560% 0.550% 0.627% 0.678%
GE 0.369% 0.384% 0.755% 0.809%

GM 1.253% 1.087% 1.021% 0.969%
Home Depot 0.531% 0.535% 0.882% 1.024%
Honeywell 0.537% 0.554% 0.953% 1.024%
HP 0.743% 0.753% 1.095% 1.238%
IBM 0.394% 0.436% 0.709% 0.916%
Intel 0.654% 0.713% 1.143% 1.288%
Johnson & Johnson 0.380% 0.380% 0.581% 0.681%
JP Morgan 0.394% 0.406% 0.903% 1.009%
McDonalds 0.619% 0.551% 0.752% 0.801%
Merck 0.608% 0.918% 0.831% 0.848%
Microsoft 0.541% 0.482% 0.802% 0.990%
Pfizer 0.608% 0.649% 0.737% 0.870%
Procter & Gamble 0.374% 0.402% 0.486% 0.774%
United 0.453% 0.449% 0.817% 0.847%
Verizon 0.399% 0.415% 0.740% 0.831%
Wal-Mart 0.448% 0.422% 0.625% 0.865%

Walt Disney 0.509% 0.505% 0.904% 0.961%

Appendix B

Tables with results

Table B.1: Comparison of different risk measures. Portfolios with the same 5 assets
were optimized to minimize VaR, CVaR and the Variance. The portfolios obtained were
then measured using different metrics. Minimized indicates which objective function
was minimized; Variance, VaR and CVaR indicate the average deviation from the
portfolio which minimized these criteria
Minimized Variance VaR CVaR
Variance - 5.56% 0.12%
VaR 0.77% - 0.49%
CVaR 0.09% 5.09% -

Tables with results 52

Table B.2: Comparison of the consistency of PSO and GA algorithms for solving the
portfolio optimization problem, running with 50 particles/chromosomes and a maxi-
mum of 2000 iterations. NN, is the number of assets included in the portfolio; Algorithm
identifies to which algorithm the listed results refer to; IV; is the average number of
iterations that the algorithm took to find a solution within 0.1% of the minimum VaR
found in a specific run; oy is the standard deviation of this measure; €y, is the average
error between the VaR found by the algorithm in the different runs and the minimum

VaR found over all runs; and o, is the standard deviation of these errors

N, Algorithm N; oN EVaR O
PSO Bumping 44.0 21.0 0.58% 0.79%
PSO Amnesia 79.7 31.0 0.55% 0.73%
PSO Random 562.7 522.6 0.37% 0.60%

- PSO Penalty 93.8 541 0.37% 0.69%

GA Roul./Basic 142.0 168.7 0.52% 0.72%
GA Tourn./Basic 172.6 242.1 0.60% 0.78%
GA Roul./Arith. 472.6 5742 091% 1.06%
GA Tourn./Arith. 269.1 415.0 1.02% 1.02%

PSO Bumping 102.1 53.3 3.43% 1.38%
PSO Amnesia 163.4 103.8 4.02% 2.30%
PSO Random 1473.3 4275 2.29% 1.41%
0 PSO Penalty 190.4 88.1 3.34% 2.49%
GA Roul./Basic 793.0 5181 2.65% 1.76%
GA Tourn./Basic 680.5 507.2 3.37% 1.79%
GA Roul./Arith. 1257.0 4545 3.12% 1.96%
GA Tourn./Arith. 808.8 550.8 3.66% 1.76%
PSO Bumping 119.1 521 527% 2.50%
PSO Amnesia 320.6 96.8 6.77% 2.31%
PSO Random 1798.8 272.7 4.99% 2.40%
50 PSO Penalty 299.6 654 6.29% 3.26%

GA Roul./Basic ~ 1239.9 506.4 3.62% 2.24%
GA Tourn./Basic 1078.4 510.8 3.46% 2.28%
GA Roul./Arith. 1615.2 272.6 5.72% 2.05%
GA Tourn./Arith. 1298.2 365.8 4.60% 2.78%

Tables with results 53

Table B.3: Comparison of the speed of the PSO and GA algorithms for solving the
portfolio optimization problem, running with 50 particles/chromosomes. N, is the
number of assets included in the portfolio; Algorithm identifies to which algorithm the
listed results refer to; % is the average time per iteration, for the given number of
assets and particles; NV}, is the fixed number of iterations used to solve the problem:;

and ¢ is the average time in seconds to solve the optimization problem

N, Algorithm t/it (ms) NI, 7(s)
PSO Bumping 34.2 86 2.9
PSO Amnesia 33.9 142 4.8
PSO Random 33.9 1608 54.5

. PSO Penalty 34.5 202 7.0
GA Roul./Basic 44.2 479 21.2
GA Tourn./Basic ~ 43.7 657 28.7

GA Roul./Arith. 43.0 1621 69.7
GA Tourn./Arith ~ 42.6 1099 46.8

PSO Bumping 46.5 209 9.7
PSO Amnesia 46.0 3711 171
PSO Random 46.0 2328 107.1
10 PSO Penalty 46.6 367 171
GA Roul./Basic 69.6 1829 127.3
GA Tourn./Basic 69.2 1695 117.2
GA Roul./Arith. 68.3 2166 148.0
GA Tourn./Arith ~ 68.0 1910 129.9
PSO Bumping 70.8 223 158
PSO Amnesia 70.1 514 36.0
PSO Random 70.5 2344 165.1
50 PSO Penalty 71.2 430 30.6

GA Roul./Basic 121.6 2253 274.1
GA Tourn./Basic 121.3 2100 254.6
GA Roul./Arith. 120.0 2160 259.3
GA Tourn./Arith 120.1 2030 243.7

Tables with results 54

Table B.4: Comparison of the influence of the initial position of the particles on the
consistency of the PSO and GA algorithms for solving the portfolio optimization prob-
lem, running with 50 particles/chromosomes and a maximum of 2000 iterations. The
particles were initially concentrated in an area of the search space. N, is the number
of assets included in the portfolio; Algorithm identifies to which algorithm the listed
results refer to; N, is the average number of iterations that the algorithm took to find
a solution within 0.1% of the minimum VaR found in a specific run; oy is the standard
deviation of this measure; &y, is the average error between the VaR found by the
algorithm in the different runs and the minimum VaR found over all runs; and o, is

the standard deviation of these errors

N, Algorithm Ny oN ZVaR o,
PSO Bumping 82.1 80.2 4.02% 4.74%
PSO Amnesia 74.2 424 210% 3.65%
PSO Random 262.5 292.1 0.26% 0.47%

. PSO Penalty 68.3 234 231% 3.73%

GA Roul./Basic 410.3 4419 0.51% 0.8T%
GA Tourn./Basic 390.3 519.2 0.96% 1.19%
GA Roul./Arith. 621.3 461.9 1.90% 2.11%
GA Tourn./Arith 398.3 427.1 1.26% 1.51%

PSO Bumping 202.9 136.0 36.59% 27.92%
PSO Amnesia 194.7 76.0 12.72% 12.19%
PSO Random 1455.9 441.7 2.63% 1.78%
10 PSO Penalty 208.7 106.6 13.87% 15.46%
GA Roul./Basic 787.3 502.4 2.78% 2.36%
GA Tourn./Basic 636.0 465.1 4.17% 2.78%
GA Roul./Arith. 1087.8 493.3 3.64% 1.99%
GA Tourn./Arith ~ 951.1 499.1 3.78% 2.34%
PSO Bumping 107.5 774 76.87T% 54.68%
PSO Amnesia 319.0 90.6 70.13% 38.39%
PSO Random 1726.7 142.7 3.92% 2.06%
50 PSO Penalty 320.2 86.0 74.45% 56.72%

GA Roul./Basic 1371.2 486.1 547% 4.03%
GA Tourn./Basic 933.3 389.0 4.56% 2.99%
GA Roul./Arith. 14929 341.7 6.60% 3.51%
GA Tourn./Arith 1318.0 480.3 6.11% 3.68%

Tables with results 55

Table B.5: Comparison of the influence of the number of particles on the consistency
of the PSO and GA algorithms for solving the portfolio optimization problem, run-
ning with 10 assets and a maximum of 2000 iterations. NN, is the number of parti-
cles/chromosomes used; Algorithm identifies to which algorithm the listed results refer
to: N;, is the average number of iterations that the algorithm took to find a solution
within 0.1% of the minimum VaR found in a specific run; oy is the standard deviation
of this measure; £y, is the average error between the VaR found by the algorithm in
the different runs and the minimum VaR found over all runs; and o, is the standard

deviation of these errors

N, Algorithm Ny oN ZVaR o,
PSO Bumping 105.7 444 6.54% 2.89%
PSO Amnesia 153.6 44.2 6.04% 3.52%
PSO Random 1519.5 410.6 3.62% 1.86%

10 PSO Penalty 153.6 37.6 6.26% 3.31%

GA Roul./Basic 797.0 539.2 4.62% 2.62%
GA Tourn./Basic 863.6 507.4 4.22% 2.27%
GA Roul./Arith. 1063.9 451.6 4.09% 2.12%
GA Tourn./Arith 1036.2 493.3 3.78% 2.33%

PSO Bumping 102.1 53.3 3.43% 1.38%
PSO Amnesia 163.4 103.8 4.02% 2.30%
PSO Random 1473.3 4275 2.29% 1.41%
0 PSO Penalty 190.4 88.1 3.34% 2.49%
GA Roul./Basic 793.0 518.1 2.65% 1.76%
GA Tourn./Basic 680.5 507.2 3.37T% 1.79%
GA Roul./Arith. 1257.0 454.5 3.12% 1.96%
GA Tourn./Arith. 808.8 550.8 3.66% 1.76%
PSO Bumping 58.8 38.9 1.27% 0.97%
PSO Amnesia 137.8 68.3 1.55% 1.10%
PSO Random 1494.4 341.6 1.81% 1.03%
550 PSO Penalty 126.6 43.8 1.46% 1.04%

GA Roul./Basic 650.0 414.0 0.62% 0.88%
GA Tourn./Basic ~ 231.9 203.6 1.09% 0.90%
GA Roul/Arith. 13412 4109 2.74% 1.12%
GA Tourn./Arith 1047.8 601.7 2.66% 1.04%

Tables with results

26

Table B.6: Comparison of the consistency of PSO and GA algorithms for solving the

portfolio optimization problem, running with 2000 particles/chromosomes and a max-

imum of 50 iterations. N, is the number of assets included in the portfolio; Algorithm

identifies to which algorithm the listed results refer to; IV; is the average number of

iterations that the algorithm took to find a solution within 0.1% of the minimum VaR

found in a specific run; oy is the standard deviation of this measure; €y, is the average

error between the VaR found by the algorithm in the different runs and the minimum

VaR found over all runs; and o, is the standard deviation of these errors

N, Algorithm N; ON &VaR o,
PSO Bumping 135 4.4 0.04% 0.08%
PSO Amnesia 19.0 3.3 0.10% 0.14%
PSO Random 241 39 017% 0.26%
PSO Penalty 19.3 3.3 0.20% 0.38%

° GA Roul./Basic 341 94 0.53% 0.29%
GA Tourn./Basic 19.0 8.6 0.41% 0.39%
GA Roul./Arith. 19.2 11.9 1.22% 0.66%
GA Tourn./Arith 16.5 11.4 0.88% 0.64%
PSO Bumping 242 4.7 1.26% 1.14%
PSO Amnesia 34.6 4.0 1.55% 1.35%
PSO Random 44.6 4.5 2.08% 1.25%

10 PSO Penalty 353 3.2 1.57% 1.26%
GA Roul./Basic 41.9 6.3 2.55% 0.97%
GA Tourn./Basic 38.1 6.9 1.41% 1.10%
GA Roul./Arith. 152 10.3 5.85% 2.24%
GA Tourn./Arith 29.7 14.7 3.31% 1.20%
PSO Bumping 320 35 28™% 217%
PSO Amnesia 471 1.7 38™% 1.87%
PSO Random 485 1.8 6.25% 1.80%

50 PSO Penalty 46.8 1.8 3.99% 2.39%
GA Roul./Basic 456 4.6 5.32% 1.34%
GA Tourn./Basic 46.8 2.7 1.97% 1.25%
GA Roul./Arith. 22.1 124 8.54% 1.69%
GA Tourn./Arith 36.9 124 599% 1.38%

Tables with results 57

Table B.7: Comparison of the speed of the PSO and GA algorithms for solving the
portfolio optimization problem, running with 2000 particles/chromosomes. N, is the
number of assets included in the portfolio; Algorithm identifies to which algorithm the
listed results refer to; % is the average time per iteration, for the given number of
assets and particles; NV}, is the fixed number of iterations used to solve the problem:;

and ¢ is the average time in seconds to solve the optimization problem

N, Algorithm t/it (s) NI, t(s)
PSO Bumping 1.36 23 31
PSO Amnesia 1.36 26 35
PSO Random 1.36 32 44

. PSO Penalty 1.39 26 36

GA Roul./Basic 6.44 53 341
GA Tourn./Basic ~ 6.02 37 223
GA Roul./Arith. 6.50 43 279
GA Tourn./Arith 6.02 40 241

PSO Bumping 1.85 34 63
PSO Amnesia 1.85 43 80
PSO Random 1.85 54 100
10 PSO Penalty 1.88 42 79
GA Roul./Basic 8.49 55 467
GA Tourn./Basic 8.09 52 421
GA Roul./Arith. 8.46 36 305
GA Tourn./Arith 8.15 60 489
PSO Bumping 2.86 39 112
PSO Amnesia 2.85 51 145
PSO Random 2.86 53 151
50 PSO Penalty 2.89 ol 148

GA Roul./Basic 13.31 55 732
GA Tourn./Basic 12.97 53 687
GA Roul./Arith. 12.56 47 590
GA Tourn./Arith 12.36 62 767

Appendix C

Pictures with results

Pictures with results

29

| NN >V I Citigroup [Coca-Cola | |GM | | Microsoft |

1 2 3 4 5 6 7 8 9 10
Number of years

(a) Minimizing the variance of the returns of the portfolio

‘ I 3 I Citigroup [Coca-Cola | |GM | | Microsoft

1 2 3 4 5 6 7 8 9 10
Number of years

(b) Minimizing the VaR of the returns of the portfolio

| N >V I Citigroup [Coca-Cola | |GM | | Microsoft
1 =
08
2
<
-% 06
=
04
02
0
1 2 3 4 5 6 7 8 9 10
Number of years

(¢) Minimizing the CVaR of the returns of the portfolio

Figure C.1: Optimal portfolio weights, using different objective functions and different

horizons for the data

Pictures with results 60

x10°
14
Best
Average
12 ~ Worst
10
&
>
8 -
6 -
N
4 | | | | |
0 20 40 60 80 100
Iteration
(a) Evolution of the VaR of the particles
1 .4 T T T T
Closest
121 Average |
Farthest
@ i
Q
<
8
2
a i
0 20 40 60 80 100

Ilterafion

(b) Distance between the particles

Figure C.2: Evolution of solutions for a typical run of PSO using bumping strategy,
for 5 assets (3M, Citigroup, Coca-Cola, Gm and Microsoft)

Pictures with results 61

0.016 -
Best
Average
0.014 A Worst
0.012F
x
S 0.01
0.008 -
0.006 —!
0.004 : : : : /
0 20 40 60 80 100
Iteration
(a) Evolution of the VaR of the particles
Closest
Average | |
Farthest | |
)
Q]
<
Y
2 N
Q
, _— —
0 20 40 60 80 100

Ilterafion

(b) Distance between the particles

Figure C.3: Evolution of solutions for a typical run of PSO using amnesia strategy, for

5 assets (3M, Citigroup, Coca-Cola, Gm and Microsoft)

Pictures with results 62

0.016
Best
Average
0.014 Worst
0.012
x
g - M\WJ\'\/\J\,—WLW\
0.008
0.006 \/\/\WMNWMWW\/W
N e e o aa S
0.004 : : ' ' '
0 20 40 60 80 100
Iteration
(a) Evolution of the VaR of the particles
1 T T T T
Closest
Average
08r ~ Farthest | -
[«}) 06 B
Q
<
Y
2
Qo04f -
0.2 .
WNM_ I |
0 1

0 20 40 60 80 100
Ilterafion

(b) Distance between the particles

Figure C.4: Evolution of solutions for a typical run of PSO using random positioning

strategy, for 5 assets (3M, Citigroup, Coca-Cola, Gm and Microsoft)

Pictures with results 63

0.016

Worst

Average
0.014 A Best

0.012

0.01

VaRrR

0.008

0.006 -

0.004 ' ' ' :
0 20 40 60 80 100

Ilteration

(a) Evolution of the VaR of the particles

14 T T T T

Closest
12+ Average | |
Farthest

0.8F , » |

Distance

06 ~ ,]

04+
02 ‘ ‘
AN M TAY AN\ AVA S AL LA NI A WA FaN

0
0 20 40 100
Iteration

(b) Distance between the particles

Figure C.5: Evolution of solutions for a typical run of GA using roulette wheel selec-
tion and whole arithmetic crossover for 5 assets (3M, Citigroup, Coca-Cola, Gm and
Microsoft)

Pictures with results 64

x10
14
Worst
Average
12+ Best
10
Q:U
>
4 | | | | |
0 20 40 60 80 100
Iteration
(a) Evolution of the VaR of the particles
1 5 T T T T
Closest
Average
Farthest
1F i
@
Q
<
8
2
Q

0 20 40 60 80 100
Ilterafion

(b) Distance between the particles

Figure C.6: Evolution of solutions for a typical run of GA using tournament selection

and basic crossover for 5 assets (3M, Citigroup, Coca-Cola, Gm and Microsoft)

References

ARTZNER, P., DELBAEN, F., EBER, J.M. & HEATH, D. (1999). Coherent measures
of risk. Mathematical Finance, 9, 203-228.

ArRuMUGAM, M.S. & RAo, M. (2004). Novel hybrid approaches for real coded genetic
algorithm to compute the optimal control of a single stage hybrid manufacturing

systems. International Journal of Computational Intelligence, 1, 231-249.
BesT, P.W. (1998). Implementing Value at Risk. John Wiley & Sons.

Branco, A., DELGADO, M. & M.C.PEGALAJAR (2001). A real-coded genetic algo-

rithm for training recurrent neural networks. Neural Networks, 14, 93-105.

BoDIE, Z., KANE, A. & MARcus, A.J. (2005). Investments (International Edition,).
McGraw-Hill, 6th edn.

CHANG, T.J., MEADE, N., BEASLEY, J. & SHARAIHA, Y. (2000). Heuristics for

cardinality constrained portfolio optimisation. Computers € Operations Research,
1271-1302.

CLERC, M. (1999). The swarm and queen: Towards a deterministic and adaptative par-
ticle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Com-
putation, 1951-1957.

CROUHY, M., GALAL, D. & MARK, R. (2001). Risk Management. McGraw-Hill.

DE RooN, F.A. (2001). Testing for mean-variance spanning with short sales con-
straints and transaction costs: The case of emerging markets. Journal of Finance,
56, 721-742.

EBERHART, R. & KENNEDY, J. (1995). A new optimizer using particle swarm theory.
Proceedings of the Sixzth International Symposium on Micro Machine and Human

Science, Nagoya, Japan, 39—-43.

References 66

ECKHARDT, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method.
Los Alamos Science, Special Issue, 131-137.

GOLDBERG, D.E. & DEBB, K. (1991). A comparative analysis of selection schemes

used in genetic algorithms. In G.J. Rawlins, ed., Foundations of genetic algorithms,
69-90, Morgan Kaufmann Publishers.

Hawkins, I. (2000). Choosing appropriate var model parameters and risk-
measurement methods. In M. Lore & L. Borodovsky, eds., The Professional’s Hand-
book of Financial Risk Management, p. 111-151, Butterworth-Heinemann, Woburn,
MA.

HovLLAND, J. (1975). Adaptation in Natural and Artificial Systems. The University of
Michigan Press.

Horton, G.A. (2003). Value-at-Risk: Theory and Practice. Academic Press.
HovrtoN, G.A. (2004). Defining risk. Financial Analysts Journal, 60, 19-25.

Hu, X. & EBERHART, R. (2002). Solving constrained nonlinear optimization problems
with particle swarm optimization. Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA, 5.

HuLLr, J.C. (2002). Fundamentals of Futures and Options Markets. Prentice Hall, 4th

edn.

Inut, K. & K1iima, M. (2005). On the significance of expected shortfall as a coherent
risk measure. Journal of Banking & Finance, 29, 853-864.

JORION, P. (2001). Value at Risk: The New Benchmark for Managing Financial Risk.
McGraw-Hill, 2nd edn.

KENDALL, G. & Su, Y. (2005). A particle swarm optimisation approach in the con-
struction of optimal risky portfolios. Proceedings of the 23rd IASTED International
Multi-Conference Artificial Intelligence and Applications.

KENNEDY, J. & EBERHART, R. (1995). Particle swarm optimization. Proc. IEEE
International Conf. on Neural Networks (Perth, Australia).

KnicaT, F.H. (1921). Risk, Uncertainty, and Profit. Hart, Schaffner & Marx;
Houghton Mifflin Company, Boston, MA.

References 67

L1-PING, Z., HuAN-JUN, Y. & SHANG-XU, H. (2005). Optimal choice of parameters
for particle swarm optimization. Journal of Zhejiang University Science, 6 A, 528
534.

MarkowITz, H.M. (1952). Portfolio selection. Journal of Finance, 7, 77 — 91.
SZEGO, G. (2002). Measures of risk. Journal of Banking € Finance, 26, 1253-1272.

TAScCHE, D. (2002). Expected shortfall and beyond. Journal of Banking € Finance,
26, 1519-1533.

X1a, Y., Liu, B., WaANG, S. & Lai, K.K. (2000). A model for portfolio selection
with order of expected returns. Computers € Operations Research, 409-422.

ZuanNg, W.J., X1, X.F. & Bi1, D.C. (2004). Handling boundary constraints for
numerical optimization by particle swarm flying in periodic search space. Congress
on Evolutionary Computation (CEC), Oregon, USA, 2307-2311.

	Introduction
	Risk Measures
	Introduction
	The Mean-Variance Approach
	Value at Risk
	Parametric Method
	Historical Simulation Method
	Monte Carlo Method

	Coherent Risk Measures

	Nature Inspired Strategies for Optimization
	Introduction
	Particle Swarm Optimization
	Genetic Algorithms
	Conclusion

	Experiment Set-Up
	Data Collecting
	Model Building
	Experiment design

	Empirical Results
	The objective function
	Consistency of the algorithms
	Speed of algorithms
	Sensitivity to initial position
	Influence of the number of particles / chromosomes

	Conclusions
	Summary of the data used
	Tables with results
	Pictures with results
	References

