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Chapter 1

Introduction

1.1 Risk

Prediction is very difficult, especially of the future. (Niels Bohr).

Exactly knowing what the future will bring is the dream of every decision maker; it implies certainty. A
decision maker having exact knowledge of the future at his disposal, is said to have complete information.
Unfortunately, coping with finance or investment related problems and having complete information is
a luxury and rather an unlikely situation. Situations characterized by incomplete information can be
separated into two groups: situations of uncertainty and situations ofrisk (van den Bergh, Hallerbach,
van der Meulen, van der Sar, Schauten, Smit, Soppe, Spronk, Steenbeek and Vorst 1999).

A situation is characterized as uncertain, when the decision maker doesn’t have the information at his
disposal which allows him to objectively diagnose the probabilities on the states of nature influencing
the final result of his decision. Uncertainty can also be a result of not being aware of specific factors
and the way they influence the result of a decision. The latter is considered as ignorance (van den Bergh
et al. 1999).

We refer to risk, however, when the decision maker has indeed no certainty about specific future states
of nature, but is aware of the factors which are on influence on the result of the decision. In addition, the
decision maker is able to assign probabilities to each of the possibilities (van den Bergh et al. 1999).

Consider for example the following game which is played with an unbiased dice and a starting balance
of e10: when the result of a throw with the dice is lower than 4, the player has to pay 10% of the starting
balance for a 1, 20% for a 2 and 30% for a 3. When the result is higher than or equal to four, the player
receives 40% of the starting balance for a 4, 50% for a 5 and 60% for a 6. In this situation, the player
is aware of the factor influencing the result - the occurrence of each of the six possible outcomes of the
throw - and the player is able to assign a probability equal to one-sixth to each of these outcomes.

The expected return of playing this game then equals a weighted average of the possible outcomes:

Expected return=
1
6
×−10 +

1
6
×−20 +

1
6
×−30 +

1
6
× 40 +

1
6
× 50 +

1
6
× 60 = +15%

A way to measure the risk of playing this game is to measure the spread of the returns, or in other words,
the variance. The variance summarizes the spread of the possible outcomes. The variance of the return

13



Outcome % rate return Deviation expected return Squared deviation Pr Pr× squared deviation
1 -10 -25 625 1

6 1041
6

2 -20 -35 1225 1
6 2041

6

3 -30 -45 2025 1
6 337.36

4 +40 +25 625 1
6 1041

6

5 +50 +35 1225 1
6 2041

6

6 +60 +45 2025 1
6 3373

6

Variance = 12912
3

Table 1.1: Estimating the variance of the dice-throwing game

on this game is the sum of expected squared deviations from the expected return. Table 1.1 shows how
the variance of the game can be estimated.

The variance here is estimated as12912
3 . The way the table estimates the variance can be summarized

as follows:

variance(rgame) =
∑N

i=1(rgame,i − r̄)2

N
(1.1)

Here rgame represents the return on playing the game,N is the total number of possible outcomes,
rgame,i is the return on the game after a throw of the dice with outcomei andr̄ is the expected return of
the game. Another measure for summarizing risk is the standard deviation. The standard deviation is the
square-root of the variance. The variance is mostly denoted asσ2 and the standard deviation mostly as
σ.

Now, assume that the player has to pay 50% of his balance after throwing a one, but he receives 100% of
his balance when he throws a six. More specifically, the return is -50% for throwing a one and 100% for
throwing a six. The expected return remains the same: 15%. The variance, however, now equals27581

3 .
The conclusion is that although one expects the same result after playing the game, the game is far more
risky as a result of more spread in the possible returns.

1.2 Risk management in finance

Risk does not, although it might seem so, restrict itself to games with dices. An analogous example
can be given with a decision maker deciding whether to sell his stock or not. In a similar way, the
variance can be estimated for the returns on this stock, plotted in the financial time-series of the past
years, corresponding to the stock the decision maker is interested in. The decision maker now disposes
over information regarding the spread in the returns over the past years. Based on the spread the decision
maker encounters while assessing the historical returns, he can assign an amount of risk to the stock and
adapt his decision likewise. A well-informed decision maker has knowledge of the factors influencing
the result of his decision and can assign probabilities to the states of nature.

14



It may seem that a decision maker has to accept risk as an entity falling from the sky. Fortunately, risk is
something that can be managed. There are various instruments available to cope with risk. One of these
instruments areinsurance, hedgingandValue at Risk. Schematically, this can be summarized as follows:

• Insurance

• Hedging

– Futures

– Forwards

– Swaps

• Value at Risk

This list is certainly not an exhaustive list. When a company is insured, the risk it faces is transferred
to the insurance company and pays a risk premium in return. Hedging involves taking on one risk to
neutralize another risk. Tools available for hedging are futures, forwards and swaps and are also referred
to as derivatives, as their value depends on the value of another, underlying, asset. For a general dis-
cussion regarding risk and risk management, I refer to Brealey and Myers (2001). A detailed discussion
regarding the mechanics of derivatives trading is beyond the scope of this thesis. However, for a detailed
discussion regarding derivatives, I refer to Hull (2000). The next section discusses the concept of Value
At Risk, which is fundamental for this thesis.

1.3 Value at Risk

Futures and other derivatives can be used in order to reduce risk by hedging. However, futures and
other derivatives can also be used for speculation. In this case, one enters a futures contractwithout the
neutralizing holding of the underlying asset. Speculating with derivatives can be very risky. There are
various examples of companies which are brought into trouble as a result of speculation. In 1995, the
Baring’s bank incurred huge losses as a result of a trader called Nick Leeson. Nick Leeson borrowed a
large amount of funds in order to speculate on the Japanese stock market index. Unfortunately, the stock
market collapsed as a result of an earthquake. The final losses were $1.4 billion, resulting in the Baring’s
bank to become insolvent. In addition, Metalgesellschaft entered into an oil futures contract. The final
loss incurred was $1.3 billion (Brealey and Myers 2001).

In reaction to the Barings’- and other financial disasters, the need for improved financial control grew
and the concept ofValue at Riskbecame more important. Value at Risk is one single number for the
senior management to express and summarize the total risk of a portfolio with financial assets. Value
at Risk measures the worst expected loss over a given horizon under normal market conditions at a
given confidence level. Later on, large banks have to base their market risk capital requirements on the
VaR number. This requirement was a result of an agreement between U.S. and international banking
authorities called the Basel Accord (Jorion 1996).

With the concept of Value at Risk (VaR) models arose to estimate the VaR, varying from models with
an analytical, parametric approach to models that use complex, costly simulations. Differences between
these models will be discussed later on in this thesis. As capital requirements for banks are based on the
VaR figure, it implies that the more accurate a VaR-model is, the more efficient capital can be allocated
in order to cover eventual losses.
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Time is an important aspect for VaR estimation. In order to estimate the VaR for a given horizon, daily
volatility is scaled toh-day volatility using the

√
h-rule for scaling. However, it is a general assumption

to assess the historical data in its completeresolution; all behavior is assessed, from short-term, high
frequent volatility to long-term, low frequent volatility. Despite the fact that financial risk managers
might be interested in short-term volatility when estimating a VaR for a short-horizon and long-term
volatility when estimating a VaR for a longer horizon, no explicitdistinctionis made between information
captured in low(er) and high(er) frequent patterns. The fact that no explicit distinction is made, assumes
implicitly that all information in historical data is relevant, regardless the time-horizon chosen, with the
result that all this information is encapsulated in the VaR-figure. Under the assumption that a financial
risk manager might be interested in the volatility corresponding to the given time-horizon only, only a
subset of this information has to be assessed, resulting in a lower VaR-figure. A lower estimated VaR-
figure implies that expensive capital can be saved. However, if a VaR-model is too optimistic, risk can
be underestimated and reserved capital could be insufficient. The other way round, abundant capital is
reserved which could have been invested elsewhere, when the model is too conservative.

The assumption that a financial risk manager is only interested in risk corresponding to his horizon and
capital can be saved by assessing the data in the corresponding resolution, makes us in search for a
tool. Wavelet analysis, as a tool, is a technique from applied mathematics, able to decompose a given
signal or time-series into different timescales by shifting a window variable in both time and scale over
the original signal. Each timescale represents a different resolution. The lower scales capture highly
frequent behavior, whereas the higher scales capture low-frequent behavior. This technique, which is
used in finance and economics during the past few years, might be a contribution to financial risk analysis
and more specific VaR estimation, when through a decomposition for each time-horizon an appropriate
resolution can be chosen, which is the fundamental hypothesis underlying this thesis.

1.4 Definition of the research question

Summarizing the ideas from the previous sections, the problem is to find a way to define the appropriate
resolution for the time-horizon one is interested in, in such a way that the amount of risk can be tailored
to ones needs. The research question is therefore: ”Can wavelet analysis help to define the appropriate
resolution for the time-horizon one is interested in?”. The following three sub questions, defining the
research problem, should be articulated.

First, how can wavelet-analysis, as a tool, decompose a financial time-series into multiple levels, such
that each level captures specific information about the behavior of this financial time-series?

Second, when introduced into the domain of Value at Risk, can wavelet analysis help to tailor risk by
finding an appropriate resolution for each time horizon, through use of a multi-level decomposition?

Third, can an alternative, wavelet-based model be formulated for Value at Risk estimation which takes
such a distinction into consideration and does this model perform well compared to existing competing
models?

1.5 Methodology

In order to operationalize the research problem, I took the following steps. As a first step I consulted
the available literature on VaR and VaR-estimation in order to understand the general idea and its role
in finance and economics and made an overview of the available models for VaR estimation. In order
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to acquire intuition for the theory, I worked out numerical examples. First with simple models, later on
with more complex, time-varying volatility models.

As a second step I made an overview of the most commonly available wavelet literature and dove
into wavelet theory to understand the mathematics behind it. By combining different interpretations of
wavelet analysis from different literature, I have defined a personal mathematical framework, consistent
with wavelet analysis, using a notation I felt comfortable with.

The third step was to make an overview and comparison of the available software for wavelet analysis.
Using this overview, I chose an appropriate software package in order to acquire intuition for the theory
and to conduct experiments.

As a fourth step I made the relation between wavelet analysis and VaR estimation by relating the energy
in a signal to the variance of a signal. In order to make this relation, I studied the behavior of the variance
when applied to a decomposed signal. Based on this relation, I proposed an alternative, wavelet-based
model for VaR estimation.

The fifth step was to conduct experiments with the proposed model on artificially generated data and
real-life data from the Dow Jones Index. I studied the results and checked whether the model gave an
accurate estimation of the VaR, by systematically estimating the worst expected loss given a confidence
level and a time-horizon (i.e. the VaR) and checking whether this estimation is exceeded in the given
time-horizon. The step is repeated a significant number of times in order to get a reliable notion of the
performance.

As a sixth step, I researched how the model performs compared to other existing, more widely used
models.

As a final step I validated the results by means of a statistical framework, referred to as backtesting, in
order to make sound scientific statements about the performance of the proposed wavelet-based model.

The writing of the final thesis was a recurrent process. It entailed the performing of a literature study to
gain a general understanding, experimenting with the theory to get intuition for the theory and reporting
the results and findings into small reports. The small reports were bundled into this final thesis. This
process was for me the logical order to structure this complex ”to-large-to-handle” problem into smaller
solvable problems.

1.6 Structure of the thesis

To support the methodology as presented, the thesis is structured as follows and is shown in figure 1.1.
Chapter 1, this chapter, is the introduction. Chapter 2 explains the fundamentals of VaR-estimation. It
explains why it is important, how it relates to risk, how it is estimated and what the existing models
and their shortcomings are. Chapter 3 explains the fundamentals of wavelet analysis. It explains how
wavelet decomposition and reconstruction works and what multiresolution analysis is. In addition, a
concise overview of wavelet families and their characteristics is given. Chapter 4 shows how wavelets
can be used for analyzing risk and how the correct resolution can be found for a corresponding horizon.
Here, a wavelet-based model for VaR-estimation will be formulated. Chapter 5 sets up experiments
and demonstrates how the new model performs compared to existing models. Chapter 6 validates these
results by discussing and applying models for validation. Chapter 7 concludes the thesis.

Chapter 8, the appendix, gives a detailed overview about the various tools for wavelet analysis currently
available.
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Figure 1.1: Structure of the thesis
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Chapter 2

Value at Risk estimation

2.1 Introduction

In the beginning of the 1990’s, several examples of financial mismanagement occurred. Examples as
Metallgesellschaft, Orange County and Barings underline the lack of and necessity for proper financial
management (Huij 2001).

In this period, the interest rate was at such a low position, making Orange County - the government of
Florida, USA - borrow a fair amount of money, in order to buy bonds with a higher interest compen-
sation. This position could be very lucrative, given that the interest rate remains at the same position,
or decreased even more. Unfortunately, the interest rate increased drastically, resulting in a deteriorated
position and a loss of $1.7 billion for Orange County.

Metallgesellschaft, a large German company, created a difficult situation as well by entering into a sup-
ply contract for delivering oil to its customers at a predetermined price. Metallgesellschaft hedged the
possible risk of an increasing cost price by a futures contract in order to compensate the possible losses
of an increased cost price with the revenues of the futures contract. However, the margin calls1on the
futures contract invoked such a big outflow, that the senior management had to close the hedge position.
The final loss was $ 1.3 billion (Hull 2000).

The lessons learned from these disasters is the need for improvedinternal control; the need for senior
management to articulate a clear policy about how derivatives can be traded and the extent to which
employees can take positions. With this policy, senior management should ensure that the policy is
carried out using controls. And with controls comes the monitoring of risk and the need for improved
risk models. Financial institutions for example, usually calculate risk measures as delta, vega and gamma
2 for every market variable it is exposed to. The huge amount of information generated every day is of
valuable information to traders, but of limited use for senior management. This is where Value at Risk

1A futures trader has to deposit funds in what is called a margin account at the time a futures contract is entered into. The
amount is called the initial margin. If the balance of the margin account falls below a specific margin, the maintenance margin
(which is lower than the initial margin), the trader has to fill up the space between the maintenance margin and the initial
margin. This is called a margin call.

2See Hull (2000) for a detailed discussion about delta-gamma-vega analysis.
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(VaR) comes in. VaR is one single number for the senior management to express and summarize the total
risk of a portfolio with financial assets. The VaR figure is always accompanied with two parameters: the
time horizonh and the significance levelc, resulting in statements of the form: Withc % certainty, the
loss on the portfolio will not be more thanVaReuros in the next period ofh days. Losses greater than
the VaR are only suffered with a very small specified probability (1− c). More formally:

Definition 1 ”VaR measures the worst expected loss over a given horizon under normal market condi-
tions at a given confidence level” (Jorion 1996)

VaR is widely accepted by corporate treasurers, fund managers and financial institutions. In addition,
VaR models have been sanctioned for determining market risk capital requirements for large banks by
U.S. and international banking authorities through the 1996 Market Risk Amendment to the Basel Accord
(Jorion 1996). In fact, under the protection of the Basel Committee on Banking Supervision, the capital
requirements for the market risk exposure of large banks are now explicitly based on their VaR estimates
for a ten day holding period and 99 percent coverage. In other words, banks now have to set an amount
of capital aside based on a VaR estimate in order to cover eventual losses. And, as the definition states,
there is only 1 percent chance that these eventual losses exceed the VaR. For a more detailed discussion
about these requirements, I refer to Jorion (1996).

The rise of VaR is accelerated as a result of this increased pressure from regulators in order to better con-
trol financial risk, the globalization of financial markets leading to exposure to more sources of financial
risk and more advanced technology for enterprise wide risk management (Jorion 1996).

The purpose of this chapter is to give insight in the fundamentals of VaR, its relation with risk and the way
it is estimated. Furthermore, this chapter should give a clear understanding of models for time-varying
risk and its shortcomings. Therefore, the remainder of this chapter is as follows: Section 2.2 gives an
overview of VaR in finance and economics. Section 2.3 explains the fundamentals of VaR estimation
and section 2.4 explains VaR estimation for a multiple asset portfolio. Then, section 2.5 extends the
discussion with the modelling of time-varying risk. The chapter concludes with the shortcomings of
these models in section 2.6.

2.2 Value at Risk in finance and economics

Wiener (1997) gives an introduction to Value at Risk where several methods for VaR estimation are
discussed. Jorion (1996) explains in his book the various building blocks of VaR measurement. His book
not only explains the more analytical parametric methods, but also the more sophisticated and complex
simulation methods for VaR estimation. The book is complete in the sense of specifying all the regulatory
capital standards. In addition, various methods for validation of the VaR models are discussed, like stress
testing and backtesting. Backtesting will be discussed in detail in chapter 6.

The parametric approach, also called variance-covariance approach is more popular than its more com-
plex and sophisticated non-parametric counterpart, the simulation approach. This approach, imple-
mented as either historical simulation or Monte Carlo simulation, is computationally demanding and very
costly as well. When the approach is parametric, it is based on the assumption that returns are distributed
normally. Historical data is then used to estimate parameters as the mean, variance and correlation. Then,
using the parameters to map the risk, the distribution of profits and losses are found for a specific time-
horizon. The parametric approach is flexible, easy to understand and widely accepted (Wiener 1997).
However, it relies heavily on the assumption of a normal returns distribution. This assumption can be
wrong in case when the distribution is ”fat-tailed”: the frequency of exceptions occurring is higher than
when the distribution is assumed to be normal (Hull 2000).
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Monte Carlo simulation does not make this assumption. The approach first identifies the set of important
market factors. Then, a joint distribution is build from these factors. This distribution is either formed of
historical data or data based on specific economic scenarios. The next step is to run simulations, with a
large amount of scenarios. Finally, at the end of the period, for each scenario, the profits and losses are
measured. If the VaR is to be estimated at a 95% confidence level for example, the results will be ordered
from worst losses to best profits and the VaR estimate is then set equal to the 5% quantile of worst losses.
Although this approach does not make any assumption regarding the underlying distribution, it converges
very slowly, as the complete portfolio has to be revalued many times (Wiener 1997).

Historical simulation also doesn’t make any assumption of the returns distribution being normal. The
approach observes the historical data of the current portfolio over the last years. Then, the approach
begins by measuring daily percentage changes in all market variables. Finally, using a moving window,
profits and losses are estimated for everyh-day period. Similar to the Monte-Carlo approach, the 5%
quantile of the worst results is the VaR estimate after ordering the results (Wiener 1997). Although
the approach reflects the probability distribution of the market variables quite accurately, the number of
simulation trials is restricted to the number of days in the historical data. In addition, sensitivity analysis
is difficult (Hull 2000). Within this thesis, the concentration is focussed on the parametric models.

As already mentioned, each of the different approaches has its advantages and disadvantages. A compar-
ative approach is discussed by Ajassa, Ambrosetti and Giovanni (1998) in their paper. Bredin and Hyde
(2001) also discuss the two streams in VaR estimation: parametric and non-parametric VaR estimation,
where time-varying risk models as GARCH- and equally weighted moving average (EWMA) models3

are put next to historical simulation models. They conclude their paper in favor of the EWMA model.

Within the stream of parametric VaR estimation, the methods vary from simple methods that assume
the risk (variance) to be constant over the period and the more sophisticated methods that assume that
risk varies dynamically over time. Both Hull (2000) and Jorion (1996) give an extensive overview of
these models. Engel and Gyzicki (1999) analyzed the effect of these different time-varying risk models
on VaR-computation. The conclusion is interesting: firstly, there is considerable variation in variances
over time and secondly, simple models such as equally weighted moving averages and EWMA models
perform equally well as the more sophisticated GARCH models.

Going deeper into the matter of GARCH models, Drost and Nijman (1993) show that time plays an
important role when referring to risk. Not only the assumption that risk varies over time, but also the fact
that time has influence on scaling. Their conclusion is that scaling risk over time is not as straightforward
as it seems. This is discussed in more detail in section 2.5

Berkowitz and O’Brien (2001) analyzed the accuracy of VaR-models at commercial banks. The results
of this research underpins the relevancy of the research in this thesis: at most banks, the VaR-models
tended to be conservative, implying that the levels of capital coverage were higher than necessary. For
some banks, the models were even inaccurate. Haas (2001) discusses the various methods of backtesting
VaR models. Backtesting is discussed in chapter 6.

2.3 Estimating Value at Risk

According to definition 1, VaR measures the worst expected loss over a given time horizon under normal
market conditions at a given confidence level. This definition implicitly states that for the estimation of
VaR, it is essential to know the time horizonh, a confidence levelc and not to forget an initial portfolio,
with valueW . Before going into details about the horizonh, we first have to know how to define the

3These time-varying risk models are discussed in section 2.5
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worst expected loss at a single day. The ideas in this section are based on theories from Jorion (1996),
Hull (2000) and Brealey and Myers (2001).

Now, consider the value of this portfolio at the end of a particular day, say dayn, isWn. Then, the return
un is thecontinuously compounded returnof this portfolioduringdayn. This can be written as follows:

un = ln
(

Wn

Wn−1

)
(2.1)

Assume now that the initial value of the portfolio isW0. Then, the value of the portfolio at the end of
the day isW = W0e

un ≈ W0(1 + un). The expected value (mean) and volatility ofun areµ andσ.
Now assume that the worst possible return on this portfolio isu∗n. Then, the lowest portfolio value can
be defined as:W ∗ = W0(1 + u∗n). Then, VaR can be defined as the loss, relative to the meanµ:

VaR(µ) = E(W )−W ∗ = −W0(u∗n − µ) (2.2)

which equals

VaR(µ) = W0(1 + µ)−W0(1 + u∗n)

When VaR is defined as the absolute loss, the following equation holds, filling in 0 forµ:

VaR(0) = E(W )−W ∗ = −W0(u∗n) (2.3)

In both equations (2.2) and (2.3),u∗n corresponds to thecut-off return. It is the lowest acceptable rate
of return. What is acceptable, depends on the amount of confidence one likes to refer to when making
statements or more specific: the confidence level.

Using the notion of the confidence level, VaR can be derived from the probability distribution of the
future portfoliof(w). At the given confidence levelc, the lowest possible realization of portfolio value
W is W ∗, such that the probability of exceeding this value, is1− c. Therefore,c can be defined as:

c =
∫ ∞

W ∗
f(w)dw (2.4)

The other way round, the probability of a lower realization thanW ∗, P (w ≤ W ∗) is 1− c:

P (w ≤ W ∗) =
∫ W ∗

−∞
f(w)dw = 1− c (2.5)

Figure 2.1 shows the areasc and1− c. At the given confidence levelc, the lowest possible realization of
portfolio valueW , lies at the border of the two areas and is marked withW ∗.

This specification is valid for any distribution. However, VaR estimations can be simplified considerably
when the underlying distribution is assumed to be normal. When this is the case, the VaR figure can be
obtaineddirectly from the portfolio standard deviation, using a multiplicative factor which depends on
the confidence level and time-horizon. Theα, which corresponds to the confidence levelc in a probability
distribution, can be found as follows:
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Figure 2.1: The standard normal distribution and the confidence level c

− α =
u∗n − µ

σ
(2.6)

In figure 2.1,which demonstrates a 95% confidence level, we can see thatα lies at the point 1.65 below
0.

u∗n can be written as:

u∗n = −ασ + µ (2.7)

Assume thatσ andµ are expressed on a daily basis. Now let’s introduce the notion of the time horizon.
The time horizon to base VaR on is defined ash, in days. However, asσ is expressed on a daily basis,
we first have to scale thisσ from a 1-day interval to ah-days interval.

A h-days variance can be estimated by multiplying a 1-day variance withh:

σ2
h−days = σ2

1−dayh

Then, by taking square roots at both sides,

σh−days = σ1−day

√
h

By substituting (2.7) in (2.2), and replacing the 1-dayσ with ah-dayσ, the following general expression
defines the VaR, relative to the meanµ:

VaR(µ) = −W0(u∗n − µ) = W0ασ
√

h (2.8)
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It is custom in VaR calculations that the expected return of an asset is considered as zero. Although this is
not exactly true, it is a reasonable assumption, as this expected return is generally small, when compared
to the standard deviation of the return. Equation (2.8) also represents the absolute loss.

Example 2.3.1 Consider a one-stock portfolio based on ae10.000.000,- position in shares of Unilever.
The daily volatility is assumed here to be 4%. As the size of the position ise10.000.000,- ,the standard-
deviation of the portfolio ise400.000. The VaR of this positions needs to be calculated at a 99% confi-
dence level and a 10-day horizon, yielding the following setting:

• W0 =e10000000

• σ =e400000

• c = 99%, yieldingα = 2.33

• h = 10

The VaR corresponding to this setting can then be calculated as:e400000×2.33
√

10 = e2947242,78.

Now consider a two-stock portfolio consisting of ae1000000 position in Unilever shares, with a daily
volatility of 4% and ae600000 position in KLM with a daily volatility of 2%. The return on the two
shares is assumed to have a bivariate normal distribution with a correlation of 0.6. In this case, the
portfolio standard deviation needs to be calculated using the following equation:

σx+y =
√

σ2
x + σ2

y + 2ρσxσy (2.9)

Again, the VaR of this position needs to be calculated at a 99% confidence level given a 10-day horizon,
yielding the following setting:

• Wuni =e1000000

• WKLM =e600000

• σuni =e1000000× 0.04 =e40000

• σklm =e600000× 0.02 =e12000

• c = 99%, yielding α = 2.33

• h = 10

For a 10-day period,σuni =e126491,11 andσKLM =e37947.33.

Therefore,σuni+KLM =
√

12649.112 + 37947.332 + 2× 0.6× 12649.11× 37947.33 = 152.315

The 10-day VaR at a 99% confidence level for the given portfolio is then:e152315× 2.33 =e345895.03.

The strategy as showed in the example is a classical method for lowering risk through diversification
of the portfolio. Diversification however, is not within the scope of this thesis. For a more detailed
discussion regarding diversification, I refer to Brealey and Myers (2001) and Hull (2000).
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2.4 A linear model for a multiple asset portfolio

The example above showed the VaR calculations of a single-stock and two-stock portfolio. Using the
theory from Hull (2000), I want to generalize the ideas above. Consider a portfolio with valueW
consisting ofN assets with an amountmi invested in asseti (1 ≤ i ≤ N). As ri is defined as the
absolute return on asseti in one day, thenmi4ri is the change in the value of the investment in asseti
in one day.

4W =
N∑

i=1

mi4ri (2.10)

is defined as the change in the value of portfolioW in one day. Here is supposed that the changes in
the values of the asset prices have a multivariate normal distribution, and therefore4W is considered
as normally distributed. For VaR estimations, only the mean and standard deviation of4W needs to be
calculated, where the mean was already considered as zero in the previous section.

The standard deviation of4W , which will be denoted asσW is defined as:

σW =
N∑

i=1

N∑
j=1

ρijmimjσiσj (2.11)

which can also be written as:

σW =
N∑

i=1

m2
i σ

2
i + 2

N∑
i=1

∑
j<i

ρijmimjσiσj (2.12)

whereρij is the correlation between4ri and4rj andσi is the standard deviation of4ri. Next, σij

denoting the covariance between4ri and4rj and the variance of4ri if i = j, can replaceρijσiσj ,
resulting in:

σW =
N∑

i=1

m2
i σ

2
i + 2

N∑
i=1

∑
j<i

mimjσij (2.13)

This can be written in matrix notation as well:

σ2
w =

[
m1 m2 · · · mn

]


σ11 σ12 · · · σ1N

σ21 σ22 · · · σ2N
...

...
...

...
σN1 σN2 · · · σNN




m1

m2
...

mn


By definingΣ as thevariance-covariance matrix, the representation can be written more compactly as:

σ2
w = mTΣm (2.14)

When finally the portfolio standard deviation using the variance-covariance matrix is calculated, the VaR
number can be calculated by using equation (2.8).
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2.5 Modelling time-varying risk

As we have seen, VaR estimations are mostly based on a day-by-day basis, implying that we are mostly
interested in a 1, 5 or 10-day VaR. However, VaR estimations can be made on a quarterly or even yearly
basis. In the previous sections, I assumed the volatilities and correlations which filled the variance-
covariance matrix as given. For VaR estimations, we are mostly interested in current volatilities and
correlations, as we are assessing the portfolio value over a short time-frame. When estimating VaR, it is
important to recognize that portfolio risk is not constant over time, but is subject to a dynamic process.
For the modelling of this time-varying risk, there are several models available. In this section, three
models will be given attention to, through use of the theories derived from Hull (2000):

• A model which gives equal weight to all observations

• A model given weight to its observations using a GARCH process

• A model which exponentially weights the observations using a moving average.

2.5.1 Volatility estimation

Defineun as the continuously compounded return during dayn, estimated using equation (2.1), of the
value of a certain market variable (or portfolio)W , based on the processW = {W1,W2, · · · ,WT }. For
VaR estimation, risk assessment on a daily basis is preferred, in order to transform this into ah-day risk.
This return can be estimated using the value of this variableW at daysn andn−1, using equation (2.1).

Then, the square of the volatility on dayn, the variance rate, is estimated as follows:4

σ2
n =

∑M
i=1 u2

n−i

M
(2.15)

As can be seen, the variance rate is estimated using theM observations before dayn. Notice that again
is assumed that the expected return of an individual market variable is zero, due to the short time-frame
(a day). As can be seen, equation (2.15) givesequal weightto all observations. However, it can be said
that an observation is more likely to be drawn from the same distribution if the observation is made more
recent. A model giving weight to more recent observations is defined by:

σ2
n =

M∑
i=1

αiu
2
n−i (2.16)

given that

αi < αj if i > j and
∑M

i=1 αi = 1

Again, the variance rate is calculated using theM observations before dayn. In this case, there is
an amount of weightαi given to theith observation before dayn. The restriction assures that older
observations are given less weight and that the weights sum to unity.

4A careful reader can notice that this way of defining the variance is not in line with traditional variance estimation. For
instance, the expected returnū is assumed to be zero. This assumption has very little effect on estimates of the variance, as the
expected change of the price of a certain market variable is very small, when compared to the standard deviation of the changes.
In addition, a division byM rather than byM−1 is made. The estimate of the variance is now a maximum likelihood estimate.
Maximum likelihood methods are discussed later on.
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2.5.2 ARCH, GARCH(P,Q) and EWMA models

Another model based on the same idea as equation (2.16) extends the model by assuming there is some
long-run volatilityV . Likewise, this long-run volatility gets a weightγ assigned. Together, this forms
the following equation:

σ2
n =

M∑
i=1

αiu
2
n−i + γV (2.17)

given that

γ +
M∑
i=1

αi = 1

This model is commonly known as ARCH, which stands for autoregressive conditional heteroscedastic-
ity. 5 A model that extends this idea is the more general GARCH model, where the weights given to
older observations decay exponentially. Bollerslev proposed this model in 1986. In the GARCH model,
the estimate of the volatility for dayn is not only calculated fromun−1 but also fromσn−1. This results
in the following equation

σ2
n = αu2

n−1 + βσ2
n−1 + γV given thatα + β + γ = 1 (2.18)

From equation (2.18) it is not straightforward to see that the weights decay exponentially. However, as the
model is a recurrent model, one can substitute forσ2

n−1 in equation (2.18) and continue by substituting
σ2

n−2, etc. Finally, one can see after rewriting that the weight applied tou2
n−i equalsαβi−1, where the

weights decline exponentially at rateβ.

In some literature, the long term varianceV and its weightγ, are written asω. This specific GARCH
model is known as the GARCH(1,1) model, estimatingσ2

n from the most recent observation ofu2 and
the variance rate. Likewise, GARCH(p,q) models takep observations foru2 into consideration andq
observations for the variance rate in order to estimateσ2

n.

Based on the same GARCH model, but leaving the long-run volatilityV out of the picture, is the expo-
nentially weighted moving average (EWMA).

σ2
n = λσ2

n−1 + (1− λ)u2
n−1 with (0 ≤ λ ≤ 1) (2.19)

Here hasλ a value between 0 and 1. The EWMA model is a special form of the GARCH(1,1) model,
whereα = (1 − λ), β = λ andγ = 0. A weight λ is assigned to the most recent observation of the
variance rate,σ2

n−1, and a weight(1 − λ) to u2
n−1. Similarly to the GARCH(1,1) model, the weights

decay exponentially in time.

This EWMA model with (λ = 0, 94) is used by JP Morgan’s RiskMetrics, which is a sophisticated tool
for VaR estimation.

5A model exhibits heteroscedasticity when the error-terms do not all have the same variance (Newbold 1995).
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2.5.3 Maximum likelihood methods

The parameters of the models as described above, can be estimated using maximum likelihood methods.
Using this method, the values of the parameters are chosen in such a way, that the probability of the
sequence of observed returns is maximized. The probability forM normally distributed observed returns
with mean zero and a time-varying varianceσ2

n can be estimated using the following equation:

M∏
n=1

[
1√

2πσ2
n

exp

(
−u2

n

2σ2
n

)]
(2.20)

Maximizing equation (2.20) is equivalent to maximizing the logarithm of this equation. By maximizing
the logarithm of the equation, constant multiplicative factors -2π in this case - can be ignored. This
yields:

M∑
n=1

[
− ln(σ2

n)− u2
n

σ2
n

]
(2.21)

Iteratively, the maximum of these equation can be found, yielding the parameters which can be used
for input to the models described above. For a more detailed explanation on the working of maximum
likelihood methods, I refer to Hull (2000).

2.5.4 Scaling

In section 2.3, VaR estimation was based on a risk which was constant over time. The previous subsection
introduced several models that assumed that risk evolves dynamically over time. In the case of risk which
is assumed to be constant over time, scaling a 1-day volatility to ah-day volatility is appropriate with the√

h-rule. When this is not the case, scaling is not so straightforward.

Diebold, Hickman, Inoue and Schuermann (1997) confirm that the scaling of volatilities with the tra-
ditional

√
h-rule is inappropriate when volatilities are updated as occurring with GARCH and other

conditional models. This
√

h-rule is only valid when volatility is assumed to be constant over the time
period. A reason for this is that scaling rule relies on 1-day returns beingindependently identically dis-
tributed(i.i.d.). However, GARCH and other conditional models do not assume that all returns are from
the same distribution, i.e. not identically distributed. The current variance rate, which defines the distri-
bution, is updated using a daily updating scheme and is based on the most recent observation of the return
and the most recent estimated variance rate. For a more detailed and extensive discussion regarding the
appropriate conditions for scaling with

√
h, I refer to Drost and Nijman (1993).

Appropriate scaling is performed by altering the parametersα, β andω as found by maximizing equa-
tion (2.20). Drost and Nijman (1993) study the temporal aggregation of GARCH processes. Suppose we
begin with a sample path of a 1-day return series, which follows a standard GARCH process according
to equation (2.18). Then Drost and Nijman (1993) show that the corresponding sample path ofh-day
returns, follows a similar GARCH(1,1) process with:

σ2
(h)n

= ω(h) + β(h)σ
2
(h)n−1

+ α(h)u
2
(h)n−1

(2.22)
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where

ω(h) = hω
1− (β + α)h

1− (β + α)

α(h) = (β + α)h − β(h)

and|β(h)| < 0 is the solution of the quadratic equation,

β(h)

1 + β2
(h)

=
a(β + α)h − b

a(1 + (β + α)2h)− 2b

where

a = h(1− β)2 + 2h(h− 1)
(1− β − α)2(1− β2 − 2βα)

(κ− 1)(1− (β + α)2)

+4
(h− 1− h(β + α) + (β + α)h)(α− βα(β + α))

1− (β + α)2

b = (α− βα(β + α))
1− (β + α)2h

1− (β + α)2

κ is the kurtosis6 of un. As an EWMA model is some sort of a GARCH model, this form of scaling is
also appropriate for EWMA models.

2.6 Shortcomings

Huij (2001) discussed shortcomings of time-varying risk models in his thesis. He showed that one of the
shortcomings of these models is the impureness after a regime shift. This is the result of the fact that
these models give more weight to recent observations. Huij (2001) proposed hidden Markov models for
coping with this shortcoming.

When looking at the conventional time-varying volatility models for VaR estimation, as discussed in
section 2.5, one can see that these models look at the historical data and assess the time-series with
its complete resolution, regardless of the time-horizon chosen. The central question here is: ”Does the
completeresolution yield relevant information at all resolutions?” In other words: do all the high- and low
frequency componentshiddenin the complete signal matter foreveryhorizon? One might imagine for
instance, that risk managers estimating risk for a short horizon are interested in short-term behavior only,
whereas risk managers estimating risk for a long horizon are also interested in low frequent behavior.
More specifically: the appropriate resolution might entail the right amount of information for a specific
horizon. Therefore, a tool is needed which enables the analyst to decompose the signal into all of its
components, separating higher frequent behavior from lower frequent behavior, in order to analyze which
of these components entail relevant information. Here is where wavelets are introduced.

Wavelet analysis provides such a tool for decomposing a given signal into its different time-scales, in
order to give each horizon its own resolution. Chapter 3 will show how wavelets can be utilized to de-
compose a given time-series into several time-scales. How time-scale decomposition and multiresolution
analysis can be exploited in order to assess the amount of risk, can be read in chapter 4.

6The kurtosis measures the weight of the tails in a probability density function
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Chapter 3

Wavelet analysis

3.1 Introduction

Wavelet analysis is a relatively new tool in the field of applied mathematics. Daubechies (1992), Chui
(1992) and Graps (1995) provide the fundamentals of the wavelet theory. Wavelet analysis provides
the opportunity to make semi-parametric estimations of highly complex structures without knowing the
underlying functional form. Wavelet analysis had its impact on the area of signal processing, data com-
pression and image analysis. The impact on signal processing was reviewed by Donoho (1995). Walker
(2000) provides a primer on wavelets and their use in these applications of signal processing, image
analysis and data compression.

Wavelet analysis, in contrast to Fourier analysis, gives insight in local behavior, whereas Fourier analysis
gives insight in global behavior. The Fourier transform processes time-series by transforming the signal
from the time domain into the frequency domain. The new processed signal provides insight in the
amount of frequencies and the amount of energy in each frequency existing in this time-series. However,
local effects are only visible in the time domain and not in the frequency domain. Wavelet analysis makes
use of a fully scalable window, which is shifted along the signal in order to capture local behavior in the
time domain. This process is repeated several times with different window-sizes, with a collection of
time-frequency representations of the signal as a result. The transformation of the signal into the several
resulting wavelet coefficients, each providing information at different scales, is more often referred to
as time-scale decomposition. However, as there is no direct connection between the Fourier frequency
parameter and the Wavelet parameter, the term scale is preserved for wavelet analysis, whereas the term
frequency is preserved for Fourier analysis.

The use of wavelet analysis enables the analysis of non-stationary data, localization in time and time-
scale decomposition, which proved to be useful in the analysis of economic and financial data (Ramsey
1999). The application of wavelet analysis in the field of finance and economics is discussed in more
detail in section 3.5.

The remainder of this chapter is as follows. Section 3.2 gives an introduction in wavelet analysis with
the basics of the discrete wavelet transform. The focus lies on the decomposition. In section 3.3, wavelet
reconstruction is discussed in detail, where multiresolution analysis, the heart of wavelet analysis, stands
central. Section 3.4 discusses in detail the different types of wavelets used in this research and their
properties. The chapter concludes with section 3.5, a literature study regarding wavelets in finance,
economics and soft-computing.
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Figure 3.1: Wavelet

Figure 3.2: Level 1 decomposition

3.2 The wavelet transform - decomposition

Section 2.6 explained the necessity for a tool which can separate high frequent behavior from low fre-
quent behavior. Wavelet analysis, as a tool, is able to perform such a process of separation, which is
referred to as theDiscrete Wavelet Transformor DWT. This section is divided into two subsections.
The first subsection gives a general overview of the technique. The second subsection gives a formal
mathematical framework.

3.2.1 The Discrete Wavelet Transform - general idea

For many signals, the low-frequent behavior - or low-frequency components - are the part of interest,
as it gives the signal its identity. In order to get a good understanding for high-frequency components
and low-frequency components, consider the human voice for example. The low-frequency components
enables someone to understand what’s being said. The high-frequency components however, make the
nuances in the voice. Removing these high-frequency components makes the voice to sound different,
but still enables one to understand what’s being said.

When performing the discrete wavelet transform, two types of filters are applied to the original signal.
One type captures the trend of the signal and the other type captures deviations from this trend. The
first type is referred to as a scaling filter orscaling signaland the second type is referred to as a wavelet
filter or wavelet. Figure 3.1 shows an example of a wavelet. A scaling signal looks similar, but has
different features, in order to capture different behavior. Figure 3.2 shows a schematic illustration of the
procedure.

Readers with an electrical and electronics engineering background may relate this procedure to applying
low-pass and high-pass filters. However, when looking more carefully at the figure, we can see that
the discrete wavelet transform yields two series of approximately 500coefficients, while we started with
1000 samples in the original signal, whereas the application of low- and high-pass filters yields two times
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Figure 3.3: Level 1 decomposition of a noisy cosine - trend and detail subsignals

1000 samples. The series capturing the trend of the signal is indicated ass1 and the series capturing all
deviations from the trend is indicated asd1. The ”1” indicates a 1-level DWT. The fact that two series
of approximately 500 coefficients are yielded, is due to a process where each coefficient is obtained by
taking one value for every two values in the original signal, by averaging successive values. This process
is calleddownsampling. The way the averaging is performed depends on the scaling signal and wavelet.

The procedure will be illustrated using a pure cosine with high-frequent added noise. This cosine func-
tion contains 1000 samples. Figure 3.3 shows a schematic illustration of the procedure.

When inspecting the figure, we can see thats1 captures the trend of the signal with much less noise than
the original signal andd1 only captures the high-frequent noise.

Now, let’s have a closer look at the ”averaging”. The averaging is already introduced in the introduction,
which stated that local behavior is captured by shifting a window along the signal. In fact, applying
a scaling signal or wavelet is equal to shifting a window along the signal. Capturing local behavior is
possible as the scaling signals and wavelets are locally defined in time. Each window is obtained by
shifting or translatingthe scaling signal or wavelet to the right. In practice this results into multiplying
the original signal with a translated version of the original version of the scaling signal or wavelet. How
this can be defined mathematically, is discussed in the next subsection. The process is shown in figure
3.4.

This complete process is only a first step. In order to take steps of further refinement, the complete
process is iterated. The iteration takes place each time on the previously obtained series capturing the
trend, such that at each level a new separation is made between trend and deviation from the trend.
Schematically, the process as described above is illustrated in figure 3.5. This is called the wavelet
decomposition tree.

Going deeper into the tree entails capturing lower frequent behavior. At the top level, the original signal
can be found, including both low- and high-frequent behavior. Going a level deeper, the original signal
is separated into a series capturing the trend,s1, and a series capturing deviations from the trend,d1, and
by doing so the 1-level decomposition is performed. Repeating the same step, but on the series capturing
the 1-level trend,s1, trend is again separated from detail, yieldings2 andd2 or a 2-level decomposition.
The number of levels in a wavelet decomposition depends on the nature of the signal.
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Figure 3.4: Left: shifting a window along the signal. Right: shifting a wavelet function in time.

Figure 3.5: Wavelet decomposition tree
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Figure 3.6: Scaling

The next subsection shows that calculatings1 andd1 or s2 andd2 for example, can bedirectlyobtained
by multiplying the original signal by a stretched orscaledversion of the original wavelet or scaling
signal. The more stretched the wavelet is, the more lower-frequent behavior it captures. The amount of
stretching the wavelet or scaling signal depends on the level of decomposition. Before going into the
mathematical matter, it is important to mention the notion of scaling here. The mathematical term for
scaling isdilation. The notion of scaling is illustrated in figure 3.6. The complete collection of translated
and dilated wavelets forms awavelet family, where each member is derived from the original wavelet or
mother wavelet. In the same way, there is also a family of scaling signals.

By using translated and dilated versions of the mother wavelet or scaling signal, a window variable in
both time and scale can be shifted along the signal. The translating or shifting ensures that all elements
in the signal are captured. Dilating ensures that all behavior in the signal is captured. The more dilated
or stretched the wavelet or scaling signal is, the lower frequent behavior it captures. All these ideas can
be fit into a mathematical framework. This is discussed in the next subsection.

3.2.2 The Discrete Wavelet Transform - mathematical framework

So far, a general idea of the discrete wavelet transform is given. Although the general idea might seem
straightforward, the technique is based on a mathematical framework. This is discussed in this subsec-
tion. The theories are derived from Walker (2000), Gençay, Selçuk and Whitcher (2002), Chew (2001),
Misiti, Misiti, Oppenheim and Poggi (2002) and Norsworty, Li and Gorener (2000).

Wavelets are functions that satisfy certain properties or requirements. The previous subsection mentioned
the idea of the wavelet family. The family ofscaling signalsis defined as:

Φj,k(t) =
1√
2j

Φ
(

t− 2j(k − 1)
2j

)
given that

{j = 1, 2...J, k = 1, 2...K|J ≤2 log N,K =
N

2j
} (3.1)

The wavelet family is defined as:

Ψj,k(t) =
1√
2j

Ψ
(

t− 2j(k − 1)
2j

)
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given that

{j = 1, 2...J, k = 1, 2...K|J ≤2 log N,K =
N

2j
} (3.2)

N equals the number of elements in the original signal.

Although most wavelet families have both scaling signals and wavelets, not all do. Daubechies (1992)
gives an extensive discussion about these families.

Each elementΦj,k from the set as described in (3.1) - which is a scaling signal - is obtained by taking
dilations and translations from the scaling signalΦ(t).

Each elementΨj,k from the set as described in (3.2) - which is a wavelet - is obtained by taking dilations
and translations from themother waveletΨ(t).

The term2j(k − 1) in equations (3.1) and (3.2) results into a translation of2j(k − 1) to the right of
the support of the wavelet or scaling signal, whereas the term2j in the denominator of equations (3.1)
and (3.2) results into a dilation of the support of the wavelet or scaling signal. The(k − 1) implies
that the first wavelet or scaling signal belonging to levelj does not translate: it is already in the right
position. The other wavelets and scaling signals do translate, with steps based on powers of two. The
transform is called discrete, as the scales and positions are dyadic: they are based on powers of two. The
multiplication by 1√

2
is necessary to ensure normality. The term normality is explained later on. For a

detailed explanation regarding the particular choice of1√
2
, I refer to Walker (2000).

Definition 2 Consider a signalfm with time-indicesm. Then, the support of this signal is the set of
time-indicesm wherefm 6= 0

The discrete wavelet transform is not the only wavelet transform available. The Continuous Wavelet
Transform (CWT) also exists. The difference between these transforms is that the continuous transform
does not restrict itself to the use of powers of two, but uses any value for dilating and translating. A result
of this is that the continuous transform is a redundant approach, in the sense that using powers of two
already enables an exact reconstruction of the signal. Reconstruction is discussed in section 3.3. For the
purpose of this thesis, the focus lies on the discrete wavelet transform only, which is basically the most
often used approach.

Moreover, scaling signalΦj,k denotes thekth scaling signal from the collection of scaling signalsbe-
longing to levelj, for k = 1, 2...N

2j . Likewise, waveletΨj,k denotes thekth wavelet from the collection
of waveletsbelongingto levelj, for k = 1, 2...N

2j .

Scaling signals are defined to conform to the restriction:

∫
Φ(t)dt = 1, (3.3)

whereas mother wavelets are defined to conform to the restriction:

∫
Ψ(t)dt = 0 (3.4)

The name wavelet comes from this restriction, requiring the function to integrate to zero, waving above
and below the x-axis. The families are orthogonal, as the scaling signals and mother wavelets areorthog-
onal. The collection of translated and dilated scaling signals obtained from the functionΦ(t) and the
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collection of translated and dilated wavelets obtained from the functionΨ(t), together form an orthogo-
nal basis inL2(<), which is the space of all square integrable functions. This implies that any element in
L2(<) may be represented as a linear combination of these basis functions. The orthogonality property
ensures that

∫
Φj,k(t)Φj,k′(t) = 0 for k 6= k′ (3.5)

holds for the family of scaling signals and

∫
Ψj,k(t)Ψj,k′(t) = 0 for k 6= k′ (3.6)

holds for the wavelet family.

It also holdsbetweenfamilies:

∀k, k′ :
∫

Φj,k(t)Ψj,k′(t) = 0 (3.7)

For example, the following equations should hold in order to preserve the orthogonality property:

∫
Φ1,1(t)Φ1,2(t) = 0 and

∫
Φ3,2(t)Φ3,4(t) = 0

but also

∫
Ψ1,1(t)Ψ1,2(t) = 0 and

∫
Ψ3,2(t)Ψ3,4(t) = 0.

and finally

∫
Φ1,1(t)Ψ1,2(t) = 0 and

∫
Ψ2,2(t)Ψ2,2(t) = 0.

In addition, the term 1√
2j

next to equations (3.3) and (3.4) makes the basis not only orthogonal inL2(<)
, but orthonormal inL2(<) as well. In order to ensure the property of orthonormality, the following
equations should hold:

∫
Φj,k(t)Φj,k(t) = 1 (3.8)

and

∫
Ψj,k(t)Ψj,k(t) = 1 (3.9)

An orthogonal basis satisfying normality is said to be orthonormal.

37



In the previous subsection was mentioned that the scalingcoefficientssj,k capture the trend of the original
signalf(t). Each scaling coefficient is defined as:

sj,k =
∫

Φj,k(t)f(t)dt

given that

{j = 1, 2...J, k = 1, 2...K|J ≤2 log N,K =
N

2j
} (3.10)

The waveletcoefficientsdj,k capture the deviations from the trend. Each wavelet coefficient is defined
as:

dj,k =
∫

Ψj,k(t)f(t)dt

given that

{j = 1, 2...J, k = 1, 2...K|J ≤2 log N,K =
N

2j
} (3.11)

Scaling coefficientsj,k denotes thekth scaling coefficient from the vector of scaling coefficientssj be-
longingto levelj, for k = 1, 2...N

2j . Likewise, wavelet coefficientdj,k denotes thekth wavelet coefficient
from the vector of wavelet coefficientsdj belongingto levelj, for k = 1, 2...N

2j . Therefore, each levelj
bringsK = N

2j elements of both scaling- and wavelet coefficients.

The vector of scaling coefficients belonging to levelj = 1 or first series of scaling coefficientss1, is in
practice a vector where each element is obtained by applying the scalar product on the original signal
and the corresponding level 1 scaling signal. Likewise the second series of scaling coefficientss2 is in
practice a vector where each element is obtained by applying the scalar product on the original signal
and the corresponding level 2 scaling signal. More general, thejth series of scaling coefficientssj is
a vector where each element is obtained by applying the scalar product on the original signal and the
corresponding levelj scaling signal. Assume here that both the original function and corresponding
scaling signals are row-vectors:

∀t : sj = (f(t)ΦT
j,1(t), f(t)ΦT

j,2(t)...f(t)ΦT
j, N

2j
(t)) (3.12)

This vector of scaling coefficients captures the trend at levelj.

The vector of wavelet coefficients belonging to levelj = 1 or the first series of wavelet coefficients
d1 is in practice a vector where each element is obtained by applying the scalar product on the original
signal and the corresponding level 1 wavelet. Likewise the second series of wavelet coefficientsd2 is in
practice a vector where each element is obtained by applying the scalar product on the original signal and
the corresponding level 2 wavelet. More general, thejth series of wavelet coefficientsdj is a vector where
each element is obtained by applying the scalar product on the original signal and the corresponding level
j wavelet. Assume here that both the original function and corresponding wavelets are row-vectors:

∀t : dj = (f(t)ΨT
j,1(t), f(t)ΨT

j,2(t)...f(t)ΨT
j, N

2j
(t)) (3.13)

This vector of wavelet coefficients captures the detail at levelj.
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So far, we discussed the discrete wavelet transform, which entails in short that the original signalf(t)
is decomposed into two series of coefficients: a series containing scaling coefficients, which captures
the trend and a series containing wavelet coefficients, capturing all deviations from the trend. These
vectors of scaling- and wavelet coefficients, are half the length of the original signal. Then, the complete
procedure is repeated on the series capturing the trend. Generally spoken, as there are2J elements in the
original signal, this signal can be analyzed at most atJ levels. More precisely,dj is a lengthN

2j vector
associated with changes on ascaleof lengthλj = 2j−1 andsj is a lengthN

2j vector associated with
changes on ascaleof length2j = 2λj . The following example illustrates the discrete wavelet transform,
by using a signal of 8 samples. Therefore, a (2 log 8 =) 3-level decomposition can be performed.

Example 3.2.1 Consider the signal:

f(t) =



5 | t ∈ [0, 1〉
7 | t ∈ [1, 2〉

10 | t ∈ [2, 3〉
11 | t ∈ [3, 4〉
8 | t ∈ [4, 5〉
5 | t ∈ [5, 6〉
4 | t ∈ [6, 7〉
4 | t ∈ [7, 8〉


This signal is denoted asf(t) = (5, 7, 10, 11, 8, 5, 4, 4).

For illustration purposes, we use the simplest wavelets, the Haar wavelets. The Haar wavelet is a step
function, taking values 1 and -1 on[0, 1

2) and [12 , 1) and 0 elsewhere. The Haar scaling signal takes the
value 1 on[0, 1) and 0 elsewhere. The Haar wavelet is discussed in more detail in section 3.4, in addition
to the other orthogonal wavelets. The 1-level Haar scaling signals for the trend signal are defined as:

Φ1,1 =
(

1√
2
, 1√

2
, 0, 0, · · · , 0

)
Φ1,2 =

(
0, 0, 1√

2
, 1√

2
, 0, 0, · · · , 0

)
...

Φ1, N
21

=
(
0, 0, · · · , 0, 1√

2
, 1√

2

)
The level-1 Haar wavelets for the detail signal are defined as:

Ψ1,1 =
(

1√
2
, −1√

2
, 0, 0, · · · , 0

)
Ψ1,2 =

(
0, 0, 1√

2
, −1√

2
, 0, 0, · · · , 0

)
...

Ψ1, N
21

=
(
0, 0, · · · , 0, 1√

2
, −1√

2

)
Recall that these wavelets are constructed by taking dilations and translation from the original Haar
wavelet, according to equations (3.1) and (3.2). Figure 3.7 shows plots of the scalings signals (left)
and wavelets (right) belonging to level 1. Recall as well the special properties of orthogonality and
orthonormality. For example:

Φ1,1ΦT
1,2 =

(
1√
2
, 1√

2
, 0, 0, · · · , 0

)(
0, 0, 1√

2
, 1√

2
, 0, 0, · · · , 0

)T
= 0
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Figure 3.7: Left: scaling signals belonging to level 1. Right: wavelets belonging to level 1.

which verifies orthogonality and

Φ1,1ΦT
1,1 =

(
1√
2
, 1√

2
, 0, 0, · · · , 0

)(
1√
2
, 1√

2
, 0, 0, · · · , 0

)T
= 1

which verifies normality. An orthogonal basis satisfying normality is said to be orthonormal.

Next, when applying equation (3.12) tof(t), the vector of scaling coefficients capturing the trend is:

s1 =
(

6
√

2,
21
2

√
2,

13
2

√
2, 4

√
2
)

Likewise, after applying (3.13) tof(t), the vector of wavelet coefficients capturing the detail is:

d1 =
(
−
√

2,−1
2

√
2,

3
2

√
2, 0
)

Notice here that the length of these signals is only half the length of the original signal. For the next
two vectors of coefficients,s2 andd2, the level-2 Haar scaling signals and wavelets have to be defined.
As already mentioned, the level-2 Haar scaling signals are constructed by translating and dilating the
original Haar scaling signals:

Φ2,1 =
(

1
2 , 1

2 , 1
2 , 1

2 , 0, 0, · · · , 0
)

Φ2,2 =
(
0, 0, 0, 0, 1

2 , 1
2 , 1

2 , 1
2 , 0, 0, · · · , 0

)
...
Φ2, N

22
=
(
0, 0, · · · , 0, 1

2 , 1
2 , 1

2 , 1
2

)
Likewise, the level-2 Haar wavelets for the detail signal are defined as:

Ψ2,1 =
(

1
2 , 1

2 , −1
2 , −1

2 , 0, 0, · · · , 0
)

Ψ2,2 =
(
0, 0, 0, 0, 1

2 , 1
2 , −1

2 , −1
2 , 0, 0, · · · , 0

)
...
Ψ2, N

22
=
(
0, 0, · · · , 0, 1

2 , 1
2 , −1

2 , −1
2

)
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Figure 3.8: Left: scaling signals belonging to level 2. Right: wavelets belonging to level 2.

Figure 3.8 shows plots of the scaling signals and wavelets belonging to level 2.

When applying equation (3.12) tof(t), the vector of scaling coefficients capturing the level-2 trend is:

s2 =
(

33
2

,
21
2

)

When applying equation (3.13) tof(t), the vector of wavelet coefficients capturing the level-2 detail is:

d2 =
(
−9
2

,
5
2

)

Again, these signals are a quarter of the length of the original signal, or half the length ofs1 andd1. In
a similar fashion,s3 andd3 can be found:

s3 =
(

27√
2

)

d3 =
(

6√
2

)

Example 3.2.1 shows the way of obtaining these vectors of coefficients by applying equation (3.1) and
(3.2), which is the formal mathematical procedure. However, this is the case with the Haar wavelet.
When using other wavelets, for example a Daubechies wavelet, one has to redefine the scaling signals
and wavelets for each level.

When looking carefully, one can see what really happens; the first vector of scaling coefficients capturing
the trend,s1, can be obtained by systematically taking the average of two successive elements of the
original signal, and multiplying these by

√
2. In a nearly similar fashion,d1 can be obtained by taking

half the difference of two successive elements and multiplying the result by
√

2. The second pair of
scaling- and wavelet coefficients,s2 and d2 are obtained by repeating the same process, but ons1.
Finally, s3 andd3 are obtained by repeating the same process ons2. This explains why there exists only
half the amount of elements in the signal of the next higher level. When using different wavelets, the
idea of averaging remains the same. In most cases, the only difference is that more values are taken for
calculating the average. The complete procedure remains the same as well.

To see this, consider tables 3.1, 3.2 and 3.3. We can see here thats1 is obtained by systematically taking
the average of two successive elements of the original signal and multiplying this by

√
2. Table 3.2 shows

41



f 5 7 10 11 8 5 4 4
s1 6

√
2 21

2

√
2 13

2

√
2 4

√
2

d1 −
√

2 −1
2

√
2 3

2

√
2 0

Table 3.1: Decomposition process - step 1

s1 6
√

2 21
2

√
2 13

2

√
2 4

√
2

s2 33
2

21
2

d2 −9
2

5
2

Table 3.2: Decomposition process - step 2

that the same idea is repeated on the previously obtaineds1 to gets2. Table 3.3 shows the repetition
on s2 to gets3. d2 however, is obtained by systematically taking half the difference of two successive
elements ofs1 and multiplying this by

√
2. The same holds ford3, which is obtained by systematically

taking half the difference of two successive elements froms2 and multiplying this by
√

2. Notice here
that taking half the difference of a pair and multiplying this by

√
2, is the same as taking a difference of

a pair and dividing this by
√

2.

3.3 The wavelet transform - reconstruction

Section 3.2 showed how the discrete wavelet transform can be performed in order to analyze, or decom-
pose, signals. This process is called decomposition or analysis. The other half of the story is how those
components can be assembled back into the original signal without loss of information. This process is
called reconstruction, or synthesis. The mathematical manipulation that effects synthesis is called the
inverse discrete wavelet transform (IDWT). This discussion thus shows how discrete signals are synthe-
sized by beginning with a very low resolution signal and successively adding on details to create higher
resolution versions, ending with a complete synthesis of the signal at the finest resolution.

With respect to the 1-level Haar wavelet transform, as performed previously in example 3.2.1, the original
signalf(t) can be mapped back via the following equation:

f(t) =

(
s1,1 + d1,1√

2
,
s1,1 − d1,1√

2
, · · · ,

s1, N
21

+ d1, N
21√

2
,
s1, N

21
− d1, N

21√
2

)
(3.14)

In this equation,s1,1 denotes the first element ofs1 andd1,1 denotes the first element ofd1.

Equation (3.14) can also be written as:

s2 33
2

21
2

s3 27√
2

d3 6√
2

Table 3.3: Decomposition process - step 3
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f(t) = A1 + D1, (3.15)

where

A1 =
(

s1,1√
2

,
s1,1√

2
,
s1,2√

2
,
s1,2√

2
· · · ,

s1, N
21√
2

,
s1, N

21√
2

)
and

D1 =

(
d1,1√

2
,
−d1,1√

2
,
d1,2√

2
,
−d1,2√

2
· · · ,

d1, N
2√
2

,
−d1, N

21√
2

)

A1 is in the literature often referred to as the level-1 approximation of the original signal, whereasD1 is
often referred to as the level-1 detail of the original signal.

When recalling equations (3.12) and (3.13), equation (3.15) is expressible as:

A1 =
(
s1,1Φ1,1 + s1,1Φ1,2, · · · ,+s1, N

21
Φ1, N

21

)
(3.16)

D1 =
(
d1,1Ψ1,1 + d1,1Ψ1,2, · · · ,+d1, N

21
Ψ1, N

21

)
(3.17)

The signalf(t) is expressible as equation (3.15), when this signal is analyzed at level 1. If the signal is
analyzed at level 2,f(t) = A2 + D2 + D1 andf(t) = A3 + D3 + D2 + D1 if the signal is analyzed
at level 3. More general, if the numberN of signal values is divisibleJ times by 2, then aJ-level
multiresolution-analysis:

f(t) = AJ + DJ + DJ−1+, · · · ,+D2 + D1 (3.18)

can be performed onf(t). Multiresolution analysis (MRA) is the heart of wavelet analysis. Here, the
signal is built up from a low resolution signalAJ and detail signalsDJ+, · · · ,+D2 + D1 are added to
form the original signal.

Finally, the discrete wavelet approximation, generalizing all of the ideas as described above, can be
expressed as:

f(t) ≈
K∑

k=1

sJ,kΦJ,k(t)︸ ︷︷ ︸
AJ

+
K∑

k=1

dJ,kΨJ,k(t)︸ ︷︷ ︸
DJ

+
K∑

k=1

dJ−1,kΨJ−1,k(t)︸ ︷︷ ︸
DJ−1

+ · · ·+
K∑

k=1

d1,kΨ1,k(t)︸ ︷︷ ︸
D1

, (3.19)

given that

{J ≤2 log N,K =
N

2j
}

which is most common in the wavelet literature.

Example 3.3.1 Consider again the signalf(t) = (5, 7, 10, 11, 8, 5, 4, 4). Through use of equations
(3.18) and (3.19),A3 can be calculated as:

A3 =
27√

2
Φ3,1 =

27√
2

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
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A3 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75
D3 1.5 1.5 1.5 1.5 -1.5 -1.5 -1.5 -1.5
D2 -2.25 -2.25 2.25 2.25 1.25 1.25 -1.25 -1.25
D1 -1 1 -0.5 0.5 1.5 -1.5 0 0
f(t) 5 7 10 11 8 5 4 4

Table 3.4: results of summation of individual components

A3 =
(

6
3
4
, 6

3
4
, 6

3
4
, 6

3
4
, 6

3
4
, 6

3
4
, 6

3
4
, 6

3
4

)
Similarly,D3 can be calculated as:

D3 =
6√
2
Ψ3,1 =

6√
2

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,
−1√

8
,
−1√

8
,
−1√

8
,
−1√

8

)

D3 =
(

1
1
2
, 1

1
2
, 1

1
2
, 1

1
2
,−1

1
2
,−1

1
2
,−1

1
2
,−1

1
2

)

Likewise,D2 andD1 can be calculated, yielding:

D2 =
(
−2

1
4
,−2

1
4
, 2

1
4
, 2

1
4
, 1

1
4
, 1

1
4
,−1

1
4
,−1

1
4

)

D1 =
(
−1, 1,

−1
2

,
1
2
, 1

1
2
,−1

1
2
, 0, 0

)

Here can be noticed that each of the components has the same length as the original signal. Finally,
by adding up all of the individual components - Excel proved to be useful - one can see in table 3.4,
that the sum equals the original signal f(t). This final example verifies all of the ideas and confirms that
dyadic steps which are taken in the DWT, as mentioned in the previous section, are enough for exact
reconstruction of the signal. This indicates again that the CWT is a redundant transform.

3.4 Wavelet families

The variety of wavelets is not restricted by the Haar wavelet. There are many more wavelets, each
characterized by its amount of symmetry, vanishing moments, support width and regularity. For the
purpose of this research, there will be only focused on the family of orthogonal, compactly supported
wavelets. For an extensive overview of the wavelet families, the mathematical background and their
properties, I refer to Daubechies (1992).
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3.4.1 Exploiting wavelet characteristics

Each wavelet has its own characteristics which makes the wavelet more useful in some situations. Four
important characteristics can be distinguished:

• Support width

• vanishing moments

• Symmetry

• Regularity

Essential here, is to know when to use which wavelet. Therefore, each of these characteristics will be
discussed in more detail in the following sections.

Support width

All of the wavelets as described above, are compactly supported wavelets, implying that the wavelet has
a ”rapid fall-off”. This means that the basis functions are non-zero only on a finite interval. The compact
support of the wavelet basis functions allows the wavelet transform to efficiently represent functions
or signals which have localized features. Compact support width allows for reduced computational
complexity, better time-resolution but poorer frequency resolution (Misiti et al. 2002).

Vanishing moments

Themth moment of a wavelet is defined as:

∫
tmΨ(t)dt (3.20)

If the firstM moments of a wavelet are zero, then all polynomial type signals of the form

x(t) =
M∑

m=0

cmtm

have (near) zero wavelet coefficients (Misiti et al. 2002). If we use a wavelet with enough number of
vanishing moments,M , to analyze a polynomial with a degree less thanM , then all detail coefficients
will be zero which allows for an excellent compression ratio. The compression ratio is therefore useful
in another domain of wavelet analysis, called compression.1 Compression can be used for compressing
the information captured in sounds and images, in order to decrease the amount of space they use when
stored on a hard drive or other medium. Compression through wavelet analysis however, lies not in
the scope of this thesis and is therefore not further discussed. For a discussion regarding compression
through wavelet analysis however, I refer to Walker (2000). Although most functions are not polynomial,
each function can locally be expressed as a polynomial when expanded as a Taylor-series.

1Compression can be done by performing a wavelet transform and removing all wavelet coefficients below a certain thresh-
old. When reconstructing the signal, no significant loss is found.
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Figure 3.9: The Haar wavelet

Symmetry

Symmetry implies that a wavelet or scaling signal is symmetrically formed. Symlets for example, are the
most symmetrical wavelets. Symmetry can be useful in the area of image processing. Image processing,
which is two dimensional wavelet analysis, is not within the scope of this thesis and is therefore not
discussed. For a discussion regarding image processing through wavelet analysis however, I refer to
Walker (2000).

Regularity

Regularity or smoothness can be seen as the number of times a function can be differentiated at any given
point, which is closely related to the number of vanishing moments a wavelet has. The more vanishing
moments a wavelet has, the smoother the wavelet is. Smoothness provides;

• numerical stability

• better reconstruction properties

• necessary for certain applications, such as the solution of diff. equations

3.4.2 Haar wavelets

The Haar wavelet is the oldest and simplest wavelet. The Haar wavelet resembles a step function, taking
the value 1 on[0, 1

2) and the value -1[12 , 1).

The Haar wavelet has one vanishing moment and a support width of one. As illustrated before, the Haar
transform is performed by computing running averages and differences with scaling signals and wavelets.
Figure 3.9 displays the Haar wavelet.

3.4.3 Daubechies wavelets

These wavelets are proposed by Ingrid Daubechies, a familiar name in wavelet research. The daubechies
transform are defined in the same way as the Haar transform, by computing running averages and differ-
ences. However, these averages and differences are computed with different scaling signals and wavelets,
and, as the support of these wavelets is larger, these averages and differences are computed by using
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Figure 3.10: Daubechies wavelets

Figure 3.11: Coiflets

more values of the signal, providing a tremendous improvement in the capabilities of these transforms.
They provide a set of tools including compression and noise removal for audio signals and for images
(Walker 2000). The Daubechies family is a family with compactly supported wavelets, with the highest
number of vanishing moments given this support width. The daubechies wavelets are indicated by their
name (i.e. db or Daub) and order. The order indicates the support width. The db1 wavelet is similar to
the Haar wavelet. The dbN wavelet has a support width of2N − 1 andN vanishing moments. Some
authors use2N instead ofN . Daubechies wavelets are not symmetric. Figure 3.10 displays a series of
Daubechies wavelets.

3.4.4 Coiflets

This family of compactly supported wavelets are designed for the purpose of maintaining a close match
between the trend values and the original signal values. Coiflets are constructed by Daubechies as well,
following suggestions of Coifman (Misiti et al. 2002). Coiflets have a support width of6N − 1 and have
the highest number of vanishing moments for both the scaling signal(2N − 1) and the wavelet(2N) .
Some authors use2N instead ofN These wavelets are more symmetric than daubechies wavelets. Figure
3.11 displays a series of Coiflets.

3.4.5 Symlets

Symlets are, as the name indicates, nearly symmetrical wavelets, proposed by Daubechies as a modifica-
tion on the Daubechies wavelets. These compactly supported wavelets have N vanishing moments and a
support width of2N − 1. Figure 3.12 displays a series of Symlets

3.5 Wavelets in finance, economics and soft-computing

Ramsey (1999) gives an overview of the contribution of wavelets to the analysis of economic and finan-
cial data. The ability to represent highly complex structures without knowing the underlying functional
form proved to be a great benefit for the analysis of these time-series. In addition, wavelets facilitate the
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Figure 3.12: Symlets

precise location of discontinuities and the isolation of shocks. Furthermore, the process of smoothing
found in the time-scale decomposition facilitates the reduction of noise in the original signal, by first
decomposing the signal into the wavelet components, then eliminating all values with a magnitude be-
low a certain threshold and finally reconstructing the original signal with the inverse wavelet transform
(Walker 2000). Stevenson (2000), for example, used wavelet analysis for the filtering of spot electricity
prices in the deregulated Australian electricity market. By examining both the demand and price series
at different time locations and levels of resolution, Stevenson was able to reveal what was signal and
what was noise. Von Sachs and McGibbon researched the contribution of wavelets to non-stationarity
and complex functions. They derived the bias and variance for wavelet coefficient estimators under the
assumption of local stationarity.

Ramsey and Lampart (1998) used wavelet analysis for time-scale decomposition. They researched both
the relationships between consumption and income and money and GDP. The time-scale decomposition
yielded a new transformed signal built up from the several wavelet coefficients representing the several
scales. At each scale, a regression was made between the two variables. This research yielded three
conclusions: First, the relationship between economic variables vary across different scales. Second, the
decomposition resolved anomalies from the literature. Third, the research made clear that the slope re-
lating consumption and income declines with scale. In this context, the role of real interest was strong in
the consumption-income relation. Chew (2001) researched the relationship between money and income,
using the same technique of wavelet-based time-scale decomposition as Ramsey and Lampart (1998)
did. This research yielded a greater insight in the money versus income nexus in Germany. Arino (1996)
used wavelet-based time-scale decomposition for forecasting applications. The approach used was to
apply forecasting methods on each of the resulted coefficients from the time-scale decomposition. After
applying forecast methods on each of these coefficients, the final forecast of the complete series was
obtained by adding up the individual forecasts.

Aussem and Murtagh (1997) used neural networks to examine the individual coefficients. The trained
neural network with its approximated variables in the target function, was used for the final forecast. In
the area of finance, multi-resolution analysis appears useful, as different traders view the market with
different time resolutions, for example hourly, daily, weekly or monthly. The shorter the time-period, the
higher the frequency. Different types of traders create the multi-scale dynamics of time-series.

Struzik (2001) applied the wavelet-based effective Holder exponent to examine the correlation level of
the Standard & Poor’s index locally at arbitrary positions and resolutions (time and scale).

Norsworty et al. (2000) applied wavelets to analyze the relationship between the return on an asset and
the return on the market portfolio, or investment alternative. Similar to other researches in the field
of finance and economics, they applied wavelet-based time-scale decomposition to investigate whether
there are changes in behavior for different frequencies. The research indicated that the effect of the
market return on an individual asset’s return will be greater in the higher frequencies than in the lower.
Truly important for this thesis is the fact that the market’s influence is in the higher frequency, suggests
that filtering out the market noise permits the investigator to focus on longer-term movements specific to
the company and its industry.
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Wavelets are also applied in the area of soft-computing, especially in the area of neural networks and
fuzzy systems. Tan and Yu (1999) researched the complementarity and equivalence relationships be-
tween convex fuzzy systems and wavelets. After discussing the fundamentals of both fuzzy- and wavelet
systems, the authors conclude that there is a complementarity relationship. As a result, fuzzy systems
and wavelets can be combined together, to represent linguistic and numerical knowledge.

In the case of function approximation, a fuzzy quantization and fuzzy rules can be constructed to effec-
tively represent the function. In addition, wavelets can be used for further improvement of the approx-
imation accuracy, by capturing the fine features. Furthermore, there is equivalence between multi-scale
fuzzy systems and wavelets. This means that any result obtained from a multi-scale fuzzy approximation,
can have its direct interpretation in an equivalent wavelet approximation. Fuzzy rules can be generated
from wavelet coefficients.

Hoa, Zhang and Xu (2001) proposed a fuzzy wavelet network for function approximation. Such a FWN
is built forth on wavelet neural networks. These networks are a combination of feedforward neural net-
works and wavelets. The main issue here is that wavelets are used as the transformation function in
the hidden layer, whereas this was a sigmoid- or hyperbolic tangent function traditionally. The net-
work is then trained by adapting the translation and dilation parameters in the wavelet function, in the
variable wavelet variant. The FWN consists of four layers: input, fuzzification, inference and defuzzi-
fication layers. This is inspired by the traditional neuro-fuzzy systems, as described in Jang, Sun and
Mizutani (1997). However, the difference between the FWN and the neuro-fuzzy systems is that the
defuzzification-layer is built-up from a number of sub-wavelet neural networks, instead of using con-
stants or linear equations. The FWN uses both globalized and localized approximation of the function,
yielding better local accuracy and faster convergence. The input and fuzzification layer of the FWN con-
struct the antecedents of the fuzzy rules from the input space. The sub-wavelet neural networks create
the consequents of these rules, by making linear combinations of a finite set of wavelets, based on the
same inputspace. Later on, in the defuzzification, the antecedents and consequents are combined to form
the final output. For learning, the extended Kalman filter and least squares estimation is used. FWN’s
proved to be very accurate for function approximation.
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Chapter 4

Wavelet analysis for Value at Risk
estimation

4.1 Introduction

Chapter 2 explained the fundamentals of Value at Risk estimation and offered an overview of various
time-varying volatility models currently available. Although it pointed out the importance of scale in case
of different time-horizons using the Drost-Nijman equation for scaling, these models use one resolution
only for all horizons. The chapter ended with section 2.6 and came with the central question: ”Does
the completeresolution yield relevant information at all resolutions?” In other words: do all the high-
and low frequency componentshidden in the complete signal matter foreveryhorizon? The section
concludes with the necessity for a tool which enables the decomposition of a time-series in order to
facilitate the making of distinction.

Chapter 3 explained the fundamentals of wavelet analysis and showed how a signal can be decomposed
to multiple resolutions. Each resolution gives insight into behavior at different scales.

This chapter merges the two discussions into a new domain: Wavelet-based risk analysis for Value at
Risk estimation, using a multiresolution approach. It shows how wavelets can be used for analyzing risk
and how the correct resolution can be found for a corresponding horizon. As mentioned before, low
frequent behavior might not be of interest for risk managers estimating VaR with a short horizon. At
the end of the chapter, it is clear that in specific situations, not all information is relevant for the risk
manager, depending on his or her specific conditions.

Chapter 1 started with a general discussion regarding risk and how risk relates to the variance of a
financial time-series and finally how risk relates to Value at Risk by using the notion of risk management.
It states that we refer to risk, when the decision maker has no certainty about specific future states of
nature, but is aware of the factors which are on influence on the result of the decision. The spread in the
outcomes of the states of nature indicate the amount of risk and is summarized as the variance. In order
to link risk to wavelets, we are interested in the risk corresponding to a specific time-horizon or scale.
Analogous to estimating the variance of a financial time-series in its complete resolution, we would
expect that it is possible to estimate the variance at a specific resolution of the financial time-series as
well. Fortunately, it is possible to estimate the variance for each levelj. However, the fact that it is
possible to estimate the variance for each level is due to a specific property of wavelet analysis:the
preservation of energy. Preservation of energy ensures that the variances of the individual levels can be
summed up to the variance of the original time-series, similar to the components in an MRA summing up
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to the original signal. The fact that the preservation of energy ensures that the variances of the individual
levels can be summed up to the variance of the original time-series, is the result of a relation between
the energy in a time-series and the variance of a time-series. This relation is discussed in more detail in
section 4.3.

When the variance of a specific level relates to the risk isolated to the time-horizon corresponding to this
specific level, a risk manager can decide whether to include this amount of risk in his assessment, which
is the fundamental idea underlying this thesis. Through the notion of energy, risk and variance can be
introduced into the domain of wavelet analysis.

In order to merge these discussions, it is necessary to answer the following questions:

• Is the energy in a signal preserved when decomposing it into multiple levels?

• If the energy remains preserved, does this also hold for the risk?

• If the variance remains preserved, how can we estimate this for a specific level?

• How is the energy distributed over the levels of decomposition? More specifically: How does risk
behave over the different levels?

When we have insight in the way risk behaves over the different levels, we can see which amount of risk
might be of interest.

Therefore, the remainder of this chapter is structured as follows. Section 4.2 shows that energy is pre-
served over multiple levels. Next, section 4.3 shows how the variance can be estimated for a specific
level and how this is distributed over the different levels. Finally, section 4.4 exploits the knowledge of
the way risk behaves by using the wavelet energy distribution for VaR-estimation.

4.2 Preservation of energy

This section introduces wavelets in the domain of risk, by examining the variance at multiple scales, as
multi-scale behavior of the variance, can bring new insights. As pointed out in chapter 3, a vector of
wavelet coefficients is associated with changes at a particular scale. For example, the levelj wavelet
coefficientsdj,k are associated with the scaleλj = 2j−1, essentially meaning that each wavelet coeffi-
cient was constructed using a difference of two weighted averages, each one of lengthλj . Thus, when
the discrete wavelet transform is applied to a stochastic process, it produces a decomposition on a scale-
by-scale basis. Therefore, the variance of the underlying process can be decomposed on a scale-by-scale
basis as well. The mathematical theory of this section and section 4.3 is derived from Gençay et al.
(2002).

In order to decompose the variance at multiple levels, it is necessary to show that the discrete wavelet
transform is energy preserving, that is showing that the sum of all squared wavelet coefficients and the
sum of squared scaling coefficients at scaleJ equals the sum of squared elements from the underlying
process. More formally:

‖ w ‖2 =
J∑

j=1

N

2j∑
k=1

d2
j,k + s2

J,0 =
N−1∑
t=0

f2
t = ‖ f ‖2 (4.1)
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wherew is defined as the vector containing wavelet coefficients of levelsj = 1, 2...J and the scaling
coefficients of levelJ :

w =



d1,1

d1,2
...

d1, N
21

d2,1
...

d2, N
22

...
dJ,k

sJ,k


Now, consider anN ×N orthonormal matrixW defined as:

W =
[

W1 W2 · · · WJ VJ

]
with

Wj =
[

ΨT
j,1, ΨT

j,2, · · · ΨT
j, N

2j

]
for j = 1, 2, ..., J and

Vj =
[

ΦT
j,1, ΦT

j,2, · · · ΦT
j, N

2j

]
for j = J

Then, the reconstruction of the original signal as performed using equation (3.19) can also be performed
using a matrix operation:

f = Ww (4.2)

This however, can be quite an exercise to see without an example.

Example 4.2.1 Consider again the signalf(t) = (5, 7, 10, 11, 8, 5, 4, 4) of length8

Now consider an8×8 orthonormal matrixW, where the first four columns represent the 4 Haar wavelets
belonging to level 1, where column 5 and 6 represent the 2 Haar wavelets belonging to level 2, where
column 7 represents the Haar wavelet belonging to level 3 and where column 8 represents the Haar
scaling signal belonging to 3. These Haar wavelets and Haar scaling signals are the same as used in
example 3.2.1.

Consider also a vectorw containing the wavelet coefficients of levels 1, 2 and 3 and the scaling coeffi-
cient of level 3. Then, using equation (4.2) the original signal f(t) can be reconstructed as follows:
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f = Ww =



1√
2

0 0 0 1
2 0 1√

8
1√
8

−1√
2

0 0 0 1
2 0 1√

8
1√
8

0 1√
2

0 0 −1
2 0 1√

8
1√
8

0 −1√
2

0 0 −1
2 0 1√

8
1√
8

0 0 1√
2

0 0 1
2

−1√
8

1√
8

0 0 −1√
2

0 0 1
2

−1√
8

1√
8

0 0 0 1√
2

0 −1
2

−1√
8

1√
8

0 0 0 −1√
2

0 −1
2

−1√
8

1√
8





−
√

2
−1
2

√
2

3
2

√
2

0
−9
2
5
2
6√
2

27√
2


=
[

5 7 10 11 8 5 4 4
]

= f

When considering table 3.4, we can see that the first element off(t) is a 5. The table also shows that
5 is the sum of -1, -2.25, 1.5 and 6.75. This -1 is the product of the first row ofW andw. Due to the
ingenuity of orthonormality,W has zero values on exactly the right places. To get a good understanding
of how everything fits together, try to relate the results in table 3.4 to the results of the productf = Ww.

Due to the orthonormality ofW, the following equation also holds:

WWT = WTW = I (4.3)

Then, with this knowledge and matrix algebra, it can be proven that the discrete wavelet transform
preserves energy:

‖ f ‖2 = fTf = (Ww)TWw = wTWTWw = wTw = ‖ w ‖2

In terms of a scale-by-scale decomposition, the preservation of energy can be written as:

‖ f ‖2 =
J∑

j=1

‖ dj ‖2 + ‖ sJ ‖2 (4.4)

Equation (4.4) does not only hold for the coefficients being a result of the discrete wavelet transform, but
also for the coefficients of the MRA:

‖ f ‖2 =
J∑

j=1

‖ Dj ‖2 + ‖ AJ ‖2 (4.5)

This can be checked through a simple example, which is shown in table 4.1 First, recall table 3.4 showing
that the 3-level Haar MRA sums up to the original signal, as indicated by equation (3.19). The same table
is copied with the squared results below. In the final column is shown that the sum of the energies of the
individual components sums up to the sum of the energy of the signal.

4.3 Estimating the wavelet variance

After demonstrating that the discrete wavelet transform is energy preserving, we can see that the sum of
squared elements in a time-series equals the sum of squared coefficients in the vectorw for that time-
series. Each coefficient is obtained by averaging the original time-series by use of a scaling function
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A3 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75
D3 1.5 1.5 1.5 1.5 -1.5 -1.5 -1.5 -1.5
D2 -2.25 -2.25 2.25 2.25 1.25 1.25 -1.25 -1.25
D1 -1 1 -0.5 0.5 1.5 -1.5 0 0
f(t) 5 7 10 11 8 5 4 4 sum:

‖ A3 ‖2 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 364.5
‖ D3 ‖2 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18
‖ D2 ‖2 5.06 5.06 5.06 5.06 1.56 1.56 1.56 1.56 26.5
‖ D1 ‖2 1 1 0.25 0.25 2.25 2.25 0 0 7
‖ f ‖2 25 49 100 121 64 25 16 16 416

Table 4.1: results of summation of individual components - squared

or wavelet. The variance, in addition, is obtained by calculating the sum of squared deviations and
dividing the result by the number of elements, according to equation (1.1). Apparent is that both the
energy of a time-series and the variance of a time-series are based on the same principle: the summation
of squared elements. Gençay et al. (2002) show in fact that through the sum of squared wavelet- and
scaling coefficients, an unbiased estimator can be found for the wavelet variance based on the DWT. For
the derivation of this unbiased estimator, I refer to Gençay et al. (2002). For the purpose of this thesis, it
is sufficient to use the following equations, also based on the theories of Gençay et al. (2002).

We can define the wavelet variance associated with scaleλj for the underlying processf(t) as follows:

σ2
f (λj) =

1
2λj

var(dj,k) (4.6)

In addition, the wavelet variance decomposes the variance on a scale-by-scale basis, using:

∞∑
j=1

σ2
f (λj) = var(f(t)) (4.7)

Recall from chapter 3 that each levelj brings N
2j wavelet coefficients, implying that the variance is

estimated over a decreasing number of coefficients when the levelj increases. Therefore it is necessary
to multiply with 1

2λj
in order to make the variance at each level proportional to the number of coefficients

belonging to that level.

The wavelet variance can also be calculated on the basis of an MRA:

σ2
f (λj) = var(Dj) (4.8)

This time, there is no need to multiply by12λj
, as the MRA is already reconstructed over the same

time-domain asf(t).

As a demonstration of these ideas, consider the signalu(t) as the returns on the Dow-Jones index mea-
sured from 22/02/1972 to 22/05/2003. The returns are calculated using equation (2.1), so that the log-
difference between the closing and opening of a single trading-day is taken for all days. The complete
time-series represents 7889 observations, which is shown in figure 4.1. In addition, figure 4.2 shows
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Figure 4.1: Dow Jones Index - Continuously compounded returns 1972 - 2003

a level-12 MRA, based on a Symlet6 wavelet, for illustration purposes. This wavelet is chosen for its
smoothing characteristics. A level 12 decomposition is chosen as the series can be decomposed maxi-
mally into 12 levels (=2 log(7890)). When performing a visual inspection on this decomposition, it is
immediately evident that the level-12 trend is nearly flat, implying that returns remained mostly constant
over the time-period. The outlier in the middle of the series, is clearly visible in the original signal, but
dampened in each of the detail coefficients. However, tracks of this outlier are visible in the level-5 and
level-6 details of the signal. In addition, the very long run differences - the level-11 and level-12 details
- show the periodic properties of the signal.

For this demonstration, the wavelet variance is based on two different level-12 decompositions: a Sym-
let6 decomposition and a Daubechies4 decomposition. Each of these wavelet variances is calculated for
level 1,2...12 using equation (4.6) for each of the two decompositions. Thus, this variance is based on
the wavelet coefficients, rather than the reconstructed coefficients as used in equation (4.8). Table 4.2
shows the results for the Symlet6 decomposition and table 4.3 shows the results for the Daubechies4
decomposition.

When inspecting these tables, it becomes immediately evident that:

• The variances remain preserved and sum up to the variance of the original returns series, up to a
small approximation error.

• Regardless of the wavelet chosen, equation (4.7) holds, up to a small approximation error. Al-
though the energy remains preserved, as a result of the different wavelet type, the energy is dis-
tributed differently.

In addition to the wavelet-decomposition, an MRA can be constructed as well. Similarly, the MRA is
constructed based on a Symlet6 wavelet and a Daubeches4 wavelet. The variances are estimated using
equation (4.8). Table 4.4 shows the results for the MRA Symlet6 decomposition and table 4.5 shows the
results for the MRA Daubechies4 decomposition.
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Figure 4.2: Dow Jones Index - level-12 Symlet6 MRA 1972 - 2003
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level Variance distribution
d1 0.000097743 47.56%
d2 0.000053624 26.09%
d3 0.000028985 14.10%
d4 0.000011508 5.60%
d5 0.000006187 3.01%
d6 0.000002730 1.33%
d7 0.000001202 0.58%
d8 0.000000582 0.28%
d9 0.000000211 0.10%
d10 0.000000119 0.06%
d11 0.000000041 0.02%
d12 0.000000070 0.03%
s12 0.000002507 1.22%
sum: 0.000205508 100%
true variance: 0.000204252

Table 4.2: Variance decomposition of the Dow-Jones index using Symlet6 wavelets

level Variance distribution
d1 0.000097576 47.58%
d2 0.000053002 25.85%
d3 0.000028629 13.96%
d4 0.000012806 6.25%
d5 0.000005805 2.83%
d6 0.000003275 1.60%
d7 0.000001364 0.67%
d8 0.000000392 0.19%
d9 0.000001026 0.50%
d10 0.000000192 0.09%
d11 0.000000135 0.07%
d12 0.000000146 0.07%
s12 0.000000715 0.35%
sum: 0.000205065 100%
true variance: 0.000204252

Table 4.3: Variance decomposition of the Dow-Jones index using Daubechies4 wavelets

58



level Variance distribution
D1 0.000097817 47.82%
D2 0.000053689 26.25%
D3 0.000028965 14.16%
D4 0.000011695 5.72%
D5 0.000006389 3.12%
D6 0.000002913 1.42%
D7 0.000001369 0.67%
D8 0.000000741 0.36%
D9 0.000000343 0.17%
D10 0.000000190 0.09%
D11 0.000000064 0.03%
D12 0.000000165 0.08%
A12 0.000000219 0.11%
sum: 0.000204560 100%
true variance: 0.000204252

Table 4.4: MRA Variance decomposition of the Dow-Jones index using Symlet6 wavelets

level Variance distribution
D1 0.000097647 47.70%
D2 0.000053092 25.94%
D3 0.000028515 13.93%
D4 0.000012935 6.32%
D5 0.000005969 2.92%
D6 0.000003384 1.65%
D7 0.000001429 0.70%
D8 0.000000467 0.23%
D9 0.000000682 0.33%
D10 0.000000130 0.06%
D11 0.000000123 0.06%
D12 0.000000182 0.09%
A12 0.000000152 0.07%
sum 0.000204710 100%
true variance: 0.000204252

Table 4.5: MRA Variance decomposition of the Dow-Jones index using Daubechies4 wavelets
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When inspecting these tables, it becomes immediately evident that:

• The variances remain preserved and sum up to the variance of the original returns series, up to a
small approximation error.

• Regardless of the wavelet chosen, equation (4.7) holds, up to a small approximation error. Al-
though the energy remains preserved, as a result of the different wavelet type, the energy is dis-
tributed differently.

• The magnitude and energy-distributions are nearly similar to the variance decomposition based on
the wavelet coefficients.

4.4 Value at Risk estimation using the wavelet energy distribution

It is shown in section 4.2 how the energy distributes itself over the different levels of decomposition.
Section 4.3 showed that in fact the variance remains preserved over the various levels. As the Discrete
Wavelet Transform is an energy preserving decomposition, the energy thus remains preserved and there-
fore the variance remains preserved as well. The way the variance is distributed over the levels is more
or less the same as the distribution of energy (i.e. the sum of squared coefficients).1

Now, let us formulate an alternative model - a wavelet-based model -, which uses the wavelet energy
distribution for estimating the risk, as essential for VaR-estimation. This model will use the wavelet
energy distribution for determining which amount of risk is essential for the horizon the VaR is based on,
and which amount of risk can be neglected.

Recall from chapter 3 that the Discrete Wavelet Transform is dyadic: it is based on powers of two.
Therefore, level-1 detail using an arbitrary wavelet corresponds to a 2-day horizon, whereas level-2 and
level-3 details correspond to 4 and 8 day horizons respectively, if all data-elements are days of course.

Then, if the trading-horizon ish days, the maximum levelj to base our risk on is a levelj such that(j ≤2

log h), under the assumption that the financial risk manager is only interested in the risk associated with
his trading horizon he bases his VaR estimation on.

Next, recall from section 4.2 that

‖ f ‖2 =
J∑

j=1

‖ Dj ‖2 + ‖ AJ ‖2

holds.

Then, we can express the relative amount of energy associated with detail levelj as:

εrel,j =
‖ Dj ‖2

‖ f ‖2
(4.9)

And, if we assign the value of the levelj such that(j ≤2 log h) to m, wherem is the maximum depth,
the equation which summarizes the relative amount of energy over the relevant horizon is:

1Here I say more or less, as depending on the wavelet type, a higher variance can be kept in the level-J approximation (or
level-J set of scaling coefficients) yielding automatically less variance in levelsj = 1...J − 1 for the detail (or sets of wavelet
coefficients).
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Figure 4.3: From signal through the wavelet-energy distribution to risk

εrel =
m∑

j=1

αj
‖ Dj ‖2

‖ f ‖2
(4.10)

The weight,αj can be used to assign different weights to different levels. For the purpose of this thesis,
αj is set to 1. When increasing the weight for a specific level, the variance increases, resulting in a
higher estimated VaR figure. A higher estimated VaR figure results less often in exceeding this figure.
The following chapter explains the relevance of the number of times this VaR figure is exceeded, as this
number should lie in a certain interval. Fine-tuning the weight assigned to a level can therefore help to
keep the number of times the VaR is exceeded, in a certain interval. However, more on these certain
intervals in chapter 6.

Then, the total relative energyεrel can be applied to the original variance,σ, to obtain a moderated̆σ:

σ̆ = εrelσ (4.11)

Then, the final equation for estimating the VaR, given theα corresponding to the confidence level, the
initial portfolio valueW0 and horizonh equals:

VaR = W0 ασ̆
√

(h) (4.12)

This equation is directly related to equation (2.8). The idea of all this is shown in figure 4.3.

The following experiment will apply this idea on a position worthe10000000 in assets based on the
Dow-Jones index. The daily volatility at a given moment is 2% and a financial risk manager needs to
estimate a 10-day VaR, given a 95% confidence level. For any given returns series, the original series
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Horizon Percentage
2 days 43.67%
4 days 24.24%
8 days 13.25%

sum 81.16%

Table 4.6: Relative energy

shows a daily projection of the returns process. A level-1 detail using an arbitrary wavelet, corresponds to
a 2-day horizon, whereas level-2 and level-3 details correspond to 4 and 8 day horizons respectively. One
might imagine that only these horizons are of use for the financial risk manager, who is only interested
for these horizons, and may omit the 16, 32 and higher day horizons.

Now, assume that the distribution of variance is as indicated in table 4.6 for the 2, 4 and 8 day horizons.
Equal weight is assigned to each of the trading horizons below.

The total amount of variance equals 81.16% in this case. Applied to the daily volatility, this equals
1.62%, rather than the original 2%. In this case, VaR is estimated as: 10.000.000 x 0,0162 x 2,33 x

√
10

= 1193633.33, whereas this figure was normally estimated as 1473621,39.
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Chapter 5

Empirical analysis

5.1 Introduction

Chapter 3 explained the fundamentals of Value at Risk estimation and the various volatility models
available which are the basis for Value at Risk (VaR) estimation. Chapter 4 explained the fundamentals
of wavelet analysis and the basis for time-scale decomposition. Chapter 5 elaborated on the idea of
time-scale decomposition and introduced an alternative model for VaR estimation based on wavelets.

In this chapter, several experiments are performed in order to compare the various models for VaR es-
timation. This chapter begins with an overview of the hard- and software used in the experiments. In
addition, a detailed description of the dataset is given. Then, experiments and their results of VaR esti-
mation based on a standard variance are explained. Next, experiments and their results of VaR estimation
based on GARCH and EWMA models are reported. Finally, experiments and their results of Value at
Risk estimation based on wavelets are mentioned.

5.2 Hardware and software

The hardware used for the experiments is a personal computer with the following specifications:

• AMD Athlon 2200 Processor,

• 512 MB memory,

• 80GB HD,

• Asus K7V333 Motherboard (KT333 chipset),

• Asus Geforce4 Ti4400 128mb graphics card.

The software used for the experiments is the following:

• Microsoft Windows XP operating system,

• Microsoft Excel 2003,
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• Matlab 6.5 Release 13,

• Wavelet toolbox 2.2,

• Optimization Toolbox 2.2,

• Statistics toolbox 4.0,

• Signal Processing Toolbox 6.1.

The Wavelet Toolbox is a comprehensive tool that supports exploration of wavelet properties and appli-
cations. The Wavelet Toolbox is useful in 1-D and 2-D applications such as speech and audio processing,
image and video processing, communications, geophysics, finance, and medicine. The toolbox provides
a graphical user interface and a broad collection of Matlab routines (Misiti et al. 2002).

The GARCH Toolbox enables the user to model volatility of financial and economic time series, and
provides a framework for the analysis of serial dependence in conditional variances. The toolbox offers
several variants of GARCH models, including standard ARCH/GARCH models, as well as asymmetric
EGARCH and Glosten, Jagannathan and Runkle (GJR)GARCH models designed to capture leverage
effects in asset returns. The other toolboxes are required in order to support the Wavelet- and GARCH
toolbox.

5.3 Description of datasets

Two datasets were used for the empirical analysis: an artificial dataset and a real-life dataset. While using
an artificial dataset, dataset-specific features can be better isolated. Each dataset consists of continuously
compounded returns and a corresponding price-series, either artificially generated or obtained from real-
life data.

The artificial dataset contains daily returns which are artificially generated by a GARCH(1,1) process.
The idea of generating artificial data by using a GARCH(1,1) process is derived from van den Berg,
Kaymak and van den Bergh (2003). The process of obtaining the artificial returns consists of 4 steps:

• Each return is drawn from a normal distribution with meanµ = 0 and a standard deviation equal
to the estimated local volatility - which is the square-root of the variance rate - at dayn, which is
σn : un ∼ N (µ, σn).

• Each day, the estimate of the variance rate is updated according to equation (2.18), which is re-
peated here:

σ2
n = αu2

n−1 + βσ2
n−1 + γV given thatα + β + γ = 1

• The parameter values for the GARCH(1,1) process are also derived from van den Berg et al.
(2003) and are in line with the parameters empirically found in stock return series, such that:
α = 0.2, β = 0.78, γ = 0.02 andV = 0.03.

• The price-series itself is calculated using the returns obtained from the GARCH(1,1) process, with
an initial priceS0 = 100:

Sn = Sn−1e
un (5.1)
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Figure 5.1: Artificially generated returns - 8000 observations

Figure 5.2: Price-series corresponding to the artificially generated returns - 8000 observations
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Figure 5.3: Dow Jones Index - Continuously compounded returns 1972 - 2003

The artificially generated returns are shown in figure 5.1. The corresponding price-series is shown in
figure 5.2.

The real-life dataset is the dataset calledreturns, and contains real-life continuously compounded returns
obtained from the Dow-Jones Index and the series of the Dow Jones Index itself. The index starts at
May 5th 1972 and ends February 5th 2003. The 7889 elements of the returns series are obtained using
equation (2.1).

Both the Dow Jones Index series and the Dow Jones Index returns series are shown in figures 5.4 and 5.3
respectively.

5.4 Value at Risk estimation based on a standard constant variance

Each experiment for VaR estimation has to give answer to several questions. For this research, one
question stands central:What is the performance on future returns?When the VaR estimation is good,
the significance level should more or less correspond to the number ofexceptions, i.e. the number of
times an observation of areal return exceeds the previously estimated VaR estimation. For example,
for a 5 percent significance level, 1 exception should occur every 20 observations. If the number of
exceptions is too low, the model is too conservative. If the number of exceptions is too high, the model
is to optimistic. In both cases, the model needs to be adjusted.

This experiment, where the VaR-figure is estimated using a standard, constant variance, is conducted in
order to compare the results of the other approaches. In this way, this simple, though widely used ap-
proach can be compared to the more sophisticated GARCH/EWMA approach. In addition, this approach
can be compared to the wavelet-based approach, which is similar in the sense that it assumes the variance
to be constant over time.
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Figure 5.4: Dow Jones Index - 1972 - 2003

5.4.1 Experiment Design

The process of generating results with a constant variance based VaR estimation can be explained as
follows. The experiment is conducted first on the artificial dataset and then repeated on the real-life
dataset:

• First, the dataset is split up in a trainingset and a testset. In the case of constant variance based VaR
estimation, the trainingset is used completely for estimating the variance. No sliding windows is
used for the estimation of the variance The testset will be used solely for testing the estimated VaR
estimations on future returns.

• The variance is calculated over the trainingset using equation (2.15).

• The scaling to a h-day horizon will be performed with the
√

h-rule. In this specific case, this rule
is appropriate, as the variance is assumed to be constant over the horizon.

• When the correct scaling is done, VaR estimates can be compared with future returns. If the
horizon ish days, then for everyh days, a new VaR is estimated. If the real return over the coming
period ofh days ”exceeds” the estimated VaRh days ago, an exception is found.

• Finally, the number of exceptions is expressed as a proportion of the total number of observations,
which is called thefailure rate. The notion of failure rate is discussed in more detail in chapter 6.

For this experiment, the following assumptions are made:

• Returns over ah -day-period - forh -day VaR estimates - are only measured at the beginning and
the end of this period. No attention is paid to individual trading days.
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Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0278 0.0275 0.0317 0.0267 0.0420 0.0345 0.0385 0.0364
97.5% 0.0165 0.0191 0.0197 0.0141 0.0268 0.0204 0.0235 0.0238
99% 0.0118 0.0119 0.0109 0.0113 0.0147 0.0119 0.0121 0.0137

Table 5.1: VaR estimation based on a standard, constant variance - Failure rates

• The portfolio is frozen over theh -day horizon. No additional trades are made in the period, nor are
their additional fees earned. The return on such a portfolio is called ahypothetical return, which
is used in the experiments.

5.4.2 Results

As already mentioned, the VaR estimation is based on a standard, constant variance. In order to gain
insight in the VaR forecasting ability of the model, the following experiments are done:

first:

• VaR estimation given a 5, 10, 15 and 20 day horizon;

• A 95, 97,5 and 99 percent confidence level for each horizon

• A ”position” on the index of the artificial dataset worthe100000001

• A split on day 4000, resulting in a testSet of 4000 days.

then:

• VaR estimation given a 5, 10, 15 and 20 day horizon;

• A 95, 97,5 and 99 percent confidence level for each horizon

• A position on the Dow Jones Index worthe10000000

• A split on day 4000, resulting in a testSet of 3890 days.

Table 5.1 shows the results.

When comparing the results of the experiments on the artificial dataset and the real-life dataset, it is
apparent that the results for the artificial dataset show a systematical overestimation of the VaR, resulting
in too few exceptions, especially on the 95% and 97.5% confidence levels. However, the model in its
simplicity performs quite accurate on the 99% confidence level on both datasets and also accurate on the
97.5% confidence level on the real-life dataset. However, for the 95%confidence level, it might be so that
not enough exceptions are found for the model to be accepted, when the model is validated in chapter 6.

1The financial position is used in the experiments in order to give it a ”real-life” sense. It is not necessary for obtaining
results.
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5.5 Value at Risk estimation based on GARCH- and EWMA models

The following experiments also have to give answer to the questionWhat is the performance on future
returns? with respect to the models for VaR-estimation based on a GARCH and EWMA approach. The
experiments are twofold. Firstly, experiments are conducted using scaling according to Drost and Nijman
(1993). Secondly, experiments are conducted using the traditional

√
h scaling. These experiments should

bring light in the discussion whether
√

h scaling is truly so inappropriate. Both types of experiments are
conducted on the artificial dataset and on the real-life dataset.

5.5.1 Experiment design

The steps which have to be taken in order to calculate the number of exceptions are the following. The
experiment is conducted first on the artificial dataset and then repeated on the real-life dataset:

• First, the dataset is split up in a trainingset and a testset. The parametersα, β andω need to
be estimated conform the maximum likelihood equations (2.20) using the corresponding fitting
routines in the GARCH toolbox, over the trainingSet. The fitting routine in the GARCH toolbox
generates a GARCH(1,1)-model. The model consists of the parametersα, β andω. The routine
also generates the complete set of daily volatilities generated by this GARCH(1,1) model.

• For the EWMA model, the parameter estimation process is skipped; the important parameterλ is
set to 0.94, which is the JPMorgan’s riskmetrics standard.

• Next, the parameters are scaled to the appropriate horizon using equation (2.22), as discussed in
section 2.5. When one is interested in e.g. a 10-day horizon, the daily volatility has to be scaled to
a 10-day volatility.

• As an EWMA model is some sort of a GARCH model, this form of scaling is appropriate as well
for EWMA models. When the correct scaling is done, VaR estimates can be compared with future
returns. If the horizon ish days, then for everyh days, a new VaR is estimated. If the real return
over the coming period ofh days ”exceeds” the estimated VaRh days ago, an exception is found.

In addition, scaling using the
√

h is tried out as well, in order to compare its working with the
Drost-Nijman equations for scaling.

• Finally, the number of exceptions are expressed as a proportion of the total number of observations,
which is called thefailure rate.

For this experiment, the following assumptions are made:

• Returns over anh -day-period - forh -day VaR estimates - are only measured at the beginning and
the end of this period. No attention is paid to individual trading days.

• The portfolio - a stock position on the Dow Jones Index in this case - is frozen over theh -day
horizon. No additional trades are made in the period, nor are their additional fees earned. The
return on such a portfolio is called ahypothetical return, which is used in the experiments.
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α 0.0679
β 0.9201
ω 1.32775168084179e-006

Table 5.2: Parameters of the GARCH(1,1) model

1− λ(= α) 0.06
λ(= β) 0.94

Table 5.3: Parameters for the EWMA model

5.5.2 Results

After constructing the GARCH(1,1) model for the real-life dataset, the parameters are estimated as shown
in table 5.2. For the artificial dataset, the parameters are equal to the parameters as proposed in section
5.3 For the EWMA model, the parameters are shown in table 5.3 and are equal for the artificial and
real-life dataset.

In order to gain insight in the VaR forecasting ability of the models, the following experiments are
conducted:

first:

• VaR estimation given a 5, 10, 15 and 20 day horizon;

• VaR estimation for both models with
√

h scaling and Drost-Nijman scaling.

• A 95, 97,5 and 99 percent confidence level for each horizon

• A ”position” on the index of the artificial dataset worthe10000000

• A split on day 4000, resulting in a testSet of 4000 days.

then:

• VaR estimation given a 5, 10, 15 and 20 day horizon;

• VaR estimation for both models with
√

h scaling and Drost-Nijman scaling.

• A 95, 97,5 and 99 percent confidence level for each horizon

• A position on the Dow Jones Index worthe10000000

• A split on day 4000, resulting in a testSet of 3890 days.

Table 5.4 shows the results for VaR estimation based on a GARCH(1,1) model with Drost-Nijman scaling
and table 5.6 shows the results for VaR estimation based on a GARCH(1,1) model with

√
h scaling.

One can see clearly that the results of the experiments based on
√

h scaling are far more better than the
results of the experiments based on Drost-Nijman scaling. The results of the experiments based on

√
h
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Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.1455 0.1367 0.1174 0.1031 0.1632 0.1547 0.1430 0.1287
97.5% 0.1061 0.1009 0.0807 0.0625 0.1259 0.1194 0.1185 0.1031
99% 0.0735 0.0667 0.0530 0.0430 0.0971 0.0923 0.0891 0.0770

Table 5.4: VaR estimation based on a GARCH(1,1) model with Drost-Nijman scaling - Failure rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.2119 0.27342 0.2955 0.3378 0.2044 0.2361 0.2499 0.2598
97.5% 0.1765 0.2474 0.2675 0.3079 0.1730 0.2098 0.2297 0.2396
99% 0.1540 0.2129 0.2434 0.2818 0.1393 0.1846 0.2086 0.2205

Table 5.5: VaR estimation based on a EWMA model with Drost-Nijman scaling - Failure rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0450 0.0529 0.0489 0.0550 0.0424 0.0445 0.0428 0.0457
97.5% 0.0266 0.0275 0.0282 0.0295 0.0296 0.0270 0.0252 0.0258
99% 0.0128 0.0131 0.0131 0.0141 0.0175 0.0159 0.0160 0.0129

Table 5.6: VaR estimation based on a GARCH(1,1) model with
√

h scaling - Failure rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0770 0.0777 0.0791 0.0786 0.0661 0.0541 0.0588 0.0566
97.5% 0.0529 0.0614 0.0584 0.0553 0.0450 0.0381 0.0400 0.0361
99% 0.0353 0.0401 0.0405 0.0364 0.0275 0.0216 0.0240 0.0232

Table 5.7: VaR estimation based on a EWMA model with
√

h scaling - Failure rates
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scaling are quite accurate as well: on a 95% confidence interval, 5% exceptions are expected. We can
see that this is nearly the case.

When we compare the results of the experiments on the artificially generated data and the real-life data,
both results are nearly the same. With respect to the 95% confidence level however, the results of the
experiments on the artificially generated data converge slightly more to the desired failure rate.

Table 5.5 shows the results for VaR estimation based on an EWMA model with Drost-Nijman scaling
and table 5.7 shows the results for VaR estimation based on an EWMA model with

√
h scaling.

The same conclusion can be drawn for the EWMA model: the results of the experiments based on
√

h
scaling are far more better than the results of the experiments based on Drost-Nijman scaling.

When we compare the results of the experiments on the artificially generated data and the real-life data,
the results of the experiments on the real-life data are better.

However, the GARCH(1,1) model performs better on both types of experiments than the EMWA model.
A first possible explanation could be the fact that the value of 0.94 assigned toλ is chosen, whereas
the parameters for the GARCH model are estimated using a sophisticated fitting routine. Choosing a
different value forλ can yield better results.

5.6 Value at Risk estimation based on wavelets

Similarly to the experiments for GARCH/EWMA-based VaR estimation, the wavelet-based VaR estima-
tion has to give answer to the question:How accurate is this estimation when compared to future returns?
In addition, the experiments should make clearif a different choice of a wavelet has impact on the results
and if a different wavelet has impact, which wavelet produces the best results. These experiments are
twofold. Firstly, experiments are conducted where the amount of energy as proposed in equation (4.12).
Secondly, experiments are conducted where the amount of energy includes one extra level to the basic
amount as proposed in equation (4.12). This should bring insight in the effect of including one extra
level of information on the failure rate. Both types of experiments are conducted on the artificial dataset
and the real-life dataset.

5.6.1 Experiment design

The process of generating results with wavelet-based VaR estimation - which is different in a significant
number of steps - can be explained as follows. First, the experiments are performed on the artificial
dataset. Then, the experiments are repeated on the real-life dataset.

• First, the dataset is split up in a trainingset and a testset. In the case of wavelet-based VaR es-
timation, the trainingset is used completely for estimating the wavelet coefficients and the corre-
sponding energy distribution. The testset is used solely for testing the estimated VaR estimations
on future returns.

• Next, the maximum decomposition level is calculated, as explained previously in chapter 3.

• After calculating the maximum decomposition level, the returns series is decomposed in the cor-
responding number of levels. This decomposition is based on this maximum decomposition level
and the type of wavelet chosen.
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• Next, the energy distribution is extracted from the wavelet decomposition. As explained in chapter
4, this energy distribution corresponds to the distribution of the variance of the returns series over
the different levels after decomposing.

• Then, given the time-horizon - e.g. 5, 10, 15 or 20 days - the maximum amount of levels are
calculated. If for instance the time-horizon is 20 days, then the first power of 2 smaller than 20 is
used, which is24 = 16 < 20. In this case, only the first 4 levels are involved in the estimation
of the risk. In addition, the experiment is extended with one extra level, in order to compare the
effects of adding this extra level.

• The variance is calculated over the trainingset and the energy distribution as found in the previous
step is applied.

• The scaling to ah-day horizon is performed with the
√

h-rule. In this specific case, this rule is
appropriate, as the variance is assumed to be constant over the horizon.

• When the correct scaling is done, VaR estimates can be compared with future returns. If the
horizon ish days, then for everyh days, a new VaR is estimated. If the real return over the coming
period ofh days ”exceeds” the estimated VaRh days ago, an exception is found.

• Finally, the number of exceptions is expressed as a proportion of the total number of observations,
which is called thefailure rate.

For the experiments a Haar-wavelet, a Daubechies4 wavelet and a Symlet6 are used. The Haar wavelet
is the most simplest wavelet. The Daubechies4 wavelet is already smoother than the Haar-wavelet, but
not symmetric. The Symlet6 is smoother than both the Haar wavelet and the Daubechies4 wavelet, and
it is symmetric.

For this experiment, the following assumptions are made:

• Returns over ah -day-period - forh -day VaR estimates - are only measured at the beginning and
the end of this period. No attention is paid to individual trading days.

• The portfolio - a stock position on the Dow Jones Index in this case - is frozen over theh -day
horizon. No additional trades are made in the period, nor are their additional fees earned. The
return on such a portfolio is called ahypothetical return, which is used in the experiments.

5.6.2 Results

As already mentioned, the VaR estimation is based on three different types of wavelets: the Haar wavelet,
the Daubechies4 wavelet and the Symlet6. In order to gain insight in the VaR forecasting ability of the
models, the following experiments are done:

first:

• VaR estimation based on the three types of wavelet models given a 5, 10, 15 and 20 day horizon;

• A 95, 97,5 and 99 percent confidence level for each horizon

• A ”position” on the index of the artificial dataset worthe10000000

• A split on day 4000, resulting in a testSet of 4000 days.
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Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0493 0.0310 0.0331 0.0251 0.0904 0.0493 0.0553 0.0462
97.5% 0.0317 0.0215 0.0218 0.0138 0.0645 0.0305 0.0387 0.0299
99% 0.0192 0.0132 0.0117 0.0100 0.0431 0.0207 0.0224 0.0202

Table 5.8: VaR estimation based on wavelets (Haar) without extra level of information - Failure rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0926 0.0691 0.0597 0.0549 0.0497 0.0532 0.0576 0.0492
97.5% 0.0643 0.0426 0.0419 0.0341 0.0632 0.0350 0.0422 0.0329
99% 0.0415 0.0270 0.0296 0.0247 0.0213 0.0224 0.0256 0.0215

Table 5.9: VaR estimation based on wavelets (Daubechies4) without extra level of information - Failure
rates

• The experiments are performed using the wavelet-based model without and with the extra level of
information, as proposed in the previous subsection.

then:

• VaR estimation based on the three types of wavelet models given a 5, 10, 15 and 20 day horizon.

• A 95, 97,5 and 99 percent confidence level for each horizon.

• A position on the Dow Jones Index worthe10000000.

• A split on day 4000, resulting in a testset of 3890 days.

• The experiments are performed using the wavelet-based model without and with the extra level of
information, as proposed in the previous subsection.

Table 5.8 shows the results for the experiments with the Haar wavelet, table 5.9 shows the results for the
experiments with the Daubechies4 wavelet and table 5.10 shows the results for the experiments with the
Symlet6 wavelet. These results arewithoutthe extra level of information.

Table 5.11 shows the results for the experiments with the Haar wavelet, table 5.12 shows the results for
the experiments with the Daubechies4 wavelet and table 5.13 shows the results for the experiments with
the Symlet6 wavelet. These results arewith the extra level of information.

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0718 0.0478 0.0464 0.0366 0.0865 0.0513 0.0556 0.0475
97.5% 0.0480 0.0293 0.0316 0.0236 0.0612 0.0318 0.0387 0.0309
99% 0.0307 0.0210 0.0215 0.0138 0.0418 0.0211 0.0240 0.0202

Table 5.10: VaR estimation based on wavelets (Symlet6) without extra level of information - Failure
rates
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Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0330 0.0270 0.0296 0.0211 0.0564 0.0422 0.0478 0.0420
97.5% 0.0232 0.0185 0.0178 0.0113 0.0398 0.0250 0.0315 0.0283
99% 0.0137 0.0110 0.0102 0.0087 0.0233 0.0181 0.0175 0.0185

Table 5.11: VaR estimation based on wavelets (Haar) with extra level of information - Failure rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0706 0.0594 0.0519 0.0457 0.0622 0.0454 0.0494 0.0452
97.5% 0.0478 0.0371 0.0368 0.0299 0.0421 0.0276 0.0344 0.0296
99% 0.0305 0.0240 0.0261 0.0168 0.0272 0.0194 0.0185 0.0198

Table 5.12: VaR estimation based on wavelets (Daubechies4) with extra level of information - Failure
rates

Dataset: Artificial dataset Real-life dataset
confidence level 5 days 10 days 15 days 20 days 5 days 10 days 15 days 20 days
95% 0.0533 0.0403 0.0401 0.0339 0.0573 0.0425 0.0484 0.0433
97.5% 0.0325 0.0258 0.0288 0.0211 0.0402 0.0256 0.0325 0.0283
99% 0.0227 0.0175 0.0173 0.0113 0.0243 0.0188 0.0178 0.0192

Table 5.13: VaR estimation based on wavelets (Symlet6) with extra level of information - Failure rates
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When comparing the results of the experiments based on the two datasets, we can see that the results
for the artificial dataset have a lower magnitude for nearly all Haar- and Symlet6 cases. However, this is
rather the contrary for the magnitudes of the results of the Daubechies4 wavelet. The Haar-based model
performs quite accurate on the 99% level, but is rather conservative on the 95% level.

Purely based on visual inspection, the results might suggest that the variant with the extra amount of in-
formation performs better: the magnitudes of the results are more in line with the confidence level. With
this extra level, an additional amount of variance is included, resulting in a higher VaR figure, which
causes the number of exceptions to fall. The variant with the extra amount of information performs
quite accurate. In case of the Haar wavelet, the 10 days VaR with 97.5% confidence has exactly 2.5%
exceptions. Unfortunately, for a 5 day horizon, the VaR is underestimated, resulting in too much excep-
tions. Purely based on visual inspection, the results might suggest that the Haar- and Symlet6 wavelet
perform better than the Daubechies4 wavelet. However, no statements about true performance can be
made without the use of statistical tests, which is discussed in chapter 6

5.7 Discussion

When looking at the results of the GARCH and EWMA experiments, it becomes clear that the proportion
of failures is not in line with the confidence level when performed with Drost-Nijman scaling: the failure-
rate is too high. This high failure rate is a direct result of systematically underestimating the future losses;
the VaR-figure is too optimistic in this case. However, when inspecting the failure rates with respect to
the GARCH-based VaR-model, a positive trend is visible.

A possible explanation for systematically underestimating future losses can be linked to the Drost-
Nijman equation (2.22). When looking closer to the formula, the scaled volatility is lower than the
original volatility in most cases: risk scaled to ah-day horizon remains in a certain ”area” and has less
freedom to take a variety of values. However, intuitively the risk over 10 days should be larger than
the risk over 1 day. When the risk is estimated lower, the VaR is estimated too low, resulting in many
exceptions.

When inspecting the results of the GARCH and EWMA experiments with
√

h scaling, the results are far
more accurate: they are far more in line with the confidence level. This is an unexpected result, given
that the theory by Drost and Nijman (1993) states that scaling by

√
h is explicitly inappropriate. The

theory has a strong conflict with the results. In addition can be seen that the GARCH model however,
performs better than the EWMA-model.

The same holds for the wavelet-based model and the model with a constant variance. Both types of
models have results which are nearly in line with the confidence level. With respect to the wavelet-based
model, the results of the Symlet6 experiment are slightly more accurate than the two other types. The
added-value of the wavelet-based model lies in the fact that the wavelet-based model is more optimistic
than the model with constant variance, resulting in a VaR which is lower, as less risk is used. The model
with the standard, constant variance assigns conservatively the full amount of risk, resulting in too few
exceptions. Although these experiments give some intuitive insight in the behavior of the models, no real
conclusions can be drawn as long as the models and their results are not validated yet. This is done in
chapter 6.
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Chapter 6

Model validation

6.1 Introduction

Although experimenting is an important step in research, concluding statements can only be made after
a thorough process of validation. The goal of this chapter is therefore to check whether the results as
gathered in chapter 5 are valid. More specific: chapter 5 conducted experiments, where every experiment
yielded a number of failure rates, which were shown in the various tables. The failure rates express the
number of failures as a proportion to the number of observations; they express the number of times the
VaR figure is exceeded on the total of observations. Sometimes a failure rate is 4.3%, for example,
while it is 5.3% the other time, given that the confidence level is 95%. Neither of these failure rates are
exactly 5% and neither of these results are bad results. Rejecting or accepting a model based on just
inspecting these results is not a justified action. Therefore, validation procedures are necessary to make
scientifically justified statements about these results.

The remainder of this chapter is structured as follows: Section 6.2 discusses a general framework for
the validation of VaR-models: backtesting. It discusses why it is important, how it works and which
models are available for making those scientifically justified statements. After reading this section, it
should be clear when to reject and when to accept a VaR-model. Finally, in section 6.3, the same VaR-
models which are used in 5 are validated based on their results, using one of the models as discussed in
section 6.2.

6.2 Validating Value at Risk models - backtesting

VaR models are useful in one way only: if they predict the risk well. Model validation is the process
of checking whether a model performs adequately, which can be done by a set of tools. One of these
tools is backtesting. Backtesting is a tool which verifies whether projected losses are in line with actual
losses, in the form of a statistical framework (Jorion 1996). This entails systematically comparing the
history of VaR forecasts with the corresponding portfolio returns. For VaR users and risk managers, these
checks are essential for examining whether their model is well calibrated. If not, the model needs to be
reexamined, in terms of parameters, assumptions and ways of modelling. The theory and corresponding
models regarding backtesting, are derived from Jorion (1996) and Hull (2000).

Chapter 2 mentioned that under supervision of the Basel Committee, large banks have to base their
capital requirements for market risk exposure explicitly on VaR models with 99% significance and an
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horizon of 10 days. In addition, backtesting plays an important role in the decision the Basel Committee
made for allowing internal VaR models for capital requirements.

When the model is perfectly calibrated, the number of observations falling outside VaR should be in line
with the confidence level.

Definition 3 In this thesis, an observation is a moment where the actual return over an horizon ofh days
is compared with the forecasted VaR number for this same horizon.

The number of observations exceeding the VaR is also known as the number of exceptions. With too
many exceptions, the model underestimates the risk. With too few exceptions, the model is in fact
conservative, leading to an inefficient allocation of capital.

As already mentioned, backtesting involves systematically comparing the history of VaR forecasts, with
the actual, subsequent returns. With perfectly calibrated model, the number of exceptions should be in
line with the confidence level. With a 95% confidence level, one expects 5% exceptions. However, in
practice this is not the case: a greater percentage - 6%, 7% or 8% percent can also be found, as a result
of bad luck. A smaller amount of course, can be found as well. At some point, there must be a decision
made to accept or reject the current model. The decision can be made based on the results of a statistical
test. These statistical tests are discussed in the next section.

6.2.1 Exception-based model backtesting

One way to verify the accuracy of the model, is to examine the failure rate of the model.

Definition 4 The failure rate is the proportion of times the VaR figure is exceeded in a given sample.
As at a given moment, a VaR number is specified given a certain confidence levelc for a total of T
observations,N is defined as the number of exceptions - i.e. the number of observations where the
actual loss exceeds the VaR - andN

T is the failure rate (Jorion 1996).

In this situation, the user wants to know at a given confidence level, whetherN is too small or too large
under the null hypothesis that the probability of an exception to occurp = P (for instance, 0.01, 0.02 or
0.05) in a sample size ofT , without making any assumption about the returns distribution. A setup for
this test is the framework called the Bernouilli trials, which is used for testing sequences of success and
failure. The number of exceptionsN follows a binomial probability distribution:

f(x) =
(

T

N

)
pN (1− p)T−N (6.1)

with E(N) = pT andσ2 = p(1− p)T .

WhenT is large, the central limit theorem1 can be used to approximate the binomial distribution by the
normal distribution - as a shortcut:

z =
N − PT√
p(1− p)T

∼ N (0, 1) (6.2)

This binomial distribution can be used to test whether the number of exceptions is acceptably small.

1the central limit theorem is also depending on the size ofp. Whenp(1−p)T > 9, (6.2) is a good approximation. However,
when for instanceT is large butp is small (yielding a figure< 9), then the approximation can be improved by usingcontinuity
correction, i.e. replacingN by N + 0, 5.
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Probability levelp VaR confidence level T = 255 days T = 510 days T = 1000 days

0.01 99% N < 7 1 < N < 11 4 < N < 17
0.025 97.5% 2 < N < 12 6 < N < 21 15 < N < 36
0.05 95% 6 < N < 21 16 < N < 36 37 < N < 65
0.075 92.5% 11 < N < 28 27 < N < 51 59 < N < 92
0.10 90% 16 < N < 36 38 < N < 65 81 < N < 120

Table 6.1: Model backtesting - 95% confidence test confidence regions

Example 6.2.1 Suppose we have 250 observations. Suppose we have a VaR model with a significance
level of 99%. We’d like to know the probability that more than 4 exceptions occur. Then the situation is
as follows:

• T = 250

• p = 0.01

• N = 4

After substituting the right figures into the right equation, it tells us that more than 4 exceptions can be
found in 10.8% of the time, and more than 3 exceptions 24.2% of the time.

Another model for failure-rate based backtesting is the test created by Kupiec, in 1995 (Jorion 1996). He
developed 95% confidence regions for such a test. These regions are shown in table 6.1. It is important
to keep in mind that the 95% confidence level for a VaRmodelbeing correct should not be confused
with the confidence level of the VaRfigure itself. Therefore, the table can help with making a decision
whether to accept the model or not, depending on if the number of exceptions lies in a specific region,
given the number of observationsT and the VaR confidence level.

Each of these regions are defined by the tailpoint of the log-likelihood ratio:

LRuc = −2 ln
[
(1− p)T−NpN

]
+ 2 ln

{[
1−

(
N

T

)]T−N (N

T

)N
}

(6.3)

Again, the variableN is the number of exceptions, where the variableT is the total number of obser-
vations. The variablep is the probability of an exception to occur. This ratio is asymptoticallyχ2-
distributed, with 1 degree of freedom, under the null hypothesis thatp is the true probability. To see how
this works, consider example 6.2.2.

Example 6.2.2 Suppose we have a VaR model with a 99% percent coverage. We have observations of 2
years of data, which is 510 observations. Recall from definition 3 that an observation can be made over
any horizon, not necessarily a day.

When looking up the value not to be exceeded in a statistical table ofχ2-values, the value corresponding
to a 95% confidence level and 1 degree of freedom is 3.84. When insertingT = 510 andp = 0.01 into
equation (6.3), each value ofN between 6 and 11 yields an outcome ofLRuc smaller than or equal to
3.84. Every value ofN smaller than 2 or greater than 10 will yield a value ofLRuc larger than 3.84.
And, if the value is larger than 3.84, the model will be rejected. Kupiec created the table by systematically
checking the values ofN yielding a value ofLRuc smaller than or equal to 3.84.2

2Again, Microsoft Excel provides an easy way to check the table. Easily can be seen thatLRuc remains under the 3.84
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6.2.2 Distribution forecast-based backtesting

Exception based methods are involving only one quantile as opposed to the whole distribution. Crnkovic
and Drachman (1996) state that institutions should involve the entire probability density function and
should assess the quality of the forecast likewise. Their method extends the idea of the exception-based
approach as follows:

• A range of probabilities p between 0 and 1 needs to be selected (for instance, 0.01, 0.02, 0.03 etc.)

• Each day, a riskmanagement system reports a set of VAR numbers for each of the different confi-
dence levels, say VaR1, VaR2 etc.

• The day after, the riskmanagers records whether the observed profit or loss is belowV alueAtRisk1,
V alueAtRisk2 etc.

• At the end of the period, the total number of observations belowV alueAtRiskn are compiled as
Nn.

Finally, the total proportion of observationsNi
T = F̂ (pi) for each probability level is reported. This

is in fact similar to the previously mentioned exception tests, but for a range of values. With perfect
calibration, the empirical distribution should matchp. The following test checks whether the actual
distribution of profits and losses is consistent with its predicted shape:

K = max
i

[
F̂ (pi)− pi

]
+ max

i

[
pi − F̂ (pi)

]
(6.4)

This is a Kuiper test statistic and has a known distribution.

6.3 Validating the various models

In this thesis, the Kupiec test as described in section 6.2 is used for the validation for the various models.
Section 6.2 also showed a table Kupiec constructed for backtesting purposed.

However, as the amount of observations used in this thesis exceeds the amount used in the table, a first
step is to construct a confidence region manually.

A practical way to do this is to use make a graph of equation (6.3) using various values ofN while
holdingT andp constant and inspect the nonrejection region visually. An example of such a graph is
shown in figure 6.1.

The graph shows two lines. The pink line represents the log-likelihood ratio defined by equation (6.3).
The blue line represents the threshold of 3.84: the value in theχ2-distribution table with a 95% confi-
dence level and 1 degree of freedom. The area where the log-likelihood ratio comes under this blue line,
is the non-rejection region.

With (more or less) 3000 observations and a VaR-confidence level of 95%, it gives a nonrejection region
for values ofN between 128 and 176. In the following subsections, all of the failures corresponding to a
model and its parameters are validated using the Kupiec test. This is done by checking if the amount of
failures lie in the nonrejection area, defined by equation (6.3)

when entering values forN corresponding to the region.
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Figure 6.1: Equation (6.3) withT = 3000 andp = 0.05 for various values ofN

6.3.1 Validating the various models - GARCH/EWMA

Chapter 5 reported the failure rates for the VaR models with a standard constant variance approach, an
EWMA/GARCH approach, and a wavelet-based approach. The failure rates for a 5-, 10-, 15- and 20-
day horizon were reported, given a 95%, a 97.5% and a 99% confidence level. The experiments were
conducted on both an artificial and a real-life dataset.

Table 6.2 displays the failures for VaR confidence levels 95%, 97.5% and 99% for 10-, 15- and 20-day
horizons. These failures are expressed as the number of failuresN , rather than the proportion of failures
on the total of observations,N

T . These failures are obtained from the results of the real-life dataset. For
the experiments based on a GARCH/EWMA model, the results for both

√
h-scaling and Drost-Nijman

scaling are shown. For the wavelet-based models, the results are shown for the regular model and the
variant with one extra level of information included.

The first column represents the type of model and the confidence level. Columns 2-7 represent the
amount of failures for a 10-, 15- and 20-days horizon, given the type of model and the confidence level.
Column 8 represents the non-rejection region, or the interval the number of failures should lie in, in order
to be accepted. These intervals are calculated using equation (6.3).

For 3000 observations and a VaR-confidence level of 95%, the failure rates for the GARCH-based model
with Drost-Nijman scaling fluctuate between the 353 and 418. The Kupiec test accepts the model when
these failures fall in the nonrejection region (128-176), implying that the tests reject the GARCH-based
model with Drost-Nijman scaling in this setting.

The same holds for the EWMA model with Drost-Nijman scaling, with failures fluctuating between the
600 and 750, which are far too high. These failures are to high for accepting the EWMA-based model
with Drost-Nijman scaling, which could be accepted if return failures between 128 and 176.

When inspecting the results, the GARCH-based VaR-model with
√

h-scaling is accepted in nearly all sit-
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Model 10 days 15 days 20 days 10 days 15 days 20 days nonrejection region
% conf. Constant variance
95% 107 126 118 128 < N < 176
97.5% 66 77 80 62 < N < 95
99% 44 41 47 21 < N < 44
% conf. GARCH -

√
h-scaling GARCH - Drost-Nijman-scaling

95% 126 132 143 418 397 353 128 < N < 176
97.5% 75 77 74 322 322 281 62 < N < 95
99% 49 43 37 242 234 195 21 < N < 44
% conf. EWMA -

√
h-scaling EWMA - Drost-Nijman-scaling

95% 186 203 214 733 792 792 128 < N < 176
97.5% 126 148 157 656 731 728 62 < N < 95
99% 90 95 98 578 651 669 21 < N < 44
% conf. Wavelet(Haar)-without extra level Wavelet(Haar)-with extra level
95% 152 170 142 130 147 129 128 < N < 176
97.5% 94 119 92 77 94 87 62 < N < 95
99% 64 69 62 56 54 57 21 < N < 44
% conf. Wavelet(Daubechies4)-without extra levelWavelet(Daubechies4)-with extra level
95% 164 179 151 140 152 139 128 < N < 176
97.5% 108 130 101 85 106 91 62 < N < 95
99% 69 79 66 60 57 61 21 < N < 44
% conf. Wavelet(Symlet6)-without extra level Wavelet(Symlet6)-with extra level
95% 158 171 146 131 149 133 128 < N < 176
97.5% 98 119 94 79 100 87 62 < N < 95
99% 65 74 62 58 55 59 21 < N < 44

Table 6.2: Failures of the various models - boldfaced results indicate an accepted model

uations. The EWMA-based model with
√

h-scaling however, is not. The model is slightly too optimistic,
generating failures which are outside the non-rejection region.

6.3.2 Validating the various models - constant variance

The model based on a constant variance performs well. Table 6.2 shows that for the 97.5% region, all
of the values lie in the non-rejection region, implying that the Kupiec test accepts all of the models,
for all horizons. However, for the 95% VaR-confidence level, the model is quite conservative. As all
risk is included, the VaR is estimated too high, resulting in too few exceptions for all horizons. For the
99% VaR-confidence level, the model is a little bit too optimistic. Given the 99% confidence level, it is
exceeded for nearly all horizons.

6.3.3 Validating the various models - wavelets

Table 6.2 shows the effect of including one extra level of information on the results. More models are
accepted when using this variant. In case of the Haar-based model, the model is accepted in nearly all
cases, except for the 99% confidence level. This implies that for the default setting, which is the 95%
confidence interval, the model outperforms the GARCH-based model. Including this extra amount of
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information causes the VaR-figure to increase, resulting in less exceptions. The results suggest that using
this variant is preferable.

However, as already mentioned, all wavelet-based models are rejected for the 99% confidence level.
When inspecting the magnitudes of the failures, the results suggest that the Haar- and Symlet6 wavelet
facilitate a better performance than the Daubechies4 wavelet, due to less exceptions. The difference in
performance can be linked directly to the distribution of energy corresponding to the wavelet, as a result
of the different features each wavelet has.
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Chapter 7

Conclusions and future research

7.1 Summary

This thesis gives an answer to the three questions articulated in the introduction. Firstly, an analysis
indicates that wavelet-analysis, as a tool, can decompose a financial time-series into multiple levels.
Decomposing a financial time-series reveals the behavior of this time-series at different time-scales.
Interesting is to see that the Discrete Wavelet Transform can decompose a signal into multiple levels
and that the signal can be perfectly reconstructed. Decomposition and reconstruction using scaling and
translation based on dyadic steps is sufficient for perfect reconstruction, rather than steps of any length
as the Continues Wavelet Transform does. In addition, the thesis shows that wavelets and the concept
of time-scale decomposition in particular, already play an important role in finance and economics. The
thesis also gives an overview of VaR-estimation and discusses the available models for VaR estimation
and their shortcomings.

Secondly, the fact that wavelets are designed to have a special property, orthonormality, shows that the
decomposition is energy preserving. Through use of this notion, the thesis shows that the energy of a
time-series and the variance of a time-series are related. Experiments indicated that the variance (or
volatility) remains preserved over all levels and all variances captured in the individual levels sum up
to the original variance captured in the time-series. In addition, these experiments give insight in the
distribution of energy over the individual levels.

Through use of the wavelet-energy distribution, insight can be given in the distribution of volatility
over the various levels of decomposition. Based on this insight, an alternative, wavelet-based model
for Value At Risk estimation is formulated. The model decomposes the original signal by performing
a multiresolution analysis and makes a distinction between relevant and irrelevant information in terms
of the considered time-scale. Therefore, it assesses only the levels corresponding to the relevant time-
horizon, yielding an amount of risk tailored to a specific horizon.

Thirdly, the experiments have shown that the formulated wavelet-based model and a variant on this model
are a decent alternative to the time-varying volatility models (GARCH/EWMA). The experiments also
showed that the complex method of scaling using the Drost-Nijman equations does not yield an accurate
VaR-model. The traditional method of scaling with

√
h yields quite accurate models, though not in line

with the theory. The fact that Drost-Nijman scaling does not yield satisfactory results, can be a result
of the dataset, the result of wrongfully made assumptions or perhaps the application in the field of VaR
estimation might not be appropriate at all. However, the fact still remains that scaling with

√
h in an

independently, identical distributed environment indeed yields satisfactory results, which has a strong

85



conflict with the theory Drost and Nijman (1993) proposed. As mentioned in chapter 5, lowering risk
over a longer period rather than amplifying it is counterintuitive, which is in fact the result of the Drost
and Nijman equations. Lowering the risk, yields a smaller Value At Risk estimate, resulting directly in a
higher number of failures to happen.

Backtesting models show that for a VaR-model to be accepted, the number of the failures should lie in a
specific, predetermined region, depending on the number of observations and level of (VaR) significance.
The thesis shows how validation of the results gathered in chapter 5, through use of such a particular
backtesting model, referred to as the Kupiec test.

Through use of this test and the corresponding findings, table 6.2, scientifically justified statements
can be made. The findings indicate that the wavelet-based model, using the Haar wavelet, is in fact a
decent alternative to the GARCH-based model with

√
h-scaling, but does not outperform this model: it

underestimates the VaR on the 99% confidence level. The GARCH/EWMA models with Drost-Nijman
scaling are rejected for all horizons and all confidence levels. This also holds for the EWMA model with√

h-scaling. However, the performance with
√

h-scaling yields far more preferable results than with
Drost-Nijman scaling.

The model with a constant variance underlines the added-value of the wavelet-based model: as all risk is
entirely used, the model conservatively overestimates the VaR, resulting in too few exceptions, causing
the Kupiec test to reject some instances of this model. The wavelet-based model indicates that by taking
into consideration the appropriate amount of information, the model generates not too much and not too
few failures on the real-life dataset.

7.2 Discussion

The thesis has shown that the wavelet-based model outperforms the model with constant variance; the
wavelet-based model assesses only the ”relevant” information. Therefore, the VaR was estimated lower,
causing more (the exact amount of) failures to occur. Interesting here, is to discuss the fact that ”relevant”
information, as we may call it so, concentrates in the high-frequent regions. One might expect though,
that this should rather concentrate in the lower frequent behavior: the introduction of chapter 3 already
mentioned that low-frequent behavior gives the signal its identity.

In addition, another discussion can discuss the fact that a model, assuming the historical variance to be
constant, performs equally well - and better in some cases - compared to the more complex models which
have the assumption that volatility behaves dynamically over time. Finally, the fact that scaling with

√
h

yields far more accurate VaR-models than the models which use Drost-Nijman scaling, which is most
certainly not in line with the theory, should be discussed as well.

Future research should most certainly assess the possibilities for extending the wavelet-based model with
weights different than1. Chapter 4 already mentioned this idea. Using the notion of weights, the weights
can increase or decrease the amount of risk corresponding to a level, resulting in the VaR estimate to
be higher or lower, resulting in a higher or lower number of failures to happen. Weights therefore, can
help to fine tune the model. This idea can be further extended to the arena of computational intelligence.
The weights can be estimated such that the model performs maximally at the trainingset. This weight
estimation can be performed by learning: for each observation, an estimate of the VaR and the return over
this period are available. Then, a value can be assigned to the weights, such that for each observation, the
VaR estimate is close to the realized return over the same period. Algorithms such as neural networks are
available for an implementation of this idea. For a more detailed discussion regarding neural networks, I
refer to Jang et al. (1997).

86



This research considered Value at Risk estimation for a portfolio with stocks. I truly recommend research
which extends the wavelet-based model for more complex, perhaps derivative-based, financial portfolios.
Looking at risk from the perspective of time and scale can yield new insights, not only in the domain of
finance and economics.
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Chapter 8

Appendix - Tools for wavelet analysis

For the analysis of signals and images, various software tools are available. Some tools are available in a
stand-alone version, others are available as an extension on existing (mathematical) software packages.
For the purpose of this research, Mathworks’ Matlab - a commonly used software package for research
purposes - is used as the basic software package. Version 6.5 is the latest version. Matlab is very useful,
as all of the operations are vector-based. In addition, Matlab facilitates the use of external, pre-compiled
programs for faster calculations, which seriously reduces the time of computations. Currently, three
commonly used toolboxes for wavelet analysis are available. Each of these toolboxes are designed for
use in combination with Matlab.

These toolboxes are:

• Mathworks’ Wavelet Toolbox - version 2.2

• Rice Wavelet Toolbox - version 2.4

• Wavelab - version 8.02

In the following sections, each of these toolboxes are reviewed in terms of functionality, ease-of-use and
documentation.

8.1 Tools for wavelet analysis - Mathworks’ Wavelet Toolbox 2.2

The Wavelet Toolbox is an open, customizable environment that lets you easily develop wavelet based
algorithms. The Wavelet Toolbox builds on the numeric and visualization capabilities of Matlab to
provide point-and-click graphical tools and command-line functions for analysis, synthesis, denoising,
and compression of signals and images (Misiti et al. 2002).

8.1.1 Wavelet Toolbox - overview

The Wavelet Toolbox is a comprehensive tool that supports interactive exploration of wavelet properties
and applications. The Wavelet Toolbox is useful in 1-D and 2-D applications such as speech and audio
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processing, image and video processing, communications, geophysics, finance, and medicine. The tool-
box provides an innovative graphical user interface and an extensive collection of Matlab routines (Misiti
et al. 2002).

This toolbox features:

• Continuous wavelet transforms

• Discrete wavelets 1D - transforms,inverse transforms, reconstruction, etc.

• Discrete wavelets 2D - transforms, inverse transforms, reconstruction, etc.

• Discrete stationary wavelets

• Wavelet Packets

• Tree management utilities

• A library of standard wavelet families, including Daubechies wavelet filters, complex Morlet and
Gaussian wavelets and real reverse biorthogonal and discrete Meyer wavelets

• A graphical user interface

Although the toolbox offers a vast amount of functions, for the purpose of this research only the most
important functions are reviewed. These functions are mostly related to the discrete 1D wavelets, in the
form of the discrete wavelet transform. This transform is discussed before in previous sections and is
commonly used in finance and economics. Other applications such as 2D wavelets for image analysis,
denoising and compression are beyond the scope of this research. The toolbox provides the opportunity
to choose either to use the command-line or the graphical user interface (GUI). The installation of the
software package is straightforward and intuitive. The installation of the Wavelet Toolbox is in this case
integrated with the installation of the Matlab package. It is only a matter of choosing the appropriate
installation location. A very detailed and easy-to-read manual (Misiti et al. 2002) accompanies with the
toolbox as well. This manual provides a complete overview of the package, with a detailed description
of wavelet analysis in general, and its applications. Each of the functions is described in detail, mostly
accompanied with some numerical examples or real-life cases. Most examples are both demonstrated for
use with the command-line as for use with the GUI. The Wavelet Toolbox provides several functions in
the 1D wavelet domain. Each of these functions with a corresponding explanation is shown in 8.1. Note
that functions are indicated with ”()”, regardless of the number of arguments the function accepts

It is immediately apparent that most operations as illustrated with the numerical example from chapter
3 - multilevel decomposition, reconstruction, the 1-level transform - are available. For the remainder
of this section, use of the command-line is illustrated by making the same calculations based on the
previously used signal from chapter 3. Next, the graphical user interface is demonstrated by analyzing
the Euro-Dollar index.

For illustration purposes, the signalf(t) = (5, 7, 10, 11, 8, 5, 4, 4) is considered again. To perform a
single level decomposition on this signal, using the same Haar wavelet, thedwt() function can be used,
which can be directly entered in the Matlab command-line:

[cA1, cD1] = dwt(f,’Haar’);

cA1 corresponds to the set of wavelet coefficients capturing the trend, whereas cD1 corresponds to the
set of wavelet-coefficients capturing the detail. This statement yields the following values:
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Discrete Wavelets 1D
appcoef() Extract 1-D approximation coefficients
detcoef() Extract 1-D detail coefficients
dwt() Single level discrete 1-D wavelet transform
dwtmode() Discrete wavelet transform extension mode
idwt() Single level inverse discrete 1-D wavelet transform
upcoef() Direct reconstruction from 1-D wavelet coefficients
upwlev() Single level reconstruction of 1-D wavelet decomposition
wavedec() Multilevel 1-D wavelet decomposition
waverec() Multilevel 1-D wavelet reconstruction
wenergy() Energy for 1-D wavelet decomposition
wrcoef() Reconstruct single branch from 1-D wavelet coefficients

Table 8.1: Overview of Wavelet Toolbox - Discrete Wavelet Analysis 1D functionality

cA1 = 8.4853 14.8492 9.1924 5.6569

cD1 = -1.4142 -0.7071 2.1213 0

Note here that these two sets of wavelet-coefficients correspond exactly with the values from the numer-
ical example in 3, though not written in squareroot-form. To construct the level-1 approximation and
detail (A1 andD1) from the coefficients cA1 and cD1, the following statements can be used:

A1 = upcoef(’a’,cA1,’Haar’,1,l f);

D1 = upcoef(’d’,cD1,’Haar’,1,l f);

Here, l f corresponds to the length of the signalf(t), whereas’a’ and ’d’ indicate that the recon-
structed signal corresponds to either approximation or detail. Execution of this statement yields:

A1 = 6.0000 6.0000 10.5000 10.5000 6.5000 6.5000 4.0000 4.0000

D1 = -1.0000 1.0000 -0.5000 0.5000 1.5000 -1.5000 0 0

Notice again that D1 corresponds to the result ofD1 in the numerical example of 3. In a nearly similar
fashion, a level-3 decomposition using the Haar wavelet can be performed on the signalf(t). Nearly, as
the wavedec() routine, rather than the dwt() routine, has to be invoked for a multilevel decomposition:

[C,L] = wavedec(f,3,’Haar’);

Although this statement doesn’t yield any direct information, each of the wavelet coefficients corre-
sponding to each of the levels can be extracted individually. These coefficients can be extracted using
the following statement for the wavelet coefficients capturing the trend subsignal:

cA3 = appcoef(C,L,’Haar’,3);

and the following statements to extract the wavelet coefficients capturing the detail signal:.

cD3 = detcoef(C,L,3);

cD2 = detcoef(C,L,2);

cD1 = detcoef(C,L,1);

These statements yield the following results, equal to the results of example 3.2.1:
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cA3 =19.0919

cD1 = -1.4142 -0.7071 2.1213 0

cD2 =-4.5000 2.5000

cD3 =4.2426

Finally, the level 3 approximation and the level-1, 2 and 3 detail of the original signal can be reconstructed
directly from the results of the decomposition,[C,L] . To reconstruct the level 3 approximation from C,
the following statement can be entered:

A3 = wrcoef(’a’,C,L,’Haar’,3);

The following statements can be entered to reconstruct the level-1, 2 and 3 detail:

D1 = wrcoef(’d’,C,L,’Haar’,1);

D2 = wrcoef(’d’,C,L,’Haar’,2);

D3 = wrcoef(’d’,C,L,’Haar’,3);

The results of these statements are the following:

A3 = 6.7500 6.7500 6.7500 6.7500 6.7500 6.7500 6.7500 6.7500

D3 = 1.5000 1.5000 1.5000 1.5000 -1.5000 -1.5000 -1.5000 -1.5000

D2 = -2.2500 -2.2500 2.2500 2.2500 1.2500 1.2500 -1.2500 -1.2500

D1 = -1.0000 1.0000 -0.5000 0.5000 1.5000 -1.5000 0 0

Which counts up to the original signal, as demonstrated in 3

8.1.2 The Wavelet Toolbox - Graphical User Interface

In addition to the command line, the Wavelet Toolbox provides the opportunity to analyze signals and
images using a graphical user interface, instead of entering the individual statements. Using the GUI
yields immediate results, though reduces the amount of control one has on the process of analysis. The
GUI offers graphical tools for basic 1D and 2D analysis. In addition, the GUI offers specialized 1D
and 2D tools and tools to analyze and examine wavelets and their corresponding wavelet families and
wavelet packets. Finally, the GUI provides tools for signal and image extension. For the purpose of this
research, this section concentrates solely on the basic 1D wavelet tools. As an example, the index of
the Euro/Dollar ratio will be analyzed using wavelets. This index starts at January 5th 1999 and ends at
March 1st 2000. The signal is presented in figure 8.1.

The signal can be analyzed with a variety of different wavelets; Haar wavelets, Daubechies wavelets,
Symlets, Coiflets or Biorthogonal wavelets. Each of these wavelets can be configured with different
properties. The signal can be analyzed at different levels. As mentioned earlier, each class of wavelets
has its own properties. The first decomposition is based on the Haar wavelet, as can be seen in figure 8.2.
Although the level-1 detail signal resembles the level-1 detail signal of the Haar decomposition strongly,
it’s obvious that the trend signalA3 is a coarse and ’stepwise’ approximation of the original signal.
This can be justified with the fact that the Haar wavelets have a small support, computing averages and
differences based on a smaller amount of values.

96



Figure 8.1: Euro-Dollar index (January 5th 1999 - March 1st 2000)

Figure 8.2: Haar decomposition of the Euro-Dollar index
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Figure 8.3: Symlet5 decomposition of the Euro-Dollar index

The second decomposition is based on the Symlet5 wavelet, as can be seen in 8.3. It is immediately
obvious that the Symlet5 decomposition yields a finer trend signalA3, due to its large support width. In
the final period of the original signal, heavier oscillations are evident. As can be seen, this is visible in
the level-2 and level-3 detail signal,D2 andD3.

8.1.3 The Wavelet Toolbox - conclusion

To conclude with, it can be stated that Mathworks’ Wavelet Toolbox is an extensive, comprehensible
and easy-to-use environment for wavelet analysis. The toolbox is complete in its functionality, and
the use of the functions is intuitive and straightforward, as it corresponds strongly with the available
literature. In addition, the documentation gives complete and detailed insight in how the toolbox works,
accompanied with detailed information on wavelet-analysis in general. The command line gives insight
in the operations regarding wavelet-analysis, whereas the graphical user interface gives the user visual
insight in the process of decomposition, reconstruction, denoising, compression and more. In short, the
Wavelet Toolbox scores very high on ease-of-use, functionality and documentation.

8.2 Tools for wavelet analysis - Rice Wavelet Toolbox

The Rice Wavelet Toolbox is a collection of Matlab routines, developed for wavelet decomposition and
wavelet denoising and the toolbox is developed by members of the DSP group, from the Rice University
in the USA.
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Wavelet transforms
mdwt() Discrete orthogonal wavelet transform using Mallat alg. (1D and 2D)
midwt() Inverse discrete orthogonal wavelet transform
mrdwt() Undecimated (redundant) discrete wavelet transform (1D and 2D)
mirdwt() Inverse undecimated discrete wavelet transform
daubcqf() Daubechies filter coefficients
Wavelet domain processing
denoise() Denoise signal and images by thresholding wavelet coefficients
HardTh() Hard thresholding
SoftTh() Soft thresholding
Other
makesig() Create Donoho-Johnstone test signals
compile() Compile the Rice Wavelet toolbox (could be necessary to run the first time)

Table 8.2: Overview of Wavelet Toolbox - Discrete Wavelet Analysis 1D functionality

8.2.1 Rice Wavelet Toolbox - overview

In contrast to the previously reviewed toolboxes, the Rice Wavelet Toolbox (RWT) is a very simple
toolbox, as it has only functionality implemented for wavelet decomposition and denoising, and some
supporting functionality. The installation of the toolbox is easy and straightforward. The documentation
however, is rather scarce, as it is restricted to a description of the functions. The help of the functions
is good, as each function is described using small examples for both 1D and 2D applications and each
parameter is described completely. The toolbox provides the functions as shown in table 8.2.

In the remainder of this section, use of the Rice Wavelet Toolbox is illustrated through an example of
wavelet transformation. Next, an example of wavelet-based denoising is given by using the Euro-Dollar
index.

Similar to the other toolboxes, RWT provides the functionality to perform a decomposition based on
the original signal. For illustration purposes, the signalf(t) = (5, 7, 10, 11, 8, 5, 4, 4) is considered. To
decompose a signal, themdwt() function has to be invoked. To perform a single level decomposition
on this signal, using the Haar wavelet, themdwt() function can be used, which can be directly entered
in the Matlab command window:

[y,L] = mdwt(x,h,L);

herey corresponds to a new vector containing the wavelet coefficients, with the coefficients arranged in
the order of increasing frequency.L corresponds to the depth of the decomposition andx corresponds to
the original signal andh corresponds to the filter. To invoke the statement correctly, a filter needs to be
created. This can be done by the statement:

[h 0,h 1] = daubcqf(N,TYPE);

where holds thath 0 corresponds to the Daubechies scaling filter andh 1 corresponds to the Daubechies
wavelet filter.N corresponds to the length of the filter (i.e. the order of the Daubechies wavelet).TYPE
corresponds to an optional parameter that distinguishes the minimum phase, maximum phase and mid-
phase solutions. Finally, the statement

h = daubcqf(2, ’min’);
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can be used. Recall that a Daubechies-2 wavelet is similar to the Haar wavelet.Min is the default setting.
With this statement, the following statement can be made:

[y,L] = mdwt(f, h, 1)

yielding:

y = 8.4853 14.8492 9.1924 5.6569 -1.4142 -0.7071 2.1213 0

Note here that these two sets of wavelet-coefficients correspond exactly with the values from the nu-
merical example in chapter 3, though not written in squareroot-form. Furthermore, a level-2 wavelet
decomposition can be performed on the signal by invoking the following statement

[y,L] = mdwt(f, h, 2)

yielding:

y = 16.5000 10.5000 -4.5000 2.5000 -1.4142 -0.7071 2.1213 0

Similarly, a statement for the level-3 decomposition yields

y = 19.0919 4.2426 -4.5000 2.5000 -1.4142 -0.7071 2.1213 0

The original signal can be reconstructed through the inverse wavelet transform, using the midwt function:

[x,L] = midwt(y,h,L)

Recall that aj-level reconstruction can be based only on aj-level decomposition. For the level-3 recon-
struction of the original signal, the result is:

x = 5.0000 7.0000 10.0000 11.0000 8.0000 5.0000 4.0000 4.0000

which equals the original signalf(t). Although the RWT toolbox can perform a decent decomposition
of the signal, this can only be performed using wavelets of the Daubechies family. In addition, the
signal can only be reconstructed to the original signal with the inverse wavelet transform. There is no
functionality implemented for wavelet reconstruction yielding aj − th approximation andj − th detail
of the original signal. As a result, this has to be done by performing equation (3.19) manually.

8.2.2 Rice Wavelet Toolbox - command line denoising

RWT has implemented functionality for wavelet-based denoising. Denoising is equal to performing a
j−level wavelet decomposition on the original signal, eliminating all values below a certain threshold
and reconstructing the original signal back using the inverse wavelet transform. For illustration purposed,
the previously used Euro-Dollar index will be used here. In RWT, this can be done by invoking the
statement:

[xd,xn,option] = denoise(x,h,type,option);

wherexd corresponds to the original signal andxn corresponds to the noise termxd− x. The variable
option corresponds to a vector of actual parameters used by the program. The variablex corresponds
to the original signal andh corresponds to the wavelet filter. The variabletype corresponds to the type
of transform (DWT or undecimated DWT) andoption corresponds to an option vector. After invoking
this function, the original and denoised signal can be plotted in one particular window, which makes the
effect of the denoising clear. The result is shown in figure 8.4.
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Figure 8.4: Euro-Dollar index - original (red) and denoised (blue)

8.2.3 Rice Wavelet Toolbox - conclusion

To conclude, it can be stated that the RWT is a toolbox which can be used for the smaller wavelet
applications. The wavelet decomposition yields the correct results, but lacks functionality for complete
reconstruction, which is a pity. Wavelet based denoising is complete as well, as the user can choose
between several thresholding techniques and parameters. Although the help in Matlab is complete, the
documentation accompanied with the toolbox is rather scarce. In this context, RWT scores well on
ease-of-use, but scores low on both functionality and documentation.

8.3 Tools for wavelet analysis - Wavelab 8.02

Another toolbox available for wavelet analysis is Wavelab. The current release of Wavelab is version
8.02. It is a library of Matlab routines for wavelet-analysis, wavelet packet analysis, cosine-packet
analysis and matching pursuit. This library has been used in teaching courses on wavelet transforms
and time-frequency transforms at Berkely and Stanford University.

8.3.1 Wavelab - overview

The toolbox features:

• Continuous wavelet transforms

• Discrete wavelets 1D - transforms, inverse transforms, reconstruction,

• Discrete wavelets 2D - transforms, inverse transforms, reconstruction,
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• Discrete stationary wavelets,

• Wavelet packet analysis,

• Cosine packet analysis,

• Matching pursuit,

• Time-frequency analysis,

• Fractals.

Wavelab offers a wide variety of functionality. Most of the functionality as described above, is im-
plemented with the support of a substantial amount of functions. However, some of the functionality,
especially the discrete 1D/2D wavelet transformation is not as richly implemented as the wavelet packet
functionality. Again, for the purpose of this research, the focus lies upon discrete 1D wavelet analysis,
as this is most commonly used in the domain of finance and economics. Although there is some browser
functionality for signals, Wavelab doesn’t offer a graphical user interface as extensive as the Mathworks’
toolbox. In addition, the installation of Wavelab is relatively difficult and requires in-depth knowledge
of Matlab, inspite of the accompanied documentation. With respect to this documentation, the manual
of Wavelab is restricted to an overview of the toolbox, installation information and a summation of the
available functions and the corresponding input-output parameters, which is basically the same as in-
voking the help command on these functions from the Matlab command-line. For the remainder of this
chapter, use of Wavelab is demonstrated through an example of wavelet decomposition.

8.3.2 Wavelab - command line decomposition

Similar to other toolboxes, Wavelab provides the functionality to perform a decomposition based on the
original signal. For illustration purposes, the signalf(t) = (5, 7, 10, 11, 8, 5, 4, 4) is considered. To
decompose a signal, thefwt po function has to be invoked, which is a forward wavelet transform (fwt),
periodized and orthogonal (po). To perform a single level decomposition on this signal, using the Haar
wavelet, thefwt po function can be used, which can be directly entered into the Matlab command-line.
Wavelab highlights in the help function thatfwt po is the standard function for discrete orthogonal
wavelet decomposition, which is similar to the decompositions illustrated in the other toolboxes. The
usage of the function is:

wc = FWTPO(x,L,qmf);

wherewc corresponds to a vector containing wavelet coefficients andx corresponds to the original
signal.L corresponds to the level andqmf corresponds to the quadrature mirror filter, which is basically
the wavelet filter the decomposition is based on. Similar to RWT, the filter has to be constructed first. In
this context, the statement:

qmf = makeONfilter(’Haar’);

suffices to construct the filter. Finally, the following statement yields the level-1 decomposition:

wc = FWTPO(f,2,qmf);

wc = 8.4853 14.8492 9.1924 5.6569 1.4142 0.7071 -2.1213 0

Note here that although the magnitudes of the values correspond exactly to the values of the numerical
examples and the examples of the other toolboxes, the signs of the values don’t. This can be a result of a
different interpretation of the Haar-wavelet.
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Featured functionality Wavelet Toolbox Wavelab Rice Wavelet Toolbox
Continues wavelets X X
Wavelet denoising X X X
Wavelet compression X X
Wavelet packets X X
Discrete stationary wavelets X X
Graphical User Interface X
Wavelet families, descriptions and operationsX
Wavelet demonstrations X X
Tree management utilities X X
Time-frequency tools X
Fractals X
Discrete wavelets - 1D X X X
Discrete wavelets - 2D X X X
Cosine packet analysis X
Matching pursuit X

Table 8.3: Overview of functionality - all toolboxes

8.3.3 Wavelab - conclusion

The Wavelab toolbox is very functional in terms of a large collection of functions. Each of the applica-
tions, with exception of decomposition, is supported with a substantial amount of functions. However,
the installation is rather complicated. In addition, using the functions demands sincere knowledge of both
Matlab and wavelet analysis in general. The documentation is rather scarce as well, for it is a print-out
of the help corresponding to all of the functions.

8.4 Comparison of the toolboxes

This section discusses the three toolboxes in the form of a brief comparison. Mathworks’ Wavelet Tool-
box is a very functional toolbox and covers nearly the same functionality as Wavelab. However, each of
these functions are better documented and are easier to use. In addition, the extensive GUI gives tremen-
dous insight in the use of wavelets and the effect of different properties on the decomposition. In addition,
Mathworks’ Wavelet toolbox facilitates the wavelet reconstruction on different levels, yielding approxi-
mation and detail componentsAj andDj of the original signal, both available in the command-line and
in the GUI, which is extremely useful in financial time-series analysis. Finally, the documentation is
extensive and complete and gives an excellent overview of the concept of wavelet analysis and all of
the functionality, including numerical examples. It is important that no knowledge of wavelet analysis
at all is demanded in order to start working with the Wavelet Toolbox, where a sincere knowledge of
both Matlab and wavelet analysis is demanded for working with Wavelab. The installation of Wavelab
was not straightforward. It demanded in-depth knowledge of Matlab in order to get the toolbox working.
The Rice Wavelet toolbox scores, as already mentioned, low on both functionality and documentation.
However, the toolbox is straightforward and easy-to-use. With respect to functionality, an overview is
given for each of the toolboxes. This overview is shown in table 8.3. This comparison facilitates the final
conclusion, which is shown in table 8.4.
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Criteria Wavelet Toolbox Wavelab Rice Wavelet Toolbox
Functionality ++ ++ -
Ease-of-use ++ - +
Documentation ++ - -

Table 8.4: Tools for wavelet analysis - scoreboard

104


	Introduction
	Risk
	Risk management in finance
	Value at Risk
	Definition of the research question
	Methodology
	Structure of the thesis

	Value at Risk estimation
	Introduction
	Value at Risk in finance and economics
	Estimating Value at Risk
	A linear model for a multiple asset portfolio
	Modelling time-varying risk
	Volatility estimation
	ARCH, GARCH(P,Q) and EWMA models
	Maximum likelihood methods
	Scaling

	Shortcomings

	Wavelet analysis
	Introduction
	The wavelet transform - decomposition
	The Discrete Wavelet Transform - general idea
	The Discrete Wavelet Transform - mathematical framework

	The wavelet transform - reconstruction
	Wavelet families
	Exploiting wavelet characteristics
	Haar wavelets
	Daubechies wavelets
	Coiflets
	Symlets

	Wavelets in finance, economics and soft-computing

	Wavelet analysis for Value at Risk estimation
	Introduction
	Preservation of energy
	Estimating the wavelet variance
	Value at Risk estimation using the wavelet energy distribution

	Empirical analysis
	Introduction
	Hardware and software
	Description of datasets
	Value at Risk estimation based on a standard constant variance
	Experiment Design
	Results

	Value at Risk estimation based on GARCH- and EWMA models
	Experiment design
	Results

	Value at Risk estimation based on wavelets
	Experiment design
	Results

	Discussion

	Model validation
	Introduction
	Validating Value at Risk models - backtesting
	Exception-based model backtesting
	Distribution forecast-based backtesting

	Validating the various models
	Validating the various models - GARCH/EWMA
	Validating the various models - constant variance
	Validating the various models - wavelets


	Conclusions and future research
	Summary
	Discussion

	Appendix - Tools for wavelet analysis
	Tools for wavelet analysis - Mathworks' Wavelet Toolbox 2.2
	Wavelet Toolbox - overview
	The Wavelet Toolbox - Graphical User Interface 
	The Wavelet Toolbox - conclusion

	Tools for wavelet analysis - Rice Wavelet Toolbox
	Rice Wavelet Toolbox - overview
	Rice Wavelet Toolbox - command line denoising
	Rice Wavelet Toolbox - conclusion

	Tools for wavelet analysis - Wavelab 8.02
	Wavelab - overview
	Wavelab - command line decomposition
	Wavelab - conclusion

	Comparison of the toolboxes


