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Preface

The background

Creating a thesis is no sinecure. As is often lamented, it is a project which takes much energy
and a substantial amount of time. In fact, the time needed for producing this dissertation
has faulted my expectations in two ways. On the one hand, the actual work took a rather
short time: the starting point was about three and a half years ago when the discipline of
neural networks, as yet unknown to me, made a vague but challenging impression on me.
On the other hand, I must say that the time required has been considerable: almost four and
a half decades of my life have passed in order to arrive at this point. As you might presume,
many reasons can be given for this. Now, contemplating them, I think two issues have been
all-important and, actually, conditions sine qua non for the realization of this work. The
first one relates to the question how I have come in the position to collect enough knowledge,
the second one relates to the case of how I got the opportunity to accumulate enough self-
confidence in order to first start, and then to finish the project. Very many people have helped
me in this process and I would like to thank some of them explicitly here.

Growing up along the borders of the river ‘Wantij’, I discovered many secrets of nature.
My parents offered me much freedom in going my own way, in exploring and in finding out,
using the things I came across. I was surrounded by many friends of my age. Besides having
the usual games, we constructed large piers in the river used for swimming, fishing and
mooring. By doing this, we learned as a matter of course the basic principles of mechanical
engineering. At high school, certain teachers were able to strike the right note in order to
rouse my love for mathematics and physics. I still remember the explanations on algebra
and geometry by my mathematics teacher when I was 13 years old. Likewise, I still recollect
the presentation by my teacher of physics on the differential equation of a simple harmonic
motion

m
d2u

dt2
+ cu = 0,

having a sinuous function as solution. Ever since, I have loved differential equations and,
curiously enough, in a way the said equation plays a part in this thesis!

During my student times at the Technical University Delft, I was often more engaged on
student politics and the social impact of science than mathematics and physics itself (it was
in the seventies . . . ). Nevertheless, I was taught many basic principles of theoretical physics
and mathematics. I also learned how computers could be used, as it was done in those days.
For my master’s thesis, I worked in the field of numerical analysis, and again differential
equations played a big part. My working career started in 1977, almost 19 years ago. Since
that point of time, I stayed at various places (see my curriculum vitae) and I learned many
different subjects. But, whatever my activities were, science continued to attract me. And
fortunately, there have been many opportunities to augment my scientific knowledge. E.g.,
caused by the enormous automation in society, computer science started to cross my path
more and more.

Looking back now, I might say I have been quite lucky to be able to constantly improve
my knowledge and skills during my life. In relation to my scientific background, this pro-
cess has taken place in three fields especially, namely, mathematics, physics and computer
science, all of which have been indispensable for realizing this thesis. Moreover, I have been
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able to increase my self-reliance at the same time, although in a different way. I still remem-
ber very well the moment of finishing my master’s thesis, when I did not feel strong enough
to continue in research: scientific work seemed to be a privilege for other, smarter people.
Besides, another even more difficult task announced itself: our first child was coming and
would soon attract much attention and energy. But ever since, by these and other experi-
ences – like during the Mozambican adventure – my self-confidence could grow, slowly but
eventually to a sufficient measure. The intensive contact with so many colleagues, students,
and, above all, friends have been a crucial factor here.
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close friends and we still are. Of everyone, I am most indebted to you. We have lived to see
incredibly many things together, with the creation of our family of 3 sons as undoubtedly
the most wonderful experience and the most radical decision. Yet, you also gave me a wide
berth for finding out much on my own. More specifically, referring to this thesis, you have
seen all my moods on it, all progress, doubts, attempts and struggles, in other words, the
whole weal and woe of this project. Thanks very much for everything! Next, I would like to
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Chapter 1

Introduction

This thesis refers to an analysis of various models of recurrent artificial neural networks and
to how they might be applied in order to solve certain optimization problems. It therefore
seems most appropriate to start by highlighting the position of the specialty neural net-
works among other areas of science, to present a historical sketch of its development, to
explain what is actually meant by an artificial neural network, and to describe how it can
be applied. We shall then shortly dwell upon the central theme of this study, by presenting
a general mental image of the notion of relaxation and by explaining how this may take
place in a recurrent neural network. Next, the general research objectives are formulated,
including a short sketch of how the project got started and gradually evolved. The subject
of the succeeding section is the methodology used. It also covers a justification of the chosen
working-method. This introductory chapter is concluded by an exposition of the structure
of the rest of the dissertation.

1.1 Artificial neural networks

1.1.1 Artificial neural networks and AI

Artificial neural networks (ANNs) are part of the much wider field called artificial intelli-
gence (AI). AI can be defined as ‘the study of mental faculties through the use of compu-
tational models’ [23]. A related definition is that ‘AI is the study of intelligent behavior’
including ‘the implementation of a computer program which exhibits intelligent behavior’
[32]. In yet another characterization it is noted that ’the objectives of AI are to imitate by
means of machines, normally electronic ones, as much of human activity as possible, and
perhaps eventually to improve upon human abilities’ [67]. An unavoidable difficulty of
these and similar definitions is that they are always based on other notions whose precise
meaning is hard to state1. E.g., in the second description, it is difficult to define precisely
the notion of intelligent behavior. Notwithstanding this, it is clear from the given defini-
tions that usually, within AI, computers are applied to imitate the mental faculties of our
brain which, among other things, comprises of vision, olfaction, language comprehension,
thinking, reasoning, searching, remembering, learning, sensing, and controlling. Besides,
the fundamental question arises: which modelling approach is chosen by AI researchers?
Roughly speaking, two main streams can be distinguished in the ways AI is modelled2,

1This concerns a well known problem in science: definitions are always based on other notions.
At a certain level, one should accept some ‘primary’ terms [53].

2In the background of the modelling problem, an intense philosophical discussion rages on what
human intelligence actually is and, related to this fundamental question, on whether a machine like
a computer can really have a mind (becoming apparent by, for example, the ability to ’feel’ pain and
pleasure). There exist various elaborated points of view on this intriguing subject some of which can
be found in [26, 45, 61, 67].
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namely symbolism and connectionism [32]. The most fundamental difference between the two
approaches concerns the representation of knowledge. In case of symbolism, this is done by
using ‘physical symbols’. In this approach, knowledge is represented and manipulated in
a structured way, e.g., by means of a computer language like Prolog or Lisp. Logic plays a
great part here, and classical expert systems are a well known example. On the other hand,
in the ’connectionistic’ approach, the representation of knowledge is numerical, where the
weight values between the interconnected neurons (see below) represent knowledge in a
distributed and generally unstructured way [54]. In this case, calculus and probability the-
ory are important tools.

1.1.2 Inspiration from the biological brain

In quite a bit of AI research, the qualities of our brains are the source of inspiration. More
specifically, within the study of ANNs, the way our cerebra are composed is directly taken
into account: the biological neural network is imitated by an artificial one where certain
architectonic elements of the cerebra are taken over. The following convenient brain charac-
teristics are often put forward as reasons to study its workings [44, 79]:

• It is fault-tolerant: damage (to individual so-called neurons) can occur without
a severe degradation of its overall performance.

• It is flexible: adjustment to a new environment is easily done through learning.

• It is highly parallel: many neurons process the (locally available) information
simultaneously.

• It is anarchic: there is no specific area which controls the overall working of the
brain and the neurons process the incoming information autonomously.

• It can deal with fuzzy, probabilistic, noisy, and even inconsistent information.

• It is small, compact, and dissipates little power.

Comparing the real brain and all man-made devices, it should be clear that any element of
the latter group enjoys only a tiny subset of the brain properties mentioned above.

The detailed working of the brain has been barely understood. Yet, during the last decades,
both in the symbolic and in the connectionistic camp, many computational models have
been proposed, which proved to be able to imitate certain elementary mental functions. The
construction of those models is usually based on knowledge from many areas of science.
E.g., in the area of natural language comprehension, specialists in linguistics, computer
science and cognitive psychology make important contributions. In robotics, mechanical
and electronic engineering play a big part. Constructing a theorem-proving device requires
knowledge of mathematics, and building an expert system demands, besides knowledge of
logic, the elicitation of quite a bit of ‘domain knowledge’ from experts in the field. When
composing devices which can see or hear, one uses knowledge from physics, and when con-
structing an artificial olfactory organ, one requires knowledge of chemistry too. An example
might give some idea of the variety of information that should be collected to construct a
model with only one specific function. In the ‘signal channelling attention network’ for
modeling so-called ‘covert attention’ (a certain, not overtly visible selective process of sam-
pling the visual environment by the eye used, e.g., to select future targets for eye fixation),
four different disciplines have been applied: biology (neurophysiology), psychology (psy-
chophysics), physics (statistical mechanics), and computer science (parallel computation)
[73].

In the general ANN approach, the focus is firstly mathematical: we try to catch the work-
ing of the brain in abstract mathematical models, which can be analyzed by means of math-
ematical specialties like dynamic systems theory, probability theory and statistics, or com-
putational learning theory. Certain elements of the anatomy and physiology of our brain as
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studied in neurobiology act as source of inspiration in the modelling process, but they are,
in general, merely points of departure. Theoretical physics is relevant in offering several
well studied models which have proven to be useful, and computer science can be used to
perform simulation studies on the ANN models in question. Last but not least, electronic
engineering can be applied in order to construct, test, and apply (successful) ANN models
in hardware.

Moreover, there is a reverse side to the coin. Artificial models of the brain often involve
new paradigms and in their turn, may be adopted to solve (old and new) practical prob-
lems in a (completely) new way. Thus, in this way, nature shows us how to tackle difficult
problems. This surprising, reversing effect may lead to a nice spin-off of the study of arti-
ficial intelligence. In fact, part of the study as described in this thesis exhibits an example
of this recoiling effect: we have tried to solve combinatorial optimization problems in an
alternative way using ANNs.

1.1.3 A brief historical sketch

During the early forties, abstract models concerning the working of a neuron were intro-
duced [60]. A few years later, a law was proposed that explains how a network of neurons
can learn [39]. Approximately at the same time, the symbolic approach was applied by
scientists who made proposals on the construction and implementation of chess-playing
computers (for a more detailed historical overview, we refer to [27]). Another example of
the symbolic way to grapple with AI, was the creation of a theorem-proving program [63].
Later, it was recognized that the logic-oriented approach of this program – precisely like in
the event of chess-playing machines – should be broadened to a knowledge-based approach
where, besides a certain inference strategy, the acquisition and representation of domain
knowledge in a so-called knowledge base is considered to be crucial. The processing of this
knowledge is performed by a separated inference engine and is symbolically oriented. In
the mid-eighties, many expert systems having this architecture were constructed with the
objective of simulating human experts intelligence.

In the mean time, the connectionistic approach had gone through a severe crisis. Often,
the book of Minsky and Papert [62] (published in 1969) is taken as the root of all the trouble
around connectionism in the seventies. It describes certain strong theoretical limitations of
simple perceptrons (a class of certain ANNs). It also expresses the opinion that an ‘interest-
ing learning theorem for a multilayer machine’ might never be found. Yet, some researchers
persevered and in the eighties, neural networks returned to the scene. The backpropagation
algorithm as popularized by Rumelhart et al. [75] has been an important stimulus just like
the contribution by Hopfield using the idea (from physics) of energy minimization [46, 47].
A few years later, neural networks became a quite popular area of research with hundreds
of conferences every year and the genesis of dozens of journals.

Due to the theoretical improvements, ANNs became a new tool in resolving practical
problems. A functional classification yields four application areas [32], namely ‘classifica-
tion’ (assignment of the input data to one of an (in)finite number of categories), ‘association’
(retrieval of an object based on part of the object itself or based on another object), ‘op-
timization’ (finding the best solution), and ‘self-organization’ (structuring received data).
Within any of these classes, many subclasses can be distinguished, each in its own stage
of development. Classification is probably the best-known and largest class with numerous
application areas like speech recognition [21], handwritten digit recognition [58], control [6],
prediction of time series, image compression, and others (for an overview, we refer to [44]).
A collection of applications in the field of optimization and association will be given at the
end of the next chapter.

Nowadays, the symbolic as well as the connectionistic camps have run up against certain
barriers of their approach and seem more prepared to merge and also to integrate with
other promising areas like genetic algorithms [36, 56] and fuzzy systems [54]. In a recent
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textbook [32], this tendency of integration is extensively described and illuminated with
examples. The three fields neural networks, genetic algorithms, and fuzzy systems together
are sometimes termed computational intelligence [29] (see further section 2.2.3).

1.1.4 An overview of ANNs

Nowadays, there are many textbooks3 on ANNs, all using a certain taxonomy.

Defining neural networks

The basic building block of all networks is a neuron (also referred to as a unit, node, process-
ing element, or threshold logic unit). Various neurons are interconnected in differently or-
ganized topologies corresponding to different architectures. A central goal of ANN research
is to understand the global behavior of a given ANN based upon the individual deportment
of the neurons and its interconnections. A precise definition of an ANN is hard to give. The
general definition by Hecht-Nielsen [40] (re-stated in [79]) gives several basic qualities:

“A neural network is a parallel, distributed information processing structure

consisting of processing elements (which can possess a local memory and carry

out localized information processing operations) interconnected together with

unidirectional signal channels called connections. Each processing element has

a single output connection which branches (‘fans out’) into as many collateral

connections as desired (each carrying the same signal – the processing element

output signal). The processing element output signal can be of any mathemati-

cal type desired. All of the processing that goes within each processing element

must be completely local: i.e., it must depend only upon the current values of

the input signal arriving at the processing element via impinging connections

and upon values stored in the processing element’s local memory”.

We would like to subjoin the following important aspect:

A central issue in the employment of a neural network is the way how informa-

tion is encoded in and retrieved from the neural system.

We now look more accurately at the working of an individual neuron. In the mathemat-
ical approach, a neuron is assumed to receive input signals, to add them together, and to
generate an output signal using a given ‘transfer’ (or ‘activation’) function, also termed
input-output characteristic. More precisely, if Oi represents the output of neuron i, Ii an en-
vironmental (or external) input, wij the ‘interconnection strength’ from neuron j to i, Ui the
total input, and g the transfer function, then the new output value of the neuron is calculated
via

Onew
i = g(Uold

i ) = g(
∑

j

wijO
old
j + Ii). (1.1)

The vector O = (O1, O2, . . . , On) is often called the system state of a neural network having n
neurons. From (1.1) we see that the signals incoming from other neurons are weighted4.

3The most important one for this thesis has been the book by Hertz, Krogh, and Palmer [44]. A
classic is the book by Rumelhart et al. [75], another classic that of Hecht-Nielsen [41]. Still other
general books on ANNs are available, for example, [30, 32, 38, 54, 79, 82].

4In neurobiological terms, a weight wij represents the ‘strength of the synapse’ connecting neu-
ron j to neuron i [44].
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Figure 1.1: A scheme of an artificial neuron.

In the first model by McCulloch and Pitts [60], the transfer function is a binary threshold
unit. The equation (1.1) can then be rewritten as

Onew
i = Θ(

∑

j

wijO
old
j + Ii − µi), (1.2)

where µi is the local threshold value of neuron i and Θ is the unit step or Heaviside function
defined conform

Θ(x) =

{
1 if x ≥ 0
0 otherwise.

(1.3)

Other choices for the transfer function [44] include linear functions and non-linear functions
like the sigmoid function (section 2.1.5). Even stochastic transfer rules are possible (section
2.3.3).

Having defined the transfer function, we must still choose a rule for the updating se-
quence of the neurons [44]:

• Asynchronous updating: one unit at a time is selected and its output value is
adjusted according to equation (1.1).

• Synchronous updating: at each time step the output of all neurons is adjusted
according to equation (1.1).

• Continuous updating: the output values of all units are continuously and si-
multaneously adjusted, while at the same time the inputs change continuously.

The last updating strategy will be discussed in section 2.3.2.

A taxonomy

Two basic criteria are often used to categorize ANNs. The first one concerns the way the
signals propagate among the neurons [79, 44]. In a feedforward scheme, information is only
allowed to flow in one direction without any back coupling. This implies that the output
of the network is uniquely determined given the weights wij , the transfer function in the
neurons, and the external inputs of the neural net. These networks are often structured
in ‘layers’. A one-layer feedforward network is called a perceptron. Feedback networks on
the other hand, allow information to flow among neurons in either direction, implying that
such a net needs not necessarily be in equilibrium nor that an equilibrium state is uniquely
determined. It is even the case that these recurrent networks do not necessarily settle down
to a stable state. However, we shall confine ourselves to study those networks that find an
equilibrium state via a so-called relaxation process.

The second fundamental criterium concerns the way the network learns. Supervised
learning is a process that incorporates an external teacher and/or global information. A
network is considered to learn if the weight matrix (wij) (sometimes called the networks
‘memory’) changes in time, mathematically expressed as

∃i,∃j : ẇij ≡
dwij
dt

6= 0. (1.4)
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In unsupervised learning there is no teacher. The network must discover patterns, regularities
and so on by itself. There should be a form of built-in self-organization.

Using the two criteria, four types of networks can be distinguished. We limit ourselves to
comment on two of them (more details can be found in the afore-mentioned textbooks). The
most popular network is probably the supervised, feedforward type. The mostly applied
learning rule is called backpropagation: using a set of correct input-output pairs (called the
training set), small changes in the connections wij are made in order to minimize the differ-
ence between the actual and the desired output value of every training example. In this way,
the learned stuff is fixed in the weight values wij in a distributed way. All training examples
have their contribution to all final weight values, but in the end, it is unclear what every
individual weight precisely stands for: that is why we say the representation of knowledge
in ANNs is ‘unstructured’. Afterwards, it is hoped that the network can ‘generalize’ what
it has learned: the network should also find the correct output for an input not belonging
to the training set. Function approximation and pattern recognition are the common gen-
eral applications5, while the central points of theoretical study are learning, generalization
and ‘representation’ [44, 84]: the representation problem concerns the question what type

of function can be represented (and therefore might be learned) by a feedforward network
of given architecture. Besides the afore-mentioned popular type, there exist many other
supervised, feedforward models.

The second type we dwell on is the unsupervised, recurrent network type. Neglecting
the many other examples of this type, the binary, the continuous, and the stochastic Hop-
field models belong to this category. The models are called unsupervised since the matrix
(wij) is fixed at the beginning (using global information in one way or another) and is never
changed6. The Hopfield models are the main subject of our study. They will be introduced
formally and discussed extensively in the forthcoming chapters. Application areas of these
networks are (memory) association [44] and optimization, within a growing number of spe-
cialties (section 2.4). In the next subsection, we confine ourselves to present an intuitive idea
of the working of these models.

1.1.5 A mental image of relaxation in neural networks

Let us put aside all mathematical notations and concentrate on the general idea behind the
working of the Hopfield and allied models. We shall use a metaphor originating from the
world of physics which, in fact, makes real sense as will be exposed later.

We imagine having a laboratory table with many magnets of various strengths on it,
whose initial direction can be adjusted as desired. It is further supposed that the magnets
can freely rotate after pulling over a lever. All magnets have their own magnetic dipole
field around them. If the lever is pulled over after having initialized the magnets in a ran-
domly chosen direction, they will start rotating under the influence of the mutual magnetic
field forces. By the movement of the magnets, the structure of the magnetic field constantly
changes. The result is a complex deterministic dynamic system. If we further suppose that
energy dissipates in some way (e.g., by friction and-or air resistance forces), the system will
spontaneously ‘relax’ to an equilibrium state after a certain lapse of time.

Since the strengths of the local magnetic forces vary and there are very many magnets,
it is not unreasonable to suppose that there exist more than one different equilibrium states
of the system. Depending on the initialization of the direction of all magnets, the system
will find an equilibrium point, namely the ‘nearest’ one. Stating the relaxation dynamics in
mathematical physical terms, we say that the system minimizes potential energy and settles
down in that local minimum state, which can simply be reached via a route ‘downhill’, away

5These types of applications can be considered subareas within the general class classification of
section 1.1.3.

6Other recurrent models like the Boltzmann machine [44], do include learning besides relaxation.
Our findings may also be applicable to the ‘relaxation phase’ of those networks.
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from the random initial state. In figure 1.2, the process of energy minimization to a local
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Figure 1.2: Energy minimization to a local minimum.

minimum is visualized. All system states are supposed to lie along the horizontal axis,
while the arrows denote the direction of the minimization process along the energy surface.

It has been Hopfield’s merit that he observed that the relaxation dynamics of his recurrent
continuous neural network – itself a generalization of a certain binary model – can be de-
scribed by a type of deterministic process as discussed above. It is probably also obvious
that these ANNs can be useful in concrete optimization applications, where a certain cost
function should be minimized7. One should merely choose a neural network whose energy
function coincides with the given cost function, initialize the network in one way or another,
and then allow it to relax: the final (equilibrium) state encountered is hoped to correspond
to a (or the) solution sought. This is the idea in a nutshell. However, in practice things are
generally much more complicated:

• In the first place, we are mostly interested in the global minimum of a cost function,
not in some local one. One way to solve this problem is to introduce thermal fluctu-
ations in the system by making the magnets stochastic. To illustrate, we suppose that
any magnet has only two opposite positions, one with the magnetic north pole to,
lets say, the right, and one with that pole to the left. The actual position of a magnet
depends on two factors, namely on the current total magnetic field force (as caused
by all other magnets) as well as on the value of the current temperature in the sys-
tem. All magnets have a certain freedom in fluctuating randomly8 controlled by the
value of the temperature: the higher the temperature is, the more a magnet randomly
fluctuates. Lowering the temperature has the effect that all magnets are more driven
by the locally existing magnetic field forces. Looking at the dynamic relaxation pro-
cess of this stochastic system after a randomly chosen initialization, we observe that
at high temperatures, the system behaves randomly. However, at lower temperatures
the system will relax to another so-called dynamic equilibrium: the magnets may still
fluctuate but on average, they will prefer one direction over the other. Furthermore,
owing to the random fluctuations, the system is more or less disposed to relax to the
global minimum by kicking out encountered local minima. It should be clear that
this stochastic magnetic field system is even more complex than the deterministic one
described earlier.

7This approach has also been pioneered by Hopfield, in co-operation with Tank [48, 49].
8Random fluctuations correspond to so-called thermal noise: see section 2.1.2.
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• The second complicating factor is related to the first one. Practical problems are gen-
erally defined in a high-dimensional space where the minima lie widely scattered
around. In fact, the picture on the cover slightly lifts the veil of this very compli-
cated hilly world, although the image merely shows a two-dimensional landscape.
Under high-dimensional circumstances, it is much more difficult to imagine how the
addition of thermal fluctuations might achieve a relaxation to the global minimum.

• In the third place, practice may be unruly since solutions of problems are often sub-
mitted to a certain set of constraints. Among other things, this is often the case in the
field of combinatorial optimization problems. There are several ways to deal with this
phenomenon. The eldest approach applied in neural networks is the penalty method,
but it did not turn out to be very successful (see chapter 2). Another way is trying
to incorporate the constraints in the neural net, which appears to be possible in some
cases. This approach is the subject of chapter 4. In chapter 5, we shall encounter
still other techniques among which modifications of the well-known mathematical
method using Lagrange multipliers.

• To conclude, we should note that the actual mapping of combinatorial (optimization)
problems onto ANNs is far from trivial: in practice, there appear to be many ways to
realize such a mapping, each one having its own benefits and drawbacks.

We conclude the metaphor as given in this section, by remarking that a stochastic Hopfield
neural network turns out to behave like the sketched stochastic magnetic system. Moreover,
it can be approximated by a certain, slightly adapted, continuous, and deterministic model.
In both cases, the neurons in the Hopfield models correspond to the magnets in the magnetic
counterpart models. The approximation of the stochastic system by such a deterministic
system is an important topic of the chapters 3 and 4.

1.2 Research objectives

Contemplating the ways in which science is exercised, we can distinguish several ap-
proaches. Even within a specific area of science, one often encounters substantial differences
concerning methodology: research can be either fundamental or applied, either explorative
or mapped-out in advance, either inductive or deductive, etcetera. Additionally, the objec-
tives of the research project at hand are often formulated a posteriori, that is, after having
completed the actual work on it. Realizing these aspects, it seems appropriate to first touch
upon the evolution of this research project before stating its objectives and justifying the
methodology selected.

1.2.1 History of the research process

This study on the relaxation dynamics of recurrent neural networks started in the autumn of
1992. Actually, there was no explicit objective of study at that time. There was a paper [51]
originated from a master’s thesis which reported promising results with respect to a new
way of tackling the travelling salesman problem using two Hopfield type neural networks.
We further read the relevant parts of the textbook [44] on Hopfield networks which gave rise
to certain questions, and we encountered the book of Takefuji [82] containing some theory
and a lot of applications. Very soon, we hit upon certain inconsistencies which begged for
a solution. At that time, we also found two articles [71, 86] concerning the use of Lagrange
multipliers in combination with neural nets which seemed not to get the attention that they
deserved after their publication. Eventually, the study and elaboration of all this led to sev-
eral new results, among which the notion of a dynamic penalty method. Another consequence
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was the realization of our first publications9.

During that initial period, which also included some studies on combinatorial optimiza-
tion problems like the travelling salesman problem (TSP), the idea took form to study the
general relationship between Hopfield neural networks and the so-called elastic net, the last
one being a neural network especially set up to solve the TSP. We studied Simic’s paper
[77] (referred to in [44]) and other relevant ones, and were promptly engrossed in a process
of profound investigation. Simic’s article appeared to contain many hard results, although
most of the proofs were only sketchy. To understand the details, we were forced to com-
pletely work out the derivations. Calculus was the general tool of analysis. In addition,
dynamic systems theory and statistical physics appeared to be of high importance: the first
one in order to study the stability of the relevant differential equations, the second in order
to exploit existing knowledge on certain thermodynamic models, which have a close con-
nection to the ANN models of our study10. This ultimately yielded many new theorems,
including the ones relating to a quite general result of this thesis namely the most general
framework of continuous Hopfield models. In addition to all efforts in the theoretical field,
we performed several simulations whose computational results will be reported for a sub-
stantial part11. This part of investigation also led to several (international) presentations and
publications, whose series does seem still not be exhausted.

Finally, a new master’s thesis project was undertaken yielding a new analysis of the
elastic net algorithm [35]. It turned to fit in precisely with our theoretical experiences. It also
contained (and further inspired us to try) various alternative elastic net algorithms.

1.2.2 The aims of this study

From the sketch given above, it is clear that the precise subject of what to study and all rea-
sons why12, were not plain from the beginning. Instead, these insights evolved gradually.
Initially, the driving force was above all to understand why the relevant models behave
like they appear to do, particularly, when they are used to solve combinatorial optimization
problems. Very soon, the wish emerged to solve certain inconsistencies we came across.
Next, we wanted to extend existing theories, e.g., on the stability properties of the so-called
Hopfield-Lagrange model. Finally, it turned out to be possible to generalize existing the-
ories on Hopfield and allied networks, both on the set of equilibrium conditions and on
the stability of the corresponding differential equations. Above all, the analysis has been
mathematical and physical. During the whole period, we tested whether the models of
study could be applied to solve combinatorial optimization problems in an adequate way.
These considerations taking together, we can now, a posteriori, define the objectives of this
research project as follows:

• The main objectives of this thesis are to explain13 the relaxation dynamics of
various recurrent (more precisely, Hopfield and allied) neural network models,
and to generalize existing theories on them.

• The secondary objectives are more diverse:

9The references to our publications will be made more precise in the succeeding chapters.
10Simic [77] expresses this relationship in the following nice way: the ANN “algorithms are in a

deeper sense an example of what one may call a ‘physical computation’ ”.
11Besides a lot of encouraging results, the experimental outcomes indicate certain limitations con-

cerning the general applicability of the framework.
12At least one reason was obvious from the beginning namely, getting a Ph.D., a not-unimportant

by-product of all research efforts.
13The notion of ‘scientific explanation’ is far from simple. Hempel and Oppenheim [42, 87] have

formulated four conditions to call an explanation ‘adequate’: (a) what is explained should follow on
logical grounds, (b) the explanation should use other laws, (c) the explanation should have testable
consequences, and (d) the explanation should be true.
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• the first one is to verify how the discovered theoretical results can be used
to reveal the relationship between Hopfield neural networks and the elas-
tic net;

• the second one is to test whether the studied models can be applied to
solve certain combinatorial (optimization) problems in an adequate way.

From the arguments given in this subsection, the choice of the title of this thesis should be
obvious.

1.3 The chosen methodology: an apology

After having sketched the ‘what and why’ of this thesis, I14 consider it proper to describe
the ‘how’ of it too, or, stating this in other words, to illuminate the chosen methodology
in the light of what is often referred to as the ‘logic of science’ [87]. As is often done in
this philosophic domain, we shall differentiate between two aspects, namely, the so-called
internalistic point of view and the broader externalistic one.

1.3.1 The externalistic view

In the externalistic view on how science originates, it is considered essential to include a
sociological analysis of the scientific process: e.g., what are the motives, driving forces, be-
liefs, prejudices, and so on of the scientists involved. Furthermore, one should investigate
the ‘context of discovery’, i.e., what is the scientific culture of the area of science at hand.
Another fundamental aspect to look at is the ‘context of justification’, which concerns the
ways how given theories are justified. This more restricted approach is often termed the
internalistic view, and it will be discussed in a separate section.

The philosopher Kuhn, who is considered an externalist, distinguishes two types of pe-
riods during the growth of scientific knowledge [57]: after a ‘pre-paradigmatic’ period, rev-
olutionary and non-revolutionary stages succeed each other. In a revolutionary period, in-
consistencies lead to a rejection of the older theory, that is, the older ‘paradigm’, and to the
formulation of a new one. In non-revolutionary periods, inconsistencies encountered are
either simply ignored or, otherwise, adapted to the paradigm accepted everywhere.

Holding my exertions against the light of these considerations, it becomes clear that it is
not easy to give an unprejudiced judgement of my own. I myself join in the neural network
community, have been affected by it, and may even be indoctrinated, so perhaps, I am not
aware of certain untenable starting points, motives, or ideas. However, in spite of these
imperfections, some general and some personal externalistic aspects can be observed. Let
me first consider some general sociological issues. The central premiss of all AI-research
seems to be the belief that human intelligence can somehow be (partially) modelled, using
scientific means. This matter is strongly related to the philosophic debate mentioned above
in footnote 2. To illustrate, a group of researchers believes that human thinking is in fact
algorithmic, implying that, in principle, it can be emulated by a machine like a computer. On
the other hand, there are other groups of scientists who firmly oppose against this ‘strong
AI’ point of view, arguing, in one way or another, that the human mind is more than ‘just a
collection of tiny wires and switches’ [33].

Considering the actions of the ANN community, I observe that the natural sciences
mathematics and physics are judged to be very helpful to model the capabilities of the
human mind. This belief has certainly been enforced by the success of some ANN mod-
els (showing certain elementary brain abilities), which appeared to be analyzable by means
of mathematical physical models. Yet another common belief in the community of AI is the

14Throughout this dissertation, I use the word ‘we’ for reasons as explained in the preface. This
subsection is an exception, because the chosen methodology is the one specifically selected by me.
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idea that following the realized applications, the research efforts will ultimately yield a lot of
new practical applications and thus, on that account, do make sense. In that manner, scien-
tists may find a legitimation for their work. The afore-mentioned beliefs can be considered
to belong to the context of discovery. Together with other ideas on ANN models, they are ex-
changed between researchers in the usual ways: papers, journals, and books are published,
discussions and talks are held at conferences. Owing to this, the various paradigms of ANN
theory have assumed a well-defined shape, each one having its advocates and followers.

Considering my personal motives, I have already given an important one in footnote 12.
Another personal reason for choosing the subject of study of this thesis is that it precisely
corresponds to a lot of foreknowledge I picked up during my life. In relation to the context of
discovery, I think that I have adjusted myself considerably to the current research customs
in the area of neural networks by reading much of the standard literature, by doing the
same type of research, and by presenting my results in the normal ways, both orally and in
writing, to the relevant research community.

Let me finish this section on the externalistic view with a personal opinion. In the light of
Kuhn’s philosophy, I feel that nowadays neural networks are in a non-revolutionary stage of
research. The discipline has several well-established basic models and, in general, scientists
are busy applying, refining, and understanding them. I hold that the statements I bring out
in this thesis, are refinements, improvements, illuminations, corrections, and generalizations
rather than paradigmatic revolutions. However, it will be other people who must decide this
issue.

1.3.2 The internalistic view

The pure ‘reconstruction’ of what has happened – including the justification of the scientific
results – is the central theme in the internalistic view on the growth of scientific knowledge.
The context of discovery is not considered here. Instead, a scientist is thought to assume a
more idealistic attitude: in the view of Popper [72], a theory is proposed, and thereupon, it
is tried to ‘falsify’ it. Precisely falsifications increase scientific knowledge. It is impossible to
establish absolute truth of any theory. Theories are ‘conjectures’ which should be refuted, if
there are reasons for it. Let I consider my working-method in this view of Popper. I first try
to describe the method itself.

• Any research effort on a new subject started by the collection of ‘the relevant’ papers.

• Depending on what was found, I tried to analyze, improve, correct, generalize, apply,
etcetera, inspired by mainly mathematical and physical ideas as evoked in my head
and as available in ‘the relevant’ literature. The endeavors took place in at least the
following ways:

– The technique I probably applied most was to make up an as simple as possi-
ble example corresponding to an encountered abstract mathematical expression.
Analyzing this simple ‘toy problem’ by means of notions of calculus (sometimes
supported by graphical software packages) and physics, I tried to understand
the essence. In this inductive way, intuition grew and new ideas were born, in
turn leading to the suggestion of new theorems and insights. Of course, these
new discoveries had to be proven.

– Sometimes, I had got already a new insight without being able to prove it15.
Often, a lot of trial and error was necessary to find the explicit proof.

15Compare the pronouncement by Gauss: “Meine Resultate habe ich längst, ich such‘ nur noch
den Weg dazu” (restated in [87], p. 57.) or the observations by Penrose [67], in a discussion on the
non-algorithmic nature of mathematical insight: ”Rigorous argument is usually the last step! Before
that, one has to make many guesses, and for these, aesthetic convictions are enormously important –
always constrained by logical argument and known facts”.
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– Another trick which I applied several times, was to switch between the mathe-
matical and the physical point of view, especially at points where the one way
seemed to come to nothing.

• Finally, the acquired insights and stated theorems had to be tested. This has again
been done in several ways:

– By re-inspection of the derivations: I must admit to have found many self-made
errors this way.

– By making up several simulation studies: I wrote many computer programs to
inspect (the consequences of) my suggestions16. Also in this way, I encountered
many mistakes.

– Last but not least, I submitted papers and reports to colleagues, both on my own
department and on scientific conferences and journals.

Looking back now, I see some limitations of my working-method. Whether I found all ‘rel-
evant’ papers, is very doubtful: the quantity of published papers in proceedings, journals,
books is overwhelming, even within a specialized discipline like recurrent neural networks.
So, I possibly missed certain relevant papers and results.

The second point of the described working-method relates to the conjectures of Popper.
Even the mathematical theorems are conjectures: I frequently made mistakes, some of which
remained unnoticed for several weeks or so. Some probably still exist. However, I am
not unique: as will be explained, I have met several confusing mistakes by others, which
engaged me for a substantial amount of time and, simultaneously, inspired me to develop
new conjectures. In fact, for a substantial part, the new conjecturing statements of this thesis
have grown out of mistakes as made by others.

The last point, the testing phase of my working-method, consists of the efforts to falsify
my theories. Of course, I tried to find every error, and to what extent I have been successful,
is hoped to become clear in the near future. Actually, so far as my attempts have failed, my
conjectures still stand up, or, stating this in other words, my as yet non-falsified conjectures
are the body of this thesis17.

1.4 The outline of the rest of the story

We finish this chapter by explaining the structure of the remainder of this thesis. In the next
chapter, the theoretical starting points are given. It consists of a general sketch of theoret-
ical results collected from the technical literature, that together are considered to form the
necessary background and basis of the subsequent four chapters: the relevant ANN models
will be introduced, preceded by an introduction on statistical mechanics and succeeded by
an overview of example applications. The foundations as given in chapter 2 are related to a
collection of mathematical techniques. These ones are described in the appendices, the last
one of which consists of a list of applied lemmas including their proofs.

Chapter 3, 4, 5 and 6 constitute the kernel of this thesis. We start by analyzing the so-
called unconstrained stochastic Hopfield neural network and relate it to the classical con-
tinuous Hopfield model. Since the mathematical functions involved are rather complex,
we use a separate section to illuminate their properties by means of some simple examples.

16Some groups of computer scientists argue that the correctness of a computer program should
always be proven using notions from mathematics (especially from logic). This is not a redundant
luxury: in computer science, a famous phrase states: “There is always a last bug”. Ironically, in this
study I did the opposite, namely, testing my mathematical theories using computer programs.

17Another logical consequence of this way of thinking is that, as far as my statements are correct,
the contents of this thesis can held to be trivial.



1.4 The outline of the rest of the story 13

Next, an interesting part of chapter 3 opens up where for the first time a more general frame-
work is presented. Chapter 4 deals with a certain constrained Hopfield model. Surprisingly,
it can be analyzed in the same way and it can also be generalized. The apotheosis is the
aforesaid most general framework, where Hopfield networks are generalized to networks
which can model almost arbitrary energy expressions (instead of merely quadratic ones) and
which provide means for incorporating new types of constraints in the network. However,
experimental outcomes also show certain limitations of the general framework.

Chapter 5 treats the Hopfield-Lagrange model. Most of this chapter is devoted to an
analysis of the stability properties of the model. First, a potential Lyapunov function is de-
fined by means of which in certain cases stability of the unconstrained Hopfield-Lagrange
model can be proven. Second, stability of the quadratic and allied constraints is demon-
strated in a quite different way. In that case, the model generally ‘degenerates’ to a type
of the afore-mentioned dynamic penalty model. Next, the theorem on the potential Lya-
punov function for the unconstrained Hopfield-Lagrange model is widened to one for the
generalized constrained model.

In chapter 6, the investigations concerning the elastic net are presented including its
relation to the constrained Hopfield model of chapter 4: the surprising outcome is that also
the elastic net algorithm can be considered as a special type of dynamic penalty method. A
further analysis leads in a natural way to two alternative elastic net algorithms, which are
investigated too.

Chapters 3, 4, 5, 6 all conclude with a few relevant computational results of certain toy
problems and applications tested. If the outcomes did not turn out straightforward, cor-
responding comments are added. Finally, in chapter 7, we draw our conclusions, discuss
them, and do suggestions for future research.
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Chapter 2

Starting points

In this chapter, the relevant theory of Hopfield neural networks will be sketched. This theory
constitutes the starting point of the explorations described in the rest of this thesis. Before
coming to the heart of the matter, a review of statistical mechanics is given: the theory about
this subject turns out to be of great importance for the understanding of stochastic Hopfield
networks. We also present an introduction on combinatorial optimization, the challenging
application area. In the succeeding chapters, we shall return to many aspects mentioned
here.

2.1 Statistical mechanics

2.1.1 The basic assumption

The main goal of statistical mechanics [64] is to derive the macroscopic, i.e., physically mea-
surable, properties of a system starting from a description of the interaction of the micro-
scopic components like atoms, electrons, spins. If we would take the classical approach
using a Hamiltonian system1, this would normally be an impossible task: the huge num-
ber of microscopic components leads to a comparable huge number of motion equations
which cannot be solved practically. What we need is a statistical approach yielding simpler
models, which hopefully still include the essential physics and are tractable to analytic or
numerical solutions [89]. To reach our goal this way, two subproblems can be distinguished:
(a) Find the probability distribution of the microscopic components in thermal equilibrium.
(b) Derive the macroscopic properties of the system using this probability distribution.

Limiting our discussion to a discrete configuration space (meaning that the space of all
possible system states is countable), the basic assumption of statistical mechanics concerning
subproblem (a) is that in thermal equilibrium – that is, after a sufficient long time – any of
the possible states α occurs with probability

P eq
α =

1

Z
e−βHα . (2.1)

Here, Hα is the total energy, called the Hamiltonian, of the system and Z is a normalizing
factor, called the partition function, which equals

Z =
∑

α

e−βHα . (2.2)

Equation (2.1) is called the Boltzmann formula or Boltzmann equilibrium probability distri-
bution. The value of β is related to the absolute temperature T by

β =
1

kT
. (2.3)

1In certain circumstances, the quantum mechanical approach resolving the Schrödinger equation
would be another, mostly non-adequate alternative.
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The constant k represents the Boltzmann coefficient, and, because it is only a scaling factor,
we can set it equal to 1.

Knowing the energy Hα in every state, equation (2.1) can be used to calculate the ‘ther-
mal average’ 〈A〉 of any observable quantity A by application of

〈A〉 =
∑

α

P eq
α Aα, (2.4)

where Aα represents the particular value of A in state α.
Equation (2.1) will not be justified here. It can be made plausible from very general

assumptions on the microscopic dynamics of the particles [64] or, in a discrete energy space,
be derived from a calculation of the most likely distribution of the particles over the various
energy levels [4].

2.1.2 The free energy

It turns out very fruitful to define the so-called free or effective energy F by

F = − 1

β
lnZ. (2.5)

Using most of the above given equations as well as the fact that
∑

α P
eq
α = 1, an important

relation can be obtained [44]:

F = − 1

β
lnZ = − 1

β

∑

α

P eq
α lnZ

= − 1

β

∑

α

P eq
α (−βHα + βHα + lnZ)

=
∑

α

P eq
α Hα +

1

β

∑

α

P eq
α ln

e−βHα

Z

= 〈H〉 − 1

β
Seq, (2.6)

where 〈H〉 equals the thermal average of the Hamiltonian and where

Seq = −
∑

α

P eq
α lnP eq

α (2.7)

is the ‘entropy’ at thermal equilibrium, which appears to be a measure of the disorder of the
system.

Equation (2.6) is derived under the assumption that the system is in thermal equilibrium
described by the probability distribution (2.1). Instead, we now consider F as a function of
an arbitrary probability distribution P = (P1, P2, . . .) given by

F (P ) = E(P )− 1

β
S(P ) (2.8)

=
∑

α

PαHα +
1

β

∑

α

Pα lnPα. (2.9)

From this equation, a variational principle2, called the principle of minimal free energy, can
be derived [64] which states that a minimum of F (P ) corresponds to the equilibrium proba-
bility distribution (2.1). The proof is based on the Lagrange multiplier method (appendix A)

2The calculus of variations is concerned with maxima and minima of functionals, where a func-
tional is defined as a function J : Ω → R, Ω being a space of functions [7].
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taking as the only constraint
∑

α Pα − 1 = 0. The principle of minimal free energy (which is
strongly related to the famous principle of maximal entropy3) hands us a tool for calculating
a stable equilibrium probability distribution at given temperature T = 1/β: we ‘only’ need
to find the location of the minima of F (P ).

From (2.1) it follows that the equilibrium probability distribution is a function of both
the energy levels Hα and the temperature T . It is sometimes said that the free energy ‘knows
about the (thermal) noise’ of the system, i.e., it ‘depends in a non-trivial way on the tem-
perature’ [77]. From (2.9) we conclude that at high enough temperatures, F (P ) is generally
dominated by the second term of the right-hand side. This term appears to be a smooth
and convex [25] function of P and will be called the thermal energy of the system. Thus, in
circumstances of high temperature, F (P ) has only one minimum and the equilibrium prob-
ability distribution is (almost) uniform. On lowering the temperature, the thermal energy
decreases and the free energy becomes more and more dominated by the first term of the
right-hand side of (2.9) implying that, at thermal equilibrium, the system will have settled
down in states of lowest energy Hα.

2.1.3 Spin glasses

Statistical mechanics has been applied successfully to a large variety of systems. In the
context of our future discussions on neural networks, the techniques as used for the study of
so-called spin and other glasses – these are certain types of more or less disordered magnetic
systems – appear to be extremely relevant: the analysis and understanding of Hopfield
neural networks is strongly facilitated by the theory on these magnetic systems.

The microscopic elements of spin glasses are elementary atomic magnets, so-called
spins, fixed in location but free to orient, interacting strongly but randomly with one an-
other through pairwise forces [76]. In so-called Ising models, the magnetic orientation Si
of any spin i is supposed to be binary, where Si ∈ {−1, 1}. If n is the number of spins, the
Hamiltonian of the magnetic system is defined as

H(S) = −1
2

∑

i,j 6=i

wijSiSj −
∑

i

IiSi, (2.10)

where S = (S1, S2, . . . , Sn) is a global microstate. The wij’s correspond to contributions from
pair-wise magnetic forces and the Ii’s represent external magnetic field values. Adding up
the magnetic force contributions from all the other spins together with the external magnetic
force, the total local magnetic field hi for spin i equals

hi =
∑

j 6=i

wijSj + Ii. (2.11)

Instead of taking Si ∈ {−1, 1}, we shall adopt Si ∈ {0, 1} throughout this thesis because this
will facilitate the mapping of combinatorial optimization problems on Ising models4.

Substitution of (2.10) in (2.2) yields as partition function of the spin glasses system

Zsg =
∑

S

exp(β(12

∑

i,j 6=i

wijSiSj +
∑

i

IiSi)). (2.12)

3The principle of maximal entropy, the second law of thermodynamics, holds for isolated systems,
i.e., systems which have not any thermal interaction with their environment. Instead, the minimum
of free energy holds for systems whose temperature is kept fixed via heat exchange between the
system and its environment: the system is contained in a ‘heath bath’ of constant temperature. Both
entropy and free energy are ‘thermodynamic potentials’. The extreme values of these potentials are
‘attractors’ to which the corresponding thermodynamic systems spontaneously evolve [74].

4Conversion from the one binary system to the other one, vice versa, is easy. Taking S′

i ∈ {−1, 1}
and Si ∈ {0, 1}, it follows that S′

i = 2Si − 1. The choice between the two types is a matter of
mathematical convenience effecting the values of the quantities wij and Ii somewhat. Of course, this
slightly modifies the physical meaning of these quantities too.
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The thermal average 〈Si〉 can be stated as

Si =
1

Zsg

∑

S

[Si exp(β(
1
2

∑

i,j 6=i

wijSiSj +
∑

i

IiSi))]. (2.13)

Knowing Zsg as a function of the Ii’s, 〈Si〉 can directly be obtained by differentiation conform

〈Si〉 =
1

βZsg

∂Zsg

∂Ii
= T

∂ lnZsg

∂Ii
. (2.14)

Writing P (S1 = s1, S2 = s2, . . . , Sn = sn) = P (S) and P (Si = si) = P (Si), where si ∈ {0, 1},
the free energy (2.9) becomes

Fsg(P ) =
∑

S

P (S)(−1
2

∑

i,j 6=i

wijSiSj −
∑

i

IiSi) +
1

β

∑

S

P (S) lnP (S). (2.15)

If all values wij are positive, the system is called ferromagnetic and parallel spins are en-
ergetically favored. In thermal equilibrium, above a certain critical temperature Tcr, the
thermal fluctuations will beat the magnetic interactions making ∀i : 〈Si〉 ≈ 0.5, and the
material loses nearly all its magnetization. Below Tcr, the magnetic interactions beat the
thermal fluctuations in a certain degree making ∀i : 〈Si〉 6= 0.5. Depending on the values
of the wij ’s, the Ii’s, and T , the spins are found predominantly up or predominantly down.
In the presence of an external magnetic field, the system will always be oriented in the di-
rection of that field. In the absence of such a field, the system shows a time-independent
‘spontaneous’ magnetization [64], whose direction is not known in advance. It is also said
that the ferromagnetic system exhibits a ‘phase transition’ at Tcr.

If instead, the values wij are negative – which often is the case when Hopfield net-
works are used to solve combinatorial optimization problems – the system is termed anti-
ferromagnetic. Depending the values of the wij’s, the Ii’s, and T , nearby spins now tend
to become more or less anti-parallel [64], meaning that neighbouring Si’s will be found in
‘opposite’ states (i.e., 0 and 1). If the third possibility holds that certain wij are positive
and other ones negative, the system has conflicts (also called frustration) with regard to the
global orientations. The consequence is a system with several non-equivalent meta-stable
global states [76].

2.1.4 Statistical dynamics and annealing

As mentioned in the beginning of this chapter, statistical mechanics especially deals with
the equilibrium properties of a system. The driving mechanism by which the particles of
the system – on account of their mutual interaction – are divided over the available energy
levels resulting in dynamic equilibrium, is often ignored. However, applying numerical
simulations (as is often done when analytic methods are inadequate), a dynamic rule has
to be chosen in advance. It appeared to be possible to construct various (both deterministic
and probabilistic) dynamics having the property of leading to thermal equilibrium. In the
probabilistic case5, the chosen algorithms frequently have the property that the probability
of finding the system in state αt only depends on the preceding state αt−1 (and not on the
history prior to state αt−1). These algorithms are completely described by the transition
probabilities

Ptr(α,α
′) = P (αt = α′ | αt−1 = α). (2.16)

In practice, many of the transition probabilities corresponding to the selected dynamics are
zero.

5The deterministic case we shall meet in section 2.3.
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If the algorithm is ‘ergodic’ (meaning that any state is reachable from any other state by
way of a finite number of intermediate states), and if the transition probability satisfies the
so-called detailed balance condition

Ptr(α,α
′) e−βHα = Ptr(α

′, α) e−βHα′ , (2.17)

the system relaxes to equilibrium from an arbitrary starting state [64]. The condition (2.17)
does not specify the transition probability uniquely. A very common choice in simulations
is the Metropolis algorithm [44, 89], which applies the transition probability

Ptr(α,α
′) =

{
1 if ∆H < 0
e−β∆H otherwise,

(2.18)

where ∆H = Hα′−Hα. We see that a transition from stateα to α′ is accepted with probability
1 if the corresponding change of the Hamiltonian is negative. Depending on a probabilistic
outcome, the transition may also be accepted if the corresponding energy change is positive.
The underlying idea of this strategy is that the algorithm may escape from local minima. The
Metropolis algorithm satisfies the detailed balance condition so that, at a fixed temperature,
it leads to thermal equilibrium.

In condensed matter physics, ‘annealing’ is a technique for obtaining low energy states
of a solid in a heat bath. The process consists of two steps:

• Increase the temperature of the heat bath to a value at which the solid melts.

• Carefully decrease the temperature of the heath bath until the particles arrange them-
selves in the ground state of the solid.

The physical annealing can be simulated using computer power yielding what is called
simulated annealing. The most common approach is just to apply the Metropolis algorithm,
where the temperature is decreased step by step. The temperature is called the control pa-
rameter. Using Markov chains, asymptotic convergence of the algorithm has been proven
[2]. Furthermore, a lot of empirical performance analysis has been done in order to get prac-
tical, finite-time approximations. The algorithm has been used to solve, among other things,
combinatorial optimization problems.

2.1.5 Mean field theory

Beside simulation, there exist various analytic techniques [64, 89] in order to understand sta-
tistical mechanical models like the ‘power series expansions’, the ‘real normalization group’,
the ‘field theoretical approach’ and, the simplest one termed the ‘mean field approximation’.
The essential ingredient of the mean field theory is the neglect of thermal fluctuations of the
individual neurons. Instead, one considers the average effect of these fluctuations. One start-
ing point of mean field theory is the principle of minimal free energy. Instead of looking for
the true minimum of the free energy (2.9), certain restrictions are imposed on the probability
distribution.

An example consists of a mean field analysis of the spin glasses with Hamiltonian (2.10),
where (wij) = (wji). Using the simplest approximation, the probability distribution is as-
sumed to be factorized meaning that the spins are treated as independent described by

P (S) = P (S1)P (S2) . . . P (Sn). (2.19)

Referring to the average magnetization 〈Si〉 as Vi, it follows that P (Si = 1) = Vi and P (Si =
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0) = 1− Vi. Using all this, we can write

E(P ) =
∑

S

P (S)H(S)

=
∑

S

P (S1)P (S2) . . . P (Sn)(−1
2

∑

i,j 6=i

wijSiSj −
∑

i

IiSi)

= −1
2

∑

SiSj

P (Si)P (Sj)
∑

i,j 6=i

wijSiSj −
∑

Si

P (Si)
∑

i

IiSi

= −1
2

∑

i,j 6=i

wijViVj −
∑

i

IiVi, (2.20)

S(P ) = −
∑

S

P (S1)P (S2) . . . P (Sn)(lnP (S1) + lnP (S2) + . . .+ lnP (Sn))

= −
∑

i

(Vi lnVi + (1− Vi) ln(1− Vi)). (2.21)

Under the conditions (2.19), the free energy of the spin glasses can thus be stated as

Fsgmf
(V ) = −1

2

∑

i,j 6=i

wijViVj −
∑

i

IiVi +

1
β

∑

i

(Vi lnVi + (1− Vi) ln(1− Vi)). (2.22)

The necessary condition for finding a minimum of Fmf yields (using wij = wji)

∂Fsgmf
/∂Vi = −

∑

j 6=i

wijVj − Ii +
1

β
ln

Vi
1− Vi

= 0. (2.23)

Resolving this equation, we finally find that at thermal equilibrium

Vi = gβ(~i) =
1

1 + e(−β~i)
∧ ~i =

∑

j 6=i

wijVj + Ii, (2.24)

where ~i equals the effective magnetic field. The function gβ is the sigmoid or logistic func-
tion (see figure 2.1). For high values of the temperature T = 1/β, we see that Vi ≈ 0.5,
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Figure 2.1: The logistic function for various values of β.

which corresponds to the outcome of the analysis of the exact free energy (2.15): the system
is almost completely disordered. For low values of the temperature, the sigmoid function
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approximates the step or Heaviside function implying that, on average, the spin i equals 0
or equals 1 depending on the value of the effective magnetic field: the system shows an or-
dered structure. Despite the simplicity of the expressions, the mean field approximation has
a rich structure. Many physical phenomena like spontaneous magnetization, phase transi-
tions, stability, metastability and unstability, can be described by the model [64, 89].

Comparing (2.11) and the second expression in (2.24), we see that the first, exact equation
takes the spin fluctuations into account, while in the second one, the fluctuations Si are
replaced by their average value Vi. In other words, the stochastic magnetic field is replaced
by an effective field as given by its mean field approximation.

2.2 Combinatorial optimization

2.2.1 Definition and complexity

Solving combinatorial optimization (i.e., either minimization or maximization) problems
deals with the determination of the ‘best’ solution among a set of alternative solutions. In
case of minimization, a combinatorial optimization problem can be defined [34] as a mini-
mization problem consisting of a set of problem instances. For each instance, there is a finite
set Sc of candidate solutions, where a cost function f : Sc → R exists that assigns a real
number (the solution value) to each candidate solution c ∈ Sc. An optimal solution is a
candidate solution c∗ such that

∀c ∈ Sc : f(c
∗) ≤ f(c). (2.25)

Candidate solutions can often be described by means of bond variables and the optimiza-
tion problem as a whole is often described by a ‘constrained’ combinatorial minimization
problem, stated as

minimize f(x)

subject to : Cα(x) = 0, α = 1, . . . , n, (2.26)

where x = (x1, x2, . . . , xn). The Cα(x)’s are the so-called constraints to which candidate
solutions are subjected.

Over the years, it has been shown that many combinatorial optimization problems be-
long to the class of so-called NP-hard problems. For several reasons [34], it is generally
believed that all problems of this class are ‘intractable’ meaning that there exist no algo-
rithms with running time polynomial in the input size. In practice this means that optimal
solutions of ‘large’ instances of this type of problems cannot be obtained in ‘reasonable’
amounts of computation time.

2.2.2 Examples

Among all combinatorial optimization problems, the traveling salesman problem (TSP) –
which has been proven to be NP-hard – is probably the best known. A problem instance of
the TSP consists of n cities and an n × n-matrix (dpq), whose elements denote the distance
between each pair (p, q) of cities. A candidate solution is a ‘tour’, which is a closed path
along all cities with the constraint that each city is visited exactly once. The goal is to find a
tour of minimal length.

Another combinatorial optimization problem, which will also be tried, is the ‘weighted
matching problem’ (WMP). An instance of the WMP consists of n (n being even) points
again with known mutual distances (dpq). A candidate solution is given by a state, where
the points are linked together in pairs, with (the constraint of) each point being linked to
exactly one other point. The goal is to find minimal total length of the links. Unlike for the
TSP, for the solution of WMP exist fast polynomial algorithms [44].
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2.2.3 Solving methods

Since many NP-hard optimization problems are of practical interest, a lot of effort has gone
into solving them one way or another. The solution strategies can be roughly divided in two
categories [34]. Applying an algorithm of the one category, it is tried to obtain an improve-
ment over the straightforward exhaustive search approach. Examples are methods based
on ‘branch-and-bound’ or ‘backtracking’ consisting of a tree-structured search bounded by
recognizing that some partial solutions can impossibly be extended to actual solutions or
to solutions of better quality than the best one already found. Other approaches of this
category apply alternative ways of organizing the search like ‘divide and conquer’ and ‘dy-
namic programming’ methods [52]. Applying the first of these two approaches, a problem
is split into smaller ones, the smaller problems are resolved (by recursively applying the
same technique), and their solutions are combined into the solution of the original prob-
lem. Applying dynamic programming on the other hand, the solution of a problem is built
stage-wise, where at each stage a new aspect of the problem is added until the solution to
the original problem has been found.

The other category of algorithms apply a ‘heuristic’ approach, where it is attempted to
find a ‘good’ solution within an acceptable amount of time. ‘Local search’ algorithms [1] are
an example of this category. These algorithms take some solution and search over a set of
neighbouring solutions, in this way trying to find solutions of lower cost.

Within the two classes, it is possible to distinguish between ‘tailored’ and ‘general’ al-
gorithms [2]. Tailored algorithms use problem-specific information (domain knowledge)
and their applicability is therefore often very limited. Instead, general algorithms are ap-
propriate to a wider variety of problems and it is of high importance to discover general
methods which – as a rule – perform well. In the last decade, several new general search
algorithms have emerged, all inspired by optimization principles observed in nature. They
are simulated annealing, ‘genetic’, and neural network algorithms. Solving combinatorial
optimization problems using simulated annealing (section 2.1.4) is based on the assump-
tions [2] that (a) solutions in the optimization problem are equivalent to states of a physical
system, and (b) the cost of a solution is equivalent to the energy of a state.

Genetic algorithms [36] try to solve problems based on the principles of natural evo-
lution. The algorithm keeps up a population of candidate solutions. New generations of
candidate solutions are successively created applying ‘selection’, ‘mutation’ and ‘crossover’
operations, where the ‘fittest’ solutions have the highest probability of being selected. It is
hoped that the fitness of the population members gradually improves and, finally, a member
among them is found with optimal fitness. The assumptions for applying genetic algorithms
to combinatorial optimization problems are that (a) candidate solutions of the optimization
problem can be represented as population members (and therefore can be selected, mutated,
and crossed over), and (b) the cost of a solution is equivalent to the fitness of the correspond-
ing population member.

This last class of algorithms refers to neural networks, whose relevant types are intro-
duced now.

2.3 Classical Hopfield models

2.3.1 The asynchronous model

In 1982, Hopfield6 showed how useful, computational properties can emerge as collective
properties of neural systems [46]. The collective properties of his neural network produce

6To be somewhat more exact historically, Hopfield’s binary model is a stochastic reinterpreta-
tion of an earlier model by Amari (1977). The difference lies in the way the neurons are updated:
in Amari’s model this is done synchronously, in Hopfield’s model this is assumed to occur asyn-
chronously [54].
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a content-addressable memory. Each neuron Si has two (output) states: Si = 0 or Si = 1,
the other neural quantities are equivalent to those defined in section 1.1.4. The iterative
algorithm for the time evolution of the system state7 S = (S1, . . . , Sn) ∈ {0, 1}n can be
formulated as (compare the equations (1.2) and (1.3))

Snew
i =

{
1 if Uold

i =
∑

j wijS
old
j + Ii ≥ µi

0 otherwise,
(2.27)

where µi represents the threshold value of neuron i and where each neuron readjusts its
state randomly in time but with equal mean rate. The importance of Hopfield’s approach
stems from his proof on stability considering the energy function

Ea(S) = −1
2

∑

i,j

wijSiSj −
∑

i

IiSi +
∑

i

µiSi. (2.28)

Theorem 2.1 (Hopfield). If (wij) is a symmetric matrix and ∀i : wii ≥ 0, then the energy function
(2.28) is a Lyapunov8 function for motion equations (2.27).

If all threshold values µi equal zero, then Ea(S) nearly coincides with equation (2.10). In
addition, Ui corresponds to the local magnetic field hi in (2.11).

The asynchronous character makes the flow of the system not entirely deterministic, but
in any case, the algorithm leads to a final attractor (like a memory) near the starting state.
Stated in other words, the algorithm ends up in a local minimum. It explains the suitability
of this neural network to model an associative memory.

2.3.2 The continuous model

In 1984, Hopfield generalized the asynchronous model to a deterministic one [47] using
continuous-valued neurons with input values Ui ∈ R and output values Vi ∈ [0, 1]. Instead
of using an iterative updating rule like

V new
i = g(Uold

i ) = g(
∑

j

wijV
old
j + Ii), (2.29)

Hopfield introduced the updating rule (motion equation)

ciU̇i = −∂Ec(V )

∂Vi
=
∑

j

wijVj + Ii − Ui, (2.30)

where continuously Vi = g(Ui) holds and where ci represents a suitable time constant. In our
simulations, we shall approximate the time derivative of Ui by writing

U̇i ≈
∆Ui
∆t

(2.31)

and then choose an appropriate value of ∆t. If we confine ourselves to equal values for all
ci, no further restrictions are introduced if we simply take ∀i : ci = 1. So, this will be done.
The updating rule (2.30) can be derived using the circuit equations of an analogue electrical
circuit implementing the continuous Hopfield model: it represents a resistance-capacitance
charging equation that determines the rate of change of Ui. Mathematically, as denoted in

7Another, wider view on the notion of a ‘system state’ will be discussed in section 3.3.1.
8The notions of ‘stability’ and ‘Lyapunov function’ come from the theory on ‘dynamic systems’:

see appendix B.
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equation (2.30), it can be derived applying the technique of gradient descent (appendix C)
to the energy function Ec(V ) which is defined conform

Ec(V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi

︸ ︷︷ ︸

+
∑

i

∫ Vi

0
g−1(v)dv

︸ ︷︷ ︸

(2.32)

= E(V ) + Eh(V ) . (2.33)

Here, E(V ) is the energy function to be minimized. The second term, Eh(V ), will be called
the ‘Hopfield term’. V ∈ [0, 1]n is the state vector (V1, . . . , Vn) of the continuous neural
net. We further note that Ui = ∂Eh/∂Vi. In figure 2.2, a picture of the continuous Hopfield
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Figure 2.2: The continuous Hopfield network with equilibrium
condition: ∀i : Ui =

∑

j wijVj + Ii and Vi = g(Ui).

model is given. It can be used to explain the working of the motion equations (2.30). After
initialization, the network is generally not in an equilibrium state. Then, while keeping
the relations Vi = g(Ui) valid, the input values Ui are adapted in agreement with (2.30). The
following theorem, proven by Hopfield [47], gives conditions for which an equilibrium state
will eventually be reached:

Theorem 2.2 (Hopfield). If (wij) is a symmetric matrix and if ∀i : Vi = g(Ui) is a monotone
increasing, differentiable function, then Ec is a Lyapunov function for motion equations (2.30).

Under the given conditions, the theorem guarantees convergence to an equilibrium state of
the neural net where

∀i : Vi = g(Ui) ∧ Ui =
∑

j

wijVj + Ii. (2.34)

If the sigmoid function is chosen as the transfer function g, we see that expression (2.34)
almost coincides with (2.24).

In his article, Hopfield dwells on the relation between the energy Ea of the asynchronous
model and Ec of the continuous one. In order to understand the relationship, he introduces
a scaling factor β (in the original paper denoted by λ) replacing Vi = g(Ui) by Vi = g(βUi).
He then argues that, in the high-gain limit β → ∞, the Hopfield term Eh becomes negligible,
making the locations of the extrema of Ec and Ea almost equal. Next, he remarks that for
large but finite β-values, the Hopfield term begins to contribute, leading to an energy surface
whose maxima are still at corners of the hypercube [0, 1]n, but whose minima are slightly
displaced toward the interior. We will return to these aspects in section 3.2.2.
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The conditions given in theorem 2.2 do not uniquely specify the transfer function g of
a neuron. Commonly used functions include the tanh for the [−1,+1] range (used, e.g. in
[68], in the iterative way given by equation (2.29)) and the sigmoid function (2.24) for the
[0, 1] range. We shall meet other activation functions later on.

2.3.3 The stochastic model

It is possible to make the neurons of the binary asynchronous network behave stochasti-
cally9 [44] applying a stochastic evolution rule like the transition probability (2.18) of the
Metropolis algorithm. Instead, in the context of neural networks, another form is usually
chosen that is suitable for parallel computation [3]: regardless of the previous state, the
probability of setting Si = 1 is taken

P (Si = 1) =
1

1 + e−βUi
. (2.35)

The units are selected in the same asynchronous way mentioned in section 2.3.1. It is not
difficult to check [44] that the updating rule (2.35) leads to a transition probability which sat-
isfies the detailed balanced condition (2.17). So, the stochastic Hopfield model is expected
to reach thermal equilibrium conform the Boltzmann probability distribution. It is therefore
sometimes called a Boltzmann machine with a priori chosen weights [44]. As the Metropolis
algorithm makes it possible to escape from local minima, so the stochastic rule (2.35) does.
This observation has suggested the idea trying to use stochastic Hopfield networks in or-
der to find global minima of optimization problems. Besides, annealing can be applied by
decreasing the temperature gradually during execution yielding a new form of simulated

annealing.
The asynchronous Hopfield model can be considered a special case of the stochastic one: at
very low temperatures, the noise level (i.e., the level of the thermal fluctuations) is negligible
reducing the stochastic model to the asynchronous Hopfield model. This can be understood
mathematically by observing that for β → ∞ the sigmoid function (2.35) reduces to the step
function as defined in (2.27). The continuous and the stochastic Hopfield network are also
related. Because the energy expressions (2.10) of the Ising model and (2.28) of the stochastic
Hopfield model almost coincide, a mean field analysis of the last one can be done precisely
conform the analysis of section 2.1.5, yielding the equilibrium equations (2.34). This proves
the following theorem:

Theorem 2.3. The equilibrium states of the mean field approximation of the binary stochastic Hop-
field model coincide with the equilibrium states of the continuous Hopfield model, if, in the last model,
the sigmoid function is chosen as the transfer function of the neurons.

In the literature [68, 44], several other proofs can be found which usually adopt the ‘saddle
point approximation’ (see section 3.1). The theorem makes clear that the binary stochastic
neural network can be approximated by the continuous one, or, stated more precisely [68]:

“The hill-climbing property of the stochastic model at non-zero temperature can

be cast into a deterministic procedure in a smoother energy landscape.”

Consequently, if the networks are simulated on a sequential computer device, the problem
of excessive computer time of the stochastic model is hoped to be circumvented applying
the approximating, continuous model: the deterministic relaxation rule (2.30) is expected to
converge much faster than the stochastic rule (2.35) 10. If, in addition, annealing is applied,

9Still another possibility is to make continuous neurons behave stochastically [37].
10Alternatively, the deterministic iterative rule (2.29) can be chosen: experiments of this type have

shown significant speedup factors, together with comparable and sometimes even better quality of
solutions [68, 70, 43].
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the simulated annealing approach of the stochastic model reduces to, what has been termed
‘mean field annealing’ [44, 50, 68, 69, 70]. Then, on lowering the temperature, fine details of
the original cost function E(V ) gradually appear [77].

2.4 Hopfield networks and optimization

This section is meant to give a concise background on the application of Hopfield networks
in the field of combinatorial optimization. We shall return to many aspects later on.

As for simulated annealing and genetic algorithms assumptions have been formulated
to solve combinatorial optimization problems in a heuristic way (section 2.2.3), so this can be
done for Hopfield neural networks. Here, the assumptions are that (a) candidate solutions
of the optimization problem are equivalent to network states, and (b) the cost of a solution is
equivalent to the energy value of the network. Since 1985 [48], researchers have tried to use
both stochastic and continuous Hopfield networks in the field of combinatorial optimiza-
tion. The general problem can be stated like (2.26), where the cost function f(x) should be
replaced by an energy function E(x):

minimize E(x)

subject to : Cα(x) = 0, α = 1, . . . ,m, (2.36)

x being the state vector (S or V ) of the neural net. There exist different ways in treating
the constraints. The oldest approach consists of a so-called penalty method, sometimes called
the ‘soft’ approach [77, 69]: extra ‘penalty’ terms are added to the original energy function,
penalizing violation of constraints. We nowhere found a precise definition of the penalty
method. Having collected many examples, we think the following characterization reflects
the issue at stake: the penalty terms are weighted and chosen in such a way that

m∑

α=1

cαCα(x) has a minimum value zero ⇔

x represents a valid solution. (2.37)

A valid (admissible, or feasible) solution is defined as a candidate solution which complies
with all submitted constraints. Usually, the chosen penalty terms are quadratic expressions.
Applying a continuous Hopfield network, the original problem (2.36) is converted into

minimize Ep(V ) = E(V ) +
m∑

α=1

cαCα(V ) + Eh(V ), (2.38)

E(V ) and Eh(V ) being given by (2.33). The corresponding updating rule is:

U̇i = −∂Ep

∂Vi
= −∂E

∂Vi
−
∑

α

cα
∂Cα
∂Vi

− Ui, (2.39)

where, in case of (wij) = (wji), −∂E/∂Vi =
∑

j wijVj+Ii. We already know from Hopfield’s
analysis (section 2.3.2), that the influence of the Hopfield termEh(V ) may be small. Ignoring
this term for the moment, the energy function Ep is a weighted sum of m+1 terms and hence
a difficulty arises in determining correct weights cα. The minimum of Ep is a compromise
between fulfilling the constraints and minimizing the original cost function E(V ). Applying
this penalty approach to the TSP [20, 48, 49, 88], the weights had to be determined by trial
and error. For only a small low-dimensional region of the parameter space valid tours were
found, especially when larger problem instances were tried11.

11Aside we mention that for ‘purely combinatorial problems’ (by which we mean combinatorial
problems without a cost function to be minimized like the n-queen problem and the 4-coloring prob-
lem), the penalty method has proven to be useful [82]. See also section 2.7.
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In a second approach, the features of the neural net are changed. The alteration is usu-
ally done in such a way, that some or all constraints are automatically fulfilled. This way
of dealing with the constraints is sometimes called the ‘strong’ one [77]. As an example,
observe the following constraint

n∑

i

Si − 1 = 0. (2.40)

A consequence of (2.40) is that precisely one of the binary Si’s equals one, all the other ones
being 0. Physically, this model is related to Potts glasses. Trying to solve the TSP, condition
(2.40) can be used several times in order to guarantee that all cities are visited once. The
other condition – that two cities are never visited at the same time – can be fulfilled in the
soft way using penalty terms. A mean field annealing approach using an iterative updating
role of the form

V new
i =

exp(−βUold
i )

∑

k exp(−βUold
k )

, (2.41)

has shown ‘encouraging’ results: experiments for problem sizes up to 200 cities yielded
solutions with a quality comparable to and sometimes even better than the simulated an-
nealing one. Besides, stability analyses including an estimation of the critical temperature
(at which a phase transition takes place corresponding to a rapid drop of the energy in the
system) have been reported [85, 69, 70, 78]. Another way of implementing the constraint
(2.40) is to use so-called ‘maximum neurons’ defined by

Si =

{
1 if Ui = max{U1, . . . , Un}
0 otherwise.

(2.42)

They have been applied for, among other things, finding near-optimum solutions of ‘channel
routing problems’ [82]. Another way of changing the features of the neural net has been the
introduction of an extra layer. In an attempt to solve the TSP [51], a first layer was chosen
conform a continuous Hopfield network where the penalty term is based on city adjacency
in the tour. The second layer of the network had to detect, in parallel, closed sub-tours
of intermediate solutions. Unfortunately, the implementation of the second layer is more
complicated than was indicated.

A third way of treating the constraints was introduced in 1988 [71]. Here, the starting
point is the multiplier method of Lagrange (appendix A), where a constrained optimiza-
tion problem is converted into an unconstrained extremization one: a solution of the general
problem (2.36) is also a critical point of

Epb(V, λ) = E(V ) +

m∑

α=1

λαCα(V ), (2.43)

where λ is a vector of multipliers (λ1, · · · , λm). Contrary to the requirement (2.37) used in
the penalty approach, the constraints should now be formulated such that

∀α : Cα(x) = 0 ⇔ x represents a feasible solution. (2.44)

Moreover, the multiplier values are not supplied by the user, but, after having been initial-
ized, are determined by the system itself: conform the so-called basic differential multiplier
method (BDMM), the values of the Lagrange multipliers can be estimated applying a gradi-
ent ascent12. The complete system of motion equations of the model equals

V̇i = −∂Epb

∂Vi
= −∂E

∂Vi
−
∑

α

λα
∂Cα
∂Vi

, (2.45)

λ̇α = +
∂Epb

∂λα
= Cα(V ). (2.46)

12The background of this sleight will be illuminated extensively in chapter 5.
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Stability can be analyzed by combining both of these differential equations into one second-
order differential equation, which describes a damped harmonic motion. The total energy
of the mass system consists of the sum of kinetic and potential energy given by

Ekin+pot =
∑

i

1
2 V̇

2
i +

∑

α

1
2C

2
α(V ). (2.47)

Theorem 2.4 (Platt & Barr). If the damping matrix (aij) defined by

aij =
∂2E

∂Vi∂Vj
+
∑

α

λα
∂2Cα
∂Vi∂Vj

(2.48)

is positive definite, then the energy (2.47) is a Lyapunov function for motion equations (2.45) and
(2.46).

Using the definition of E(V ) as given by (2.33), it is clear that if (wij) is symmetric then

∂2E

∂Vi∂Vj
= −wij . (2.49)

We further note that in formula (2.45) the gradient descent on Epb is equated to the time
derivative of Vi and not of Ui, as is done in the continuous Hopfield model. Moreover, the
term −Ui is lacking and, corresponding to this, the Hopfield term Eh(V ) in (2.43) is missing.
The necessary steps to bring these things into line with one another were made in 1989 and
are explained in the next section.

2.5 The Hopfield-Lagrange model

By adding the Hopfield term Eh(V ) to the energy Epb(V, λ), the continuous Hopfield model
and the Lagrange multiplier method were integrated [86] in what we shall call the Hopfield-
Lagrange model. The model was used to solve the Multiple TSP (MTSP). The MTSP is an
extension of the TSP, where a set of minimal closed routes should be found for a given
number of salesmen. The constraints are similar to those of the original TSP. In general
terms, the energy of the model is given by

Ehl(V, λ) = E(V ) +
∑

α

λαCα(V ) + Eh(V ) (2.50)

= −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

α

λαCα(V ) + Eh(V ) (2.51)

with the corresponding set of differential equations

U̇i = −∂Ehl

∂Vi
=

∑

j

wijVj + Ii −
∑

α

λα
∂Cα
∂Vi

− Ui, (2.52)

λ̇α = +
∂Ehl

∂λα
= Cα(V ). (2.53)

In the literature, little attention has been paid to this model. We did not find an analysis of
the stability of the differential equations (2.52) and (2.53) anywhere. In case of the Multiple
TSP, six coupled differential equations had to be resolved, whose stability properties were
‘in the process of investigating’ based on the Lyapunov function (2.47). By numerical sim-
ulation using a first order Euler method, good solutions have been found for certain small
problem instances up to 20 cities and 4 salesmen.
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2.6 Elastic nets

The ‘elastic net’ [28] deals with a specific type of neural network, namely one for solving the
TSP. The elastic net algorithm (ENA) was derived from a hypothetical ‘tea trade model’ [59]
for the establishment of topographically ordered, neighbor-preserving projections13. The
energy function to be minimized of the elastic net equals:

Een(x) =
α2

2

m∑

i=1

| xi+1 − xi |2 −α1

β

n∑

p=1

ln
m∑

j=1

exp(−β
2

2 | xp − xj |2). (2.54)

Here, xi represents the i-th elastic net point or ‘bead’ and xp represents the location of city
p. The succeeding m elastic net points form a sort of elastic rubber ring, that should be
dragged along all n cities. The first term of Een equals the sum of distance squares between
succeeding net points (which, in a sufficient degree, corresponds to the tour length), while
the second term enforces a match between each city and one of the elastic net points. Appli-
cation of gradient descent to equation (2.54) yields, after a discretization step, the updating
rule

∆xi = α2

β
(xi+1 − 2xi + xi−1) + α1

∑

p

Λp(i)(xp − xi), (2.55)

where the time-step ∆t = 1/β equals the current temperature T and where Λp(i) is defined
conform

Λp(i) =
exp(−β2

2 | xp − xi |2)
∑

l exp(−β2

2 | xp − xl |2)
. (2.56)

The ENA has an important scaling property: the number of variables (i.e., the two-
dimensional net points) required is linear relative to the number of cities, while in case of the
Hopfield model the number of neurons needed is usually quadratic relative to that number.

In practice, all xp are normalized to points in the unit square. The elastic network is usu-
ally initialized in a small ring in the middle of that square. Taking m = 2.5n, the following
parameter values appear to be efficient [28]: α1 = 2.0 and α2 = 0.2. The initial value of the
temperature T = 1/β is set to 0.2, and is reduced by 1% every n iterations to a final value in
the range 0.01-0.02. The general effect of this lowering is that large-scale, global adjustments
occur early on, resulting in a general stretching out of the elastic net. This initial stretching
out is strongest to regions in the unit square having the highest concentration of cities. Later
on, smaller refinements occur corresponding to an increasingly local adaptation of the elas-
tic net towards city points. Eventually, every city must be ‘visited’ by one bead. In [28, 44], a
picture can be found of the gradual stretching out of the elastic net. Up to several hundred
cities, the ENA yields sub-optimal solutions where the final tour-lengths exceed the optimal
lengths by approximately 6% [78]. The results strongly depend on the chosen parameters
and the algorithm may end up in a non-valid state.

In 1990, two papers have been published on the relationship between elastic and Hop-
field neural nets. One paper [77] suggested statistical mechanics as the common underlying
framework, to which (in our view incorrect) analysis we shall return extensively in chapter
6. There, we shall also take stock of the other proposed common framework [90], namely
that of ‘generalized deformable templates’. The ENA has also been modified in many ways
in other to improve the performance quality with respect to both the shortest tour found
and the percentage of valid solutions encountered: see, e.g., [78, 31, 5, 22].

13Making topology preserving maps is part of the ‘unsupervised learning’ approach of neural
networks [44].
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2.7 Computational results from the literature

Besides the afore-mentioned applications, many other achievements have been gained in
the field of (combinatorial) optimization and of association using Hopfield type neural net-
works. We here give a notable but not exhaustive list of examples.

• The book of Takefuji [82] contains several practical problems which have been
tackled and resolved quite successfully using Hopfield networks of various
types, e.g., networks with alternative transfer functions. Besides solutions of the
n-queen and the k-colourability problem, near-optimal solutions of ‘graph pla-
narization’ and ‘channel routing’ problems (both important topics in designing
printed circuit boards) are presented. Furthermore, ‘RNA secondary structure
prediction’, ‘tiling’, ‘sorting and searching’, ‘broadcast scheduling’, and various
other problems are discussed including their computational results.

• Neural computational results of the TSP and the WMP (section 2.2.2) as well
as solutions to the ‘graph bipartioning’ and to the ‘reconstruction of an image’
(from noisy or blurred data) can be found in the textbook [44], with a lot of
references belonging to them. In fact, in the proceedings of any large recent
international conference on neural networks, one often encounters an article
containing a new attempt to tackle the TSP. A recently encountered example is
[24], which applies so-called ‘higher order’ neural networks and which appears
to be quite related to the analysis as given in chapter 4 of this thesis (see the
discussion at the end of section 4.3.3).

• Similarly, higher order neural networks were applied in the context of process
scheduling in flexible manufacturing systems [80]. Other examples of schedul-
ing problems resolved by using Hopfield neural networks, can be found in
[70, 81]. The first of these references describes, among other things, neural so-
lutions to the determination of a time-table for teachers and classes in a high
school, the second discusses a neural solution to an assortment problem as
found in the iron and steel industry.

• In [55], two applications of Hopfield neural networks in the field of vision are
given, the first one on ‘texture segmentation’ of images (where the segmenta-
tion problem is formulated as an optimization problem), the second one on ‘im-
age restauration’ (from a recording which is degraded in one way or another).
Comparisons to other methods are given. Image restoration by Hopfield net-
works has become a popular area of research as it is, see e.g. , the proceedings
of ICNN’95.

• Between other neural network applications in the area of high-speed commu-
nication networks (where the ‘asynchronous transfer mode’ technology is the
standard), ‘optimized routing’ and ‘optimal packet scheduling in input queues’
by means of recurrent neural networks are discussed in [65], including their
hardware implementations.



Chapter 3

Unconstrained Hopfield networks

In this chapter, we start trying to attain the first object of study as mentioned in section 1.2.2.
Most part of it is devoted to the study of the continuous Hopfield model as introduced in
section 2.3.2. We start offering an alternative derivation of theorem 2.3 (on the mean field
approximation of the stochastic model) yielding some old and several new approximations
of the free energy of the system. Next, we analyze the properties of these approximations
and their relation to the corresponding continuous model. In a third section, we generalize
this continuous model in two steps, eventually culminating in a very general framework.
Finally, we report the results of simulations that were set up in order to test some of the
theoretical conjectures.

Some parts of this chapter have been published earlier in [9, 14, 15, 17] or will be pub-
lished soon [11]. A large part has also been recorded in the technical reports [13, 16].

3.1 The mean field approximation revisited

A mean field analysis of binary stochastic Hopfield networks was described in chapter 2.
Here, we shall deal with an alternative mean field analysis yielding various approximations
of the true free energy. These expressions will turn out to be very useful later on. To reach
our goal, we adopt (a slightly modified version of) an approach given by Simic [77]. One dif-
ference between his and our approach concerns the way the external fields Ii are treated: he
includes small ‘generating fields’ [76] in the expression of the partition function (2.2), which
are set to zero during the derivation. We use real external fields Ii, conform equation (2.28),
which remain in the formulas. Unlike Simic, we start analyzing the original (unconstrained)
binary Hopfield model.

Theorem 3.1. If (wij) is a symmetric matrix, then a mean field approximation of the free energy of
stochastic binary Hopfield networks can be stated as

Fu1(V ) = 1
2

∑

i,j

wijViVj − 1
β

∑

i

ln
[
1 + exp

(
β(
∑

j

wijVj + Ii)
)]
, (3.1)

where the stationary points of Fu1 are found at points of the state space for which

∀i : Vi =
1

1 + e−β(
∑

j wijVj+Ii)
. (3.2)

Proof. The proof applies certain lemmas, whose precise formulation and demonstration can
be found in the appendix D. As usual, the starting point of the statistical mechanical analysis
is the partition function (2.2), where, in this case, the Hamiltonian equals the energy of the
binary Hopfield model as defined in (2.28). Thus, we have

Zhu =
∑

S

exp(β(12

∑

i,j

wijSiSj +
∑

i

IiSi)). (3.3)
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To be able to perform the summation in the partition function, the exponentials in the
quadratic terms SiSj are turned into exponentials that are linear in the Si’s by using lemma 1
with the plus sign1. This yields

Zhu =
∑

S

∫
exp

[

−β
2

∑

i,j φiw
−1
ij φj + β

∑

i Si(φi + Ii)
]
∏

i dφi
∫
exp

[

−β
2

∑

i,j φiw
−1
ij φj

]
∏

i dφi
, (3.4)

where the w−1
ij ’s represent the elements of the matrix inverse of (wij) and where the domain

of integration of both (improper) integrals equals R
n. In analyses of this kind, the integrals

are often expanded around the point which maximizes the integrand. The point is called the
saddle point [44]. We shall apply this saddle point approach in two ways. First, we calculate
the saddle point for every state S and then perform the summation over all states yielding
the average 〈φ̂〉 of saddle points. This calculation can be done exactly. Second, we change
the order of these actions by starting with the summation and, after that, calculating the (one
and only) saddle point φ̃ of the summed quotients of integrals. This time, for mathematical
complications, a first-order approximation is applied.

By expanding, for every state, the integrand in the numerator and the integrand in the
denumerator of (3.4) around their respective saddle points, it is possible to recover formula
(3.3). This follows in a straightforward way by the application of lemma 2 (see also the note
after the proof of that lemma). The saddle point equation of the numerator of (3.4) leads to
the formula

φ̂i =
∑

j

wijSj implying that 〈φ̂i〉 =
∑

j

wij〈Sj〉 =
∑

j

wijVj, (3.5)

where 〈φ̂i〉 is the i-th component of the average of the saddle point values of (3.4)2.
Now we change the order. Summation over all 2n states S in (3.4) yields, using lemma 3,

Zhu =

∫
exp

[

−β
2

∑

ij φiw
−1
ij φj +

∑

i ln
(
1 + exp(β(φi + Ii))

)]∏

i dφi
∫
exp

[

−β
2

∑

ij φiw
−1
ij φj

]
∏

i dφi
. (3.6)

Writing

Ehu(φ, I) =
1
2

∑

ij

φiw
−1
ij φj − 1

β

∑

i

ln
[
1 + exp

(
β(φi + Ii)

)]
, (3.7)

the saddle point φ̃ of the numerator in (3.6) is found by partial differentiation of Ehu(φ, I) to
the φi’s, giving

φ̃i =
∑

j

wij

1 + e−β(φ̃j+Ij)
. (3.8)

Up till now, the calculations have been exact. The question arises how 〈φ̂〉 and φ̃ are related.
Here, the (first order) saddle point approximation as applied in lemma 4 turns out useful.
Using this lemma, we find

Vi ≈ −∂Ehu(φ̃, I)

∂Ii
=

1

1 + e−β(φ̃i+Ii)
. (3.9)

If we now substitute the approximation (3.9) in the exact formula (3.5), we obtain

〈φ̂i〉 ≈
∑

j

wij

1 + e−β(φ̃j+Ij)
. (3.10)

1In an aside, we note that the condition of symmetry of the matrix (wij) of lemma 1 coincides with
one of the conditions for theorem 2.1.

2Apparently, 〈φ̂i〉 represents the average internal input of neuron i.
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Comparing (3.8) and (3.10), we conclude that

〈φ̂〉 ≈ φ̃. (3.11)

In the saddle point approximation of lemma 4, the partition function (3.6) has been approx-
imated according to

Zhu ≈ exp(−βEhu(φ̃, I)). (3.12)

Using this, we can derive a saddle point approximation of the free energy of the binary
stochastic Hopfield model. The derivation goes like

Fhu = − 1

β
lnZhu ≈ Ehu(φ̃, I) ≈ Ehu(〈φ̂〉, I) = Fu1(V ), (3.13)

where the last equality is found by substitution of (3.5). The stationary points of Fu1 are
found by resolving the equations ∂Fu1/∂Vi = 0. Again using the symmetry of (wij), we
precisely obtain (3.2) via

∂Fu1

∂Vi
=

∑

j

wijVj − 1
β

∑

k

β exp(β(
∑

j wkjVj + Ik))wki

1 + exp(β(
∑

j wkjVj + Ik))

=
∑

k

wik(Vk −
1

1 + exp(−β(
∑

j wkjVj + Ik))
) = 0. (3.14)

In fact, the equations (3.2) are mean field equations (see theorem 2.3 and equations (2.24)).
Apparently, the first order saddle point approximation and the mean field approximation
such as derived in section 2.1.5 are similar approaches yielding the same results3. This ob-
servation completes the proof. ⊓⊔

We may realize in another way that the first order saddle point and the mean field ap-
proximation are approaches of the same kind. By combining (3.9), (3.11), and (3.5), the
saddle point approximation results in the mean field equations by recognizing that

Vi ≈
1

1 + e−β(φ̃i+Ii)
≈ 1

1 + e−β(〈φ̂i〉+Ii)
=

1

1 + e−β(
∑

j wijVj+Ii)
. (3.15)

Besides, we note that in the final result (3.1), the free energy Fu1 is written as a function
over V , that is, (just like in (2.9)) over an arbitrary probability distribution4. Comparing the
original Hamiltonian (2.28) and the free energy approximation (3.1), it is remarkable that a
sign flip in the quadratic expression of the Si’s has occurred. Even more curious is the ob-
servation, that the sign flip can be undone producing the mean field free energy expression
(2.22):

Theorem 3.2. If (wij) is a symmetric matrix, then a mean field approximation of the free energy of
stochastic binary Hopfield networks can also be stated as

Fu2(V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
1
β

∑

i

(
Vi lnVi + (1− Vi) ln(1− Vi)

)
, (3.16)

where the stationary points of Fu2 coincide with those of Fu1.

3We notice that the usual argument for the admissibility of the saddle point approximation is
that in the thermodynamic limit (that is for n → ∞), the integrals are extremely dominated by the
contributions which maximize the integrand [44, 76, 70]. We shall not further explore this here.

4Remember from section 2.1.5 that Vi can be interpreted as P (Si = 1).
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Proof. Taking Ui = β
(∑

j wijVj + Ii
)
, lemma 5 states:

ln
[
1 + exp

(
β(
∑

j

wijVj + Ii)
)]

=

−Vi lnVi − (1− Vi) ln(1− Vi) + β
(∑

j

wijViVj + IiVi
)
. (3.17)

By combining this result and equation (3.1), the expression (3.16) is found. The stationary
points are found by resolving

∂Fu2

∂Vi
= −

∑

j

wijVj − Ii +
1
β
(lnVi + 1− ln(1− Vi)− 1)

= 1
β
(−β(

∑

j

wijVj + Ii) + ln
Vi

1− Vi
) = 0. (3.18)

This yields the mean field equations (3.2). ⊓⊔

3.2 Properties

3.2.1 The relation between Fu1 and Fu2

We have found two approximations of the free energy, namely Fu1 and Fu2. This raises the
question of how they are related. Let us start analyzing two simple examples. We take two
binary stochastic Hopfield networks having the Hamiltonian

H1(S) = S2
1 − S1 and H2(S) = −S2

1 + S1. (3.19)

The first one is the most simple model of an anti-ferromagnetic system, the second one of a
ferromagnetic system (section 2.1.3). The corresponding free energy functions are

Fu1,H1(V ) = −V 2
1 − 1

β
ln(1 + exp(β(−2V1 + 1))) (3.20)

Fu2,H1(V ) = V 2
1 − V1 +

1
β
(V1 lnV1 + (1− V1) ln(1− V1)) (3.21)

Fu1,H2(V ) = V 2
1 − 1

β
ln(1 + exp(β(2V1 − 1))) (3.22)

Fu2,H2(V ) = −V 2
1 + V1 +

1
β
(V1 lnV1 + (1− V1) ln(1− V1)). (3.23)

The figures 3.1 and 3.2 show the free energies Fu1 and Fu2 of H1, respectively H2, for vari-
ous values of β. In all cases, the stationary points of Fu1 and Fu2 coincide. In the left-hand

figure, the minima of Fu2,H1 coincide with maxima of Fu1,H1, all at V1 = 0.5. Away from
the stationary points, the free energy approximations differ substantially, where the approx-
imation Fu2,H1 looks the better one: H1 is a convex function, so a free energy approximation
is expected to be convex too since the energy contribution of noise is convex (section 2.1.2).
Moreover, β → ∞ (disappearing noise) implies that ∀V1 ∈ [0, 1] : Fu2,H1

→ H1, while this
limiting property certainly does not hold for Fu1,H1.

In the right-hand figure, the free energy approximations are more similar while the ex-
trema of Fu1,H2 and Fu2,H2 have the same character. We also recognize a phase transition:
for high values of T = 1/β, there exists one minimum at V1 = 0.5, while at lower tempera-
tures, we see one (metastable) maximum and two (stable) minima, allowing the occurrence
of a spontaneous magnetization. Although Fu1 performs better now, the approximation by
Fu2,H2 is still better: for low values of β, the approximation Fu2,H2 near V1 = 0 or V1 = 1 is
superior.
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Figure 3.1: Free energies of H1.
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Figure 3.2: Free energies of H2.

The indicated attributes concerning the type of the extrema can further be underpinned
by inspection of the second derivatives of Fu1 and Fu2. Denoting the solutions of the mean
field equations (3.2) by Ṽi, we find for the elements of the respective Hessians at stationary
points:

hu1,ij =
∂2Fu1

∂Vi∂Vj
= wij − β

∑

k

wikwkj
exp(β(

∑

j wij Ṽj + Ii))

(1 + exp(−β(
∑

j wkjṼj + Ik)))2

= wij − β
∑

k

wikwkjṼk(1− Ṽk), (3.24)

hu2,ij =
∂2Fu2

∂Vi∂Vj
=

{ −wij if j 6= i

−wii + 1/(βṼi(1− Ṽi)) if j = i.
(3.25)

In the present example, in case of H1 (where w11 < 0), we find

∀β : hu1 < 0 ∧ hu2 > 0. (3.26)

This confirms the (opposite) character of the extrema in the left figure. In case of H2 (where
w11 > 0), we find

hu1 > 0 ∧ hu2 > 0 if β < 1/(2Ṽ1(1− Ṽ1)) = 2, (3.27)

hu1 < 0 ∧ hu2 < 0 if β > 1/(2Ṽ1(1− Ṽ1)) = 2. (3.28)

This confirms the (same) character of the extrema in the right figure. In the mean time, we
have calculated the critical temperature5 being Tcr = 1/βcr = 0.5. We further notice that
inspection of (3.24) and (3.25) reveals that the noted phenomena concerning the character of
the extrema of Fu1 and Fu2 may also occur in other cases.

Concluding this section, we notice that in general the use of the superior mean field
approximation Fu2 is preferred. However, the approximation Fu1 will turn out to be of great
theoretical importance in section 3.3.1.

3.2.2 The effect of noise

There is still another way to understand the relationship between the mean field approx-
imation of the binary stochastic and the continuous Hopfield model. Here, the starting

5In this case, the critical temperature can also be calculated by considering the equilibrium equa-
tions 2.34 [44]. They can be written as V1 = 1/(1 + exp(−βU1)) ∧ V1 = 1

2
U1 +

1
2

. For T > Tcr = 0.5,
the equations have only one solution V1 = 0.5. For T < Tcr = 0.5, there are 3 solutions.
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point is Hopfield’s energy expression (2.32). Taking the sigmoid as the transfer function,

we can elaborate the Hopfield term Eh, i.e., the sum of integrals
∑

i

∫ Vi
0 g−1(v)dv. Since

Vi = g(Ui) = (1 + e−βUi)−1, we can write

Ui = − 1

β
ln(

1− Vi
Vi

) = g−1(Vi), (3.29)

and therefore

∫ Vi

0
g−1(v)dv = 1

β
[(1− Vi) ln(1− Vi) + Vi lnVi] = − 1

β
S(Vi). (3.30)

Thus, we have proven the following theorem:

Theorem 3.3. If the sigmoid function is chosen as the transfer function in the continuous Hopfield
model, then the energy Ec equals the free energy approximation Fu2 of the stochastic binary Hopfield
model. The Hopfield term Eh of the continuous model can physically be interpreted as the (approxi-
mation of the) thermal noise term − 1

β
S of (2.9).

For the specific choice of the sigmoid as the transfer function, we can examine the effect
of the temperature more thoroughly (compare Hopfield’s discussion as mentioned at the
end of section 2.3.2). In figure 3.3, the term (3.30) is visualized at various temperatures. The
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Figure 3.3: The term − 1
β
S(Vi) for various values of β.

term is always non-positive and for β → ∞, − 1
β
S(Vi) → 0, so in the limit of an annealing

process, the noise term does not influence the extrema of the original cost function E(V )
of (2.32). For finite values of β, minima of E(V ) situated in a corner of the hypercube, are
displaced toward the interior (see also figure 3.4). This is true for any finite value of β since

∂Eh

∂Vi
(Vi = 0) = −∞ and

∂Eh

∂Vi
(Vi = 1) = ∞, (3.31)

whereas the partial derivatives of E(V ) are always finite. The smaller β is, the larger is the
displacement toward the interior.

The displacement noted should be considered a pretty feature of the model. First, it
makes mean field annealing (section 2.1.5) possible, since the shift goes hand in hand with a
smoothing effect on the energy landscape of E(V ) and gradually disappears if T is lowered.
Second, by keeping the final temperature small but positive, solutions are dragged away
from corners of the hypercube [0, 1]n causing the corresponding U -values of the neurons to
be finite. We further notice that minima of E(V ) situated in the interior of the hypercube are
also displaced by the effect of noise. The magnitude of the displacement strongly depends
on the parameter value β.
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In the literature, we occasionally encountered a slight confusion concerning the Hopfield
term Eh(V ). As we have seen, the term directly relates to the Ui-terms in the corresponding
updating rules (2.30): Ui = ∂Eh/∂Vi. Takefuji considers the ‘decay term’ Ui ‘harmful’ and
concludes (quote from pp. 6 and 7 in [82]):

“Hopfield gives the motion equation of the i-th neuron (Hopfield and Tank
1985):

dUi
dt

= −Ui
τ

− ∂E

∂Vi
(3.32)

(. . . ) . Wilson and Pawley strongly criticized the Hopfield and Tank neural

network through the Travelling Salesman Problem. Wilson and Pawley did not

know what causes the problem. The use of the decay term (−Ui/τ ) in Eq. 3.32

increases the computational energy function E under some conditions instead

of decreasing it.”

So Takefuji suggests, but does not prove that the problems which Wilson and Pawley [88]
encountered, are caused by the decay term Ui/τ (in our formulations τ = 1). We think
this suggestion is not correct for two reasons. First, in his analysis, Takefuji does not add
the Hopfield term Eh(V ) to the energy function, but at the same time, he does take up the
decay term Ui in equation (3.32). He then concludes, that the decay term is responsible for
incrementing the cost function E(V ) under some conditions, making it thereby harmful.
In fact, this conclusion on the increase of the cost function is correct, but it should not be
considered harmful: we shall prove in the next section that the encountered energy increase
precisely corresponds to the aforesaid displacement of solutions.

Second, analyzing the TSP, Wilson and Pawley applied the penalty method with many com-
peting (sometimes called mutually ‘frustrating’) penalty terms: this soft approach should
be considered the crucial factor for the poor results in their approach.

3.2.3 Why the decay term is not harmful

We already know from theorem 2.2, that under some general conditions, equation (3.32) con-
tinuously decreases Ec(V ) = E(V ) + Eh(V ) until an equilibrium point is reached. Takefuji
argues in the following way that the cost function E(V ) alone may increase: using equation
(3.32) with τ = 1, it is seen that

Ė =
∑

i

∂E

∂Vi
V̇i =

∑

i

(−U̇i − Ui)V̇i

= −
∑

i

(U̇2
i + UiU̇i)

∂Vi
∂Ui

. (3.33)

Because ∂Vi/∂Ui > 0, a necessary condition for an increase of E(V ) can be stated as follows:
there should be at least one i such, that

U̇2
i + UiU̇i < 0, (3.34)

which is equivalent to

−Ui < U̇i < 0 or 0 < U̇i < −Ui. (3.35)

These two conditions correspond precisely to a displacement of a solution toward the inte-
rior of the state space. We shall prove that the first condition results in a displaced minimum
with a lower value of Vi (the second corresponds to a displacement with a higher value). The
left inequality of −Ui < U̇i < 0 implies that

−Ui − U̇i < 0. (3.36)
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Using again (3.32) with τ = 1, one finds:

∂E

∂Vi
= −Ui − U̇i < 0, (3.37)

so that E as function of Vi is decreasing.

The right-hand inequality of −Ui < U̇i < 0 implies that −U̇i > 0. Using once again (3.32)
and the equation Ui = ∂Eh/∂Vi, one finds:

∂E

∂Vi
+

∂Eh

∂Vi
=

∂E

∂Vi
+ Ui = −U̇i > 0, (3.38)

so that the sum of E and Eh is increasing. The inequalities (3.37) and (3.38) together imply

∂Eh

∂Vi
> 0, (3.39)

so that Eh as a function of Vi is increasing. Therefore, Vi > 0.5. We have put this
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Figure 3.4: E, Eh and E + Eh as function of Vi.

altogether in figure 3.4 (for the case that E has a minimum for Vi = 1). It should be
clear now that the conditions (3.37) to (3.39) imply a displacement of the minimum
of E(V ) to the interior, caused by the contribution of Eh(V ).

It is easy to prove that the converse also holds: a displacement of a solution to a
smaller value of Vi, caused by the Hopfield term, implies −Ui < U̇i < 0. Summariz-
ing, we conclude that the conditions (3.35) which may cause an increase of the cost
function E(V ), precisely correspond to a displacement of a solution to the interior of
the state space. Since we argued in the previous subsection that such a displacement
is a pretty feature of the model, the decay term is not at all a harmful one.

3.3 Generalizing the model

3.3.1 A first generalization step

In this subsection, we introduce a more general view on Hopfield neural networks
which puts the analysis of section 3.1 in a wider context.
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Theorem 3.4. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can also be stated as

Fu3(U, V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

i

UiVi − 1
β

∑

i

ln(1 + exp(βUi)), (3.40)

where the stationary points of Fu3 are found at points of the state space for which

∀i : Vi =
1

1 + e−βUi
∧ Ui =

∑

j

wijVj + Ii. (3.41)

Proof. Substitution of lemma 5 in the energy function Fu2 of theorem 3.2 immedi-
ately yields the free energy expression (3.40). Resolving the system of equations
∀i : ∂Fu3/∂Ui = 0, ∂Fu3/∂Vi = 0 (compare 3.14) yields the equations (3.41) as solu-
tions. ⊓⊔

The most interesting point of theorem 3.4 is the fact that the stationary points of
Fu3 coincide with the complete set of equilibrium conditions (2.34), provided that the
sigmoid is the chosen transfer function. In fact, this clarifies (what may be clear
intuitively) that, for a full description of the (continuous) Hopfield network, one
should know both all input values (Ui) and all output values (Vi). Thus, it is actually
better to call the set of vectors {U, V } the system state of the neural net (instead of
merely the vector V ).

Just like Fu2 is a Lyapunov function, so Fu3 appears to be a Lyapunov function of
the motion equations (2.30):

Theorem 3.5. If (wij) is a symmetric matrix and if ∀i : Vi = 1/(1 + exp(−βUi)) is the
transfer function, then the energy Fu3 is a Lyapunov function for the motion equations
(2.30).

Proof. Knowing that the sigmoid function is a monotone increasing and differen-
tiable function and that wij is a symmetric matrix, it follows that

Ḟu3 =
∑

i

∂Fu3

∂Vi
V̇i +

∑

i

∂Fu3

∂Ui
U̇i (3.42)

=
∑

i

(
−
∑

j

wijVj − Ii + Ui
)
V̇i +

∑

i

(
Vi −

1

1 + e−βUi

)
U̇i (3.43)

= −
∑

i

U̇iV̇i = −
∑

i

(U̇i)
2 dVi
dUi

≤ 0. (3.44)

In section 3.2.2, it is shown that the solution values of Ui are finite for finite values of
β. Then, Fu3 is bounded below. Therefore, execution of the motion equations (2.30)
constantly decreases the value of Fu3 until ∀i : U̇i = 0 and a (local) minimum has
been reached. ⊓⊔

Inspection of the proof immediately yields a well-known [44], complementary set
of motion equations for which Fu3 or −Fu3 might be a Lyapunov function:

Theorem 3.6. If the matrix (wij) is symmetric and positive definite, then Fu3 or alterna-
tively, if the matrix (wij) is symmetric and negative definite, then −Fu3 is a Lyapunov
function for the motion equations

V̇i =
1

1 + e−βUi
− Vi, (3.45)
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where

Ui =
∑

j

wijVj + Ii. (3.46)

Proof. The proof again considers the time derivative of Fu3. If (wij) is positive defi-
nite, then

Ḟu3 = −
∑

i

V̇iU̇i = −
∑

i

V̇i
∑

j

∂Ui
∂Vj

V̇j = −
∑

i

V̇i
∑

j

wijV̇j ≤ 0. (3.47)

If (wij) is negative definite, then −Ḟu3 ≤ 0. In both cases, updating conform (3.45)
decreases the corresponding Lyapunov function until, finally, ∀i : V̇i = 0. ⊓⊔

3.3.2 A more general framework

Since equations (3.41) are a special case of (2.34) and similarly, equation (3.16) is a
special case of (2.32), the question arises whether theorem 3.4 can be generalized
to an energy expression of a continuous Hopfield network having neurons with an
arbitrary6 transfer function of the form Vi = g(Ui). The following two theorems
answer this, and other questions, affirmatively.

Theorem 3.7. If (wij) is a symmetric matrix, then any stationary point of the energy Fgf

defined by

Fgf(U, V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

i

UiVi −
∑

i

∫ Ui

0

g(u)du (3.48)

coincides with an equilibrium state of the continuous Hopfield neural network.

Proof. Resolving

∀i : ∂Fgf/∂Ui = 0 ∧ ∂Fgf/∂Vi = 0, (3.49)

the set of equilibrium conditions (2.34) is immediately found. ⊓⊔

In fact, the energy expression (3.48) can simply be derived from Hopfield’s original
expression (2.32) using partial integration. Having Vi = g(Ui), we can write

∑

i

∫ Vi

0

g−1(v)dv =
∑

i

[
g−1(v)v

]Vi

0
−
∑

i

∫ Ui

g−1(0)

vdu

=
∑

i

UiVi −
∑

i

∫ Ui

0

g(u)du+ c, (3.50)

where c = −∑i

∫ 0

g−1(0)
g(u)du is an unimportant constant which may be neglected7.

Substitution of the result in (2.32) yields (3.48).

6In fact, Vi = g(Ui) is not completely arbitrary, since, for mathematical reasons, one should im-
pose one or more general restrictions. E.g., g(Ui) may have to be continuous, differentiable and-or
integrable. To keep things simple, we mention these restrictions explicitly so far as they are of special
interest. In other cases, the precise conditions are omitted and supposed to hold implicitly.

7It is not difficult to see that g(0) = 0 ⇒ c = 0.
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Theorem 3.8. If (wij) is a symmetric matrix and if ∀i : Vi = g(Ui) is a differentiable and
monotone increasing function, then the energy function Fgf is a Lyapunov function for the
motion equations

U̇i =
∑

j

wijVj + Ii − Ui, where Vi = g(Ui). (3.51)

Proof. The proof is a direct generalization of the proof of theorem 3.5. ⊓⊔

Theorem 3.9. If the matrix (wij) is symmetric and positive definite, then Fgf or alterna-
tively, if the matrix (wij) is symmetric and negative definite, then −Fgf is a Lyapunov func-
tion for the motion equations

V̇i = g(Ui)− Vi, where Ui =
∑

j

wijVj + Ii. (3.52)

Proof. The proof is a direct generalization of the proof of theorem 3.6. ⊓⊔

It is interesting to see that the conditions for which the updating rules (3.51) and
(3.52) guarantee stability are so different. In the first case, stability only depends on
the transfer function chosen. The corresponding condition that Vi = g(Ui) should
be differentiable and monotone increasing is generally easy to check. In the second
case, stability depends on the structure of the optimization problem involved. The
corresponding condition that the matrix (wij) should be positive or negative defi-
nite, may be difficult to check. The motion equations (3.51) are therefore in practice
the preferable choice.

3.4 Computational results

We already discussed the fact that, in principle, the unconstrained continuous Hop-
field model can be used to solve combinatorial optimization problems. The ap-
proach required is the soft one applying penalty terms. However, the computational
results as known from literature are often very poor (section 2.4). On the other hand,
we noticed in footnote 11 of the previous chapter that the penalty method may be
useful for solving purely combinatorial problems. For this reason, we first confine
ourselves to report certain experimental results involving one of such problems,
namely the n-rook problem8. By doing this, we can simultaneously check some
of the theoretical statements of this chapter, especially concerning the role of the
temperature parameter. Secondly, we shall dwell upon the outcomes of a simple
problem which is resolved using mean field annealing.

3.4.1 The n-rook problem

The n-rook problem (NRP), which is strongly related to the famous n-queen prob-
lem, can be stated as follows: given an n × n chess-board the goal is to place n
non-attacking rooks on the board. The problem is the same as the ‘crossbar switch
scheduling’ problem, where the throughput of packets should be controlled in such

8In addition, this problem acts as an introduction to the TSP, the experimental outcomes of which
– together with those of other problems – will be reported in the next chapters.
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a way that at any time, no two inputs may be connected to the same output and,
vice versa, no output may be connected to more than one input simultaneously9.
We may map the problem on the continuous Hopfield network as follows: if Vij
represents whether a rook is placed on the square of the chess-board with row num-
ber i and column number j, we search for a combination of Vij-values such that the
following constraints are fulfilled:

C1 =
∑

i,j

∑

k>j

VijVik = 0, (3.53)

C2 =
∑

j,i

∑

k>i

VijVkj = 0, (3.54)

C3 = 1
2
(
∑

i,j

Vij − n)2 = 0. (3.55)

C1 = 0 implies that in any row at most one Vik 6= 0, C2 = 0 implies that in any
column at most one Vkj 6= 0. C3 = 0 in combination with C1 = C2 = 0 implies that
precisely n rooks are placed on the board. The constraints fulfill the condition (2.37).
C1, C2, C3 can thus be used as penalty terms. The cost function to be minimized
becomes

Fu,nr(V ) =
3∑

α=1

cαCα(V ) + Eh(V ). (3.56)

The corresponding motion equation of this problem is

U̇ij = −∂Fu,nr

∂Vij
= −c1

∑

k 6=j

Vik − c2
∑

k 6=i

Vkj − c3(
∑

i,j

Vij − n)− Uij , (3.57)

where Vij = 1/(1 + exp(−βUij)). We note that in this problem the matrix (wij,kl) is
symmetric so that (3.57) is expected to be stable. In the numerical simulation, we
apply the approximation

U̇ij ≈ ∆Uij/∆t. (3.58)

Using random initializations of Vij around 0.5, and choosing ∀α : cα = 1, conver-
gence is always present, provided ∆t is chosen to be small enough. In case of n = 4,
∆t = 0.01 is a good choice. At low temperatures, most of the neurons approach
zero, while four of them become approximately one. In fact, one of the 24 possible
solutions is ever found. The four neuron values which have become approximately
one, are all equal and depend on β:

β Vij ≈ 1
1000 0.998392

200 0.993678
20 0.960207

Table 3.1: Solution values Vij ≈ 1 as function of β, in case n = 4.

At high temperatures however, all 16 Vij’s become equal. E.g., for β = 0.0002 keep-
ing the other parameters the same, we found ∀i, j : Vij = 0.499650. The effect of a
high noise level is present now.

9As we shall see later on, the problem is also strongly related to the TSP. It has been resolved by
Takefuji [82] too, although he applied another neural network. See further also [65].
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In case of n = 25, β = 1000, ∆t = 0.0001, we again found convergence, namely
to one of the 25!, i.e. to one of the approximately 1.55 × 1025 solutions. In case
of n = 50 and other parameters as before, we found convergence to one of the
approximately 3.04 × 1064 solutions. ‘Even’ taking n = 100 with ∆t = 0.00005 , the
system turns out to be stable. However, the calculation time now becomes an issue
(several hours), since the neural network involved consists of 10 000 neurons, which
have to be sequentially updated in the simulation for several thousand of times.

3.4.2 Mean field annealing

We finish this chapter by showing how the addition of noise can help to find the
global minimum of a function. We look for the minimum of the Hamiltonian

Emf(V ) = −V 2
1 + 1.5V1, (3.59)

where V1 ∈ [0, 1]. The global boundary minimum of Emf is the point (0,0), while
(1,0.5) is the other (local) boundary minimum. Direct application of gradient descent
on Emf(V ) with random initialization of V1 on the interval (0.0,1.0) yields the global
minimum in 75% of the cases, namely, if V1 ∈ (0.0, 0.75). However, in 25% of the
cases, namely, if V1 ∈ (0.75, 1.0), the local boundary minimum is found.

If we apply mean field annealing by adding a sufficient amount of noise in the
beginning, the global solution is always found. Figure (3.5) demonstrates how this
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Figure 3.5: Fmf for various values of β.

can happen: at high temperatures (low values of β), the minimum of the free energy

Fmf(V ) = Emf(V ) + Eh(V ) (3.60)

occurs slightly left of V1 = 0.5. On lowering the temperature, this minimum is grad-
ually displaced and finally appears in the state V1 = 0, while at the same time, the
free energy Fmf more and more approximates the original Emf . Even if the initial
value of V1 is in the interval (0.75,1.0), the right solution will still be found. A simu-
lation using the corresponding motion equation

U̇1 = −∂Fmf

∂V1
= 2V1 − 1.5− U1, (3.61)
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(where as usual, V1 = 1/(1 + exp(−βU1))), confirms this conjecture: e.g., having
β = 0.5 and V = 0.977 initially, the network immediately relaxes to the equilibrium
point at that temperature: we found (0.418,-0.907). On lowering the temperature
step by step, the network continually relaxes to the new equilibrium point, which is
gradually displaced towards the final limit point (0.0,0.0).

As has been pointed out in chapter 1, matters are usually much more compli-
cated when real practical problems are tackled. E.g., problem instances of practical
interest generally have energy functions in a high-dimensional space with many lo-
cal minima widely scattered around, which gradually appear after each other on
lowering the temperature. Thus, in those cases, the precise effect of the temperature
is not quite clear and it is strongly connected to the actual structure of the energy
surface of the problem.



Chapter 4

Constrained Hopfield networks

We take up the strong approach of dealing with the constraints as mentioned in sec-
tion 2.4: the constraints are built-in in the neural network. Surprisingly, the selected
constrained binary stochastic Hopfield neural network can be analyzed in a similar
way as the unconstrained network of the previous chapter1. It leads to the insight
that this constrained model also coincides, in mean field approximation, with an
(adapted) continuous Hopfield net. Having elucidated this, we generalize the en-
countered free energy expressions: in three steps, the most general framework of
continuous Hopfield models will emerge. As usual, we conclude by reporting some
experimental results.

This chapter is largely structured like the previous one. Parts of this chapter have
been published earlier in [9, 15, 17] or will be published soon [11]. A considerable
part has been recorded in the technical reports [13, 16].

4.1 Once again, the mean field approximation

We restrict the space of allowed states of the neural net by imposing the constraint
(2.40), that is, we impose

∑

i

Si − 1 = 0. (4.1)

Thus, only such states are admitted where exactly one of the neurons is on, all the
others being off. The original state space {0, 1}n is reduced to a much smaller one
having the admissible n states (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1). In or-
der to analyze this constrained neural network, we again adopt the modified version
of Simic’s approach [77].

Theorem 4.1. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can be stated
as

Fc1(V ) =
1
2

∑

i,j

wijViVj − 1
β
ln
[∑

i

exp(β(
∑

j

wijVj + Ii))
]
, (4.2)

where the stationary points of Fc1 are found at points of the state space for which

∀i : Vi =
exp(β(

∑

j wijVj + Ii))
∑

l exp(β(
∑

j wljVj + Il))
. (4.3)

1In fact, the research efforts which induced the (more difficult) analysis given here, for the greater
part preceded those concerning the unconstrained networks.



46 Constrained Hopfield networks

Proof. The proof follows the scheme of the proof of theorem 3.1. This time, we
shall indicate the partition function by Zhc. Up to and including the exact equation
(3.5), the proof is precisely the same. Thereupon, summation over the n states of the
constrained space using lemma 6 yields,

Zhc =

∫
exp

[

−β

2

∑

i,j φiw
−1
ij φj + ln

∑

i exp(β(φi + Ii))
]
∏

i dφi
∫
exp

[

−β

2

∑

i,j φiw
−1
ij φj

]
∏

i dφi
. (4.4)

Writing

Ehc(φ, I) =
1
2

∑

ij

φiw
−1
ij φj − 1

β
ln
∑

i

exp(β(φi + Ii)), (4.5)

partial differentiation of Ehc(φ, I) this time leads to the saddle point equation

φ̃i =
∑

j

wij
exp(β(φ̃i + Ii))
∑

l exp(β(φ̃l + Il))
. (4.6)

Up till now, the calculations have been exact. The question arises, whether 〈φ̂〉 and φ̃
are again related conform a saddle point approximation. Applying a modified, but
very similar version of lemma 4, we arrive at the following saddle point approxima-
tion:

Vi ≈ −∂Ehc(φ̃, I)

∂Ii
=

exp(β(φ̃i + Ii))
∑

l exp(β(φ̃l + Il))
. (4.7)

If we now substitute the approximation (4.7) in the exact formula (3.5), we indeed

obtain (3.11), which states that in a saddle point approximation 〈φ̂〉 ≈ φ̃. We further
realize that again equation (3.12) holds and that it leads to (4.2) conform

Fhc = − 1

β
lnZhc ≈ Ehc(φ̃, I) ≈ Ehc(〈φ̂〉, I) = Fc1(V ), (4.8)

where the last equality is obtained by substitution of (3.5). Using the symmetry of
wij , we finally find the equations (4.3) via

∂Fc1

∂Vi
=

∑

j

wijVj − 1
β

∑

k

β exp(β(
∑

j wkjVj + Ik))wki
∑

l exp(β(
∑

j wljVj + Il))

=
∑

k

wik(Vk −
exp(β(

∑

j wkjVj + Ik))
∑

l exp(β(
∑

j wljVj + Il))
) = 0. (4.9)

These equations are the mean field equations of the constrained neural network
[69, 70, 78]. Apparently, the first order saddle point approximation and the mean
field analysis again yield the same results. This completes the proof. ⊓⊔

We may realize in another way that the first order saddle point and the mean field
approximation are approaches of the same kind. By combining (4.7), (3.11), and
(3.5), the saddle point approximation results into the mean field equations by real-
izing that

Vi ≈ exp(β(φ̃i + Ii))
∑

l exp(β(φ̃l + Il))

≈ exp(β(〈φ̂i〉+ Ii))
∑

l exp(β(〈φ̂l〉+ Il))
=

exp(β(
∑

j wijVj + Ii))
∑

l exp(β(
∑

j wljVj + Il))
. (4.10)
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The sign flip (in the quadratic expression of the Si’s) we mentioned in the previous
chapter is present again. Likewise, it can be undone producing a new free energy
expression. This is stated more precisely in the following theorem, where the con-
strained subspace C is defined as the subspace of the state space [0, 1]n for which
∑

i Vi = 1.

Theorem 4.2. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also be
stated as

Fc2(V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
1
β

∑

i

Vi lnVi, (4.11)

where the stationary points of Fc2, considered as a function over the constrained
space C, coincide with the (global) stationary points of Fc1.

Proof. Taking Ui =
∑

j wijVj + Ii, lemma 7 states:

ln
∑

i

exp(β(
∑

j

wijVj + Ii)) =

−
∑

i

Vi lnVi + β(
∑

ij

wijViVj +
∑

i

IiVi). (4.12)

By combining this result and equation (4.2), the expression (4.11) for Fc2(V ) is found.
In order to find the constrained stationary points of Fc2, a Lagrange multiplier term
is added to (4.11) giving

Lc2(V, λ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
1
β

∑

i

Vi lnVi + λ(
∑

i

Vi − 1). (4.13)

The stationary points of Lc2 are found by resolving the following set of equations
(4.14) and (4.15):

∂Lc2

∂Vi
= −

∑

j

wijVj − Ii +
1
β
(1 + lnVi) + λ = 0, i = 1, . . . , n, (4.14)

∂Lc2

∂λ
=

∑

i

Vi − 1 = 0. (4.15)

From (4.14) it follows that

Vk
Vi

=
exp(

∑

j wkjVj + Ik)

exp(
∑

j wijVk + Ii)
. (4.16)

Combining this result with (4.15), we obtain

1 =
∑

k

Vk = Vi

∑

k exp(
∑

j wkjVj + Ik)

exp(
∑

j wijVk + Ii)
. (4.17)

This equation implies the mean field equations (4.3). The solutions of these equa-
tions are stationary points of Lc2 and constrained stationary points of Fc2 as well.
This completes the proof. ⊓⊔

It should be clear that a replacement of wij by −wij and of Ii by −Ii slightly modifies
the above given theorems yielding mean field equations of the type

Vi =
exp(−β(∑j wijVj + Ii))
∑

l exp(−β(
∑

j wljVj + Il))
. (4.18)
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4.2 Properties

4.2.1 The relation between Fc1 and Fc2

As in the unconstrained case, we have found two approximations of the free energy,
namely Fc1 and Fc2. We again want to understand how they are related. We start
with an example. Suppose the function to be minimized is

H3(S) =
1
2
(S2

1 + 2S2
2) subject to S1 + S2 = 1, (4.19)

then the corresponding free energy expressions (from theorems 4.1 and 4.2) equal

Fc1,H3(V1, V2) = −1
2
(V 2

1 + 2V 2
2 )− 1

β
ln[exp(−βV1) + exp(−2βV2)], (4.20)

Fc2,H3(V1, V2) = 1
2
(V 2

1 + 2V 2
2 ) +

1
β
(V1 lnV1 + V2 lnV2). (4.21)
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A diagram of these functions is shown in the figures 4.1 and 4.2, with β = 20, which
corresponds to a low noise level. The arrow denotes the point (2

3
, 1
3
, 1
3
) which is the

global maximum of Fc1,H3, respectively the constrained minimum of Fc2,H3, if noise
is neglected. In this example, the constrained subspace C consists of the subspace
of [0, 1]2 for which V1 + V2 = 1. In figure 4.3, Fc1,H3 and Fc2,H3 are shown over this
constrained subspace. We notice the same phenomenon like in section 3.2 concern-
ing the Hamiltonian E1: Fc1,H3 and Fc2,H3 have coinciding stationary points with an
opposite character of the extrema.

Likewise, analyzing the Hamiltonian

H4(S) = −1
2
(S2

1 + 2S2
2) subject to S1 + S2 = 1, (4.22)

we found that Fc1,H4 and Fc2,H4 have extrema of the same kind. This is not further
elaborated here.

Concluding this subsection, we observe that, within the constrained space C, Fc1

and Fc2 seem to behave in the same way as Fu1 and Fu2 in the unconstrained case.
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4.2.2 The effect of noise

The resemblance of the constrained Hopfield network to the unconstrained one
reaches even further. The free energy Fc2 can be interpreted as a function over a
probability distribution V , where in this case

Vi = 〈Si〉 = P(Si = 1 ∧ ∀j 6= i : Sj = 0). (4.23)

A closer investigation reveals that Fc2, like Fu2, is structured conform the general
free expression (2.9). However, contrary to what we concluded in the unconstrained
case, the neurons now have a mutually dependent contribution (of 1

β
Vi lnVi) to the

entropy term. At high temperatures, the thermal noise energy dominates, this time
yielding the constrained equilibrium solution ∀i : Vi = 1/n. This is easily recognized
by resolving (using Lagrange’s multiplier method)

minimize 1
β

∑

i Vi lnVi,

subject to :
∑

i Vi − 1 = 0. (4.24)

Lowering the temperature corresponds to a decrease of thermal noise in the system
and the details of the original cost function become visible. Therefore, mean field
annealing can be applied.

4.3 Generalizing the model

4.3.1 A first generalization step

In this subsection, we introduce a general view on the binary constrained Hopfield
model which puts the analysis of section 4.1 in a wider context. It will also enable
us to analyze the stability properties of the constrained model.

Comparing the unconstrained and the constrained binary stochastic Hopfield
model, the question may be posed whether the free energy approximation Fc2 coin-
cides with the energy of the continuous Hopfield model with the transfer function

Vi = gi(U) =
exp(βUi)
∑

l exp(βUl)
. (4.25)
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This transfer function is (of course) induced by the mean field equations (4.3). The
corresponding continuous Hopfield network is visualized in figure 4.4. It is impor-
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Figure 4.4: The constrained Hopfield network with equilibrium
condition: ∀i : Ui =

∑

j wijVj + Ii and Vi =
exp(Ui)/

∑

l exp(Ul).

tant to notice that the expression (4.11) for Fc2 is not a special case of the general
energy expression Ec (2.32) of the original continuous Hopfield model. This follows
from the observation that

∑

i

∫ Vi

0

g−1
i (v)dv (4.26)

is not properly defined here, since Vi = gi(U) is now a function of U1, U2, . . . , Un and
not of Ui alone. Apparently, we have introduced a new, adapted continuous Hopfield
network. The relation between this network and its stochastic counterpart is given
by the following theorem.

Theorem 4.3. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also be
stated as

Fc3(U, V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

i

ViUi − 1
β
ln(
∑

i

exp(βUi)), (4.27)

where the stationary points of Fc3 are found at points of the state space for which

∀i : Vi =
exp(βUi)
∑

l exp(βUl)
∧ Ui =

∑

j

wijVj + Ii. (4.28)

Proof. Substitution of lemma 7 (in its original form) in the energy function Fc2 of
theorem 4.2 immediately yields expression Fc3. Resolving the system of equations
∀i : ∂Fc3/∂Ui = 0, ∂Fc3/∂Vi = 0 yields the equations (4.28) as solutions. ⊓⊔

Again, we encounter the interesting phenomenon that the stationary points of a free
energy approximation of a stochastic model coincide with the conditions of equilib-
rium of a continuous Hopfield network. From the analysis presented above it also
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follows that, in the constrained case, Hopfield’s theorem 2.2 does not hold. This
induces the question whether, and if so, under which conditions, the adapted con-
tinuous Hopfield model converges. The following theorem answers this question.

Theorem 4.4. If (wij) is a symmetric matrix, if (4.25) is used as the transfer function, and
if, during updating, the Jacobian matrix Jg = (∂Vi/∂Uj) first is or becomes and then remains
positive definite, then the energy Fc3 is a Lyapunov function for the motion equations (2.30).

Proof. Assuming that the conditions of the theorem hold we may say that in the
long run

Ḟc3 =
∑

i

∂Fc3

∂Vi
V̇i +

∑

i

∂Fc3

∂Ui
U̇i

=
∑

i

(−
∑

j

wijVj − Ii + Ui)V̇i +
∑

i

(Vi −
exp(βUi)
∑

l exp(βUl)
)U̇i

= −
∑

i

U̇i
∑

j

∂Vi
∂Uj

U̇j = −U̇TJgU̇ ≤ 0. (4.29)

Since Fc3 is bounded below at finite temperatures (for similar reasons as explained
in the unconstrained case), its value decreases constantly until ∀i : U̇i = 0 and a local
minimum is reached. ⊓⊔

Whether the general condition holds that the matrix Jg will become and remain
positive definite, is not easy to say. Applying lemma 8, the symmetric matrix Jg is
given by

β








V1(1− V1) −V1V2 · · · −V1Vn
−V2V1 V2(1− V2) · · · −V2Vn

...
...

...
−VnV1 −VnV2 · · · Vn(1− Vn)







. (4.30)

So we see that all diagonal elements of Jg are positive, while all non-diagonal ele-
ments are negative. Knowing that

∑

i Vi = 1, we argue that for large n in general

∀i, ∀j, ∀k : ViVj << Vk(1− Vk), (4.31)

although this statement is certainly not always true. Nevertheless, it is not unrea-
sonable to expect that in many cases, the matrix Jg is dominated by the (positive)
diagonal elements, making it positive definite2. For these reasons, it is conjectured
that the motion equations (2.30) turn out to be stable in many practical applications.
As in the unconstrained case, inspection of the proof of the previous theorem im-
mediately yields a complementary set of motion equations for which Fc3 may be a
Lyapunov function:

Theorem 4.5. If the matrix (wij) is symmetric and positive definite, then Fc3 or alterna-
tively, if the matrix (wij) is symmetric and negative definite, then −Fc3 is a Lyapunov
function for the motion equations

V̇i =
exp(βUi)
∑

l exp(βUl)
− Vi, (4.32)

2Under the given conditions, the symmetric matrix Jg has only positive eigenvalues, implying
the definite positiveness of it [66].
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where
Ui =

∑

j

wijVj + Ii. (4.33)

Proof. The proof is the same as the proof of theorem 3.6. ⊓⊔

4.3.2 A very general framework

It is remarkable, that the motion equations (2.30) of the continuous unconstrained
model may still be applied using the constrained model, where the concrete trans-
fer function (4.25) is a function of all inputs Ui. This poses the question whether
those motion equations can still be applied if an arbitrary3 function of the form
Vi = gi(U) = gi(U1, U2, . . . , Un) is used. This would yield a further generalization
of (2.32), of section 3.3.2, and of the previous section. The following theorems an-
swer this question.

Theorem 4.6. Let G(U) = G(U1, U2, . . . , Un) be a function for which

∀i : ∂G(U)
∂Ui

= gi(U). (4.34)

If (wij) is a symmetric matrix, then any stationary point of the energy

Fvgf(U, V ) = −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

i

UiVi −G(U) (4.35)

coincides with an equilibrium state of the continuous Hopfield neural network defined by4

∀i : Vi = gi(U) ∧ Ui =
∑

j

wijVj + Ii. (4.36)

Proof. Resolving
∀i : ∂Fvgf/∂Ui = 0 ∧ ∂Fvgf/∂Vi = 0, (4.37)

the set of equilibrium conditions (4.36) is found. ⊓⊔

Theorem 4.7. If the matrix (wij) is symmetric and if, during updating, the Jacobian matrix
Jg first is or becomes and then remains positive definite, then the energy function Fvgf is a
Lyapunov function for the motion equations

U̇i =
∑

j

wijVj + Ii − Ui, where Vi = gi(U). (4.38)

Proof. The proof is a direct generalization of the proof of theorem 4.4. ⊓⊔

Theorem 4.8. If the matrix (wij) is symmetric and positive definite, then Fvgf or alterna-
tively, if the matrix (wij) is symmetric and negative definite, then −Fvgf is a Lyapunov
function for the motion equations

V̇i = gi(U)− Vi, where Ui =
∑

j

wijVj + Ii. (4.39)

3Again, certain general restrictions should be imposed on the transfer function: see footnote 6 of
the previous chapter.

4Note, that the set of equilibrium conditions (4.36) is indeed a generalization of the set (2.34).
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Proof. The proof is a direct generalization of the proof of theorem 4.5. ⊓⊔

The conditions for which the updating rules (4.36) and (4.39) guarantee stability
are quite different. Compared to the general framework of the unconstrained net-
work (section 3.3.2), the condition on the transfer function (theorems 3.8 and 4.7)
has become more difficult to check. On the other hand, the condition on the matrix
(wij) (theorems 3.9 and 4.8) has remained the same and, often unfortunately hard to
check.

4.3.3 The most general framework

We now ask ourselves whether the expression Ui =
∑

j wijVj + Ii can also be gen-
eralized, namely, to an arbitrary ‘summation function’ of type Ui = hi(V ) (where
an external input Ii is still admitted), and whether we can still give conditions that
guarantee stability. Since we have done all the preparatory work, the affirmative an-
swers to these questions are surprisingly simple. The result is what we have termed
the ‘most general framework of continuous Hopfield models’.

Theorem 4.9. Let G(U) be function defined like in theorem 4.6 and let in the same way
H(V ) = H(V1, V2, . . . , Vn) be a function for which

∀i : ∂H(V )

∂Vi
= hi(V ). (4.40)

Then any stationary point of the energy

Fmgf(U, V ) = −H(V ) +
∑

i

UiVi −G(U) (4.41)

coincides with an equilibrium state of the continuous Hopfield neural network defined by

∀i : Vi = gi(U) ∧ Ui = hi(V ) (4.42)

Proof. Resolving
∀i : ∂Fmgf/∂Ui = 0 ∧ ∂Fmgf/∂Vi = 0, (4.43)

the set of equilibrium conditions (4.42) is found. ⊓⊔

Theorem 4.10. Suppose that Fmgf(U, V ) is bounded below. Then the following statements
hold:
(a) If, during updating, the Jacobian matrix Jg = (∂Vi/∂Uj) first is or becomes and then re-
mains positive definite, then the energy function Fmgf is a Lyapunov function for the motion
equations

U̇i = hi(V )− Ui, where Vi = gi(U). (4.44)

(b) If, during updating, the Jacobian matrix Jh = (∂Ui/∂Vj) first is or becomes and then re-
mains positive definite, then the energy function Fmgf is a Lyapunov function for the motion
equations

V̇i = gi(U)− Vi, where Ui = hi(V ). (4.45)

(c) If, during updating, the Jacobian matrices Jg and Jh first are or become and then re-
main positive definite, then the energy function Fmgf is a Lyapunov function for the motion
equations

U̇i = hi(V )− Ui ∧ V̇i = gi(U)− Vi. (4.46)
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Figure 4.5: The most general continuous Hopfield network with
equilibrium condition: ∀i : Ui = hi(V ) and Vi = gi(U).

Proof. Assuming that the conditions as mentioned in (c) hold, we obtain

Ḟmgf =
∑

i

∂Fmgf

∂Vi
V̇i +

∑

i

∂Fmgf

∂Ui
U̇i

=
∑

i

(−hi(V ) + Ui)
∑

j

∂Vi
∂Uj

U̇j +
∑

i

(Vi − gi(U))
∑

j

∂Ui
∂Vj

V̇j

= −
∑

i

U̇i
∑

j

∂Vi
∂Uj

U̇j −
∑

i

V̇i
∑

j

∂Ui
∂Vj

V̇j

= −U̇TJgU̇ − V̇ TJhV̇ ≤ 0. (4.47)

Then, the boundedness of Fmgf is sufficient to guarantee stability where at equilib-
rium ∀i : U̇i = V̇i = 0 implying the general equilibrium condition

∀i : Ui = hi(V ) ∧ Vi = gi(U). (4.48)

Using (4.47), the proofs of (a) and (b) can be done in the same way as the proof of
theorem 4.4. ⊓⊔

Contemplating the results of this section, several striking observations emerge:

• By choosing appropriate transfer functions gi(U), several different types of
constraints Cα(V ) can be incorporated in continuous Hopfield networks. If
they are chosen in such a way that the Jacobian matrix Jg first is or becomes
and then remains positive definite, stability of the differential equations (4.44)
is generally guaranteed. Alternatively, stability can be forced by choosing ap-
propriate summation functions hi(V ) while at the same time applying motion
equations (4.45).

• By choosing appropriate summation functions hi(V ), ‘arbitrary’ energy ex-
pressions H(V ) (not merely quadratic ones!) can be modelled by generalized
continuous Hopfield networks. If they are chosen in such a way that the Jaco-
bian matrix Jh first is or becomes and then remains positive definite, stability
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of the differential equations (4.45) is generally guaranteed. Alternatively, sta-
bility can be forced by choosing appropriate transfer functions gi(U) while at
the same time applying motion equations (4.44).

• Taking the purely mathematical point of view, it is clear that the transfer func-
tions gi(U) and the summation functions hi(V ) are completely interchange-
able.

An important consequence of these observations is the fact that within the intro-
duced generalization, much more freedom exists for configuring continuous Hop-
field neural networks. On the one hand, modelling an energy expression H(V ) is
rather simple, since the corresponding summation functions (which should imple-
ment the desired energy expression H(V )) can be found by simply taking the cor-
responding partial derivatives hi(V ) = ∂H(V )/∂Vi. It is interesting to note that,
very recently, we came across two examples of this approach. In [24], ‘higher order
neural networks’ are introduced and appear to represent a much stronger heuristic
to solving the Ising spin (checkerboard pattern) problem than that which is imple-
mented by the Hopfield network. In [80], again higher order couplings between the
neurons are admitted, just as well, to solve a combinatorial optimization problem
(namely, a certain scheduling problem in behalf of ‘cellular robotic systems’). It is
argued that this approach avoids the spurious states [44] which are usual in neural
networks without higher couplings.

On the other hand, building-in constraints may be more difficult: the transfer
functions gi should be chosen in such a way that the output values always fulfill the
constraints, that is, for any set of input values Ui. The type of the built-in constraints
effects the way the state space is walked through. E.g., having

n∑

i

Vi = 1, (4.49)

the constrained space consists of an (n-1)-dimensional flat hyperplane, while choos-
ing

n∏

i

Vi = 1, (4.50)

this space is composed of an (n-1)-dimensional curved surface. But whatever the
choice of the constraints may be, stability should be investigated whether in an an-
alytical or in an experimental way. As we shall see in the next section on the results
of certain simulations, the choice of right transfer functions even turns out quite
complicated. The difficulties encountered there, are strongly related to the follow-
ing question: which conditions should the built-in constraints fulfill in order to guarantee
that the continuous Hopfield network can be considered a mean field approximation of a
corresponding stochastic network (submitted to the same set of constraints)?

We conclude this theoretical section by observing that the original continuous
Hopfield model, as introduced in section 2.3.2, beautifully fits into the most gen-
eral framework presented here: having monotone increasing, differentiable transfer
functions Vi = g(Ui), the Jacobian matrix Jg is positive definite since all its diago-
nal elements are positive while all its non-diagonal elements equal zero. Using the
motion equations (4.44) with hi(V ) =

∑

j wijVj + Ii, stability is guaranteed conform
theorem 4.10.
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4.4 Computational results

The object of presenting the computational results of some experiments here, is not
to give an exhaustive list of all possible ways the given theory of this chapter can
be applied. Instead, the more modest objective is to show that the derived general
theories are not falsified by the elementary tests we performed, and that, at the
same time, these tests yielded certain encouraging, informative, and startling results
which invite to do more practical research in times to come5.

4.4.1 A first toy problem

Let us start with a very simple experiment concerning constrained optimization:

minimize V 2
1 + 2V 2

2 + 3V 2
3 + 4V 2

4 subject to : V1 + V2 + V3 + V4 = 1. (4.51)

We apply the motion equations (2.30) with transfer function (4.25), which implies
that the constraints are enforced in the strong sense. As has been mentioned in sec-
tion 4.3.1, stability can be hoped for, but can not be guaranteed. Taking random
initializations, we found the correct solution in all cases. Choosing β = 20 (low tem-
perature), the solution V1 = 0.471, V2 = 0.244, V3 = 0.163, V4 = 0.122 is obtained.
This corresponds precisely to the location of the constrained minimum. On the
other hand, taking β = 0.0001, the equilibrium solution V1 = 0.250, V2 = 0.250, V3 =
0.250, V4 = 0.250 is found, showing the expected effect of a high thermal noise level.

4.4.2 A second toy problem

A second simple problem concerns a test whether non-quadratic cost functions can be
tackled using the most general framework of continuous Hopfield networks having
certain built-in constraints (section 4.3.3). We consider the following problem:

minimize − V 2
1 V

3
2 + V 5

2 subject to : V1 + V2 = 1. (4.52)

The corresponding motion equations are

U̇1 = 2V1V
3
2 − U1, (4.53)

U̇2 = 3V 2
1 V

2
2 − 5V 4

2 − U2, (4.54)

where

Vi =
exp(βUi)

exp(βU1) + exp(βU2)
. (4.55)

Applying random initializations, we always found a monotone decreasing function
Fmgf(V ) and the correct solutions. Taking β = 0.001, the encountered solution values
are V1 = 0.5001 and V2 = 0.4999. Choosing β = 50, V1 = 0.617 and V2 = 0.383 are
found, which approach the exact solution values (without any noise) in the interval
[0, 1], being V1 = 0.625 and V2 = 0.375.

5Actually, some of the experimental results presented here, have been obtained quite recently.
They were induced by the most general framework, whose final formulation dates from only a cou-
ple of months ago. There is still much work to do in order to understand all capabilities of this
framework.
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4.4.3 An informative third toy problem

This third toy problem is set up in order to test whether cost functions submitted to
asymmetric linear constraints can be resolved successfully. We consider the following
problem:

minimize 2V 2
1 + V 2

2 subject to : V1 + 2V2 = 1. (4.56)

The corresponding motion equations are

U̇1 = −4V1 − U1, (4.57)

U̇2 = −2V2 − U2. (4.58)

Now the problem is how to define the transfer functions. In fact, there are several
possibilities, e.g.,

V1 =
exp(βU1)

exp(βU1) + exp(βU2)
and V2 =

exp(βU2)/2

exp(βU1) + exp(βU2)
(4.59)

or

V1 =
exp(βU1)

exp(βU1) + 2 exp(βU2)
and V2 =

exp(βU2)

exp(βU1) + 2 exp(βU2)
. (4.60)

Applying random initializations, we always found convergence. However, the so-
lutions found did not approximate the exact solution V1 = 1/9 and V2 = 4/9.

Inspection of equations (4.59) and (4.60) reveals that in both cases, V1 ∈ [0, 1] and
V2 ∈ [0, 0.5]. Thus, we have lost the usual property that

∀i : Vi ∈ [0, 1]. (4.61)

This observation inspired us to look for a modification of the original problem such
that it can be mapped onto a network having constraints that yet fulfill condition
(4.61). Eventually, we tested the following formulation of the problem:

minimize 2V 2
1 + 1

2
V 2
2 + 1

2
V 2
3 subject to : V1 + V2 + V3 = 1, V2 = V3. (4.62)

The corresponding motion equations are

U̇1 = −4V1 − U1, (4.63)

U̇2 = −V2 − U2, (4.64)

U̇3 = −V3 − U3, (4.65)

where the transfer function of all neurons equals

Vi =
exp(βUi)
∑

l exp(βUl)
. (4.66)

Having V2 = V3 (after a correct initialization), equation (4.65) exactly coincides with
(4.64). It therefore suffices in practice to merely apply motion equations (4.63) and
(4.64), where V1 and V2 are defined conform (4.60). The difference between this
model and the previous one, comes from the difference between equations (4.58)
and (4.64).
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Applying random initializations, we always found convergence and this time,
also the correct solution! Taking β = 50.0, the solution V1 = 0.117, V2 = 0.441
is found, which approximates the afore-mentioned exact solution of the original
problem. Taking β = 0.0001, the expected solution values at high temperature are
encountered, namely V1 = 0.333 and V2 = 0.333.

An important conclusion

The last example shows that the general framework can not be used groundless. The
results also set us conjecture that a property like (4.61), expressing that all neurons
should belong to the same interval, may be essential. Furthermore, it should be clear
that the approach of this section to tackle asymmetric linear constraints can easily
be generalized, that is, constraints of the type

∑

j

ajVj = c, aj, c ∈ R, (4.67)

can normally be grappled with in the way shown. This is not further elaborated
here.

4.4.4 A startling fourth toy problem

Still another experiment has been performed in order to test whether an alternative
type of constraints can be built-in successfully. Moreover, it is tried to solve the
problem using two different sets of motion equations. We consider the following
problem:

minimize 2V 2
1 + V 2

2 subject to : V1 ∗ V2 = 1. (4.68)

It is easy to check that the exact solutions of this problem are V1 = 4
√
0.5 ≈ 0.841

and V2 = 4
√
2 ≈ 1.189. Using the differential equations (4.44), the concrete motion

equations are

U̇1 = −4V1 − U1, (4.69)

U̇2 = −2V2 − U2, (4.70)

where we take

Vi =
exp(βUi)

√

exp(β(U1 + U2))
. (4.71)

The last equation (which has been found after some tries and guesses) indeed im-
plies that V1 ∗ V2 = 1. Alternatively, using the type of differential equations (4.45),
the concrete motion equations are

V̇1 =
exp(βU1)

√

exp(β(U1 + U2))
− V1, (4.72)

V̇2 =
exp(βU2)

√

exp(β(U1 + U2))
− V2, (4.73)

where U1 = −4V1 and U2 = −2V2.
Applying random initializations and ∆t = 0.001, we found proper convergence

for all values of β ∈ [−0.19, 20], while for values outside this interval the motion
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β V1 V2
- 0.1 1.1555 0.8654

0.1 0.9258 1.0802
0.5 0.8160 1.2254
1.0 0.7740 1.2919
2.0 0.7449 1.3425

10.0 0.7155 1.3976
20.0 0.7114 1.4057

Table 4.1: Solutions values of V1 and V2 as function of β

equations were (nearly always) divergent. Both models behaved the same, and
some solutions are given in table 4.1. Actually, these solution values do not fal-
sify the theoretical conjectures of section 4.3.3. However, again we meet the phe-
nomenon that we did not solve our original optimization problem. Likewise, the
values of V1 and V2 do not fulfill condition (4.61). The effect of the controlling pa-
rameter β has been changed too: neither solution values are dragged towards the
center of the solution space for low values of β (high temperatures), nor the solu-
tions found approximate the solution of the original problem at low temperatures.
Apparently, the free energy Fmgf does not approximate the original cost function for
low values of β! 6

A second important conclusion

The aforesaid computational outcomes show that one should be very careful in in-
terpreting the results of the most general framework in case of building-in new types
of constraints. The quite fundamental issue at stake is that the usual statistical me-
chanical interpretation of the continuous Hopfield model (where 1/β corresponds to
a pseudo-temperature) does not hold for every set of built-in constraints. This issue
raises the question as mentioned in the end of section 4.3.3, which, alternatively, can
be stated as: which conditions relating to the built-in constraints can guarantee that
the free energy Fmgf (as defined in (4.41)), can be written in the standard form (2.8)
as known from statistical mechanics? This question still begs for an answer.

4.4.5 The n-rook problem revisited

We here return to the constrained model that was analyzed extensively at the be-
ginning of this chapter. Since part of the constraints of the NRP can be built-in in
the neural network, whereby at the same time the space of admissible states is con-
siderably limited, this partially strong approach is expected to work better than the
purely soft approach applied in section 3.4. Here, the Vij are chosen in such a way
that

∀i :
∑

j

Vij = 1, (4.74)

6Perhaps, this observation does not come as a surprise. The complete statistical mechanical inter-
pretation has shut down: because of definition (4.71), Vi can impossibly be associated with a proba-
bility.
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implying that in every row, the sum of occupied squares of the chess-board equals
one. It now suffices to minimize the cost function

Fc,nr(V ) = c1C2(V ) + Eh(V ), (4.75)

since C2 enforces that in any column j at most one Vk,j 6= 0. The corresponding
motion equation is simply

U̇ij = −∂Fc,nr

∂Vij
= −c2

∑

k 6=i

Vkj − Uij , where Vij =
exp(βUij)
∑

l exp(βUil)
. (4.76)

We notice that the matrix (wij,kl) is still a symmetric one. A little analysis may clarify
how the state space is limited. For that purpose, we consider the binary model with
neurons Sij (remember that Vij = 〈Sij〉). In the soft approach, all n2 neurons may
independently have value 0 or 1, so then there are 2n×n different neural net states.
In the strong approach, every row has n states, so in that case, there are nn different
states. The following table shows both quantities as function of n:

n 2n×n nn

1 2 1
2 16 4
3 524 27
4 65536 256
p 2p×p 2p log2 p

Table 4.2: 2n×n and nn as function of n.

So for large values of n, the number of admissible states differ substantially.
The experimental outcomes confirm the conjecture that the constrained network be-
haves much better. Using the numerical approximation (3.58), again with random
initializations and taking ∆t = 0.01, convergence is always present provided the
penalty weight is set large enough. At low temperatures, the effect of noise is small
as can be seen from table 4.3, where the neural outputs that are close to 1 are shown.
If the temperature is increased slightly more, a rapid phase transition occurs: for
β = 0.3, the solution values become almost equal conform Vij ≈ 0.2500.

β Vij ≈ 1
10 1.0000
1 0.9999
0.5 0.9767

Table 4.3: Solution values Vij ≈ 1 as function of β, in case n = 4.

The larger n is the chosen, the larger the penalty weight c2 should be taken in or-
der to arrive at equilibrium. This contributes to speed up the convergence process.
The convergence time is invariably only a small fraction of the convergence time of
the pure penalty method. E.g., taking c2 = 50, only a few minutes are needed in or-
der to find a solution for the 150-rook problem while many hours would be needed
if the soft approach was applied!



4.4 Computational results 61

It is interesting to note that the values of the neurons initially seem to change in
a chaotic way: the value of the Fc,nr strongly oscillates in an unclear way. However,
after a certain period, the network suddenly finds its way to a stable minimum, at
the same time rapidly minimizing the value of the cost function.
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Chapter 5

The Hopfield-Lagrange model

As mentioned in section 2.4, a third way of coping with constraints is the use of La-
grange multipliers. In order to better understand the behavior of the corresponding
Hopfield-Lagrange model (introduced in section 2.5), we here start by analyzing its
stability properties by means of a new Lyapunov function. Next, we prove that, un-
der certain conditions, the model degenerates into a so-called dynamic penalty method
and we dwell on the effect of so-termed hard constraints. We thereafter scrutinize
the stability of the ‘constrained Hopfield-Lagrange model’, which is a combination
of the constrained Hopfield model of the previous chapter with the multiplier ap-
proach of this chapter. In this case, an ‘arbitrary’ (see, again, footnote 6 of chapter 3)
cost function is admitted as well as ‘arbitrary’ transfer functions can be chosen.

We finish by presenting the computational results of various experiments both
with unconstrained and constrained Hopfield-Lagrange networks. Parts of this
chapter have been published earlier in [12, 14], much has also been recorded in
technical report [13].

5.1 Stability analysis, the unconstrained model

5.1.1 Some reconnoitrings

For convenience, we again state the equations of the Hopfield-Lagrange model,
which is based on the use of Lagrange multipliers in combination with the origi-
nal unconstrained continuous Hopfield model. The energy of this model1 is given
by

Ehl(V, λ) = E(V ) +
∑

α

λαCα(V ) + Eh(V ) (5.1)

= −1
2

∑

i,j

wijViVj −
∑

i

IiVi +
∑

α

λαCα(V ) + Eh(V ) (5.2)

having the corresponding set of differential equations

U̇i = −∂Ehl

∂Vi
=

∑

j

wijVj + Ii −
∑

α

λα
∂Cα
∂Vi

− Ui, (5.3)

λ̇α = +
∂Ehl

∂λα
= Cα(V ), (5.4)

1Although we have shown in theorem 3.3 that Eh(V ) is a thermal noise term, Ehl(V, λ) does not
turn out to be a properly bounded free energy (see below). This is why we do not replace Ehl by Fhl.



64 The Hopfield-Lagrange model

where Vi = g(Ui). Let us first take a simple toy problem in order to try to understand
why the gradient ascent or sign flip as referred to in section 2.4 is needed in (5.4).
The problem is stated as follows:

minimize E(V ) = V 2
1 ,

subject to : V1 − 1 = 0. (5.5)

Using the Hopfield-Lagrange model with the sigmoid as the transfer function, the
energy function (5.2) equals

Ehl,t(V, λ) = V 2
1 + λ1(V1 − 1) +

1

β
((1− V1) ln(1− V1) + V1 lnV1). (5.6)

At low temperatures, this energy expression simply reduces to an expression of the
form (2.43)

Epb,t(V, λ) = V 2
1 + λ1(V1 − 1), (5.7)

which is visualized in figure 5.1. To find the critical point (V1, λ1) = (1,−2) using a
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Figure 5.1: The energy landscape of V 2
1 + λ1(V1 − 1).

direct gradient method, we should apply a gradient descent with respect to V1 and,
at the same time, a gradient ascent with respect to λ1: the result is a spiral motion
towards the critical point. We shall see that the gradient ascent is also needed if the
Hopfield-Lagrange network is applied.
Let us pose the question under which circumstances the set of differential equations
(5.3) and (5.4) converge. A natural approach is to try the energy (5.2) as Lyapunov
function. Taking the time derivative, we obtain

Ėhl(V, λ) =
∑

i

(−
∑

j

wijVj − Ii +
∑

α

λα
∂Cα
∂Vi

+ Ui)V̇i +
∑

α

λ̇αCα

= −
∑

i

U̇2
i

dVi
dUi

+
∑

α

C2
α. (5.8)

This reveals that if the constraints are (and remain) fulfilled, stability is guaranteed
by using a transfer function whose derivative is always positive. However, if the
constraints are not fulfilled, Ėhl is not necessarily monotone decreasing. Thus, we
realize that stability is not guaranteed if we apply a random initialization of the neu-
ral network. On the other hand, if we would apply a gradient descent in equation
(5.4), then Ėhl(V, λ) ≤ 0. Nevertheless, this does not work since Ehl(V, λ) is generally
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not bounded below (see also figure 5.1). The corresponding differential equations
may be unstable and in practice, they appear to be so.

Therefore, we adhere to the original set of differential equations (5.3), (5.4) and
adopt the approach of Platt and Barr from section 2.5 as our guiding principle for
analyzing them.

5.1.2 A potential Lyapunov function

In the afore-stated approach, physics is the source of inspiration. We want to set
up an expression of the sum of kinetic and potential energy. For that purpose, the
differential equations (5.3) and (5.4) are taken together, yielding one second-order
differential equation:

Üi = −
∑

j

aij
dVj
dUj

U̇j − U̇i −
∑

α

Cα
∂Cα
∂Vi

, (5.9)

where (aij) equals (2.48), that is,

aij = −wij +
∑

α

λα
∂2Cα
∂Vi∂Vj

. (5.10)

Equation (5.9) coincides with the equation for a damped harmonic motion of a mass
system, where the mass equals 1, the spring constant equals 0, and where the exter-
nal force of the system equals −∑αCα∂Cα/∂Vi.

Theorem 5.1. If the matrix (bij) defined by

bij = aij
dVj
dUj

+ δij (5.11)

(δij being the Kronecker delta) first is or becomes and then remains positive definite, then the
energy function

Ekin+pot =
∑

i

1
2
U̇2
i +

∑

i,α

∫ Ui

0

Cα
∂Cα
∂Vi

du (5.12)

is a Lyapunov function2 for the set of motion equations (5.3) and (5.4).

Proof. Taking the time derivative of Ekin+pot and using (5.9) as well as the positive
definiteness of (bij), we obtain

Ėkin+pot =
∑

i

U̇iÜi +
∑

i,α

Cα
∂Cα
∂Vi

U̇i

=
∑

i

U̇i

(

−
∑

j

aij
dVj
dUj

U̇j − U̇i −
∑

α

Cα
∂Cα
∂Vi

)

+
∑

i,α

Cα
∂Cα
∂Vi

U̇i

= −
∑

i,j

U̇iaij
dVj
dUj

U̇j −
∑

i

U̇2
i

= −
∑

i,j

U̇ibijU̇j ≤ 0. (5.13)

2Since Ekin+pot is the sum of kinetic and potential energy of the damped mass system, this func-
tion is a generalization of the Lyapunov function introduced by Platt and Barr [71]. They used equa-
tion (2.47) which has a simple quadratic potential energy term. Here, this term cannot be used be-
cause of the non-linear relationship Vi = g(Ui). The quadratic term has to be modified in the integral

as shown, while V̇i is replaced by U̇i.
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Provided Ekin+pot is bounded below (which is expected to hold in view of its defini-
tion), its value constantly decreases until finally ∀i : U̇i = 0. From (5.3) we see that

this normally implies that ∀α : λ̇α = 0 too. We then conclude from equations (5.3)
and (5.4) that a stationary point of the Langrangian function Ehl(V, λ) must have
been reached under those circumstances. Or, in other words, a constrained equilib-
rium point of the neural network is attained. ⊓⊔

Inspection of the derivation reveals why the gradient ascent is helpful in (5.4):
only when the sign flip is applied do the two terms

∑

i U̇i
∑

αCα∂Cα/∂Vi cancel
each other. In order to prove stability, we should analyze the complicated matrix
(bij) which in full equals

bij =

(

−wij +
∑

α

λα
∂2Cα
∂Vi∂Vj

)

dVj
dUj

+ δij . (5.14)

Application of the Hopfield-Lagrange model to combinatorial optimization prob-
lems yields non-positive values for wij , so then w′

ij ≡ −wij ≥ 0. If we confine
ourselves to expressions Cα which are linear functions in V , then equation (5.14)
reduces to

bij = w′
ij

dVj
dUj

+ δij. (5.15)

If the δij-terms dominate, then (bij) is positive definite and stability is sure. How-
ever, it seems impossible to formulate general conditions which guarantee stability,
since the matrix elements bij are a function of dVj/dUj and thus change dynamically
during the update of the differential equations. This observation explains why we
called this subsection ‘A potential Lyapunov function’.
In practical applications, we can try to analyze matrix (bij). If this does not turn out
successful, we may rely on experimental results. However, there is a way of escape,
namely, by applying quadratic constraints. Under certain general conditions, they
appear to guarantee stability in the long run at the cost of a degeneration of the
Hopfield-Lagrange model to a type of penalty model.

5.2 Degeneration to a dynamic penalty model

5.2.1 Non-unique multipliers

We consider the Hopfield-Lagrange model as defined in the beginning of section
5.1.1.

Theorem 5.2. Let W be the subspace of [0, 1]n such that V ∈ W ⇒ ∀α : Cα(V ) = 0 and
let V 0 ∈ W . If the condition

∀α, ∀i : Cα = 0 ⇒ ∂Cα
∂Vi

= 0 (5.16)

holds, then there do not exist unique numbers λ01, . . . , λ
0
m such that Ehl(V, λ) has a critical

point in (V 0, λ0).

Proof. The condition (5.16) implies that all m ×m submatrices of the Jacobian (A.3)
are singular. Conform the ‘Lagrange Multiplier Theorem’ of appendix A, unique-
ness of the numbers λ01, . . . , λ

0
m is not guaranteed. Moreover, in the critical point of
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Ehl the following equations hold:

∑

j

wijV
0
j + Ii −

∑

α

λα
∂Cα
∂Vi

(V 0)− Ui = 0. (5.17)

Since ∀α : ∂Cα/∂Vi(V
0) = 0, the multipliers λα may have arbitrary values in a critical

point of Ehl(V, λ). ⊓⊔

In the literature (e.g. in [85, 44, 82, 86, 88]) and in section 5.5 and 5.6 of this thesis,
quadratic constraints are frequently encountered, often having the form

Cα(V ) =
1
2
(
∑

iα

Viα − nα)
2 = 0, α = 1 · · ·m, (5.18)

where any nα equals some constant. Commonly, the constraints relate to only a
subset of all Vi. So, for a constraint Cα, the index iα passes through some subset Nα

of {1, 2, . . . , n}. We conclude that

∂Cα
∂Vi

=

{ ∑

iα
Viα − nα if i ∈ Nα

0 otherwise.
(5.19)

It follows that condition (5.16) holds for the quadratic constraints (5.18). This implies
that multipliers associated with those constraints are not uniquely determined in
equilibrium points of the corresponding Hopfield-Lagrange model.

5.2.2 Stability yet

The question may arise how the Hopfield-Lagrange model deals with the non-
determinacy of the multipliers3. To answer that question, we again consider (5.2),
(5.3) and (5.4) and substitute the quadratic constraints (5.18). This yields

Ehl,q(V, λ) = E(V ) +
∑

α

λα
2
(
∑

iα

Viα − nα)
2 + Eh(V ), (5.20)

U̇i = −∂E
∂Vi

−
∑

α:i∈Sα

λα(
∑

iα

Viα − nα)− Ui, (5.21)

λ̇α = 1
2
(
∑

iα

Viα − nα)
2. (5.22)

Theorem 5.3. If ∀i : Vi = g(Ui) is a differentiable and monotone increasing function, then
the set of differential equations (5.21) and (5.22) is stable.

Proof. We start by making the following crucial observations:

1. As long as a constraint is not fulfilled, it follows from (5.22) that the cor-
responding multiplier increases:

λ̇α > 0. (5.23)

3This must be in a certain positive way, since the aforementioned experiments from the literature
were at least partially successful.
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2. If, at a certain moment, all constraint are fulfilled, then the set of motion
equations (5.21) and (5.22) reduces to

U̇i = −∂E
∂Vi

− Ui. (5.24)

Since we are dealing with the unconstrained Hopfield model, this system
is stable provided the transfer function is differentiable and monotone
increasing (chapter 3). This implies that instability of the system can only
be caused by violation of one or more of the quadratic constraints.

We now consider the total energy Ehl,q of (5.20). Suppose that the system is ini-
tially unstable (if it would be stable, the set of differential equations would converge
rapidly). One or more constraints must then be violated and the values of the cor-
responding multipliers will increase. If the instability endures, the multipliers will
eventually become positive. It follows from (5.20) that the contribution

∑

α

λα
2
(
∑

iα

Viα − nα)
2 (5.25)

to Ehl,q then consists of only convex quadratic forms, which correspond to various
parabolic ‘pits’ or ‘troughs’ 4 in the energy landscape of Ehl,q. As long as the mul-
tipliers grow, the pits become steeper and steeper. Eventually, the quadratic terms
will dominate and the system settles down in one of the created energy pits (whose
location, we realize, is more or less influenced by E and Eh). In this way, the system
will ultimately fulfill all constraints and will have become stable. ⊓⊔

Actually, for positive values of λα, the multiplier terms (5.25) fulfill the penalty term
condition (2.37) and therefore act as penalty terms. Furthermore we notice that in
case of applying a continuous neural network (where ∀i : Vi ∈ [0, 1]), the minima of
(5.25) might be boundary extrema.

As was sketched in the proof, the system itself always finds a feasible solution.
This contrasts strongly with the traditional penalty approach, where the experi-
menter may need a lot of trials to determine appropriate penalty weights. More-
over, as sketched, the penalty terms might be ‘as small as possible’, having the ad-
ditional advantage that the original cost function can be minimally distorted. Since
the penalty weights change dynamically on their journey to equilibrium, we have
met with what we shall term a dynamic penalty method.

5.2.3 A more general view on the degeneration

In the previous two subsections, we analyzed the degeneration of the Hopfield-
Lagrange model under the specific condition (5.16) concerning the constraints.
Here, a more general analysis of this deterioration to a dynamic penalty method is
sketched, where the proof whether the multipliers are unique or not, does notbother
us.

We consider the unconstrained Hopfield-Lagrange model as it was re-stated at
the beginning of section 5.1.1. We already observed in that section that instability

4If iα passes through the whole set {1, 2, . . . , n}, (
∑

iα
Viα − nα)

2 represents a n-dimensional
parabolic pit. If, instead, iα passes through a proper subset of {1, 2, . . . , n}, this quadratic expres-
sion represents a trough in the energy landscape of Ehl,q. However, in both cases, we shall speak of
pits.



5.3 Hard constraints 69

must be caused by the violation of one or more of the constraints provided the cor-
rect transfer function has been selected. We realize that if

1. ∀α, ∀V : Cα(V ) ≥ 0, and

2. increasing multiplier values correspond to a changing energy landscape
with ever deeper pits whose minima represent valid solutions,

then the set of differential equations (5.3), (5.4) will generally be stable. The evidence
for this phenomenon is based on the crucial observations (5.23) and (5.24), and is
further discussed below.

It is interesting to note that the origin of ever deeper pits in the energy land-
scape resembles the phenomenon of a phase transition in a certain sense. If, in the
unconstrained Hopfield model the temperature is increased, one steep pit is cre-
ated by the entropy term (3.30). Above the critical temperature, the entropy term
dominates and the corresponding solution equals ∀i : Vi ≈ 0.5. In case of the degen-
erated Hopfield-Lagrange model, the pits originate by increasing multipliers (which
behave like penalty weights). Above a certain set of critical values, the multiplier
terms dominate and the various minima correspond to approximately feasible solu-
tions.
In addition, mean field annealing can be applied. In that case, two transformations
of the energy landscape occur simultaneously, one being caused by increasing mul-
tipliers, the other by a lowering of the temperature. We must take the adventitious
consequence of a tuning problem concerning the absolute and relative speed of the
two transformations.

5.3 Hard constraints

Let us return to our toy problem (5.5) and see how it works in practice. Using the
Hopfield-Lagrange model, the differential equations corresponding to (5.6) are

U̇1 = −(2V1 + λ1)− U1, (5.26)

λ̇1 = V1 − 1, (5.27)

where V1 = g(U1) = 1/(1 + exp(−βU1)). We note that V1 is now bounded to the
interval [0, 1]. We can easily prove stability, since in this case

Ėkin+pot,t = −2U̇2
1

dV1
dU1

− U̇2
1 ≤ 0. (5.28)

Consequently, Ekin+pot is monotone decreasing until U̇1 = 0 and thus, normally, until

λ̇1 = 0, which in turn implies V1 = 1 and U1 = ∞. Inspection of (5.26) now reveals
that in equilibrium, λ1 must equal −∞. So the critical point of Ehl,t is (V1, λ1) =
(1,−∞) and we have run up against an unexpected difficulty. We have lost the
pretty feature of the continuous Hopfield model of finding solutions corresponding
to finite values of U1. The reason is obvious: the ‘hard’ constraint V1 − 1 restricts the
solution space to V1 = 1 with corresponding U1-value equal to ∞.

There exists a simple solution for this problem ‘in the spirit’ of the continuous
Hopfield model. If we relax the hard constraint (5.27) to

V1 − 1 = ǫ, (5.29)
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the new energy expression becomes

Ehl,t′ = V 2
1 + λ1(V1 − 1 + ǫ) +

1

β
[(1− V1) ln(1− V1) + V1 lnV1], (5.30)

having its critical point in (V1, λ1) = (1− ǫ,−2 + ∆λ1), where

∆λ1 = 2ǫ+
1

β
ln(

ǫ

1− ǫ
). (5.31)

We see that the critical point is situated in the neighborhood of the original value
if the error ∆λ1 (which is determined by ǫ and β) is small. Like in the original
Hopfield model, it can be kept small if we choose large values of β. To determine the
sensitivity of the parameters, we performed some calculations. We may conclude
from the computational results as given in table 5.1 that sufficiently high values of
β indeed guarantee a small error ∆λ1. In figure 5.2, some critical points have been
put together. The position (1,−2) of the constrained minimum of Epb,t is shown,

ǫ = 0.001 ǫ = 0.01 ǫ = 0.1
β ∆λ1 β ∆λ1 β ∆λ1

5000 +0.0006 5000 +0.019 5000 +0.199
500 −0.01 500 +0.010 500 +0.196

50 −0.136 50 −0.07 50 +0.156
5 −1.38 5 −0.90 5 −0.239
1 −6.9 1 −4.58 1 −1.997

Table 5.1: The error ∆λ1 as a function of ǫ and β.

together with some positions of the extrema of Ehl,t′ for various values of β and
ǫ = 0.01. Clearly, the critical point (V1, λ1) = (1,−∞) of Ehl,t is absent in the figure.
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Figure 5.2: Positions of some critical points of
Ehl,t′ and of the minimum of Epb,t.

We note that the described difficulty of an infinite multiplier value only occurs if one
constraint on its own, or several constraints together, are hard, by which we mean
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that the constraints extort that ∃i : Vi = 0 or Vi = 1. In practice, one often encounters
constraints like ∑

i

Vi − 1 = 0. (5.32)

If such a constraint stands alone or is independent of the other ones, the Hopfield
term Eh generally drags the corresponding minima to the interior of the state space
in the usual way as we have described in section 3.2.2.

5.4 Stability analysis, the constrained model

One could wonder whether a stability analysis is possible in case of combining the
most general framework of chapter 4 – having ‘arbitrary’ cost functions and ‘arbi-
trary’ transfer functions – with the multiplier approach of this chapter. If so, this
model can be used to build-in part of the constraints directly, while other ones are
tackled using Lagrangian multipliers. In this subsection, the constraints Cα(V ) = 0
are assumed only to belong to the last category!

Let us take equation (4.41) of the most general framework as the starting point
and then add multiplier terms to this expression. This yields the Lagrangian func-
tion

L(U, V, λ) = −H(V ) +
∑

α

λαCα(V ) +
∑

i

UiVi −G(U). (5.33)

We want to determine the stationary points of L(U, V, λ) since these points corre-
spond to the solutions of the constrained optimization problem relating to this mat-
ter. It can be done by resolving the differential equations

U̇i = − ∂L

∂Vi
=
∂H

∂Vi
−
∑

α

λα
∂Cα
∂Vi

− Ui, (5.34)

λ̇α = +
∂L

∂λα
= Cα(V ), (5.35)

where, just like in equation (4.44), we keep permanently Vi = gi(U). We note that
∀i : Vi = gi(U) implies that ∀i : ∂L/∂Ui = 0. Now, the following theorem can be
proven which is a drastic generalization of theorem 5.1.

Theorem 5.4. If the matrix (dij) defined by

dij =
∑

k

cik
∂Vk
∂Uj

+ δij , (5.36)

cik being

cik = − ∂2H

∂Vi∂Vk
+
∑

α

λα
∂2Cα
∂Vi∂Vk

, (5.37)

first is or becomes and then remains positive definite, then the energy function (5.12) is a
Lyapunov function for the motion equations (5.34) and (5.35), where ∀i : Vi = gi(U).

Proof. In this case,

Üi = −
∑

j

cij
∑

k

∂Vj
∂Uk

U̇k − U̇i −
∑

α

Cα
∂Cα
∂Vi

. (5.38)
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Taking the time derivative of (5.12), we obtain

Ėkin+pot =
∑

i

U̇iÜi +
∑

i,α

Cα
∂Cα
∂Vi

U̇i

=
∑

i

U̇i

(

−
∑

j

cij
∑

k

∂Vj
∂Uk

U̇k − U̇i −
∑

α

Cα
∂Cα
∂Vi

)

+
∑

i,α

Cα
∂Cα
∂Vi

U̇i

= −
∑

i,j

U̇i
∑

k

cik
∂Vk
∂Uj

U̇j −
∑

i

U̇2
i

= −
∑

i,j

U̇idijU̇j ≤ 0. (5.39)

The rest of the proof is analogous to the proof of theorem 5.1. In the end, we have

∀i : U̇i = 0, ∀α : λ̇α = 0, and Vi = gi(U), together implying that all partial derivatives
of L(U, V, λ) are zero. In other words, a constrained equilibrium point of the neural
network has then been reached. ⊓⊔

The matrix (dij) is given in full by

dij =
∑

k

(

− ∂2H

∂Vi∂Vk
+
∑

α

λα
∂2Cα
∂Vi∂Vk

)

∂Vk
∂Uj

+ δij . (5.40)

This matrix is even more complicated than matrix (bij), which was briefly analyzed
in section 5.1.1. We must conclude that it will often be impossible to give an an-
alytical proof of stability, implying that, in those cases, we should either rely on
experimental results, or apply quadratic constraints.

We finish this theoretical part by observing that it seems also possible to select
other updating rules for finding an equilibrium state of the general constrained
Hopfield-Lagrange network (see theorem 4.10). However, these approaches have
not been elaborated.

5.5 Computational results, the unconstrained model

5.5.1 Simple optimization problems

We started by performing some simple experiments by trying various quadratic cost
functions with linear constraints. The general form equals

minimize E(V ) = 1
2

n∑

i=1

di(Vi − ei)
2,

subject to : aαi Vi − bαi = 0, α = 1, .., m, (5.41)

where di is always chosen positive. The cost function is always such that its min-
imum belongs to the state space [0, 1]n and the constraints are non-contradictory.
Since for this class of problems

∂2E

∂Vi∂Vj
= diδij ∧ ∂2Cα

∂Vi∂Vj
= 0, (5.42)
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the corresponding time derivative of the sum of kinetic and potential energy equals

Ėkin+pot,s = −
n∑

i=1

(di
dVi
dUi

+ 1)U̇2
i ≤ 0. (5.43)

Using the sigmoid as the transfer function, we expect convergence for all problem
instances. All initializations of Vi, as well as of the multipliers, were chosen ran-
domly. We started trying the ’toy problem’ (5.5), which has been analyzed in section
5.3. Using ∆t = 0.0001 and β = 50, U was still growing (to ∞) and λ was still
shrinking (to -∞) after 107 iterations, which complies with the given theoretical con-
jectures. Cutting off the calculations, we found the ’final’ values V = 0.999959 and
λ = −2.404412. Thereupon, we relaxed the constraint to V − 1 = ǫ. Resolving
the corresponding set of differential equations, choosing ǫ = 0.01, and leaving the
other parameters unchanged, we found asymptotic convergence to V = 0.990000
and λ = −2.163805: the first value is the correct one and the second one approxi-
mates the theoretical value −2.07 from table 5.1.

To investigate scalability, we extended the number of neurons and the number
of constraints in formula (5.41). In all cases, we encountered proper convergence.
E.g., taking

minimize V 2
1 + (V2 − 1)2 + V 2

3 + (V4 − 1)2 + · · ·+ (V50 − 1)2,

subject to:







V1 + V2 + · · · + V10 = 5
V6 + V7 + · · · + V15 = 5
V11 + V12 + · · · + V20 = 5

...
...

...
...

V41 + V42 + · · · + V50 = 5,

(5.44)

after 106 iterations with ∆t = 0.0001 and β = 50, we found

∀i : i ∈ {1, 3, 5, · · · , 49} : Vi = 0.056360

∀i : i ∈ {2, 4, 6, · · · , 50} : Vi = 0.943640,

so, the constraints are exactly fulfilled. We also observe the expected effect of the
Hopfield term. The values of the 9 multipliers λα all equal 0.000000, corresponding
precisely to the theoretical ones, as can be easily verified. We repeated the experi-
ment, now choosing β = 100. We found

∀i : i ∈ {1, 3, 5, · · · , 49} : Vi = 0.033593

∀i : i ∈ {2, 4, 6, · · · , 50} : Vi = 0.966407.

The influence of the Hopfield term has diminished, which also corresponds to the
theoretical expectations.

5.5.2 The weighted matching problem

To investigate whether the Hopfield-Lagrange model is able to solve combinatorial
optimization problems in an adequate way, we performed some other experiments.
We first report the results of the computations concerning the WMP of section 2.2.2.
Interpreting Vij = 1 (Vij = 0) as if point i is (not) linked to point j, where 1 ≤ i <
j ≤ n, we tried several formulations of the constraints. Using linear constraints, the
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corresponding system turned out to be unstable. Therefore, we continued by trying
quadratic ones since then, stability is generally guaranteed, as was pointed out in
section 5.2.3. The corresponding formulation of the problem is

minimize E(V ) =

n−1∑

i=1

n∑

j=i+1

dijVij ,

subject to:

C1,i(V ) = 1
2
(

i−1∑

j=1

Vji +

n∑

j=i+1

Vij − 1)2 = 0, (5.45)

C2,ij(V ) = 1
2
Vij(1− Vij) = 0. (5.46)

The constraints (5.46) describe the requirement that finally, every Vij must equal
either 0 or 1. We note that every C2,ij corresponds to a concave function whose
minima are boundary extrema. The corresponding multipliers are denoted by νij .
In combination with (5.46), the constraints (5.45) enforce that every point is linked
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Figure 5.3: A solution of the WMP for n = 32.

to precisely one other point. The corresponding multipliers are λi, and the complete
set of differential equations becomes

U̇ij = −dij − λi(

i−1∑

k=1

Vki +

n∑

k=i+1

Vik − 1)−

λj(

j−1
∑

k=1

Vkj +

n∑

k=j+1

Vjk − 1)− νij(
1
2
− Vij)− Uij, (5.47)

λ̇i = 1
2
(

i−1∑

j=1

Vji +

n∑

j=i+1

Vij − 1)2, (5.48)

ν̇ij = 1
2
Vij(1− Vij). (5.49)
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Again, the sigmoid was the selected transfer function. The multipliers were ini-
tialized with the value 0. The experiments showed proper convergence. Using 32
points, the corresponding system consists of 1024 differential equations and 528
multipliers. After 40 000 iterations using β = 500 and ∆t = 0.001, the values of
λi lay in the interval [0.14; 0.83], while those of νij were mostly of order 10−4 and
sometimes of order 10−1. The values of Vij equalled 0.0000 or lay in the interval
[0.997; 1.000], which is interpreted as equal to 1. The corresponding solution is visu-
alized in figure 5.3. We have repeated the experiment and always found solutions
of similar quality, e.g., a solution where 13 (of the 16) links equal the links of the
solution shown.

In order to show how difficult the stability analysis can be when using theo-
rem 5.1, we determined the matrix (5.11) in case of n = 4. Enumerating rows and
columns in the order (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), we found:

(bwm
ij,kl) =

















Λ12 λ1Φ13 λ1Φ14 λ2Φ23 λ2Φ24 0

λ1Φ12 Λ13 λ1Φ14 λ3Φ23 0 λ3Φ34

λ1Φ12 λ1Φ13 Λ14 0 λ4Φ24 λ4Φ34

λ2Φ12 λ3Φ13 0 Λ23 λ2Φ24 λ3Φ34

λ2Φ12 0 λ4Φ14 λ2Φ23 Λ24 λ4Φ34

0 λ3Φ13 λ4Φ14 λ3Φ23 λ4Φ24 Λ34

















where

Λij = 1 + (−νij + λi + λj)
dVij
dUij

∧ Φij =
dVij
dUij

. (5.50)

In general, we can not prove convergence because the properties of the matrix bwm

change dynamically. However, stability in the initial and final states can easily be
demonstrated. Initially, we set all multipliers equal to 0. Then, bwm reduces to the
unity matrix. On the other hand, if a feasible solution is found in the end, then
∀i, j : Vij ≈ 0 or Vij ≈ 1 implying that all Φij ≈ 0. This again implies that bwm

reduces to the unity matrix. Since the unity matrix is positive definite, stability is
guaranteed both at the start and in the end. However, during the updating process,
the situation is much less clear. We have not further analyzed this theoretically.

5.5.3 The NRP and the TSP

To see whether the Hopfield-Lagrange model is useful for solving more difficult
combinatorial optimization problems, we have tried to solve the TSP (section 2.2.2).
We shall see that the NRP (section 3.4.1 and 4.4.5), itself being a purely combinatorial
problem, is a special case of the combinatorial optimization TSP. We first consider a
formulation of the TSP given by Hopfield and Tank [49]:

minimize Etsp(V ) =
∑

i,j,k

VijdikVkj+1, (5.51)

subject to the constraints (3.53) to (3.55) of the NRP. Here, Vij means that city i is
visited in the j-th position, and dij represents the distance between city i and city j.
Indices should be taken modulo n and it is supposed that dij = dji. Applying the
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Hopfield-Lagrange model, we search for the extrema of

Ehl,u,tsp1(V, λ) = Etsp(V ) +
3∑

α=1

λαCα(V ) + Eh(V ). (5.52)

The corresponding set of differential equations equals

U̇ij = −
∑

k

dik(Vkj+1 + Vkj−1)− λ1
∑

k 6=j

Vik −

λ2
∑

k 6=i

Vkj − λ3(
∑

i,j

Vij − n)− Uij, (5.53)

λ̇1 =
∑

i,j

∑

k>j

VijVik, (5.54)

λ̇2 =
∑

j,i

∑

k>i

VijVkj, (5.55)

λ̇3 = 1
2
(

n∑

i,j

Vij − n)2. (5.56)

Comparing (5.52) to (3.56), we see that if Etsp(V ) = 0, the TSP reduces to the NRP.
It is clear that the applied constraints are quadratic. If ∀α : λα > 0, condition (2.37)
holds for the multiplier terms, so in that case, they behave like penalty terms. We

also note that ∀i : λ̇i ≥ 0 and we therefore expect convergence of the set of differen-
tial equations.

The n-rook problem, again revisited

We already mentioned some computational results of the NRP using the soft ap-
proach (section 3.4.1) as well as the partially strong approach (section 4.4.5). Here,
we want to test the Hopfield-Lagrange model for the same problem. We should
apply the set of differential equations (5.53) to (5.56), where ∀i, ∀k : dik = 0.

Using random initializations of Vi, we found convergence provided that ∆t is
small enough. E.g., for n = 25, β = 500 and ∆t = 0.0001 we found, after 2000
iterations, λ1 = 0.655935, λ2 = 0.649828, (a still growing multiplier) λ3 = 0.690099,
and an almost feasible solution. The increase of λ3 can easily be explained by the
theory of section 5.3 on hard constraints implying Ui-values equal to +∞ or −∞.
We further note that all multipliers have become positive.

The Travelling Salesman Problem

Using the Hopfield-Lagrange model, the TSP can be grappled by searching the ex-
trema of (5.52). In accordance with the observations as given in [86] (section 2.5),
we found proper convergence to nearly feasible solutions, provided ∆t was chosen
small enough. Unfortunately, the quality of the solutions was very poor. Even prob-
lem instances of 4 cities did not yield optimal solutions every time. Trying instances
with 32 cities yielded solutions like the bad one shown in figure 5.4.

Inspired by the success with the WMP, we tried to solve the TSP in a different
way namely by taking other quadratic constraints with one multiplier for every single
constraint. We expected to find better solutions, because in this approach many more



5.5 Computational results, the unconstrained model 77

multipliers are used, which should make the system more ‘flexible’. The modified
problem is to find an optimal extremum of

Ehl,u,tsp2(V, λ) =
∑

i,j,k

VijdikVkj+1 +
∑

i

λi
2
(
∑

k

Vik − 1)2 +

∑

j

µj
2
(
∑

k

Vkj − 1)2 +
∑

i,j

νij
2
Vij(1− Vij). (5.57)

The corresponding set of differential equations equals

U̇ij = −
∑

k

dik(Vkj+1 + Vkj−1)− λi(
∑

k

Vik − 1)−

µj(
∑

k

Vkj − 1)− νij(
1
2
− Vij)− Uij, (5.58)

λ̇i =
∑

i

1
2
(
∑

k

Vik − 1)2, (5.59)

µ̇j =
∑

j

1
2
(
∑

k

Vkj − 1)2, (5.60)

ν̇ij =
∑

i,j

1
2
Vij(1− Vij). (5.61)

Again, the experiments showed proper convergence. For very small problem in-
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Figure 5.4: A solution of the TSP1 for n = 32.

stances we found optimal solutions. E.g., this time problem instances of 4 cities
always yielded optimal solutions. Large problem instances also yielded feasible,
but non-optimal solutions. An example is given in figure 5.5, where 32 cities were
used, ∆t = 0.001 and the applied number of iterations was 100 000. The encoun-
tered values of Vij were either 0.0000 or lay in the interval [0.9988;1.0000]. The 1088
multipliers were still growing very slowly in order to realize exact fulfillment of the
constraints, again owing to the problem with hard constraints. The quality of the
solution is certainly better than the one we found in the previous subsection, al-
though still not optimal. Apparently, the treatment of the constraints is now better,
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Figure 5.5: A solution of the TSP2 for n = 32.

due to the use of much more multipliers. However, like in all other recurrent neu-
ral network approaches as known from literature, scalability appears to be a tough
problem.

5.6 Computational results, the constrained model

It is interesting to experiment with combinations of the constrained Hopfield and
the Hopfield-Lagrange model. Which part of the constraints is built-in and which
part is tackled with multipliers, strongly depends on the structure of the problem.
E.g., in case of the WMP (section 5.5.2), the constraints are highly interweaved and
the constrained model is not at all applicable. Our approach will be the following
one. Since building-in constraints has proven to be rather successful, we try to do
this as much as possible. The remaining part of the constraints will be dealt with
using multipliers.

5.6.1 For the last time, the n-rook problem

A constrained Hopfield-Lagrange formulation of the NRP resembles the formula-
tion as given in section 4.4.5. The only difference concerns the penalty weight, which
becomes a multiplier. We search an optimal extremum of the function

Ehl,c,nr(V, λ) = λ1
∑

j,i

∑

k>i

VijVkj + Eh(V ), (5.62)

using the motion equations

U̇ij = −λ1
∑

k 6=i

Vkj − Uij , (5.63)

λ̇1 =
∑

j,i

∑

k>i

VijVkj, (5.64)
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where

Vij =
exp(βUij)
∑

l exp(βUil)
. (5.65)

The final multiplier value appears to depend on the initialization values of both

n λ1,in ∆t λ1,fin
4 0 0.01 1.83
4 0 0.01 2.13

22 0 0.01 10.24
22 0 0.01 10.33
22 0 0.001 9.88
22 0 0.001 10.17
22 5 0.001 10.38
22 5 0.001 10.41
50 0 0.01 22.53

100 0 0.01 83.73
150 50 0.004 87.27
150 50 0.004 88.14

Table 5.2: Some initial and final multiplier values of the NRP.

the neurons and of λ1. Moreover, for large problem instances, ∆t should be chosen
small enough in order to avoid a too rapid increase of the multiplier value. For the
rest, the experimental results are identical to those of section 4.4.5. We performed
experiments up to n = 150. Using β = 10, we always encountered convergence.
In the above-given table, we report (for certain problem instances) an appropriate
value of ∆t, the initial value λ1,in and the final value λ1,fin of multiplier λ1. From the
table we conclude that in case of n = 22, the critical value λ1,cr ≈ 10. If λ1 < λ1,cr, the
set of motion equations appears to be unstable, yielding a constant increase of λ1.
As soon as its critical value has been reached, the system suddenly becomes stable
and the constraints are rapidly fulfilled. This indeed resembles a phase transition
which was conjectured in section 5.2.3.

5.6.2 The TSP

There are various ways to solve the TSP using the constrained model. The simplest
approach concerns an adaptation of (5.62). It suffices to add the cost functionEtsp(V )
as given by (5.51) to Ehl,c,nr(V, λ1) and to adapt the corresponding motion equations.
Again, the single multiplier appears to increase until a feasible solution is found. In
this way, stability is always found. However, the quality of the solutions is rather
poor. Even for n = 4, the solution found is not always the optimal one.

In a second approach, the constraint C2(V ) is split into n separated ones, with a
different multiplier for every one. Then, the problem is to find an optimal extremum
of

Ehl,c,tsp2(V, λ) =
∑

i,j,k

VijdikVkj+1 +
∑

j

λj
∑

i

∑

k>i

VijVkj + Eh(V ). (5.66)

The corresponding set of motion equations consists of a straightforward adaptation
of the set (5.63) and (5.64). Unfortunately, the quality of the solutions remains poor.
Even in this case, the solution found for n = 4 is not always the optimal one.
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Thereupon, it is tried to resolve a constrained version of the approach of section 5.5.3
using other and much more quadratic constraints. The set of differential equations
applied is

U̇ij = −
∑

k

dik(Vkj+1 + Vkj−1)− µj(
∑

k

Vkj − 1)−

νij(
1
2
− Vij)− Uij , (5.67)

µ̇j =
∑

j

1
2
(
∑

k

Vkj − 1)2, (5.68)

ν̇ij =
∑

i,j

1
2
Vij(1− Vij), (5.69)

where the transfer function is (5.65). This set of equations correspond to the energy
function defined by

Ehl,c,tsp3(V, λ) =
∑

i,j,k

VijdikVkj+1 +
∑

j

µj
2
(
∑

k

Vkj − 1)2 +

∑

i,j

νij
2
Vij(1− Vij) + Eh(V ). (5.70)

Using n = 4, the optimal solution is always found, again proving the expected
flexibility of the system. Trying a problem instance with n = 15, we encountered
the optimal solution at times, but also a slightly worse one occasionally. Finally,
trying an instance with n = 32, we did not find the optimal one. The quality is even
worse than in case of using the unconstrained Hopfield-Lagrange model discussed
in the previous section. Scalability again turns out to be a difficult issue.

Two things can still be tried. First, other mappings of the TSP on the Hopfield-
Lagrange model using other cost functions (e.g., those having higher order terms
[24, 80]) can be investigated. A second thing to do is to apply the technique of
(mean field) annealing. These experiments have yet to be done.



Chapter 6

Elastic networks

We dwell upon Simic’s claim that statistical mechanics is the underlying theory of
both ‘neural’ and ‘elastic’ optimizations. We shall explain why we think his deriva-
tion is incorrect. In our view, the elastic net algorithm (ENA) as sketched in sec-
tion 2.6 should be considered as a specific dynamic penalty method. We next give
an analysis of the ENA by considering elastic net forces as well as various energy
landscapes. This analysis further underpins our view. Finally, we formulate two
alternative elastic net algorithms and report some computational results.

Parts of this chapter will soon be published [19]. A substantial part can be found
in the technical reports [16, 18].

6.1 The ENA is a dynamic penalty method

In his analysis of the relationship between neural and elastic networks [77], Simic
applies the stochastic binary constrained Hopfield model of chapter 4. The motiva-
tion for using a stochastic model is based upon the idea of considering stochastic
‘particle trajectories’. Using the customary statistical mechanical arguments, the
particle should spontaneously find the path of minimal length (the path length is
the Hamiltonian of the problem). Like has been explained in chapter 2, this phe-
nomenon can also be described by a minimization process of the corresponding free
energy.

Stated more precisely, a ‘statistical mechanics’ is defined regarding particle tra-
jectories as an ensemble, where the paths of legal trajectories must obey the global
constraints of the TSP. That is, the particle cannot visit two space-points at the same
time and it visits all the points once and only once. The legal trajectory with the
shortest path length equals the wanted shortest path and coincides with the short-
est tour of the travelling salesman. The chosen representation of the tour length is
the Hamiltonian

Htsp(S) =
1
4

∑

i

∑

p,q

d2pqS
i
p(S

i+1
q + Si−1

q ) + α
4

∑

i

∑

p,q

d2pqS
i
pS

i
q, (6.1)

where Sip denotes whether the salesman at time i occupies space-point p or not
(Sip = 1 or Sip = 0), and where dpq represents the distance between the space points
p and q. The first term of (6.1) equals the sum of distance-squares between cities
visited, while the second term is a penalty term which penalizes the simultaneous
presence of the salesman at more than one position. Other constraints should guar-
antee that any city is visited once and only once. They are built-in in the strong way
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by imposing

∀p :
∑

i

Sip = 1. (6.2)

A mean field approximation of the free energy of general stochastic Hopfield net-
works submitted to the constraints (6.2) can easily be found by applying theorem 4.1
n times. Also taking Ii = 0 and replacing wij by −wij (see the note at the end of sec-
tion 4.1), one finds [77]

Fc1,g(V ) = −1
2

∑

i,j

∑

p,q

wijpqV
i
pV

j
q − 1

β

∑

p

ln
[∑

i

exp(−β
∑

j,q

wijpqV
j
q )
]
, (6.3)

where the stationary points of Fc1,g(V ) equal the solutions of

V i
p =

exp(−β∑j,q w
ij
pqV

j
q )

∑

l exp(−β
∑

j,q w
lj
pqV

j
q )
. (6.4)

Substituting the cost function (6.1) in (6.3) yields the actual free energy approxima-
tion of the TSP, being

Ftsp(V ) = −1
4

∑

i

∑

p,q

d2pqV
i
p (V

i+1
q + V i−1

q )− α
4

∑

i

∑

p,q

d2pqV
i
pV

i
q −

1
β

∑

p

ln
[∑

i

exp(−β

2

∑

q

d2pq(αV
i
q + V i+1

q + V i−1
q ))

]
. (6.5)

It is interesting to note Simic’s observation that expression (6.3) has the ‘wrong’
sign. The structure of the equation indeed suggests that its stationary points cor-
respond to maxima (compare the results of the sections 3.2 and 4.2), while those of
the ENA are minima. Especially this phenomenon aroused our suspicions regard-
ing his derivation. From here, we continue to sketch Simic’s derivation, eventually
resulting into the ENA. At the same time, we shall formulate our objections.

Objection 1. In order to derive a free energy expression in the standard form (2.8),
Simic applies a Taylor series expansion on the last term of (6.5). We shall do the
same. We first define

f(x) =
∑

p

ln
[∑

i

exp(xip)
]
, (6.6)

aip = −β α
2

∑

q

d2pqV
i
q , and (6.7)

hip = −β 1
2

∑

q

d2pq(V
i+1
q + V i−1

q ), (6.8)

implying that

∂f

∂xip
(aip) =

exp(aip)
∑

l exp(a
l
p)
. (6.9)

For the TSP, the mean field equations (6.4) can be written as

V i
p =

exp(aip + hip)
∑

l exp(a
l
p + hlp)

≈ exp(aip)
∑

l exp(a
l
p)
, (6.10)
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provided that | hip |≪| aip | (this can be arranged by setting α ≫ 1). Now, combining
(6.6), (6.7), (6.8), (6.9), and (6.10), we obtain

f(a+ h) =
∑

p

ln
[∑

i

exp(aip)
]
+
∑

i,p

hip
∂f

∂xip
(aip) +O(h2) (6.11)

≈
∑

p

ln
∑

i

exp
(
− β α

2

∑

q

d2pqV
i
q

)
−

β

2

∑

i

∑

p,q

d2pqV
i
p (V

i+1
q + V i−1

q ). (6.12)

Substitution of this result in (6.5) yields

Ftsp,app(V ) = 1
4

∑

i

∑

p,q

d2pqV
i
p (V

i+1
q + V i−1

q )− α
4

∑

i

∑

p,q

d2pqV
i
pV

i
q −

1
β

∑

p

ln
∑

i

exp
(
− β α

2

∑

q

d2pqV
i
q

)
. (6.13)

Simic found a slightly different expression with the weight value α
2

instead of the
value −α

4
. He simply ignores this term by saying that it vanishes if the constraints

are obeyed. Doing the same (although it is in itself dubious), the following expres-
sion of the free energy is obtained:

Ftsp,sim(V ) = 1
4

∑

i

∑

p,q

d2pqV
i
p (V

i+1
q + V i−1

q )−

1
β

∑

p

ln
∑

i

exp
(
− β α

2

∑

q

d2pqV
i
q

)
. (6.14)

However, inspection of equation (6.11) reveals that the chosen first-order Taylor-
approximation does not hold for low values of the temperature, i.e., for high values
of β, since hip as defined in (6.8) is proportional to β. This observation concerns a
fundamental objection since, during the execution of the ENA, the parameter β is
increased step by step until it has reached a relatively high value in the end. ⊓⊔

Objection 2. In order to transform the Hopfield network formulation of the TSP
into the elastic net one, Simic performs a ‘decomposition of the particle trajectory’:

xi = <x(i)> =
∑

p

xp<S
i
p> =

∑

p

xpV
i
p . (6.15)

Here, x(i) is the (stochastic) position of the particle at time i, xp is the vector denoting
the position of city point p, and xi denotes the average (or expected) position of the
particle at time i. Using the decomposition, he writes

1
4

∑

i

∑

p,q

d2pqV
i
p (V

i+1
q + V i−1

q ) = 1
2

∑

i

| xi+1 − xi |2, (6.16)

which is correct, and ∑

q

d2pqV
i
q =| xp − xi |2 . (6.17)

The last equation concerns both a notable and a crucial transformation from a linear
function in V i

p into a quadratic one in xi. Using (6.16) and (6.17), the free energy (2.54)
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of the ENA with m = n and α1 = α2 = 1 is obtained. For reasons of convenience,
we here restate that free energy expression:

Een(x) =
α2

2

m∑

i=1

| xi+1 − xi |2 −α1

β

n∑

p=1

ln
m∑

j=1

exp(−β
2

2
| xp − xj |2). (6.18)

x

p

x

q�1

x

q

x

q+1

x

i

d

pq�1

d

pq

d

pq+1

j x

p

� x

i

j

�

�

c

c

c

c

Figure 6.1: An elucidation of the inequality in (6.19).

However, careful analysis shows that in general

∑

q

d2pqV
i
q =

∑

q

(xp − xq)
2V i

q 6= | xp − xi |2 . (6.19)

The left-hand side of this inequality represents the expected sum of the distance
squares between city point p and the particle position at time i, while the right-hand
side represents the square of the distance between city point p and the expected
particle position at time i. Under special conditions (e.g., if the constraints are ful-
filled), the inequality sign must be replaced by the equality sign, but in general, the
inequality holds (see also figure 6.1). ⊓⊔

Objection 3. The free energy expressions (6.5) and (6.18) appear to have very differ-
ent properties. As can be concluded from (6.4), any of the free energy expressions
(6.3) and (6.5) has the peculiar property that – whatever the value of the temper-
ature parameter – the stationary points are found at states where, on average, all
strongly submitted constraints are automatically fulfilled. In other words, the sta-
tionary points by themselves meet the constraints

∀p :
∑

i

V i
p = 1, (6.20)

which signify that, on average, every city p is visited once. Moreover, the stationary
points of (6.3) are often maxima (compare the results of chapter 4).

However, inspection of the free energy (6.18) yields a very different view: an anal-
ysis of that expression (see below) clarifies that each term on its own creates a set
of local minima, the first one trying to minimize the tour length, the second one
trying to force a valid solution. The current value of the temperature, which is a
weight factor of the second term, determines the overall effect of summation over
all these minima. E.g., it determines which of the two types will dominate. Thus, a
competition between feasibility and optimality takes place. This phenomenon is re-
markable, since the competition is similar to the one found by applying the classical
penalty method. A difference from that classical method is that in the present case –
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as in case of the Hopfield-Lagrange model – the weights of the penalty terms change
dynamically. It is surprising to see that in case of the ENA, the weights (which all
equal T = 1/β) decrease during the updating of the motion equations, while in case
of the Hopfield-Lagrange model, the weights (the multipliers) often increase. The
given view on the ENA explains why we consider it a dynamic penalty method. ⊓⊔

We think the last observation corresponds to the theory of so-called deformable
templates [70, 90]. In that approach, the elastic net is considered as a ‘template
trajectory’ (corresponding to Simic’s particle trajectory), whose correct parameters
should be determined. These parameters are the ‘template coordinates’ (the elastic
net points) and the binary Potts spins Spj (where ∀p :

∑

j Spj = 1). We note that
Spj = 1 has the meaning that net point j is assigned to template coordinate p. The
corresponding Hamiltonian equals

Edt(S, x) =
α2

2

∑

i

| xi+1 − xi |2 +
∑

p,j

Spj | xp − xj |2 . (6.21)

Thus, the energy Edt is a function of both binary decision functions Spj and of con-
tinuous template coordinates xi. The first term in (6.21) equals the first term in the
elastic net energy expression (6.18) and minimizes the tour length. The second term
enforces a match between each city and one of the elastic net points. In other words,
the energy (6.21) describes a penalty method. A statistical analysis of Edt using the
fact that the binary spins Spj are stochastic, yields the free energy expression (6.18)
of the elastic net. The derivation is straightforward [70, 90], among other things
because Edt is a linear function in the Potts spins. By inspection of both (6.18) and
(6.21) we conclude that the first energy expression is derived from the second by
adding stochastic noise exclusively to the penalty terms of (6.21). Therefore, one
might say that the deformable template method applies stochastic penalty terms,
whose noise level depends on the current value of the decreasing temperature. This
underpins, in yet another way, the idea that the ENA is based on a dynamic penalty
model: the elastic net model can considered to be a thermal or noisy penalty model,
where the current temperature (i.e., the current noise level) controls the actual form
and weight of the penalty terms.

6.2 Energy landscapes

6.2.1 Energy landscapes and elastic net forces

The ENA can be analyzed at two levels, namely at the level of the energy equa-
tion (6.18) by inspection of the energy surface, and at the level of the updating rule
(2.55) being

∆xi = α2

β
(xi+1 − 2xi + xi−1) + α1

∑

p

Λp(i)(xp − xi), (6.22)

by an analysis of the various forces acting upon every net point. Afterwards, we
shall deal – in a direct mathematical way – with the properties of the energy equation
on lowering the temperature. We adopt the parameter values of the algorithm as
given in subsection 2.2.

Let us start regarding the first, so-called elastic ring term (ert) of (6.18). It is com-
posed of a sum ofm (the number of elastic net points) quadratic position differences.
Of course, this term is minimized if all points coincide at some place. However, if
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the elastic net has a given length, this term is minimized whenever all space-points
are equidistant. In figure 6.2 and 6.3, the 2-dimensional energy landscape of one net
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Figure 6.2: The elastic ring term
for point (0.5,0.5),
d = 0.02.
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Figure 6.3: The elastic ring term
for point (0.6,0.5),
d = 0.2.

point xi = (x, y) is shown at two different positions, once using d = 0.02 as the mu-
tual distance between neighbouring net points, the other time taking d = 0.2. The
shapes of the two landscapes do not differ much: in both cases, the variable point is
forced to the middle of the other two (temporally fixed) points: in figure 6.2, these
points are (0.49,0.5) and (0.51,0.5), in figure 6.3 they are (0.5,0.5) and (0.7,0.5). At the
level of the motion equation (6.22), we see by writing

xi+1 − 2xi + xi−1 = (xi+1 − xi) + (xi−1 − xi), (6.23)

that every xi is forced to the midpoint between xi−1 and xi+1. Summarizing, if the
elastic ring term would be the only one, the ring points would become equidistant
and, eventually, would coincide at one position, somewhere in state space.

But the second so-called mapping term (mpt) of (6.18), makes its influence felt
too. It is composed of a sum of n logarithms, each logarithm having a sum of m ex-
ponentials as its argument. Every exponential is a Gaussian function with one local
extremum, namely at the position where xp coincides with xj . We may conclude,
that the total mapping term (with the minus sign) corresponds to a set of ‘pits’ in
the energy landscape. The width and depth of these pits depend on two factors,
namely on the temperature and on the distance between a city and the other elastic
net points, especially the nearest elastic net point. Initially, when the temperature
T is relatively high, the attraction of elastic net points by every city is more or less
uniformly distributed. This corresponds to a wide and shallow pit in the energy
landscape around every city. The resulting, total energy landscape shelves slightly
and is lowest in regions with a high city density. This phenomenon is quite indepen-
dent of the position of the elastic net points in the unit square. A simple example
is given in figure 6.4: again, the energy landscape of one of five elastic net points
is shown, while the positions of the city points are (0.2,0.63), (0.8,0.63), (0.65,0.37),
(0.37,0.37) and (0.33,0.37). The city positions will be kept the same in the next exam-
ples and can be found in figure 6.7. As can be seen in figure 6.4, the lowest part of
the energy landscape of the mapping term is found around the last two, closely situ-
ated, cities. Experiments show, that the positions of the other four elastic net points
do not matter much, i.e., whatever these positions are, in all cases approximately the
same energy surface is found, provided that the initially high temperature T = 0.2
is used.
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Figure 6.4: The mapping term,
initially at high tem-
perature.
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Figure 6.5: The mapping term,
in case of no feasibil-
ity.

On lowering the temperature, a city will attract more and more nearby net points
and fewer and fewer distant net points because, in general, the pit in the energy
landscape around a city becomes narrower. However, the second factor plays an
important part. If a city remains without a nearby elastic net point, the width of the
pit shrinks only slowly and the depth even grows: apparently, the city persists in
trying to catch a not too remote elastic net point. In figure 6.5, an example is given
at T = 0.027, which is an almost final temperature of the algorithm. The four net
points are still chosen around the center of the unit square, far away from any city.
The basins of attraction around every city are clearly present.

If, on the other hand, a city has been able to (almost) catch a net point, the sur-
rounding pit in the energy landscape will become very narrow and shallow. In
figure 6.6, an example is given with, once more, four temporally fixed net points.
Again, T = 0.027. The position of one net point coincides exactly with a city, the
position of a second one is chosen close to a city, a third net point is situated on a
somewhat larger distance from another city, and the position of the fourth net point
is precisely in the middle between two close city points. The city point and net point
positions are shown in figure 6.7. The energy landscape in figure 6.6 shows narrow
and shallow pits around cities: the smaller the distance of the most neighbouring
elastic net point is, the narrower and shallower the pit. The figure also demon-
strates an unpleasant phenomenon concerning the elastic net point in the middle of
the two close cities. Both cities seem to consider themselves owner of that elastic
net point. Consequently, the surrounding energy landscape of the two cities will
generally not be able to catch another elastic net point, so, in those circumstances,
the system persists in non-feasibility.

6.2.2 The total energy landscape

Of course, we should analyze the combined effect of the elastic ring and the map-
ping term. For that purpose, we selected some, more or less representative exam-
ples, starting with an initial elastic net situated around the center of the unit square
at T = 0.2. There, the energy landscape appears to resemble that of figure 6.4 (as
expected): the mapping term dominates, pushing the elastic net to regions of high
city density. In practice, the cities are distributed over the unit square, resulting in
a stretching out of the net. In the background, the elastic net term keeps the net
more or less together. On lowering the temperature a little bit until T = 0.15, the
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mapping term becomes more important as long as feasibility has not been reached.
In figure 6.8, the energy landscape of the free elastic net point is shown under the
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assumption that the initial configuration of all other points have remained the same.
It is clear that the landscape has become somewhat steeper. Thus, the system is try-
ing to reach feasibility with a bit more strength. Now supposing the more realistic
scenario that the elastic net has stretched out somewhat (with elastic net positions
(0.57,0.44), (0.43,0.44), (0.35,0.56), (0.65,0.56), while the ‘free’ elastic net point is sup-
posed to be somewhere between the last two given positions). Then, more details in
the energy landscape are apparent. In figure 6.9, the energy landscape is shown at
T = 0.08.

Next, we show two potential, nearly final, states. In figure 6.10, a solution is
shown, where all cities except one have caught an elastic net point. If the remaining
net point is not too far away from the non-visited city, it can still be attracted by
it, otherwise this city will never be visited. This shows, that a too rapid lowering
of the temperature may lead to a non-valid solution, because a further lowering of
the temperature will lead to a further narrowing of the energy pit of figure 6.10.
Note also that in this case, the pits corresponding to the elastic ring term are not
visible: comparatively, they are too small. In figure 6.11, an almost feasible solution
is shown, where the positions of three net points coincide with the position of a city,
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while a fourth elastic net point is precisely in the middle between the two close cities.
Because an almost feasible solution has been reached, the mapping term becomes
relatively small (corresponding to some small pits), and the remaining elastic net
point is forced to the middle of its neighbors. The final state will be equidistant,
but not feasible! The example shows clearly that in case of (almost) feasibility the
influence of the mapping term becomes small. At the same time, this term is capable
to maintain this (almost) feasibility. Under these conditions, the algorithm tries to
realize equidistance.

6.2.3 Non-feasibility and not annealing

The analysis of the previous subsection reveals that it is possible to end up in a
non-feasible solution for at least two reasons1:

• The parameter T may be lowered too rapidly yielding a non-feasible solution,
where one or more cities have not ‘caught’ any elastic point.

• Two close cities may have received the same elastic net point as the nearest
one.

The determination of the optimal schedule for decreasing T is often mentioned in
literature and is often associated with ‘optimal simulated annealing’. We wish to
emphasize here, that the similarity is less than would appear. In simulated anneal-
ing [2], the temperature should be decreased carefully in order to escape from local
minima. Here, this lowering should be done carefully in order to gain and keep on
to a valid solution, in other words, to end up in a local (constrained) minimum!

Just like any other penalty method, the ENA tries to fulfill two competing re-
quirements: in this case these are minimal equidistance and feasibility (a tour through
all city points). To be able to fulfill both requirements, it is generally necessary to
use more elastic net points than city points. This is further explained in figure 6.12.
It should be clear that, the more diversity exists in the shortest distances between
cities, the more elastic net points are needed 2. Using a large number of elastic net

1Another non-feasibility is a so-called spike [78]. There, one city has caught two non-
neighbouring beads of the elastic ring.

2We already mentioned in section 2.6 that usually m and n are chosen conform m = 2.5n.
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points gives rise to the additional drawback of increasing computation time. Finally,
we note that the property of equidistance – which is a consequence of the quadratic
distance measure of the ENA – is not at all a necessary qualification of the final so-
lution. The above-mentioned observations that (a) a non-feasible solution might be
found and (b) the ENA pursues equidistance, motivated us to investigate alternative
elastic net algorithms.
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Figure 6.12: To realize both feasibility and equidistance
many net points are needed.

6.3 Alternative elastic networks

6.3.1 A non-equidistant elastic net algorithm

In order to get rid of the equidistance property, we only need to change the first
term of the original energy expression (6.18). Here, a linear distance function is cho-
sen3, whose minimal constrained length equals by definition the global minimal
tour length. The new energy function is:

Elin(x) = α2

∑

i

| xi+1 − xi | −α1

β

∑

p

ln
∑

j

exp(−β
2

2
| xp − xj |2). (6.24)

Applying gradient descent, the corresponding motion equations are found [35]:

∆xi = α2

β

(
xi+1 − xi

| xi+1 − xi |

)

+

(
xi−1 − xi

| xi−1 − xi |

)

+ α1

∑

p

Λp(i)(xp − xi), (6.25)

where again, the time-step ∆t equals the current temperature. We notice that all
elastic net forces are normalized now. Moreover, if ∃i : xi+1 = xi, we get into trou-
ble4 . As self-evident analysis [35] shows, the elastic net forces try to push elastic net
points onto a straight line, just like in the original ENA. However, once a net point
is situated at any point on the straight line between its neighbouring net points, it
no longer feels any elastic net force since the resulting force Fres equals zero. This
is simply caused by the normalization of the elastic net forces: see figure 6.13. This
means that equidistance is no longer pursued. Consequently, elastic net points will
have more freedom in moving towards cities. It is therefore hoped that application
of the non-equidistant elastic net algorithm (NENA) will (a) nearly always yield fea-
sible solutions (of high quality), if the same number of elastic net points is used as

3At some places in the literature [77, 90], a linear distance measure is suggested, but nowhere did
we find an elaborated implementation of this idea.

4In practice fortunately, this never occurred.
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in the original ENA and-or (b) often yield feasible solutions too, if a smaller number
of elastic net points is chosen5. Stated in more general terms, it is hoped that the
new algorithm will yield valid solutions more easily.
Since the elastic net forces are normalized by the new algorithm (those of the old
one are not), a tuning problem arises. To solve this problem, the following sim-
ple approach is chosen: in the motion equations (6.25), all elastic net forces will be
multiplied by the same factor

A(x) = 1
m

m∑

1

| xi+1 − xi |, (6.26)

which represents the average distance between two elastic net points. Thus, the
average elastic net force is roughly equal to the average in the original algorithm,
and the final updating rule becomes:

∆xi = α2

β
A(x)

(
xi+1 − xi

| xi+1 − xi | +
xi−1 − xi

| xi−1 − xi |

)

+ α1

∑

p

Λp(i)(xp − xi), (6.27)

where the values α1, α2 and β are chosen conform the original ENA.

6.3.2 The hybrid approach

A fundamental problem of the ENA is, that it might lead to non-feasible solutions
due to the fact that the elastic net points adhere to equidistance. Moreover, equidis-
tance is not required for the final solution of the elastic net (although it might be
very useful in the initial phase of the algorithm in order to realize a smooth stretch-
ing out of the elastic ring). A fundamental problem of NENA is, that net points
may become too lumpy (see the next section), which at least for larger problem in-
stances, leads to non-feasibility and a lower quality of the subsequent solutions.
Contemplating these considerations we tried to merge the two algorithms into a hy-
brid one retaining the best properties of both. The approach of the hybrid elastic
net algorithm (HENA) is simple: the algorithm starts using ENA and, after a cer-
tain number of iterations, switches to NENA. The first phase is used in order to get
a balanced stretching of the elastic net which is hoped to lead to solutions of high
quality, the second phase is used in order to try to guarantee feasibility in the end.
A consequence of this hybrid approach is the introduction of two new parameters.
First, we have to decide at what time the switch should take place, and then, we
have to choose the starting temperature after the switch.

5It is even conjectured [77] that by using a linear distance measure, the number of elastic net points
could be equal to the number of cities.
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6.4 Computational results

We now describe some of the experimental results as obtained with the NENA and
the HENA, and compare them with computational results found using the original
ENA.

6.4.1 A small problem instance

We start by using the configuration of cities as described in the theoretical analysis
of section 4 (the 5 cities are situated as given in figure 6.7). In all cases, we used
the following initialization of the elastic net: elastic net points are put in a small
ring in the center of the state space, where the position of every net point is slightly
randomized.

Using 5, 7, 10 or 12 elastic net points, the ENA produced only non-feasible so-
lutions: in all experiments, one elastic net point is found in the middle between
the two closely situated city points. The other 3 cities are always visited, while all
other net points are more or less spread equidistantly. However, using 15 elastic net
points, the optimal and feasible solution is always found: apparently, the number of
elastic net points is now large enough to guarantee both feasibility and optimality.

Using 5 elastic net points, the NENA nearly always produced a non-feasible so-
lution, but sometimes the optimal, feasible one. A gradual increase of the number
of elastic net points results into a rise of the percentage of optimal solutions found.
Using only 10 elastic net points yields a 100% score. An inspection of the final re-
sults reveals that the elastic net points become lumpy: they appear to come together
around a city, which is of course, a consequence of their increased freedom. The
number of net points per city depends the initialization as well as the location of the
city.

We conclude that for this small problem instance the NENA produces better re-
sults than the ENA, or, stated more precisely, using a smaller number of elastic net
points the NENA finds the the same optimal solution as the original ENA. The de-
scribed experimental results are completely consonant with the theoretical conjec-
tures of section 4.

6.4.2 Larger problem instances

Using a 15-city-problem, we had the similar experiences: it is easier to arrive at a
feasible solution using the NENA. E.g., using 30 elastic net points, the NENA al-
ways yielded the same solution (namely the best solution found with both the ENA
and the NENA), while the ENA sometimes yielded that solution, and sometimes a
non-valid one.

However, the picture starts to change, if 30-city problem instances are chosen. As
a rule, both algorithms are equally disposed to finding a valid solution, but another
phenomenon turns up: the quality of the solutions found by the original ENA was
generally better. Inspection of the solutions found by the NENA, demonstrated a
strong lumping effect. The lumping can be so strong that sometimes a city is left
out completely. Especially cities which are situated at a point where the final tour
bends substantially, may be overlooked. Apparently, by disregarding the property
of equidistance, a new problem has originated. Re-evaluating, we conclude that the
equidistance property of the ENA has an important contribution towards finding
solutions of high quality, i.e., short tours.
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At this point, the hybrid approach of HENA comes to mind. Because for small
problem instances the NENA works better than the ENA, we only tried larger prob-
lem instances. Unfortunately, in our experiments the HENA appears to be slightly
worse than the original ENA both in relation to the quality of the solution and in
relation to feasibility. E.g., taking a 100-city problem, the ENA usually yielded a
solution where 99 of the 100 cities are visited, while in case if the HENA, on average
98 to 99 cities are visited. Moreover, the encountered tour length using the ENA is,
on average, slightly better than the tour length found by the HENA. Trying larger
problem instances, we were unable to find parameters of the HENA, which yield
better solutions than the original ENA or which guarantee feasibility of solutions.
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Chapter 7

Conclusions, discussions, and outlook

In this final chapter, we first sum up our results, we then discuss the most important
ones (especially in relation to the research objectives as mentioned in chapter 1), and
finally, we dwell on what is left and can be grappled with in future research.

7.1 A list of results

We start by calling to mind that the results concerning the Hopfield models gener-
ally also hold for the relaxation phase of recurrent neural networks with learning
capabilities. Assembling several outcomes, we arrive at the following list:

• The unconstrained stochastic binary Hopfield model, as well as the one con-
strained by equation (4.1), can, in mean field approximation, be described by
a corresponding continuous Hopfield model.

In both cases, two approximating free energy expressions have been found
whose stationary points coincide. However, the types (minimum or maxi-
mum) of these stationary points are not necessarily identical: this striking
phenomenon appears to be connected to the structure of the given problem
instance, i.e., to the weight values wij .

One of the two mean field free energy expressions can be written in the stan-
dard form (2.8), known from thermodynamics, for either of the models. This
form yields an explicit approximating formula for the entropy and therefore
for the effect of noise (thermal fluctuations) in the system at the same time. In
general, the effect of noise is a displacement of solutions towards the interior.

Conditions that guarantee the stability of various motion equations of both
models have been given, some of which are easy, and some of which may be
hard to check. They appear to depend on either the transfer function chosen
or the properties of the matrix (wij).

The apotheosis of chapters 3 and 4 is the ‘most general framework’ includ-
ing the corresponding stability theorem. Provided certain general mathemati-
cal conditions are fulfilled, the generalized continuous Hopfield networks can
model almost arbitrary energy expressions and can, in principle, incorporate
several types of constraints. The corresponding free energy expressions are
functions in both the input and the output of all neurons.

The experimental results did not falsify the theoretical conjectures: simple
(quadratic and non-quadratic) optimization problems and ‘purely combina-
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torial’ ones have been resolved successfully. In relation to the required com-
putation time, it appeared to be advantageous to build-in the constraints as
much as possible (instead of applying a penalty approach).

However, a startling outcome of certain experiments is that there exist formu-
lations of the built-in constraints that destroy the usual statistical mechanical
interpretation, that is, the usual mean field approximation where the energy
of the continuous Hopfield model can be written as a free energy expression
of the form (2.8). Stability may still occur while, at the same time, neither the
ordinary solutions at high temperatures, nor the usual approximation of the
original cost (energy) function at low temperatures, are found.

• A new potential Lyapunov function for both the unconstrained and the con-
strained continuous Hopfield-Lagrange model has been presented. In the un-
constrained case, all constraints can be grappled with using Lagrangian mul-
tipliers. In the constrained case, part of the constraints are tackled this way
whereas the other constraints are built-in directly (or, if desired, handled by
means of penalty terms). The Lyapunov function may serve as a tool to prove
stability of the corresponding differential equations, although the analysis of
the dynamic conditions may be hard.

Quadratic constraints and others that meet the penalty terms condition (2.37)
generally guarantee stability of the Hopfield-Lagrange model, at the same time
degenerating the model to a dynamic penalty model. In these cases, the mul-
tiplier values grow during the updating of the differential equations. If the
multipliers are smaller than a set of critical values, the model is unstable. Oth-
erwise, the system is stable. The transition from unstable to a stable behavior
in some respect resembles a phase transition in statistical mechanics.

If the formulation of the constraints is such that, in spite of the presence of
thermal noise in the system, solutions are situated in corner points of the hy-
percube [0, 1]n, we call these constraints ‘hard’. The nasty property of this type
of constraints is that the solution values of the Ui’s equal ±∞. This problem
can be resolved by explicitly relaxing the constraints in such a way that the
constrained solutions are slightly dragged towards the interior.

Various practical problems have been resolved using the Hopfield-Lagrange
model. Simple quadratic optimization problems subject to linear constraints
were always solved correctly. In other problems, linear constraints often re-
sulted in instability. Alternatively, using quadratic constraints, the experi-
ments with the weighted matching problem always yielded solutions of ‘good’
quality, and even the travelling salesman problem could be resolved in a ‘rea-
sonable’ way. However, the scale of the last two problems was still rather
small, while in case of the TSP, the computation time of the (sequential) sim-
ulation could rise up to several hours. In general, the larger the number of
multipliers is, the better the quality of the solutions appears to be. We further
noticed that in case of the TSP, the (partially) strong approach using built-in
constraints yielded solutions of a worse quality than the soft approach using
only multipliers.

• Contrary to a well-known conclusion in the technical literature [77], the elas-
tic net algorithm can not be derived from a constrained stochastic Hopfield
network with Hamiltonian (6.1). Instead, the ENA should be considered a
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type of dynamic penalty method (which we have termed a thermal or noisy
penalty method) where, unlike the degenerating Hopfield-Lagrange model,
the weight values of the penalty terms gradually decrease. The lowering of
the temperature should be viewed as a tuning process between the cost func-
tion and the penalty terms, unlike optimal simulated annealing.

Trying a non-equidistant elastic net algorithm with a correct distance measure,
as well as a hybrid algorithm, only small problem instances yielded better
solutions suggesting that the quadratic distance measure of the original ENA
is an essential ingredient.

7.2 Discussion

Summarizing the previous list, we hold that the various theorems on generalized
Hopfield models, the stability theorems on the Hopfield-Lagrange models, and
the notion and existence of various dynamic penalty models (both in case of the
Hopfield-Lagrange and of the elastic neural networks) are central points of this the-
sis.

We now look more precisely at how far our ends have been achieved. The main
objectives of explaining the relaxation dynamics and of generalizing existing theories
have certainly been achieved in some measure. Various theorems concerning the
(un)constrained continuous Hopfield models as well as Hopfield-Lagrange mod-
els have been derived which give general conditions that guarantee stability. Be-
sides, the statistical mechanical interpretation of the continuous Hopfield models
discussed, elucidates their working and suggests the application of mean field an-
nealing. In relation to the Hopfield-Lagrange model, the unmasking of the effect
of quadratic constraints (guaranteeing stability and showing behavior like dynamic
penalty terms) is essential. The exposure of the elastic net algorithm as a noisy
penalty method is an extension of this ‘dynamic penalty view’.

Furthermore, the discovery of the most general framework leads to increased
freedom in configuring continuous Hopfield models. Given a formulation of the
problem at hand, one can choose between various updating rules, various transfer
functions, various formulations of the constraints, and even various models: con-
straints may be built-in or otherwise be tackled using Lagrange multipliers or (dy-
namic) penalty terms. This can be exploited in applications (see also the crucial
observations at the end of section 4.3.3). It is quite interesting that very recently and
independently of the analysis as given in this thesis, articles have been published
[24, 80], which, in fact, can be considered as primary explorations of the practical
capabilities of the most general framework.

On the other hand, certain unanswered, though quite general, theoretical ques-
tions still remain. E.g., we could ask ourselves whether stochastic Hopfield neural
networks can also be generalized to the most general framework of this thesis. Con-
sidering the general framework in relation to continuous Hopfield models, it is very
important to discover the precise conditions on the built-in constraints which as-
sert the statistical mechanical interpretation. It is also desirable to find out which
general classes of cost functions, subject to several (non-)linear constraints, guaran-
tee stability of the Hopfield-Lagrange model. Last but not least, it is all-important
to investigate in which ways domain knowledge of problems can be systematically
incorporated in recurrent neural networks.
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The very last observation also stems from the study of the relationship between
Hopfield and elastic neural networks, whose explanation fulfills one of the sec-
ondary purposes of this thesis. This relationship has become quite clear and the
elastic net itself beautifully shows how domain knowledge can be incorporated in a
recurrent neural network, yielding a comparatively excellent algorithm.

Finally, we consider the models from the viewpoint of applicability, which refers
to the other secondary objective of this thesis. First of all, we note that the afore-
mentioned freedom in configuring the neural networks at hand, is also a drawback,
since there are so many choices to be made. At the same time, it is often quite
unclear in advance, which choice will yield the best results. Likewise, the analytical
verification of the conditions that guarantee stability (i.e., the definite positiveness
of dynamically changing matrices) might be a tough task.

We further realize that our experimental tests done so far do not yield the deci-
sive answer of whether neural networks can always adequately be applied to solve
combinatorial optimization problems. Evaluating our computational results and
those known from the technical literature, it seems true that, for ‘purely combina-
torial’ problems, ANNs work fine. However, if optimization joins in the game, a
high quality of the constrained solutions is not guaranteed. In general, we observed
the following, maybe not too surprising tendency: the more difficult the problems
are (e.g., those from the class of P compared to those from the class of NP-hard
problems), the worse is the quality of the encountered solutions and the longer is
the required computation time. In cases of difficult problems, a tailored approach
where domain knowledge is applied seems to be necessary, as is a lot of ‘tuning’
work. If seemingly small adaptations of a well-balanced algorithm like the elastic
net algorithm are tried (e.g., the discussed non-equidistance and the hybrid elastic
net algorithms), new tuning work is immediately necessary and the solutions found
may be of lesser quality. This demonstrates the high sensitivity of the adjustable pa-
rameters of these tailored algorithms.

We finish this section by observing that it is always an option to use dedicated hard-
ware or specially tailored software in order to implement successful applications
which require a lot of computation time. It is hoped that these implementations can
be parallelized in order to speed up performance.

7.3 Outlook

In this section, we try to list a number of questions that beg for an answer. We first
take up the theoretical ones.

• Which combinations of new transfer functions1 gi and summation functions
hi fit in the most general framework of chapter 4 and turn out to yield stable
models?

• In which ways can the general free energy Fmgf of the most general framework
be interpreted, or, stated more precisely, which general conditions should hold
for the transfer functions Vi = gi(U) such that the continuous Hopfield model
can be considered a mean field approximation of a corresponding stochastic
model?

1Inspiration can be gleaned from the literature, e.g., from [82].
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• Which general conditions, especially those relating to linear constraints, can
guarantee stability of the Hopfield-Lagrange model?

• Which theoretical improvements of constrained Hopfield networks can be
learned from the ‘deformable template’ approach, or, stating this more gen-
erally, in which systematic ways can domain knowledge be incorporated in
Hopfield neural nets?

• Can the effect of the application of mean field annealing be better understood,
e.g., by an energy surface analysis, as has been done for the elastic net algo-
rithm?

• Which similarities and differences exist between an iterative updating strategy
like (2.29) and the continuous ones like (2.30) as studied in this thesis?

• Can stochastic Hopfield neural networks, i.e. Boltzmann machines, also be
generalized to the most general framework?

In the practical field, the following questions beg for an answer:

• Considering the amounts of computation time and the qualities of solutions,
what is the relation between the results found by stochastic Hopfield models
and those found by continuous ones2?

• Applying either continuous or stochastic Hopfield models, which annealing
schemes can best improve the quality of solutions of hard problems?

• Which transfer functions gi and which summation functions hi work well in
practice?

• Which (combinations of) ways to grapple with a set of given constraints (i.e,
those using penalty terms, those which build them in, and those which apply
multipliers) work best?

• Which alternative dynamic penalty models (including the noisy penalty mod-
els) can improve the application of Hopfield and allied networks?

• Can the performance of the non-equidistant elastic algorithms be further im-
proved by a better tuning of the parameters involved?

• By means of which hardware and/or software is it possible to speed up the
calculations of the models discussed in this thesis?

7.4 In conclusion

We finish this thesis by stating that there is still a lot of work to do in order to un-
derstand in detail the behavior of the Hopfield(-Lagrange) models and in order to
gain a lucid understanding of which type of these models should be chosen to solve
a given combinatorial optimization problem in an adequate way. Several important
insights relating to these questions have been gained by the work reported in this
thesis. And although certain theoretical questions continue to exist, and beg to be

2As mentioned above, certain results have already been reported in the technical literature, e.g.,
in [68].
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resolved, it seems to be appropriate to shift, at the same time, our attention towards
a more practical approach. This will probably yield an even better insight in how
the models behave in practice, which, in fact, is one of the all-important motives to
study these models. It is hoped that this practical approach will also produce new,
indispensable inspiration as well as intuition for a refreshed theoretical approach in
times to come.



Appendix A

Lagrange multipliers

The Lagrange1 multiplier method is a method for analyzing constrained optimiza-
tion problems defined by

minimize f(x)

subject to : Cα(x) = 0, α = 1, . . . , m, (A.1)

where f(x) is called the objective function, x = (x1, x2, . . . , xn), and the equations
Cα(x) = 0 are m side conditions or constraints. The Lagrangian function L is defined
by a linear combination of the objective function f and the m constraint functions
Cα conform

L(x, λ) = f(x) +
∑

α

λαCα(x), (A.2)

where λ = (λ1, λ2, . . . , λm) and where the λi’s are called Lagrange multipliers. The
class of functions whose partial derivatives are continuous we shall denote by C1.
The following theorem gives a necessary condition for f to have a local extremum
subject to the constraints (A.1):

Theorem A.1. Let f ∈ C1 and all functions Cα ∈ C1 be real functions on an open set T
of Rn. Let W be the subset of T such that x ∈ W ⇒ ∀α : Cα(x) = 0. Assume further
that m < n and that some m ×m submatrix of the Jacobian associated with the constraint
functions Cα is nonsingular at x0 ∈ W , that is, we assume that the following Jacobian is
nonsingular at x0

J(x0) =






C1
1 (x

0) C2
1 (x

0) . . . Cm
1 (x0)

...
...

...
C1
m(x

0) C2
m(x

0) . . . Cm
m (x0)




 (A.3)

where Cj
α(x

0) = ∂Cα(x
0)/∂xj , j ∈ {1, . . . , n}.

If f assumes a local extremum at x0 ∈ W , then there exist real and unique numbers
λ01, . . . , λ

0
m such that the Lagrangian L(x, λ) has a critical point in (x0, λ0).

The proof of this theorem [8] rests on the ‘implicit function theorem’. The condition
of the nonsingularity of the defined Jacobian matrix makes the vector λ0 unique.
The theorem can also be extended by giving sufficient conditions for f to have a
local constrained minimum or a local constrained maximum.

1Joseph-Louis Lagrange (1736–1813) worked in many branches of both mathematics and physics.
He mentioned the multiplier method in a letter to Euler in 1755, where he applied it to infinite-
dimensional problems. In 1797, his book ‘Theory of analytic functions’ appeared containing the
extension to finite-dimensional problems (historical remarks from [83]).
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Appendix B

Dynamic systems

The theory of dynamic systems [8, 54] refers to the analysis of systems in the course
of time. Here, we confine ourselves to systems which are described by a set of
differential or, respectively, a set of difference equations

ẋ = f(x, u), (B.1)

xt+1 = f(xt, ut), (B.2)

where x = (x1, . . . , xn) is called the state of the system, where u = (u1, . . . , ur) is
the control or input of the system, and where f = (f1, . . . , fn) is a function vector
with all fi (non)linear functions in x and u. Both x and u are functions of time
(t ≥ 0). For fixed u(t), the system is said to be free or unforced. We assume that there
exists a function x(t) which satisfies (B.1) or (B.2) for t ≥ 0 starting at an initial state
x(0) = x0. Such a function is called a solution, motion, or trajectory. A state of the
system is called an equilibrium state xe if ∀t : x(t) = xe.

We often want to know whether a (free) dynamic system is asymptotically stable,
that is, we want to know under which conditions the system eventually, that is for
t → ∞, converges to an equilibrium state, even if we do not have knowledge of the
trajectory. Here, the techniques using a Lyapunov1 function L appear on the scene.
We confine ourselves to free systems, which implies that x is a vector function only
of time. We start considering the continuous case (B.1), where C1 is defined as in
appendix A.

Theorem B.1. Assume there exists a scalar function L(x) ∈ C1, bounded below by a real
constant B such that

L(x)

{
= B if x = xe
> B otherwise,

(B.3)

and suppose the time derivative L̇ of L along a solution of the system fulfills

∀x 6= xe : L̇(x(t)) < 0, (B.4)

then the equilibrium state xe is a locally asymptotically stable point.

The precise proof of the theorem as well as rigorous definitions of the concepts of
local and global (asymptotic) stability can be found in [8]. Roughly, the idea of the
proof is that when time advances the function L strictly decreases until, eventually,

1The approach given here is Lyapunov’s direct or second method for obtaining stability informa-
tion without explicit knowledge of the solutions. His first method involves an explicit representation
of the solutions. The approach of Lyapunov (1857–1918) was published in 1892 [8].
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an equilibrium state is reached. We further note that the monotonicity of L is a
sufficient, but not a necessary condition for asymptotic stability [54]. This implies that
inability to generate a Lyapunov function proves nothing.

A slightly weaker form of the given theorem is obtained by replacing the strict
inequality (B.4) by

∀x 6= xe : L̇(x(t)) ≤ 0. (B.5)

In this case, the system is simply called stable. Unlike for the asymptotically stable
systems, the solution of a stable system need not reach the equilibrium point, but
may hover arbitrary close to it [54].

For linear systems, there exists an explicit method for obtaining a Lyapunov
function, where a certain linear system of equations should be resolved [8]. For
nonlinear systems, such an explicit method does not exist. In case of studying phys-
ical systems, there is often an energy function which is minimized and which, at the
same time, plays the part of a Lyapunov function.

The given theorem also holds for difference equation systems (B.2), provided we
make some obvious modifications such as replacing integrals with sums , ẋ with
∆x/∆t, and making the continuous time t a discrete one. The Lyapunov function is
discrete too and is decreased step by step by the corresponding updating rule.
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Gradient descent

A very well-known method for finding a local extremum of a function f(x) is the
gradient method, where a gradient descent is applied in order to find a minimum,
and a gradient ascent to find a maximum. Confining ourselves to the first one,
the idea is to slide downhill from a certain starting point along the n-dimensional
surface of the graphic of f(x), x ∈ R

n. The gradient descent rule equals [44]

ẋi = −κ ∂f
∂xi

, (C.1)

where κ is a positive constant. Thus, we slide downhill with a ‘speed’ proportional
to the slope of the hill.

Supposing that f(x) ∈ C1 (C1 defined as in appendix A) and that f(x) is bounded
below, asymptotic stability of (C.1) can be proven easily using the theory of ap-
pendix B: f(x) itself is a Lyapunov function since

ḟ(x(t)) =
∑

i

∂f

∂xi
ẋi = −κ

∑

i

(
∂f

∂xi
)2
{

= 0 if ∀i : ∂f/∂xi = 0
< 0 otherwise,

(C.2)

As long as at least one ẋi 6= 0, the way down continues until finally all ẋi = 0 and a
local stationary point, defined by ∀i : ∂f/∂xi = 0, has been reached. In general, this
stationary point is a local minimum.



106 Gradient descent



Appendix D

Lemmas and their proofs

Lemma 1. If A is a symmetric and nonsingular matrix then

exp(β
2
xTAx) =

∫
exp(−β

2
φTA−1φ± βφTx)

∏

i dφi
∫
exp(−β

2
φTA−1φ)

∏

i dφi
, (D.1)

where the n-fold integrals on the right-hand side are improper integrals defined over Rn.

Proof. The lemma is a generalization of the following trick

exp(β
2
x2) =

∫∞

∞
exp(−β

2
φ2 ± βφx)dφ

∫∞

∞
exp(−β

2
φ2)dφ

, (D.2)

This trick can simply be derived by elaborating the integral of the numerator of the
right-hand side of (D.2). Applying it with

xy =

(
x+ y

2

)2

−
(
x− y

2

)2

,

and knowing that
∫

eφdφ

∫

eψdψ =

∫

eφeψdφdψ,

we can write:

exp(β
2
xy) =

∫
exp[−β

2
(φ2 − ψ2)± β

2
(φx+ φy − ψx+ ψy)]dφdψ

∫
exp[−β

2
(φ2 − ψ2)]dφdψ

=

∫
exp[−β

2
φ̃ψ̃ ± β

2
(φ̃x+ ψ̃y)]dφ̃dψ̃

∫
exp[−β

2
φ̃ψ̃]dφ̃dψ̃

,

where φ̃ = φ− ψ and ψ̃ = φ + ψ. If x and y are n-dimensional vectors and if A is an
n× n-matrix, we can generalize this result to

exp(β
2
xTAy) =

∫
exp[−β

2
φTψ ± β

2
(φTx+ ψTAy)]dφdψ

∫
exp[−β

2
φTψ]dφdψ

,

where φ and ψ are n-dimensional vectors too. If the matrix A is symmetric and
nonsingular, then the substitution ψ → A−1ψ implies that

ψTAy → (A−1ψ)TAy = ψT (A−1)TAy = ψTy.
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Applying this, we find

exp(β
2
xTAy) =

∫
exp[−β

2
φTA−1ψ ± β

2
(φTx+ ψTy)]dφdψ

∫
exp[−β

2
φTA−1ψ]dφdψ

.

By finally substituting y → x and writing dφ =
∏

i dφi, the theorem is found. ⊓⊔

Lemma 2. If the integrand in both the numerator and the denumerator is expanded in a
Taylor series expansion around its saddle point, then the following equation holds

∫
exp(−β

2
φTA−1φ± βφTx)

∏

i dφi
∫
exp(−β

2
φTA−1φ)

∏

i dφi
= exp(β

2
xTAx). (D.3)

Proof. We only furnish a detailed proof in the one-dimensional case. Since β is a
scaling factor, we can simply equalize it to one without effecting the course of the
proof. Under these conditions, we merely have to proof that

∫∞

−∞
exp(−φ2

2a
± φx)dφ

∫∞

−∞
exp(−φ2

2a
)dφ

= exp(1
2
ax2).

Taking fx(φ) = exp(−φ2

2a
± φx), the saddle point φ̂ = ±ax of the numerator is found

by solving dfx/dφ = 0. Application of a Taylor series expansion around this saddle
point yields

fx(φ)

= fx(φ̂) + f
′′

x (φ̂)(φ− φ̂)2/2 + f
′′′

x (φ̂)(φ− φ̂)3/6 + f
′′′′

x (φ̂)(φ− φ̂)4/24 + . . .

= fx(±ax)∓ fx(±ax)(φ ∓ ax)2/2a+ fx(±ax)(φ ∓ ax)4/8a2 + . . .

= fx(±ax)
[
1∓ (φ∓ ax)2/2a+ (φ∓ ax)4/8a2 + . . .

]

It follows that
∫∞

−∞
exp(−φ2

2a
± φx)dφ

∫∞

−∞
exp(−φ2

2a
)dφ

=

∫∞

−∞
fx(±ax) [1∓ (φ∓ ax)2/2a+ (φ∓ ax)4/8a2 + . . . ] dφ

∫∞

−∞
f0(0) [1∓ φ2/2a+ φ4/8a2 + . . . ] dφ

= exp(1
2
ax2)

∫∞

−∞
[1∓ (φ∓ ax)2/2a+ (φ∓ ax)4/8a2 + . . . ] dφ
∫∞

−∞
[1∓ φ2/2a+ φ4/8a2 + . . . ] dφ

= exp(1
2
ax2)× lim

p→∞

[φ∓ (φ∓ ax)3/6a+ (φ∓ ax)5/40a2 + . . . ]
0
−p + [. . .]p0

[φ∓ φ3/6a+ φ5/40a2 + . . . ]0−p + [. . .]p0

= exp(1
2
ax2)× lim

p→∞
(1 +O(

1

p
)) = exp(1

2
ax2).

This completes the proof of the one-dimensional case. In a similar way, by applica-
tion of an n-dimensional Taylor expansion, the correctness of equation (D.3) can be
proven. ⊓⊔

Note. Since equations (D.1) and (D.3) coincide, lemma 2 seems to be superfluous:
conform lemma 1, the Taylor series expansion as applied in the proof of lemma 2,
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should yield equation (D.3). The reason to yet furnish this proof is to explain the dif-
ference between this approach (yielding an exact result) and that of lemma 4, where,
for mathematical complications, the Taylor series expansion is cut off (yielding an
approximating result).

Lemma 3. If S passes through all 2n states from (0, 0, . . . , 0) to (1, 1, . . . , 1), then

∑

S

exp(β
∑

i

Siφi) = exp(
∑

i

ln(1 + exp(βφi))). (D.4)

Proof. The proof can be done by induction on the number of neurons Si. For one Si,
we find

∑

S

exp(β
∑

i

Siφi) =
∑

S

exp(βS1φ1)

= 1 + exp(βφ1) = exp(ln(1 + exp(βφ1))).

Suppose the lemma is true for (n− 1) neurons Si, then we can write

∑

S

exp(β

n∑

i=1

Siφi) =
∑

S

exp(β

n−1∑

i=1

Siφi)× exp(βSnφn)

= exp(

n−1∑

i=1

ln(1 + exp(βφi)))× (1 + exp(βnφn))

= exp(

n∑

i=1

ln(1 + exp(βφi))).

This completes the proof. ⊓⊔

Lemma 4. A first order saddle point approximation in the numerator and denumerator
(both regarded as a function in φ) of

Zhu =

∫
exp

[

−β

2

∑

ij φiw
−1
ij φj +

∑

i ln
(
1 + exp(β(φi + Ii))

)]∏

i dφi
∫
exp

[

−β

2

∑

ij φiw
−1
ij φj

]
∏

i dφi
,

where

E(φ, I) = 1
2

∑

ij

φiw
−1
ij φj − 1

β

∑

i

ln
[
1 + exp

(
β(φi + Ii)

)]
,

yields

Vi ≈ −∂E(φ̃, I)
∂Ii

.

Proof. The proof can be done in the same way of that of lemma 2. However, this
time the Taylor expansion is cut off after the second term conform

E(φ, I) = E(φ̃, I) +
∑

i

∂E(φ̃, I)

∂φi
(φ− φ̃) +O(φ2) ≈ E(φ̃, I).
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Using this approximation and a similar one in the denumerator, we find that

Zhu ≈
∫
exp(−βE(φ̃, I))dφ
∫
exp(0)dφ

= exp(−βE(φ̃, I)).

Substituting this result in (2.14), we find

Vi =
1
β

∂ lnZhu
∂Ii

≈ −∂E(φ̃, I)
∂Ii

.

This completes the proof. ⊓⊔

Lemma 5. If

Vi =
1

1 + exp(−Ui)
, (D.5)

then

ln (1 + exp(Ui)) = −Vi lnVi − (1− Vi) ln(1− Vi) + ViUi.

Proof. Equation (D.5) implies that

1− Vi =
1

1 + exp(Ui)
. (D.6)

Using (D.5) and (D.6), we can proof the lemma directly:

−Vi lnVi − (1− Vi) ln(1− Vi) + ViUi =

=
−1

1 + exp(−Ui)
ln(

−1

1 + exp(−Ui)
)−

−1

1 + exp(Ui)
ln(

−1

1 + exp(Ui)
) +

Ui
1 + exp(−Ui)

=
ln(1 + exp(−Ui)) + ln exp(Ui)

1 + exp(−Ui)
+

ln(1 + exp(Ui))

1 + exp(Ui)

= ln(1 + exp(Ui))(Vi + 1− Vi) = ln(1 + exp(Ui)).

⊓⊔

Lemma 6. If S passes through all n states from (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , to
(0, 0, . . . , 1), then

∑

S

exp(β
∑

i

Siφi) = exp(ln
∑

i

exp(βφi)),

Proof. The proof is almost trivial:

∑

S

exp(β(
n∑

i=1

Siφi)) =
∑

i

exp(βφi) = exp(ln
∑

i

exp(βφi)).

⊓⊔
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Lemma 7. If

Vi =
exp(±βUi)
∑

l exp(±βUl)
, (D.7)

then
ln
∑

i

exp(±βUi) = −
∑

i

Vi lnVi ±
∑

i

βUiVi.

Proof. From equation (D.7) it follows that

±βUi = ln
(
Vi
∑

l

exp(±βUl)
)
.

Using this result and the fact that
∑

i Vi = 1 we can write

±
∑

i

βUiVi =
∑

i

ln
(
Vi
∑

l

exp(±βUl)
)
Vi

=
∑

i

Vi lnVi +
∑

i

Vi ln(
∑

l

exp
(
± βUl)

)

=
∑

i

Vi lnVi + ln
(∑

l

exp(±βUl)
)
.

Rewriting this equation, the lemma is found immediately. ⊓⊔

Lemma 8. If (D.7) holds using the plus sign, if l ≥ 2, and if l 6= i, then

∂Vi
∂Ui

= βVi(1− Vi) > 0 and
∂Vi
∂Ul

= −βViVl < 0. (D.8)

Proof.

∂Vi
∂Ui

=

∑

l exp (βUl). exp (βUi).β − exp (βUi). exp (βUi).β

(
∑

l exp (βUl))
2

=
β exp (βUi).(

∑

l exp (βUl)− exp (βUi)

(
∑

l exp (βUl))
2

=
β exp (βUi).

∑

l 6=i exp (βUl)

(
∑

l exp (βUl))
2

= βVi(1− Vi) > 0.

The second result is found in the same way. Taking l 6= i we find

∂Vi
∂Ul

=
0− exp (βUi). exp (βUl).β

(
∑

l exp (βUl))
2

= −βViVl < 0.
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Samenvatting

Het onderwerp van onderzoek

In dit proefschrift wordt de relaxatie-dynamica van zogenaamde recurrente neurale
netwerken bestudeerd. Meer specifiek richt de analyse zich op Hopfield- en aan-
verwante recurrente netwerken. Een neuraal netwerk wordt recurrent genoemd,
indien de outputs van de neuronen (op een gewogen manier) worden teruggekop-
peld naar de inputs. Een belangrijke consequentie van deze architectuur is dat na
een ‘random initialisatie’ een recurrent netwerk in het algemeen niet in evenwicht
is. Echter, onder bepaalde voorwaarden blijkt relaxatie naar een evenwichtstoestand
van het neurale netwerk spontaan op te treden. Het begrijpen van deze relaxatie en
het vinden van de voorwaarden waaronder relaxatie is gegarandeerd voor diverse,
zo algemeen mogelijk gedefinieerde klassen van recurrente netwerken is het hoofd-
doel van deze dissertatie.

Teneinde de gevonden theorie te toetsen (en, naar aanleiding van de uitkomsten,
de theorie verder te verbeteren) zijn allerlei relatief eenvoudige simulaties uitgevo-
erd. Om tevens inzicht te verkrijgen in de toepasbaarheid van de onderzochte mod-
ellen zijn daarnaast op het terrein van de combinatorische optimalisering een aantal
simulaties uitgevoerd. Bij problemen uit dit vakgebied gaat het in beginsel om het
vinden van de ‘beste’ oplossing uit een grote verzameling van potentiële oplossin-
gen, waarbij de oplossingen veelal moeten voldoen aan een reeks nevenvoorwaar-
den. De aanwezigheid van deze nevenvoorwaarden heeft de keuze van de diverse
netwerkmodellen sterk beı̈nvloed: de netwerken van hoofdstuk 3,4 en 5 verschillen
bovenal in de manier waarop de nevenvoorwaarden worden behandeld. Als laatste
is een aantal zogenaamde ‘elastische’ netwerkmodellen geanalyseerd. Deze neurale
netwerken zijn speciaal ontworpen voor het oplossen van het ‘handelsreizigerprob-
leem’, misschien wel het beroemdste combinatorische optimaliseringsprobleem.

De resultaten

Na een inleidend hoofdstuk waarin het ‘waarom’, het ‘wat’ en het ‘hoe’ van het on-
derzoek zijn uiteengezet en gemotiveerd, worden in hoofdstuk 2 de vertrekpunten
beschreven. Het betreft hier een overzicht van de relevante netwerkmodellen zoals
voorkomend in de literatuur, voorafgegaan door een inleiding in de statistische fys-
ica en gevolgd door een verzameling in de literatuur aangetroffen toepassingen van
Hopfieldmodellen. Er is voor gekozen om belangrijke stukken van het gebruikte
wiskundig gereedschap op te nemen in de bijlagen A t/m D.

De weergave van het nieuw gevondene start in hoofdstuk 3 met de analyse van
het klassieke stochastische Hopfieldmodel. Een statistisch-fysische analyse levert
twee ‘mean field’ approximaties op voor de vrije energie van het systeem, waarvan
de stationaire punten exact samenvallen. Indien de sigmoı̈de gekozen wordt als
de overdrachtsfunktie in de neuronen, valt één van deze twee approximaties pre-
cies samen met de uitdrukking van de energie van het klassieke continue Hopfield-
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model: continue Hopfieldmodellen hebben volgens deze zienswijze een statistisch-
mechanische interpretatie. Bij die veelgebruikte keuze van de sigmoı̈de als over-
drachtsfunktie kan het effect van de integraal, zoals voorkomend in de uitdrukking
van de energie van het continue model, nauwkeurig worden geanalyseerd en kun-
nen enige misverstanden, zoals aangetroffen in de literatuur, worden rechtgezet. De
andere approximatie van de vrije energie is de sleutel tot het vinden van een zeer
algemene energiefunktie van het oorspronkelijke continue Hopfieldmodel. Deze
funktie, die een uitdrukking is in zowel de input- als de outputwaarde van alle
neuronen, blijkt de toestand van een Hopfieldnetwerk volledig te beschrijven. De
extreme waarden van deze funktie corresponderen precies met het complete stelsel
van evenwichtsvoorwaarden van het oorspronkelijke continue Hopfieldmodel.

Naast expressies van de vrije energie worden de stabiliteitsvoorwaarden van de
bijbehorende continue bewegingsvergelijkingen besproken. Het hoofdstuk wordt
afgesloten met een paar relatief eenvoudige experimenten gebruikmakend van een
aantal van die bewegingsvergelijkingen. Allereerst wordt het n-toren probleem
opgelost, onder toepassing van de zogeheten penalty methode. Daarnaast wordt
getoond hoe het toevoegen van thermische energie aan het continue model het vin-
den van de globale (i.p.v. een locale) oplossing kan bevorderen. Het betreft hier de
aanpak met behulp van ‘mean field annealing’, welke gezien kan worden als een
deterministische approximatie van de bekende aanpak met behulp van ‘simulated
annealing’.

In hoofdstuk 4 wordt als eerste een analyse gedaan van stochastische Hopfield-
netwerken die onderworpen zijn aan een bepaalde, eenvoudige nevenvoorwaarde:
de betreffende nevenvoorwaarde wordt ‘ingebouwd’ in het neurale netwerk. Een-
zelfde mean field benadering blijkt mogelijk te zijn als welke in hoofdstuk 3 is uit-
gevoerd. De eigenschappen van de twee in dit hoofdstuk gepresenteerde approx-
imaties van de vrije energie zijn wat ingewikkelder dan die uit het vorige hoofd-
stuk, maar vertonen verder een grote gelijkenis. Bovendien kan eenzelfde gener-
alisatie worden uitgevoerd. Deze levert een derde vrije energiefunktie op waar-
van de extrema wederom precies corresponderen met de complete verzameling van
evenwichtsvoorwaarden van het (nu aan nevenvoorwaaarden onderworpen) neu-
rale netwerk.

Een zeer belangrijke stap wordt vervolgens gezet door de generalisatie verder
door te trekken. In de eerste plaats wordt de wiskundige beschrijving zodanig ver-
ruimd dat ‘willekeurige’ nevenvoorwaarden in het neurale netwerk kunnen wor-
den ingebouwd. De beschrijving wordt nog algemener omdat vervolgens ook bi-
jna willekeurige kostenfunkties (i.p.v. louter kwadratische) worden toegelaten. Stap
voor stap passeren steeds algemenere expressies voor de vrije energie de revue en
worden de stabiliteitsvoorwaarden van diverse bijbehorende systemen van beweg-
ingsvergelijkingen besproken. Dit levert uiteindelijk het meest algemene raamwerk
van continue Hopfieldmodellen op. Ook dit hoofdstuk eindigt weer met de re-
sultaten van enige uitgevoerde simulaties, waarbij de nevenvoorwaarden zoveel
mogelijk zijn ingebouwd in het neurale netwerk. Het gevonden stabiliteitsgedrag
bij deze experimenten is in overeenstemming met de theoretische verwachtingen
en een aantal problemen is correct opgelost. Daarnaast is een belangrijke experi-
mentele uitkomst dat bepaalde, in het netwerk ingebouwde, nevenvoorwaarden de
gebruikelijke statistisch-mechanische interpretatie van continue Hopfieldmodellen
teniet doen, waardoor een ándere dan de oorspronkelijke oplossing van het gegeven
probleem gevonden wordt. Dit maakt duidelijk dat het algemene raamwerk zekere
beperkingen kent, welke nog om nader onderzoek vragen. Voor het overige is het
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van belang te vermelden dat het inbouwen van nevenvoorwaarden de convergen-
tiesnelheid van de bewegingsvergelijkingen ten zeerste blijkt te bevorderen.

In hoofdstuk 5 wordt een derde methode besproken voor het behandelen van de
nevenvoorwaarden. Gebruikmakend van multiplicatoren van Lagrange wordt het
zogenaamde Hopfield-Lagrangemodel gedefinieerd. Naar analogie van het bek-
ende fysisch model van een veer-massa-systeem worden stabiliteitscondities van
het Hopfield-Lagrangemodel afgeleid. Dit blijkt te kunnen bij toepassing van zowel
het Hopfieldmodel zonder nevenvoorwaarden als van dat met ‘willekeurige’ neven-
voorwaarden en ‘willekeurige’ kostenfunkties zoals geanalyseerd in hoofdstuk 4.
Evenwel, deze condities zijn in diverse gevallen moeilijk analytisch verifieerbaar.
Voorts wordt de werking van kwadratisch geformuleerde nevenvoorwaarden bij
toepassing van het Hopfield-Lagrangemodel ontmaskerd. Het model blijkt bij ge-
bruik van dat type nevenvoorwaarden te degenereren tot wat is genoemd een dy-
namische penalty methode. De multipliers krijgen bij het niet vervuld zijn van de
nevenvoorwaarden steeds grotere waarden en de multipliertermen gaan zich gedra-
gen als penaltytermen (de multipliers vallen precies samen met de gewichten van de
penaltytermen). De waarde van elke multiplier blijft toenemen totdat het systeem
een toestand aanneemt waarbij aan de bijbehorende nevenvoorwaarde is voldaan.
Als op de duur aan alle nevenvoorwaarden is voldaan, treedt er een verschijnsel op
dat sterk lijkt op dat van een fasetransitie in de statistische fysica. Daarbij wordt het
systeem plotseling stabiel.

Met beide genoemde Hopfield-Lagrangemodellen (zonder en met nevenvoor-
waarden) zijn allerlei experimenten uitgevoerd te beginnen met een aantal een-
voudige en eindigend met een moeilijke, te weten, het handelsreizigersprobleem.
De experimenteel gevonden stabiliteitseigenschappen zijn in overeenstemming met
hetgeen theoretisch verwacht werd. Ook stemmen de simulatieresultaten overeen
met de intuı̈tief te verwachten stelregel dat hoe moeilijker het probleem is, des
te langer de rekentijd en-of des te slechter de kwaliteit is van de aangetroffen
oplossingen. Een andere bevinding is dat Hopfield-Lagrangemodellen met veel
multipliers het veel beter doen dan die met weinig (waarbij meerdere neven-
voorwaarden bij elkaar worden genomen). Een verrassing is het fenomeen dat
pure Hopfield-Lagrangeformuleringen van het handelsreizigersprobleem betere
oplossingen opleveren dan die waarbij een deel van de nevenvoorwaarden wordt
ingebouwd en de rest wordt aangepakt met multipliers.

In hoofdstuk 6 wordt onderzoek gedaan naar zogenaamde ‘elastische’ netwerken.
Begonnen wordt met het klassieke elastische netwerk voor het oplossen van het han-
delsreizigerprobleem. Aangetoond wordt dat ook dit netwerk beschouwd kan wor-
den als een toepassing van de dynamische penalty methode, waarbij onder invloed
van verlaging van de temperatuur de gewichten van de penalty termen langzaam
afnemen. Bovendien veranderen ze van vorm. De analyse laat verder zien dat een
aantal in de literatuur voorkomende opvattingen (over de relatie van het elastis-
che net met bepaalde Hopfieldnetwerken) onjuist is. Voorts worden twee alter-
natieve elastische netwerken geanalyseerd die een correcte afstandsmaat toepassen
t.a.v. de afstanden tussen de opeenvolgende punten in het elastische netwerk. Voor
kleine probleeminstanties doen deze netwerken het beter, voor grotere netwerken
iets slechter dan het oorspronkelijke elastische netwerk.

Tot slot

In het laatste hoofdstuk worden de resultaten gegroepeerd gepresenteerd en be-
discussieerd. Daarbij komt naar voren dat het gevonden ‘meest algemene raamw-
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erk’ van continue Hopfieldmodellen (met bijbehorende theorema’s) en de invoer-
ing van het begrip ‘dynamische penalty methode’ (met bijbehorende voorbeelden)
zeer belangrijke elementen zijn van deze dissertatie. Voorts wordt geconcludeerd
dat de gegenereerde simulatieresultaten (samen met die in de literatuur aangetrof-
fen zijn) doen vermoeden dat Hopfieldnetwerken uitstekend geschikt zijn voor het
vinden van een oplossing van combinatorische problemen waarbij een oplossing
wordt gezocht die aan allerlei nevenvoorwaarden moet voldoen, maar waarbij er
geen kostenfunktie geminimaliseerd hoeft te worden. Echter, indien er naast neven-
voorwaarden ook optimalisatie in het spel is, kan het vinden van een kwalitatief
goede oplossing niet zonder meer gegarandeerd worden. Het toepassen van zoveel
mogelijk domeinkennis lijkt voor moeilijke combinatorische optimaliseringsproble-
men een onmisbaar ingrediënt.

Het hoofdstuk wordt besloten met een reeks van aanbevelingen voor verder
onderzoek. Een aantal theoretische vraagstukken dat is blijven liggen kan alsnog
worden aangepakt. Het is o.a. interessant om te onderzoeken welke klassen van
nevenvoorwaarden op een zodanige wijze kunnen worden ingebouwd dat een zin-
volle statistisch-mechanische interpretatie van de resultaten mogelijk is. Zeker in-
trigerend is de vraag of het meest algemene raamwerk ook geldig is voor stochastis-
che Hopfieldnetwerken. Voorts lijkt het verstandig om de in dit proefschrift naar
voren gebrachte theoretische resultaten te gaan toepassen op allerlei praktijkprob-
lemen. Daarbij moet waarschijnlijk heel wat ervaring worden opgedaan om vol-
doende inzicht en intuı̈tie op te bouwen voor daadwerkelijk succes: het maken
van allerlei juiste keuzes (bijvoorbeeld t.a.v. de architectuur van het netwerk, het
schema van verlagen van de temperatuur, de manier van afbeelden van het prob-
leem op het neurale net, de wijze van initialisatie van het netwerk) is zeker geen
triviale zaak. Deze praktijkgerichte stap lijkt ook zinvol ten einde toekomstig the-
oretisch onderzoek op dit specifieke terrein van recurrente neurale netwerken op
directe en indirecte wijze te ondersteunen.
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