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Summary
In comparison with the well-researched field of
analysis and design of structural systems, the life-
cycle performance prediction of these systems
under no maintenance as well as under various
maintenance scenarios is far more complex, and
is a rapidly emergent field in structural
engineering. As structures become older and
maintenance costs become higher, different
agencies and administrations in charge of civil

infrastructure systems are facing challenges
related to the implementation of structure
maintenance and management systems based on
life-cycle cost considerations. This article reviews
the research to date related to probabilistic
models for maintaining and optimizing the life-
cycle performance of deteriorating structures
and formulates future directions in this field.
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1 Introduction

The management of individual or groups of structures,
requires a systematic approach such that the reliability
and condition of the structure(s) can be maintained
under budget and/or resource constraints. This means
that maintenance and inspection activities should be
optimally planned in order to ensure the safe and
economic operation of structures. An important
concept in maintenance modelling is that of life-cycle
costing, where the effects and costs of a particular
maintenance policy are considered over the total
expected lifetime of structures.

Every maintenance model will somehow try to
predict or extrapolate the future performance of the
structure in question, whether it be in a deterministic
or probabilistic fashion. The current and future states
of a structure are associated with various degrees of
uncertainty and, therefore, a probabilistic approach is
necessary. Many different models have been
developed in various fields of application, e.g.
industrial, civil, electrical and mechanical
engineering. During the past four decades, a large

number of papers on maintenance optimization
models, mainly focusing on the mathematical aspects,
have been published. For a chronological
(but unfortunately inherently incomplete) overview,
see[1–11]. In this paper a number of probabilistic
models for maintaining and optimizing the life-cycle
performance of deteriorating structures, with a focus
on applications to civil structures and emphasizing
highway bridges, are reviewed and future directions
are presented.

Each model can roughly be divided into two parts:
a deterioration model and a decision model. The
deterioration model is used to approximate and
predict the actual process of ageing in condition or in
reliability. The decision model uses the deterioration
model to determine the optimal times of inspection
and maintenance. In most cases, a cost-optimal
maintenance policy under performance constraints is
determined. Maintenance policies can be either
periodic (uniform) or they can be aperiodic
(nonuniform). Periodic policies are cyclic policies in
which the times between maintenance actions are
equal.
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In this article, a distinction is made between
random-variable and stochastic process models. The
random-variable models assume that one or more of
the variables in the deterioration model is/are
random, i.e. a probability distribution is assigned to
the uncertain variables. The stochastic process models
assume that the deterioration over time is represented
by a collection of random variables. In essence, the
uncertain deterioration is propagated forward in time.
Since the random-variable models consider the
uncertain condition at an evaluation time, these
models are more static compared with the stochastic
process models.

2 Random-variable models

Three random variable models are discussed. First,
the failure rate models in which the only random
variable is the lifetime itself. Second, the classical
reliability index model, where the lifetime
distribution follows from a limit state which is a
function of one or more (physical) random variables.
Third, the condition index model where the lifetime
distribution follows, possibly from results of visual
inspections. Finally, the time-dependent reliability
and condition index models are presented, where a
reliability and condition profiles are generated from
random variables.

2.1 FAILURE RATE

Deterioration model. A lifetime distribution represents
the uncertainty in the time to failure of a component
or structure. Let the lifetime t have a cumulative
probability distribution FðtÞ with probability density
function fðtÞ; then the failure rate function is defined
as [1, Chapter 2]

rðtÞ ¼ fðtÞ
1� FðtÞ ¼

fðtÞ
F̄ðtÞ ; t40: (1)

A probabilistic interpretation of the failure rate
function is that rðtÞdt represents the probability that a
component of age t will fail in the time interval
½t; tþ dt�. An alternative name for the failure rate is
the hazard rate. For deteriorating components or
structures, the failure rate is increasing. Lifetime
distributions and failure rate functions are especially
useful in mechanical and electrical engineering. In
these fields, one often considers equipment which can
assume at most two states: the functioning state and
the failed state. For example, a motor or switch is
either working or not. A structure, on the other hand,
can be in a range of states depending on its degrading
condition. A serious disadvantage of failure rates is
that they cannot be observed or measured[12].

Decision model. The area of optimizing maintenance
through mathematical models based on lifetime
distributions was founded in the early 1960s[1,2]. Well-

known decision models of this period are the age
replacement model (replacement upon failure or upon
reaching a predetermined age k, whichever occurs
first) and the block replacement model (replacement
upon failure and periodically at the times
k; 2k; 3k . . .) [1, Chapters 3–4]. The age replacement
model is one of the most frequently applied
maintenance optimization models. Reference can be
made to Dekker[8] and Dekker & Scarf[10] for a review
of applications.

2.2 RELIABILITY INDEX

Deterioration model. A state function g is commonly
defined as the difference between the structure or
component’s resistance R and the applied load or
stress S : g ¼ R� S. The cross-section, component or
structure is considered to operate safely as long as
g50 and unsafe when g50. The point where g ¼ 0 is
called the limit state and this is where failure is
assumed to occur.

In the general case the limit state function
gðX1; . . . ;XnÞ is considered, where the Xi; are n
random variables. The state function will, in many
cases, also be a function of time, e.g.
g ¼ gðtÞ ¼ gðt;X1; . . . ;XnÞ, or of the number of load
cycles. Note that this model can also be considered as
a stochastic process, when the definition of a
stochastic process (see Section 3) is strictly applied.

The probability of failure PrfgðXÞ50g is the total
mass of the joint density for g which is in the failure
region O ¼ xjgðxÞ50f g. This mass is given by the
n-dimensional integral:

PrfgðXÞ50g ¼
Z
x2O

fXðx1; . . . ; xnÞ dx1 . . .dxn; (2)

where fXðxÞ is the joint density for X ¼ ðX1; . . . ;XnÞ:
This integral can usually not be solved analytically
and there are a number of approaches available to
approximate the probability of failure. Three of the
most common approaches are briefly discussed
herein. Two of these, the mean value first-order
second-moment (MVFOSM) method and the
first-order reliability method (FORM), are based on
the concept of the reliability index, which is usually
denoted by b. When the value of b is known, the
probability of failure is approximated by calculating
the value of the standard normal distribution at
�b: Prfg50g ¼ Fð�bÞ.

The MVFOSM methodology is based on the simple
model in which the resistance and the stress in the
state function g ¼ R� S are normally distributed. The
output is then also normally distributed with mean mg
and standard deviation sg and Cornell[13] named the
ratio b ¼ mg=sg the safety index. This approach has
mostly been replaced by FORM due to its restrictive
assumptions of normality and linearity. Also, the
result does depend on the problem formulation[14].

In a FORM analysis, the input variables are first
transformed to standard normal variables (with mean
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zero and standard deviation one) and then b (also
referred to as the Hasofer–Lind[15] reliability index) is
found by determining the distance between the origin
of the variable space and the so-called design point.
This point represents the worst combination of the
model variables which most likely results in failure.
Determining the design point is the most tedious part
of this methodology. It requires an iterative search
algorithm such as the Rackwitz–Fiessler algorithm[16]

or it can be found by solving a non-linear quadratic
optimization problem[17,18].

The solution to eq. (2) can also be approximated by
Monte Carlo simulation (also called Monte Carlo
integration). Several alternative simulation-based
approaches have been suggested to improve the poor
efficiency of this method. Of these alternatives,
directional sampling has received most interest in
recent years[18–20].

A detailed discussion on the reliability index is
beyond the scope of this article. For more on this
subject, the reader is referred to the classic textbooks
by Thoft-Cristensen and Baker[21], Madsen et al.[22] and
Melchers[20].

Decision model. Here we focus on how the reliability
index is used to determine optimal maintenance
policies. Once a suitable solution method for the
failure probability given by eq. (2) is selected,
a decision model has to be formulated. As suggested
by Stewart[23], there are two most suitable approaches
to decision analysis: life-cycle costs and risk ranking.

Risk ranking is only useful for the purpose of
inspection prioritization at the time of evaluation or at
a fixed time in the future. It does not account for the
full life-cycle of a structure or component, but only
considers its immediate risk. Risk is usually defined
as the product of the failure probability with the
consequence of failure. Hence, the highest risk items
will be those with both a high failure probability and
severe consequences. In the case of bridge
management, risk ranking could be used to identify
the most critical bridges in a network. In the process
industry, plant managers use risk ranking to select
those components which constitute the highest risk
out of thousands in a typical plant. A commonly used
tool is the so-called risk matrix, which categorizes all
components according to their failure probabilities
and their expected failure consequences. A large
industry sponsor group has recently developed a full
methodology for the evaluation of steel pressure
vessels[24]. This methodology includes a simple
application of Bayesian updating to assess which type
of inspection will be most effective at reducing the
uncertainty in the deterioration.

The life-cycle approach is the preferred concept
when decision makers are not only concerned with
safety, but also with costs. A decision tree is often
used for the optimal life-cycle cost planning of
inspections and subsequent maintenance actions. If
we inspect a component or structure at times 04t14

t24 . . . and we decide after each inspection to perform
a maintenance action or not, then all possible options
can be visualized by a decision tree[25] such as the one
in Fig. 1.

After each inspection, the decision is made to
perform a maintenance action A (branch labeled with
1) or no action (branch labeled 0). The probability of
performing action Awill be determined by the state of
the component or system. For example: the
probability of replacement due to failure is given by
the solution to eq. (2). This probability can also be
represented by the reliability index b. One can also
define formulations for preventive replacements or
other types of maintenance actions. If we are
interested in an optimal periodic inspection policy
(i.e. the times between two inspections are always
equal), then we can calculate the costs associated with
the decision tree for each inspection interval and
choose the interval which minimizes the expected
costs. Although this is a simple solution approach, it
does not allow the decision maker to insert constraints
on the solution. For this purpose, the optimization
problem can be formulated as a nonlinear constrained
optimization. Formulations for a single component
and for a system of components have been given[25,26].
With this approach a minimum required reliability in
the constraints can be easily defined, such that the
optimal random or periodic solution ensures a
minimum level of safety. This decision tree approach,
described in detail[26], has been applied to the
inspection of metal fatigue in steel bridges[27], crack
measurement and repair in steel pipelines[28],
corrosion of steel reinforcement in concrete bridges[26]
and periodic inspection planning of a steel-girder
bridge[29]. The latter article is the only one which does

Fig. 1 A representation of a decision tree as used for optimal
life-cycle analysis
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not include a probability of detection of deterioration.
The other articles all include this and assume that
damage above a certain threshold is perfectly
observed. An elegant way of incorporating the
probability of detection and inspection uncertainty is
presented in Pandey[28], where a Bayesian updating
scheme is used. For this purpose, a number of suitable
detection functions for cracking in steel bridges are
given[30]. The effect of modelling inspection
uncertainty is demonstrated by Mori &
Ellingwood[31], where the deterioration uncertainty is
also updated after every inspection or repair. Both[31]

and its second part,[32], are good examples of the
application of the decision tree optimization
approach. A non-Bayesian approach is used in
Frangopol et al.[26], which requires about eleven
relationships including seven constants and two
uncertain variables to incorporate the probability of
detection.

2.3 TIME-DEPENDENT RELIABILITY INDEX

Owing to the intensive use of the reliability index in
code calibration and in reliability-based analysis and
design, a time-dependent reliability index approach to
maintaining the safety and optimizing the life-cycle
performance of deteriorating structures is desirable.
Thoft-Christensen[33,34], Nowak et al.[35], Frangopol
et al.[36,37], and Kong & Frangopol[38,39], among others,
used the concept of the reliability index profile for
deteriorating structures without maintenance.
The reliability profile is defined as the variation of
the reliability index with time. Furthermore,
time-dependent reliability index models were
developed and applied to extend the service life of
deteriorating structures under various maintenance
scenarios.

Deterioration model without maintenance. Up to now,
the bi-linear reliability index profile

bðtÞ ¼
b0 for 04t4tI;

b0 � a1ðt� tIÞ for t4tI

(
(3)

is applied extensively[33–39]. Recently, nonlinear
reliability index deterioration models were proposed
by Petcherdchoo et al.[40] as follows:

bðtÞ ¼
b0 for 04t4tI;

b0 � a2ðt� tIÞ � a3ðt� tIÞp for t4tI;

(
(4)

where a1; a2; a3 are reliability index deterioration
rates, tI is the deterioration initiation time, and p is a
parameter related to the nonlinearity effect in terms of
a power law in time. An increase in p results in an
increase in the rate of reliability index deterioration.
Note that the reliability profiles in Eqs (3) and (4) are
not computed from state functions as explained in
Section 2.2, but simulated by the Monte Carlo method
with parameters directly assessed by experts or
obtained from statistical data.

Deterioration model with maintenance. There are two
main types of maintenance actions that could affect
the reliability index profile: preventive maintenance
and essential maintenance. As indicated in Das[41,42]
and Frangopol & Das[43], preventive maintenance
actions such as painting, silane treatment, and minor
repairs are undertaken when the reliability index is
above its target value (minimum acceptable reliability
level). In general, preventive maintenance delays the
deterioration process and, therefore, reduces the rate
of reliability index deterioration over a period of time.
Essential maintenance actions such as major repairs
and replacement of damaged members are normally
undertaken when the reliability of the structure has
fallen in the vicinity of the target value. The purpose
of essential maintenance is to substantially improve
the reliability and condition. In general, deteriorating
structural systems experience multiple maintenance
interventions during their lifetime.

For some preventive maintenance actions, the time
of application is prescribed. For example, painting of
a steel bridge every ten years or lubricating its
bearings every five years belong to this group. These
actions are classified as time-based. Other
maintenance actions are applied when a specific
performance requirement is, or is close to being
violated. For instance, an element should be repaired
if it reaches a target reliability level or a bridge
component should be replaced if the corrosion
penetration and/or spread is too high. These actions
are called performance-based (e.g. condition-based
or reliability-based) interventions. Time- and
performance-based maintenance could be applied
once or cyclically during the service life of a
deteriorating structure. Time-based maintenance can
be combined with performance-based maintenance
during a specified time horizon. This time horizon
could be limited to a part of the remaining service life
of an existing structure or extended to the entire
service life of a new structure. The effect of any
maintenance action i on the initial reliability index
profile j associated with no maintenance can be
expressed as a reliability index profile. For example,
the reliability index profile associated with
maintenance including the effects of all maintenance
actions over a given time horizon is obtained by
superposition as follows[44]:

bjðtÞ ¼ bj;0ðtÞ þ
Xnj
i¼1

Dbj;iðtÞ; (5)

where nj is the number of maintenance actions
associated with reliability index profile j, bj;0ðtÞ is
the reliability index profile without maintenance,
and Dbj;iðtÞ is the additional reliability index profile
associated with the ith maintenance action. Finally,
the reliability index profile of the system is obtained
by statistically combining the reliability index profiles
of all individual elements and limit states considered.
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Frangopol[45] defined an eight random variable
model (see also[46]) associated with every aspect of the
preventive and essential maintenance processes. The
eight random variables are shown in Fig. 2.

The initial model proposed by Frangopol based on
the reliability index was extended to incorporate a
condition index (possibly resulting from visual
inspections), and their time-dependent interaction.
Consequently, the eight random variable time-
dependent reliability index model under maintenance
previously mentioned was adapted by Frangopol and
his co-workers[40,47,48] to consider performance as
defined by both condition and reliability. The
condition and reliability indices are considered
constant for a period equal to the time of damage
initiation, tIC and tI, respectively. After that period,
a linear deterioration rate is considered for both
condition and reliability, defined by the deterioration
rates, ac and a1, respectively. If no maintenance is
considered, the time-dependent reliability index is

defined as shown in eq. (3) and the time-dependent
condition index, CðtÞ at time t50, is defined as
follows:

CðtÞ ¼
C0 for 04t4tIC

C0 � acðt� tICÞ for t4tIC

(
(6)

where C0 is the initial condition and CðtÞ is the
condition at time t which is assumed to decrease with
time. The effects of maintenance actions on the
condition are defined by using the superposition
method as described in eq. (5). The interaction
between condition and reliability is modelled through
correlations among the parameters defining both
profiles, as well as by deterministic relations between
profiles at each time step[48].

Decision model. Maintenance cost is often considered
as fixed and independent of both the state of the
structure and the effect of a maintenance action on
reliability and/or condition of the structure. However,
the cost of maintenance depends not only on the type
of maintenance action, but also on the reliability and/
or condition state of the structure before and after its
application. As an example, the cost of repairing a
corroded steel girder depends on the degree of
corrosion and the extension of the repair. A model
describing this interaction has been presented[49,50]

c ¼ c1 þ c2ðDbÞq1 þ c3ðtD � a1Þr1 þ c4ðDCÞq2

þ c5ðtDC � acÞr2 (7)

where c is the total cost associated with a maintenance
action, Db and DC are the improvement in reliability
and condition indices, respectively, tD and tDC are the
delay in deterioration of reliability and condition
indices, respectively, c1 is the fixed cost, c2 and c4 are
the costs associated with reliability and condition
improvement, respectively, c3 and c5 are costs
associated with delay in reliability and condition
deterioration, respectively, q1 and q2 are parameters
associated with the relation between maintenance cost
and reliability and condition improvement,
respectively, and r1 and r2 are parameters associated
with the relation between maintenance cost and delay
in reliability and condition deterioration, respectively.

In addition to the effect of the increase in the
reliability index and/or condition indices, Db and DC,
and the delay in reliability and condition
deterioration, tD and tDC, the effect of time of
application of each maintenance intervention can also
be considered, especially, when investment decisions
are made for optimal design[51]. In fact, the same
amount of money spent in two different instants has
different present values. For investment decisions,
costs can be compared if converted to the present
value at time zero as follows:

ct

ð1þ r=100Þt
; (8)

where ct is the cost at time t and r is the annual
discount percentage. Fig. 3 qualitatively shows the

β0 = Initial reliability index

tI = Time of damage initiation

α = Reliability index deterioration rate without maintenance

γ = Immediate improvement in reliability index after the
application of preventive maintenance

tPI = Time of first application of preventive maintenance

tP = Time of reapplication of preventive maintenance
tPD = Duration of preventive maintenance effect on bridge reliability

θ = Reliability index deterioration rate during preventive
maintenance effect

Fig. 2 Reliability profiles and associated random variables for the
options with or without preventive maintenance (after[26])
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mean and standard deviation of the condition and
reliability profiles, along with the mean cumulative
maintenance cost of a deteriorating structure under
maintenance or no maintenance. The effect of the
discount rate of money is also indicated.

Applications. A number of applications and topics
relating to the time-dependent reliability profile and/
or condition indices are available: updating with
visual inspection results[52,53], bridge deck
replacement[54,55], bridges in general (steel and
concrete)[33,34,38,39,46,56–59], and bridge system
reliability[58,60].

Also, a case study on a bridge stock composed of
steel/concrete, reinforced concrete, prestressed
concrete and post-tensioned concrete is considered.
The data associated with this bridge stock is provided
in Maunsell Ltd and the Transport Research
Laboratory[61]. The composition and age of the bridge
stock is shown in Fig. 4.

In order to obtain the optimal maintenance strategy
for each bridge type, the present value of the expected
cost of maintenance without and with preventive
maintenance was computed. Fig. 5 shows the present
value of expected annual maintenance cost in pounds
sterling per square metre of steel–concrete (denoted as
steel/concrete) composite bridges assuming no
preventive maintenance has been done (i.e. essential
maintenance only), preventive maintenance has been
done (i.e. preventive and essential maintenance), and
only preventive maintenance has been done.

As can be seen in Fig. 5, the cost of maintenance
based on essential maintenance only, is much more
expensive than that based on preventive maintenance,
especially considering the effect of the road user delay
cost, also called user cost[62]. Considering the age
distribution of the entire bridge stock in Fig. 4,
computations of expected bridge stock maintenance
cost were performed. Fig. 6 shows the expected future
maintenance costs for the different types of bridges
while preventative maintenance is performed.

3 Stochastic-process models

Owing to the usual lack of failure data, a reliability
approach solely based on lifetime distributions and
their unobservable failure rates is unsatisfactory. It is
recommended to model deterioration in terms of a
time-dependent stochastic process XðtÞ; t50f g
where XðtÞ is a random quantity for all t50.
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Deterioration is usually assumed to be a Markov
process [1, Chapter 5]. Roughly speaking, a Markov
process is a stochastic process with the property that,
given the value of XðtÞ, the values of XðtÞ, where t4t,
are independent of the values of XðuÞ, u5t. That is,
the conditional distribution of the future XðtÞ, given
the present XðtÞ and the past XðuÞ, u5t, is
independent of the past. Classes of Markov processes
which are useful for modelling stochastic
deterioration are discrete-time Markov processes
having a finite or countable state space called Markov
chains (see Section 3.1) and continuous-time Markov
processes with independent increments (see Section
3.2) such as Brownian motion with drift (also called
the Gaussian or Wiener process) and the gamma
process.

In the following sections, two decision models
based on stochastic deterioration processes are
presented. First, the Markov decision process model

with a cost function which allows for both partial and
perfect repair. Next, renewal models which are based
on renewals bringing a component or structure back
to its original condition (i.e. perfect repair). Also these
renewal models can be extended with the possibility
of imperfect repairs.

3.1 MARKOV DECISION PROCESSES

Deterioration model. Assume that there is a finite or
countable state space. This means that the condition of
a structure or component can be in any one of N50
discrete states. A Markov chain is a discrete-time
stochastic process fXn; n ¼ 0; 1; 2; . . .g for which the
Markovian property holds. As previously mentioned,
this property states that the future condition only
depends on the current condition. The conditional
probability of moving into state j at time nþ 1 given
that at the current time n the object is in state i is
given by:

Pij ¼ PrfXnþ1 ¼ j X0 ¼ i0; . . . ;Xn�1 ¼ in�1;Xn ¼ ij g
¼ PrfXnþ1 ¼ j Xn ¼ ij g:

If this transition probability does not depend on n
(i.e. does not depend on how long the process has
been running), then the process is called stationary in
time.

To define the Markov chain Xn, it is necessary to
assess the transition probabilities between all possible
condition state pairs. If there are N states, then this
results in a N �N matrix

P ¼

P11 P12 � � � P1N

P21 P22 � � � P2N

..

. ..
. . .

. ..
.

PN1 PN2 � � � PNN

2
666664

3
777775 (9)

This is called a one-step transition matrix, because it
gives the transition probabilities for one time unit.
Obviously, the probability of moving from one state to
any other state (including itself) should be 1, orPN

j¼1 Pij ¼ 1 for i ¼ 1; . . . ;N. The probability Pm
ij of

moving from the current state i to state j in m time
steps is:

Pm
ij ¼ PrfXnþm ¼ jjXn ¼ ig:

It can be shown[63] that the m-step transition matrix
can be calculated by multiplying the matrix m times
with itself: Pm.

Decision model. In order to be able to make decisions
about an optimal policy for maintenance actions,
a finite set of actions A and costs Cði; aÞ have to be
introduced, which are incurred when the process is in
state i and action a 2 A is taken. The costs are
assumed to be bounded and a policy is defined to be
any rule for choosing actions. When the process is
currently in state i and an action a is taken, the process
moves into state j with probability

PijðaÞ ¼ PrfXnþ1 ¼ jjXn ¼ i; an ¼ ag: (10)
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This transition probability again does not depend
on the state history. If a stationary policy is selected,
then this process is called a markov decision process
(MDP). A stationary policy arises when the decision
for an action only depends on the current state of the
process and not on the time at which the action is
performed.

Now that the state of the structure over time with or
without performing maintenance actions can be
modelled, the optimization of inspection and/or
maintenance policies using this process can be
performed. For example, when the system is in state i
the expected discounted costs over an unbounded
horizon are given by the recurrent relation

VaðiÞ ¼ Cði; aÞ þ a
XN
j¼1

PijðaÞVað jÞ; (11)

where a is the discount factor for one year and Va is
the value function using a. This discount factor is
defined as a ¼ ð1þ r=100Þ�1 with r the yearly
discount percentage as in eq. (8). Starting from state i,
VaðiÞ gives us the cost of performing an action a given
by Cði; aÞ and adds the expected discounted costs of
moving into another state one year later with
probability PijðaÞ. The discounted costs over an
unbounded horizon associated with a start in state
j are given by Vað jÞ, therefore eq. (11) is a recursive
equation. The choice for the action a is determined
by the maintenance policy and also includes
no repair.

A cost-optimal decision can now be found by
minimizing eq. (11) with respect to the action a. There
are a number of ways to find this optimal solution.
One of these is the so-called policy improvement
algorithm, where eq. (11) is calculated for increasingly
better policies until no more improvement can be
made. A policy iteration algorithm operating on
simple rules has been described[64], and later corrected
and updated[65]. Also, it is possible to formulate the
minimization problem as a linear programming
problem. This is used in the Arizona pavement
management system (see[66] for a general
introduction,[67] for more mathematical
implementation details and[68] for an update),
PONTIS[69–71], and BRIDGIT[72,73]. As Golabi[67]
illustrates, we can choose to maximize the condition
of the road system under a budget constraint or we
can minimize the maintenance cost under a minimum
safety constraint. This can be achieved by using the
original linear programming formulation or with its
dual formulation. The interested reader is referred to
textbooks by Ross[63] and Derman[74] for more details
on solution algorithms for Markov decision processes.
For easy step-by-step algorithms, see Denardo[75]. An
application to the deterioration of coating on steel
bridges is given in[76], where a policy improvement
algorithm is used. Rens et al.[77] discuss the application
of the Markov model to bridge maintenance for the

city and county of Denver. In this review, we
have restricted ourselves to the discrete-time
model with fixed time units. However, it is also
possible to apply a so-called semi-Markov
decision process, which assumes the time steps
between transitions to be random. For an application
to infrastructure inspection and renewal planning,
see e.g.[78].

There are three important issues concerning the use
of Markov decision processes for maintenance
optimization:

* the condition state is not continuous, but discrete
and finite. This works well for visual inspections,
but it is not suitable for nondestructive evaluation
(NDE) inspection results. The richer continuous
measurement data would have to be categorized
into discrete states before it can be incorporated
into the model. A possible approach to integrating
NDE into bridge management systems is available
[79];

* the Markovian assumption of no memory has often
been criticized. Some attempts at testing time
(in)dependence have been made by performing a
hypothesis test using available data, see e.g.[80]
and[81].

* transition probabilities in the transition matrix
(eq. 9) are difficult to assess and quite subjective.
Besides the use of expert judgment, several more
quantitative approaches have been suggested in the
literature.

Concerning the quantitative assessment of
transition probabilities, see[82] where New York bridge
data are used,[80] using data from Virginia and[81]

where the Indiana Bridge Inventory data are used.
The latter advocates the relationship of the transition
probabilities with the hazard rate function of a bridge.
Also, it discusses previous approaches and supplies a
good list of references to older publications. Amongst
others, it discusses the ordered probit model[83] and
the Poisson regression model[84]. Other data-fitting
approaches are discussed in[85] and[86]. Generally, all
these approaches require adequate amounts of data,
which in most cases are not available. This lack of
data is also discussed in[87] for the road network in
Portugal. A very different approach from all of the
previously mentioned, has been discussed[88], where
a continuous-time Brownian motion with drift is
discretized into a finite number of states. In[89] and[90],
the reliability profile is discretized into a finite
number of states and the transition matrix is
calculated by the same reliability approach. Also,
attempts to analyze a bridge at the system level by
expanding the component state space to a system
state space were made. Approximate solutions
for systems of finite state components are
available[91].

Finally, it is noted that it is possible to include
measurements from imperfect inspections into the
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Markov model. An imperfect inspection has a
measurement error associated with it. In[92], it is
referred to as a latent Markov decision process, but it
is more commonly known as a partially observable
Markov decision process (POMDP). In this approach,
it is assumed that the observed state Yn is
probabilistically related to the true state Xn by
qij ¼ PrfYn ¼ ijXn ¼ jg. A suitable probability
distribution function can be used to represent the
likelihood qij of measuring a state i, when the
component or structure is actually in state j. More
information can be found on POMDPs in the field of
operations research. The added uncertainty of partial
observability also adds significant computation time.
Quite a few algorithms have been proposed for
solving POMDPs, which will not be discussed here.
One of the best introductions to using POMDP in
infrastructure maintenance planning is given by[93].
More recently,[94] discusses the application of
POMDPs to metal fatigue and steel corrosion in a
bridge inspection problem. Another example
application of a POMDP to bridge inspection is given
by[95]. The latent Markov model is extended to a
network level application in[96]. Network level
optimization of both replacement and repair using a
finite state Markov model is presented in[97].

3.2 RENEWAL MODELS

Deterioration model. Brownian motion with drift is a
stochastic process XðtÞ; t50f g with independent, real-
valued increments and decrements having a normal
distribution with mean mt and variance s2t for all t50
[98, Chapter 7]. A characteristic feature of Brownian
motion with drift}in the context of structural
reliability}is that a structure’s resistance would
alternately increase and decrease, similar to the
exchange value of a share. For this reason, the
Brownian motion is inadequate in modelling
deterioration which is monotone. In order for the
stochastic deterioration process to be monotonic, we
can best consider it as a gamma process[99]. In the case
of a gamma deterioration, structures can only
decrease in strength. To the best of the authors’
knowledge, Abdel-Hameed[100] was the first to
propose the gamma process as a proper model for
deterioration occurring random in time. The gamma
process is suitable to model gradual damage
monotonically accumulating over time, such as wear,
fatigue, corrosion, crack growth, erosion,
consumption, creep, swell, a degrading health index,
etc. For the mathematical aspects of gamma processes,
see[101–104].

In mathematical terms, the gamma process
XðtÞ; t50f g, with shape function vðtÞ40 and scale

parameter u40, is a continuous-time stochastic
process with independent gamma-distributed
increments. A random quantity X has a gamma
distribution with shape parameter v40 and scale

parameter u40 if its probability density function is
given by:

Gaðxjv; uÞ ¼ uv

GðvÞ x
v�1expf�uxg; for x50 (12)

where GðaÞ ¼
R1
t¼0 ta�1e�t dt is the gamma function for

a40. Let XðtÞ denote the deterioration at time t. If XðtÞ
is a gamma process with shape function vðtÞ and scale
parameter u, then its expectation and variance are
given by

EðXðtÞÞ ¼ vðtÞ
u

; VarðXðtÞÞ ¼ vðtÞ
u2

(13)

A component is said to fail when its deteriorating
resistance, denoted by RðtÞ ¼ r0 � XðtÞ, where r0 is the
initial resistance, drops below the stress or load s. The
initial resistance and the applied stress can be
assumed fixed (i.e. known) or random. Let the time at
which failure occurs be denoted by the lifetime T. Due
to the gamma distributed deterioration, the lifetime
distribution can then be written as:

FðtÞ ¼ PrfT4tg ¼ PrfXðtÞ5r0 � sg: (14)

Under the assumption of modelling the temporal
variability in the deterioration with a gamma process,
the question which remains to be answered is how its
expected deterioration increases over time. Empirical
studies show that the expected deterioration at time t
is often proportional to a power law:

EðXðtÞÞ ¼ vðtÞ
u

¼ atb (15)

for some physical constants a40 and b40. There is
often engineering knowledge available about the
shape of the expected deterioration in terms of the
parameter b in eq. (15). Some examples of expected
deterioration according to a power law are the
expected degradation of concrete due to corrosion of
reinforcement (linear: b ¼ 1;[105]), sulphate attack
(parabolic: b ¼ 2;[105]), diffusion-controlled ageing
(square root: b ¼ 0:5;[105]), and creep (b ¼ 1=8;[106]), and
the expected scour-hole depth (b ¼ 0:4;[107]).

As an illustration, corrosion data of five steel gates
of the Dutch Haringvliet storm-surge barrier have
been studied. The data represent the percentage of the
surface of a gate that has been corroded due to ageing
of the coating. Every gate was inspected once at a
different inspection interval. When we assume the
five inspection results to be independent, we can
determine the maximum-likelihood estimators of the
parameters of the gamma process with expected
deterioration being a power law in time. Fig. 7 shows
the expected condition with its 5th and 95th percentile
including the inspection data, the probability density
function of the lifetime, and the cumulative
distribution function of the lifetime (the deterioration
failure level is a corroded surface of 3%).

The gamma process is called stationary if the
deterioration is linear in time, i.e. when b ¼ 1 in
eq. (15), and nonstationary when b 6¼ 1. In
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mathematical terms, a stochastic process has
stationary increments if the probability distribution of
the increments Xðtþ hÞ � XðtÞ depends only on h for
all t; h50. C¸inlar et al.[106] use a nonstationary gamma
process as a model for the deterioration of concrete
due to creep. They give a comprehensive justification
of the gamma process from a physical and practical
point of view. In doing so, the expected deterioration
agrees with a deterministic creep law in the form of a
power law in time. C¸inlar et al.[106] show how a
nonstationary gamma process can be transformed
into a stationary gamma process and how the
parameters of a stationary gamma process can be
estimated using the method of moments and the
method of maximum likelihood. They perform a
statistical analysis of data on concrete creep.

Decision model. The gamma deterioration process
was successfully applied to model time-based
preventive maintenance as well as condition-based
preventive maintenance. Time-based preventive
maintenance is carried out at regular intervals of time,
whereas condition-based maintenance is carried out
at times determined by inspecting or monitoring a
structure’s condition.

All maintenance models surveyed in this section
use cost-based criteria which are defined over an
unbounded time horizon, such as the expected
average cost per unit time and the expected
discounted cost over an unbounded horizon. Because
these cost-based criteria are all based on renewals

bringing a component or structure back to its original
condition, renewal theory was used to compute them.
Let FðtÞ be the cumulative probability distribution of
the time of renewal T50 and let cðtÞ be the cost
associated with a renewal at time t. From renewal
theory [63, Chapter 3], the expected average cost per
unit time is

lim
t!1

EðKðtÞÞ
t

¼

Z 1

0

cðtÞ dFðtÞZ 1

0

t dFðtÞ
(16)

where EðKðtÞÞ represents the expected nondiscounted
cost in the bounded time interval ð0; t�, t40. Let a
renewal cycle be the time period between two
renewals, and recognize the numerator of eq. (16) as
the expected cycle cost and the denominator as the
expected cycle length (mean lifetime). By renewal
theory with discounting[108], the expected
discounted cost over an unbounded horizon can be
written as

c0 þ lim
t!1

EðKðt; aÞÞ ¼ c0 þ

Z 1

0

atcðtÞ dFðtÞ

1�
Z 1

0

at dFðtÞ
; (17)

where c0 is the investment cost, 05a51 is the
discount factor, and EðKðt; aÞÞ is the expected
discounted cost in the bounded time interval ð0; t�,
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Fig. 7 (a) Expected cumulative deterioration, based on the maximum-likelihood estimate of the gamma-process, including five inspection
data ð8Þ and the 5th and 95th percentile ð*Þ; (b) Probability density function of the lifetime and its 5th and 95th percentile ð*Þ;
(c) Cumulative distribution function of the lifetime and its 5th and 95th percentile ð*Þ

STEEL CONSTRUCTION206

Copyright & 2004 John Wiley & Sons, Ltd. Prog. Struct. Engng Mater. 2004; 6:197–212



t40. Similar results can be obtained for discrete-time
renewal processes[109].

Models for time- and condition-based maintenance
under gamma-process deterioration are summarized
next.

Time-based maintenance. Abdel-Hameed[110] studied
an age replacement policy for which a renewal is
defined as either a corrective replacement upon
failure or upon a preventive replacement reaching a
predetermined age k, whichever occurs first. The
cost of a corrective replacement is cF, whereas the cost
of a preventive replacement is a function of the
amount of deterioration XðkÞ being of the form
cPðXðkÞÞ. The long-term expected average cost of
replacement per unit time can be calculated by
renewal theory [63, Chapter 3]. The failure level is
assumed to be random and failure is detected
immediately. Abdel-Hameed[110] studied the
stationary gamma process. He also presented the
results for the discrete-time case. As a special
case he studied the discrete-time version of the
ordinary age replacement model (with fixed
preventive and corrective replacement cost cP
and cF) for which the increments of deterioration
are exponentially distributed and the failure level is
fixed. Van Noortwijk[111] applied this special case
to age replacement of a cylinder on a swing bridge.
As a cost criterion, he considers the expected
discounted cost over an unbounded time
horizon.

The age replacement model with fixed failure level
has been extended for the possibility of nonstationary
gamma process deterioration and lifetime-extending
maintenance by van Noortwijk[111] and Bakker
et al.[112]. With the extended model both the interval of
lifetime extension and the interval of preventive
replacement can be optimized. Lifetime-extending
maintenance is also referred to as imperfect or partial
repair: the condition of the structure is improved, but

not to its initial condition. Through lifetime extension,
the deterioration can be delayed so that failure is
postponed and the lifetime of a component is
extended (e.g. a coating protecting steel). Possible
effects of lifetime-extending measures are the increase
in the damage-initiation period (time interval in
which no deterioration occurs) and the condition
improvement. Through replacement, the condition of
a component is restored to its original condition. The
model has been successfully applied[112] to optimize
the application of a protective coating on steel (e.g. a
bridge deck). In Fig. 8, the lifetime of the steel can be
extended by grit blasting (with 0.1mm loss of steel
thickness), as well as placing the new coating. The
expected condition (in terms of the surplus in
steel thickness) without lifetime extension
represents the corrosion process, given initiation at
time zero.

Condition-based maintenance. Modelling the
deterioration as a gamma process is especially
suitable when inspections are involved. Over the last
decade several inspection models have been
developed for the purpose of optimizing condition-
based maintenance. In this section, we give an
overview of these condition-based maintenance
models and their differences and similarities.

Abdel-Hameed[113,114] studied an optimal periodic
inspection policy model based on the class of
increasing pure jump Markov processes. He provides
a hypothetical example using the gamma process,
which is a member of this class. The two decision
variables are the inspection interval and the
preventive maintenance level. In the operations
research literature, such a policy is called a ‘control-
limit policy’ with the preventive maintenance level
called the ‘control limit’[11]. The failure level is
assumed to be uncertain, having a probability
distribution, and a failure is detected only by
inspection. As is shown in Fig. 9, the system is
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renewed when an inspection reveals either that the
preventive maintenance level r is crossed while no
failure has occurred (preventive replacement) or that
the failure level s is crossed (corrective replacement).
A renewal brings the system back to its ‘as good as
new’ condition. The optimal maintenance decision is
determined by minimizing the long-term expected
average cost per unit time. The cost of inspection, the
cost of preventive replacement, and the cost of
corrective replacement are assumed to be fixed.

Abdel-Hameed’s gamma process example was also
studied by Kong & Park[115]. However, they assumed
failure to be immediately detected without inspection.
A special case of[115] is the model of Park[116], who
considered the failure level to be fixed rather than
random. Jia & Christer[117] proposed using[116] for
modelling functional checking procedures in
reliability-centred maintenance (RCM). Van
Noortwijk et al.[99,118] approximated the stationary
gamma process with a discrete-time stochastic process
having exponentially distributed increments. They
present a case study on condition-based maintenance
of the rock dumping of the Eastern Scheldt barrier for
which the expected average cost per unit time or the
expected discounted cost over an unbounded time
horizon are minimal. The deterioration process
considered is current-induced rock displacement near
the rock dumping.

Optimal inspection intervals for a steel pressure
vessel subject to corrosion for which the expected
average costs of inspection and maintenance per
unit time are minimal have been determined by
Kallen & van Noortwijk[119]. Imperfect inspections
have been dealt with by the same authors as well as
by Newby & Dagg[120].

Dieulle et al.[121] and Grall et al.[122] studied the
following variation of the inspection model of
Park[116]. Inspection is aperiodic and it is scheduled by
means of a function of the deterioration state. Failure
is detected only by inspection and a cost of ‘inactivity
of the system’ per unit time is incurred as soon as

failure occurs. Grall et al.[123] approximated the
stationary gamma process with a discrete-time
stochastic process having independent, identically
and exponentially distributed increments. They
consider a maintenance policy using a multi-level
control-limit rule, where failures are detected
immediately. Recently, Castanier et al.[124] extended
this discrete-time model with the possibility of partial
repair.

Van Noortwijk & Klatter[107] developed a
mathematical model, which includes the use of a
nonstationary gamma process, to optimize
maintenance of a part of the seabed protection of the
Eastern Scheldt barrier, namely the block mats. This
model enables optimal inspection decisions to be
determined on the basis of the uncertainties in the
process of occurrence of scour holes and, given that a
scour hole has occurred, of the process of current-
induced scour erosion. The model of van Noortwijk &
van Gelder[125] studies berm breakwaters under
uncertain rock transport caused by extreme waves. It
computes inspection intervals having either minimal
expected cost per unit time or minimal expected
discounted cost over an unbounded horizon. Both
models include the cost of inspection, repair and
failure; the cost of repair depends on the amount of
deterioration. In the former model failure is detected
only by inspection, whereas in the latter failure is
detected immediately.

Apart from using inspection models under gamma
process deterioration in the application phase of the
life-cycle of a structure, they can also be used in the
design phase. Only two inspection models have been
devoted to optimally balancing the initial investment
cost against the future maintenance cost in the design
phase. The first model deals with determining
optimal sand nourishment sizes in which the
stochastic process of permanent coastal erosion of
dunes is regarded as a stationary gamma process[51].
The second model deals with determining optimal
dike heightenings in which the stochastic process of
crest-level decline is regarded as a stationary gamma
process[126]. Both models use a discrete timescale and
assume that maintenance costs depend on the amount
of deterioration and are discounted. In the former
model failure is detected immediately (at discrete
units of time), whereas in the latter model failure is
detected only by inspection.

4 Future directions

An attempt has been made to provide the reader
with a review of probabilistic models for maintaining
and optimizing the life-cycle performance of
deteriorating structures, with the emphasis on
bridges.

A variety of different modelling approaches have
been discussed. Some primarily deal with the
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reliability index, whereas others are concerned with
the physical condition of a structure. No single
approach has yet proven to be generally applicable
and each model has its advantages and
disadvantages. For example, the Markov decision
model is purely a condition model and is very well
suited to incorporate information from visual
inspections, but it cannot be used to assess the
reliability of a structure in terms of strengths and
stresses.

Currently, the Markov model is the most
commonly used approach in bridge maintenance
models. The use of the reliability index to model the
performance of a structure is a classic approach in
civil engineering and has resulted in many design
codes based on this index. The gamma process
model has been the subject of many scientific
publications with a few applications to real
maintenance problems in civil engineering. In the
Netherlands, an effort has been made to apply
these models to the maintenance of bridges on the
national road network.

Further work is necessary to collect relevant
data, improve the modelling capability and
formulate probabilistic decision problems as
follows:

* establish a general acceptable and consistent
methodology for probabilistic modelling of
deterioration processes of structural
performance in terms of both condition and
reliability;

* improve the understanding of the effects of
maintenance actions on structural performance and
their probabilistic modelling, improve the
incorporation of measurement data from
imperfect inspections into the deterioration
models;

* develop consistent probabilistic methodologies for
evaluating maintenance and management
strategies;

* use optimization for finding the best strategy
through balancing of competing objectives such as
reliability, condition, and cost.
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