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Probabilistic risk analysis

Probabilistic risk analysis (PRA), also called quantitative risk analysis (QRA)

or probabilistic safety analysis (PSA), is currently being widely applied to

many sectors, including transport, construction, energy, chemical processing,

aerospace, the military, and even to project planning and financial manage-

ment. In many of these areas PRA techniques have been adopted as part of

the regulatory framework by relevant authorities. In other areas the analytic

PRA methodology is increasingly applied to validate claims for safety or to

demonstrate the need for further improvement. The trend in all areas is for

PRA to support tools for management decision making, forming the new

area of risk management.

Since PRA tools are becoming ever more widely applied, and are growing

in sophistication, one of the aims of this book is to introduce the reader to

the main tools used in PRA, and in particular to some of the more recent

developments in PRA modeling. Another important aim, though, is to give

the reader a good understanding of uncertainty and the extent to which it

can be modeled mathematically by using probability. We believe that it is of

critical importance not just to understand the mechanics of the techniques

involved in PRA, but also to understand the foundations of the subject in

order to judge the limitations of the various techniques available. The most

important part of the foundations is the study of uncertainty. What do we

mean by uncertainty? How might we quantify it?

After the current introductory chapter, in Part two we discuss theoretical

issues such as the notion of uncertainty and the basic tools of probability and

statistics that are widely used in PRA. Part three presents basic modeling

tools for engineering systems, and discusses some of the techniques available

to quantify uncertainties (both on the basis of reliability data, and using

expert judgement). In Part four we discuss uncertainty modeling and risk

measurement. The aim is to show how dependent uncertainties are important

3



4 1 Probabilistic risk analysis

and can be modeled, how value judgements can be combined with uncer-

tainties to make optimal decisions under uncertainty, and how uncertainties

and risks can be presented and measured.

1.1 Historical overview

This introductory section reviews the recent history of these developments,

focusing in particular on the aerospace, nuclear and chemical process sectors.

1.1.1 The aerospace sector

A systematic concern with risk assessment methodology began in the

aerospace sector following the fire of the Apollo test AS-204 on January

27, 1967, in which three astronauts were killed. This one event set the

National Aeronautics and Space Administration (NASA) back 18 months,

involved considerable loss of public support, cost NASA salaries and ex-

penses for 1500 people involved in the subsequent investigation, and ran up

$410 million in additional costs [Wiggins, 1985]. Prior to the Apollo acci-

dent, NASA relied on its contractors to apply ‘good engineering practices’

to provide quality assurance and quality control.

On April 5, 1969 the Space Shuttle Task Group was formed in the Office of

Manned Space Flight of NASA. The task group developed ‘suggested criteria’

for evaluating the safety policy of the shuttle program which contained

quantitative safety goals. The probability of mission completion was to be

at least 95% and the probability of death or injury per mission was not to

exceed 1%. These numerical safety goals were not adopted in the subsequent

shuttle program.

The reason for rejecting quantitative safety goals given at the time was that

low numerical assessments of accident probability could not guarantee safety:

‘. . . the problem with quantifying risk assessment is that when managers are

given numbers, the numbers are treated as absolute judgments, regardless of

warnings against doing so. These numbers are then taken as fact, instead of

what they really are: subjective evaluations of hazard level and probability.’

([Wiggins, 1985], p. 85).

An extensive review of the NASA safety policy following the Challenger

accident of January 28, 1986 brought many interesting facts to light. A

quantitative risk study commissioned by the US Air Force in 1983 estimated

the Challenger’s solid rocket booster failure probability per launch as 1

in 35. NASA management rejected this estimate and elected to rely on
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their own engineering judgment, which led to a figure of 1 in 100.000

[Colglazier and Weatherwas, 1986]

It has also become clear that distrust of reassuring risk numbers was

not the reason that quantitative risk assessment was abandoned. Rather,

initial estimates of catastrophic failure probabilities were so high that their

publication would have threatened the political viability of the entire space

program. For example, a General Electric ‘full numerical probabilistic risk

assessment’ on the likelihood of successfully landing a man on the moon

indicated that the chance of success was ‘less than 5%’. When the NASA

administrator was shown these results, he ‘felt that the numbers could do

irreparable harm, and disbanded the effort’ [Bell and Esch, 1989].

By contrast, a congressional report on the causes of the Shuttle accident

(quoted in [Garrick, 1989]) concluded that the qualitative method of simply

identifying failures leading to loss of vehicle accidents (the so-called critical

items) was limited because not all elements posed an equal threat. Without a

means of identifying the probability of failure of the various elements NASA

could not focus its attention and resources effectively.

Since the shuttle accident, NASA has instituted programs of quantitative

risk analysis to support safety during the design and operations phases of

manned space travel. The NASA risk assessment effort reached a high point

with the publication of the SAIC Shuttle Risk Assessment [Fragola, 1995].

With this assessment in hand, NASA was able to convince the US Congress

that the money spent on shuttle development since the Challenger accident

had been well used, even though no failure paths had been eliminated. The

report showed that the probability of the most likely failure causes had been

significantly reduced.

The European space program received a setback with the failure of the

maiden flight of Ariane 5. A board of inquiry [ESA, 1997] revealed that

the disaster was caused by software errors and the management of the soft-

ware design. The accident demonstrates the problem of integrating working

technologies from different environments into a new reliable system.

1.1.2 The nuclear sector

Throughout the 1950s, following Eisenhower’s ‘Atoms for Peace’ program,

the American Atomic Energy Commission (AEC) pursued a philosophy of

risk assessment based on the ‘maximum credible accident’. Because ‘credible

accidents’ were covered by plant design, residual risk was estimated by

studying the hypothetical consequences of ‘incredible accidents’. An early

study released in 1957 focused on three scenarios of radioactive releases
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from a 200 megawatt nuclear power plant operating 30 miles from a large

population center. Regarding the probability of such releases the study

concluded that ‘no one knows now or will ever know the exact magnitude

of this low probability’.

Successive design improvements were intended to reduce the probability of

a catastrophic release of the reactor core inventory. Such improvements could

have no visible impact on the risk as studied with the above methods. On the

other hand, plans were being drawn for reactors in the 1000 megawatt range

located close to population centers, and these developments would certainly

have a negative impact on the consequences of the ‘incredible accident’.

The desire to quantify and evaluate the effects of these improvements led

to the introduction of probabilistic risk analysis. As mentioned above, the

basic methods of probabilistic risk assessment originated in the aerospace

program in the 1960s. The first full scale application of these methods,

including an extensive analysis of the accident consequences, was undertaken

in the Reactor Safety Study WASH-1400 [NRC, 1975] published by the US

Nuclear Regulatory Commission (NRC). This study is rightly considered to

be the first modern PRA.

The reception of the Reactor Safety Study in the scientific community may

best be described as turbulent. The American Physical Society [APS, 1975]

conducted an extensive review of the first draft of the Reactor Safety Study.

In the accompanying letter attached to their report, physicists Wolfgang

Panofsky, Victor Weisskopf and Hans Bethe concluded, among other things,

that the calculation methods were ‘fairly unsatisfactory’, that the emergency

core cooling system is unpredictable and that relevant physical processes

‘which could interfere with its functioning have not been adequately ana-

lyzed’, and that ‘the consequences of an accident involving major radioactive

release have been underestimated as to casualties by an order of magnitude’.

The final draft of the Reactor Safety Study was extensively reviewed by,

among others, the Environmental Protection Agency [EPA, 1976] and the

Union of Concerned Scientists [Union of Concerned Scientists, 1977].

In 1977 the United States Congress passed a bill creating a special ‘review

panel’ of external reactor safety experts to review the ‘achievements and

limitations’ of the Reactor Safety Study. The panel was led by Prof. Harold

Lewis, and their report is known as the ‘Lewis Report’ [Lewis et al., 1979].

While the Lewis Report recognized the basic validity of the PRA methodol-

ogy and expressed appreciation for the pioneering effort put into the Reactor

Safety Study, they also uncovered many deficiencies in the treatment of prob-

abilities. They were led to conclude that the uncertainty bands claimed for

the conclusions in the Reactor Safety Study were ‘greatly understated’.
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Significantly, the Lewis Report specifically endorsed the use of subjective

probabilities in the Reactor Safety Study.

In January 1979 the NRC distanced itself from the results of the Reactor

Safety Study: ‘In particular, in light of the Review Group conclusions on

accident probabilities, the Commission does not regard as reliable the Reactor

Safety Study’s numerical estimate of the overall risk of a reactor accident.’

[NRC, 1979]

The future of PRA after the NRC’s announcement of 1979 did not look

bright. However, the dramatic events of March 1979 served to change that.

In March 1979 the Three Mile Island – 2 (TMI) Nuclear Generating Unit

suffered a severe core damage accident. Subsequent study of the accident

revealed that the accident sequence had been predicted by the Reactor

Safety Study. The probabilities associated with that sequence, particularly

those concerning human error, do not appear realistic in hindsight.

Two influential independent analyses of the TMI accident, the Report of

the President’s Commission on the Accident at Three Mile Island [Kemeny

et al, 1979] and the Rogovin Report [Rogovin and Frampton, 1980], credited

the Reactor Safety Study with identifying the small loss-of-coolant accidents

as the major threat to safety, and recommended that greater use should be

made of probabilistic analyses in assessing nuclear plant risks. They also

questioned whether the NRC was capable of regulating the risks of nuclear

energy, and recommended that the regulatory body be massively overhauled

(which recommendation was not carried out).

Shortly thereafter a new generation of PRAs appeared in which some

of the methodological defects of the Reactor Safety Study were avoided.

The US NRC released The Fault Tree Handbook [Vesely et al., 1981] in

1981 and the PRA Procedures Guide [NRC, 1983] in 1983 which shored

up and standardized much of the risk assessment methodology. Garrick’s

review [Garrick, 1984] of PRAs conducted in the aftermath of the Lewis

report discussed the main contributors to accident probability identified at

the plants. He also noted the necessity to model uncertainties properly in

order to use PRA as a management tool, and suggested the use of on-line

computer PRA models to guide plant management (a process now called a

‘living PRA’).

The accident at the Chernobyl Nuclear Power Plant occurred on April 26,

1986. A test was carried out in order to determine how long the reactor

coolant pumps could be operated using electrical power from the reactors’

own turbine generator under certain abnormal conditions. At the beginning

of the test some of the main coolant pumps slowed down, causing a reduction

of coolant in the core. The coolant left began to boil, adding reactivity to
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the core (due to the so-called positive void coefficient of the RBMK reactor

type). This caused a sudden increase in power which could not be controlled

because the control systems worked too slowly. The power surge caused the

fuel to overheat and disintegrate. Pieces of fuel ejected into the coolant then

caused a steam explosion whose force blew the cover off the reactor. There

were 31 early deaths and (amongst other radiological effects) a ‘real and

significant’ increase in childhood carcinoma of the thyroid [OECD, 1996].

Thousands of people have been displaced and blame the reactor accident

for all sorts of health problems.

The management of western nuclear power corporations moved quickly

to assure the public that this type of accident could not occur in the US

and western Europe because of the difference in reactor design. The Three

Mile Island and Chernobyl accidents, in addition to regular publicity about

minor leaks of radioactive material from other power stations and processing

plans, however, have fostered a climate of distrust in nuclear power and in

the capacity of management to run power stations properly.

Besides technical advances in the methodology of risk analyses, the 1980s

and 1990s have seen the further development of numerical safety goals.

Examples are the USNRC policy statement of 1986 [NRC, 1986] and the

UK Tolerability of risk document [HSE, 1987]. These documents seek to

place the ALARP principle (‘as low as reasonably possible’) into a numerical

framework by defining upper levels of intolerable risk and lower levels of

broadly tolerable risk.

1.1.3 The chemical process sector

In the process sector, government authorities became interested in the use of

probabilistic risk analysis as a tool for estimating public exposure to risk in

the context of licensing and citing decisions. Important European efforts in

this direction include two studies of refineries on Canvey Island ([HSE, 1978],

[HSE, 1981]) in the UK, a German sulphuric acid plant study [Jäger, 1983],

and the Dutch LPG and COVO studies ([TNO, 1983], [COVO, 1982]). The

COVO study [COVO, 1982] was a risk analysis of six potentially hazardous

objects in the Rijnmond area. The group which performed the study later

formed the consulting firm Technica, which has since played a leading role

in risk analysis.

The impetus for much of this work was the Post-Seveso Directive [EEC,

1982] adopted by the European Community following the accidental release

of dioxin by a chemical plant near Seveso, Italy. The directive institutes

a policy of risk management for chemical industries handling hazardous
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materials in which each member state has the responsibility for developing

its own risk management methodology. The Dutch government took the lead

in requiring quantitative risk analyses of potentially hazardous objects, and

has invested heavily in developing tools and methods for implementing this

policy. This lead has been followed by several other member countries.

Dutch legislation requires the operator of a facility dealing with hazardous

substances to submit an ‘External Safety Report’ (Externe Veiligheid Rap-

port, EVR). About 70 companies in the Netherlands fall under this reporting

requirement. EVRs are to be updated every 5 years.

The quantitative risk analysis required in EVRs may be broken down into

four parts. The first part identifies the undesirable events which may lead

to a threat to the general public. The second part consists of an effect and

damage assessment of the undesired events. The third part calculates the

probability of damage, consisting of the probability of an undesired release

of hazardous substances, and the probability of propagation through the

environment causing death. The fourth part determines the individual and

group risk associated with the installation.

For new installations, the risk of death of an ‘average individual’ exposed

at any point outside the installation perimeter for an entire year must not

exceed 10−6. The group risk requirement stipulates that the probability of

10n or more fatalities (n > 1) must not exceed 10−3−2n per year. If this

probability exceeds 10−5−2n per year then further reduction is required.

Risk based regulation is now common in many different sectors. An

overview of some of the risk goals currently set is given in Table 18.5.

1.1.4 The less recent past

We have concentrated on the developments in a few important sectors since

the end of the second world war. The reader interested in looking further

into the past is referred to [Covello and Mumpower, 1985] which starts

about 3200 BC, and [Bernstein, 1996].

1.2 What is the definition of risk?

The literature on the subject of risk has grown rapidly in the last few years,

and the word ‘risk’ is used in many different ways. The purpose of this

section is to discuss briefly what we mean by risk, and in what way the

concept can be described in a mathematical setting. The limitations of the

mathematical approach to measuring risk will be highlighted in Chapter 18.

Our discussion here is largely drawn from [Kaplan and Garrick, 1981].
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Fig. 1.1. Risk curve

A hazard is considered as a source of danger but the concept does not

contain any notion of the likelihood with which that danger will actually

impact on people or on the environment. We are often uncertain about

whether or not a hazard will actually lead to negative consequences (that is,

whether the potentiality will be converted into actuality). As will be argued in

Chapter 2, that uncertainty can – in principle – be quantified by probability.

The definition of risk combines both of the above elements. A risk analysis

tries to answer the questions:

(i) What can happen?

(ii) How likely is it to happen?

(iii) Given that it occurs, what are the consequences?

Kaplan and Garrick [Kaplan and Garrick, 1981] define risk to be a set of

scenarios si, each of which has a probability pi and a consequence xi. If the

scenarios are ordered in terms of increasing severity of the consequences

then a risk curve can be plotted, for example as shown in Figure 1.1. The

risk curve illustrates what is the probability of at least a certain number of

casualties in a given year.

Kaplan and Garrick [Kaplan and Garrick, 1981] further refine the notion

of risk in the following way. First, instead of talking about the probability of

an event, they talk about the frequency with which such an event might take

place. They then introduce the notion of uncertainty about the frequency

(the ‘probability of a frequency’). This more sophisticated notion of risk will

be discussed further in Chapter 2.
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For the moment the reader should bear in mind that the basic method of

risk analysis is the identification and quantification of scenarios, probabilities

and consequences. The tools that will be described in this book are dedicated

to these tasks.

1.3 Scope of probabilistic risk analyses

The goals and sizes of probabilistic risk analyses vary widely. The nuclear

sector has made the largest commitments of resources in this area. Some

of the larger chemical process studies have been of comparable magnitude,

although the studies performed in connection with the Post-Seveso Directive

tend to be much smaller. In the aerospace sector, the methods have not yet

been fully integrated into the existing design and operations management

structures, although the United Space Alliance (the consortium operating the

space shuttle for NASA) is probably currently the furthest in an integrated

risk management approach.

The Procedures Guide [NRC, 1983], gives a detailed description of the var-

ious levels of commitment of resources in nuclear PRAs, and we summarize

this below, as the general format is applicable to other sectors as well. Three

levels are distinguished:

level 1, systems analysis;

level 2, systems plus containment analysis;

level 3, systems, containment and consequence analysis.

These are explained further below.

Level 1: systems analysis The systems analysis focuses on the potential

release of hazardous substances and/or energy from the design envelope

of the facility in question. In the case of a nuclear reactor, this concerns

primarily the release of radioactive material from the reactor core. Phases

within level 1 include event tree modeling, analysis of human reliability

impacts, database development, accident sequence quantification, external

event analysis and uncertainty analysis.

Level 2: containment analysis The containment analysis includes an analysis

of pathways into the biosphere, and a transport analysis to determine im-

portant parameters such as composition of release, quantity of release, time

profile of release, physics of release event (e.g. elevated or ground source,

pressurized or ambient, etc.).
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Level 3: consequence analysis Here the pathways by which the hazardous

material can reach and affect man are identified, using an analysis of the

dispersion through the atmosphere and groundwater, propagation through

the food chain, and the toxicological effects in the human body, in both the

short and long term. In addition the economic impact of land interdiction,

clean-up, relocation etc. should be included.

1.4 Risk analysis resources

1.4.1 Important journals

The journal that best covers the area discussed in this book is Reliability

Engineering and System Safety. There are several journals covering the math-

ematical theory of reliability such as IEEE Transactions on Reliability and

Microelectronics and Reliability, and many (applied) statistics and OR jour-

nals that frequently publish papers on reliability: Technometrics, Applied

Statistics, Operations Research, Lifetime Data Analysis, Biometrika, The Scan-

dinavian Journal of Statistics etc. Papers on risk analysis are to be found

in engineering journals and also in a number of interdisciplinary jour-

nals. Amongst the engineering journals are Journal of Hazardous Materials

and Safety Science. Interdisciplinary journals covering risk analysis are Risk

Analysis, Risk: Health, Safety and Environment, The Journal of Risk Research

and Risk, Decision and Policy.

1.4.2 Handbooks

Important textbooks and handbooks in this area are: [Vesely et al., 1981],

[NRC, 1983], [Swain and Guttmann, 1983], [Kumamoto and Henley, 1996],

[CCPS, 1989], [O’Connor, 1994].

1.4.3 Professional organizations

The Society of Reliability Engineers (SRE) has branches in many countries,

as does the IEEE Reliability Society. The International Association for Prob-

abilistic Safety Assessment and Management (IAPSAM) is an international

organization which organizes the PSAM conferences. The European Safety

and Reliability Association, ESRA, is the European umbrella organization of

national associations in the area of risk and reliability analysis and organizes

the yearly ESREL conferences. The European Safety Reliability and Data

Association, ESReDA, is another European organization with industrial

members that organizes regular seminars. The Society for Risk Analysis and
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the Risk Analysis and Policy Association are two US based interdisciplinary

organizations.

1.4.4 Internet

The IEEE Reliability Society maintains an excellent website, with references

to other sites, information about standards and much more. The URL is

http://engine.ieee.org/society/rs/. Riskworld is a good source of information

about risk analysis and can be found at http://www.riskworld.com/. The

European Safety and Reliability Society maintains an up-to-date list of links

at its site http://www.esra.be.


