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Abstract

In this paper, the classic ‘divide and conquer (DAC)’ paradigm is applied as a top-down black-box technique for the

forecasting of daily streamflows from the streamflow records alone, i.e. without employing exogenous variables of the runoff

generating process such as rainfall. To this end, three forms of hybrid artificial neural networks (ANNs) are used as univariate

time series models, namely, the threshold-based ANN (TANN), the cluster-based ANN (CANN), and the periodic ANN

(PANN). For the purpose of comparison of forecasting efficiency, the normal multi-layer perceptron form of ANN (MLP–ANN)

is selected as the baseline ANN model. Having first applied the MLP–ANN models without any data-grouping procedure, the

influence of various data preprocessing procedures on the MLP–ANN model forecasting performance is then investigated. The

preprocessing procedures considered are: standardization, log-transformation, rescaling, deseasonalization, and combinations

of these. In the context of the single streamflow series considered, deseasonalization without rescaling was found to be the most

effective preprocessing procedure. Some discussions are presented (i) on data preprocessing and (ii) on selection of the best

ANN model. Overall, among the three variations of hybrid ANNs tested, the PANN model performed best. Compared with the

MLP–ANN fitted to the deseasonalized data, the PANN based on the soft seasonal partitioning performed better for short lead

times (%3 days), but the advantage vanishes for longer lead times.
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1. Introduction

It is generally accepted that streamflow generation

processes, especially daily streamflow processes, are
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seasonal and nonlinear, since the processes usually

have pronounced seasonal means, variances, and

dependence structures, and the under-lying mechan-

isms of streamflow generation are likely to be quite

different during low, medium, and high flow periods,

especially when extreme events occur. For instance,

low-flow events are mainly sustained by base flow,

whereas high-flow events are typically generated by

intense storm rainfall.
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Many models can be found in the literature for

modeling the complex nonlinearity of streamflow

processes, among which are those based on the

principle of divide-and-conquer (DAC). DAC algor-

ithms deal with a complex problem by dividing it into

simple problems whose solutions can be combined to

yield a solution to the complex problem (Jordan and

Jacobs, 1994). Depending on the feature of non-

linearity, usually a process could be divided, for

example through using thresholds, into a number of

regimes and fit a linear or nonlinear model for each

regime. Correspondingly, the DAC algorithms could

be roughly categorized into two types, i.e. local-linear

models and local-nonlinear models.

Local-linear DAC models approximate a complex

problem locally with linear models. They are

fundamentally derivatives of the threshold regression

models, such as the constrained linear system with

thresholds (CLS-Ts) of Todini and Wallis (1977) and

the multi-linear approach of Becher and Kundzewicz

(1987), or the threshold autoregressive (TAR) model

(Tong and Lim, 1980), which treats a nonlinear

process piecewise with linear regression models

according to the value of some explanatory variable

or the preceding value of the process itself. Local-

linear DAC models are still used for modeling

rainfall-runoff process (e.g. Solomatine and Dulal,

2003). The periodic autoregressive moving average

(PARMA) model, as well as its abbreviated version

periodic autoregressive (PAR) model, is widely used

to model hydrologic time series (e.g. Hipel and

Mcleod, 1994). It is the extension of the ARMA

model that allows periodic (seasonal) parameters,

which can be perceived as a modification of the

threshold regression model. Instead of using the value

of some explanatory variable or the preceding value of

the process itself as the threshold, the PARMA model

treats seasonal process piecewise with linear ARMA

models according to which season the process is

operating in. When fitting a PARMA model to a

seasonal series, a separate ARMA model is fitted for

each season of the year. Literature on PARMA

(including PAR) models has abounded since the late

1960s’ (e.g. Jones and Brelsford, 1967; Pagano, 1978;

Salas et al., 1982; Vecchia, 1985; Bartolini et al.,

1988; Salas and Abdelmohsen, 1993).

Local-nonlinear DAC models approximate a

complex problem locally with nonlinear models,
such as nonlinear regression models or artificial

neural network (ANN) models. Local-nonlinear

DAC models are increasingly popular for dealing

with complex nonlinear processes, mainly owing to

the rapid development of ANN techniques. ANNs are

known as having the ability of modeling nonlinear

mechanisms. They have been increasingly applied to

various hydrological problems in the past decade

(Maier and Dandy, 2000; Dawson and Wilby, 2001).

Nonetheless, some studies have suggested that a

single ANN cannot predict the high- and low-runoff

events satisfactorily (e.g. Minns and Hall, 1996) since,

as aforementioned, the under-lying mechanisms of

streamflow generation can be quite different during

low, medium, and high flow periods. The mapping

ability of a single ANN is limited when faced with

complex problems like rainfall-runoff processes. To

resolve such complex processes, tree-structured

neural networks, such as the modular neural network

(MNN) (Jacobs et al., 1991; Jacobs and Jordan, 1993;

Jordan and Jacobs, 1994), could be employed to

model the nonlinear systems by dividing the input

space into a set of regions, each of which is

approximated with a single ANN model. In general,

a MNN is constructed from two types of network,

namely expert networks and a gating network. Expert

networks may be of a variety of different types of

neural networks. Each network is designed for a

particular task. A gating network receives the input

vector and produces as many outputs as there are

expert networks. These outputs must be nonnegative

and sum to unity, representing the weights of the

output of each expert network. A weighted sum of the

outputs of the experts forms the MNN output. During

training, the weights of the expert and gating networks

are adjusted simultaneously using the backpropaga-

tion algorithm.

There are many local-nonlinear type DAC models

similar to MNN but with different names, such as

hybrid ANNs, integrated ANNs, threshold (or

domain-dependent, range-dependent) ANNs, commit-

tee machine and so on. Some of them could be

considered as special cases of MNN (e.g. threshold

ANN), and some others have different ways of

combining the separate expert neural networks. For

example, instead of using a gating network to mediate

the competition of expert networks, some hybrid

neural networks use a fuzzy logic model to link
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individual expert networks into an integrated model-

ing system, or use the cluster analysis technique in

which the input space is first divided into several

clusters, and then a separate expert network is fitted to

each cluster. There are already some examples of

applications of modular or hybrid ANN models in the

field of hydrological modeling. Zhang and Govindar-

aju (2000) examined the performance of modular

networks in predicting monthly discharges based on

the Bayesian concept. See and Openshaw (1999)

developed a fuzzy-logic based hybrid model to

forecast river level, in which the forecasting data set

is split into subsets before training with a series of

neural networks. Abrahart and See (2000) presented a

hybrid network solution based the clustering of the

hydrological records with a self-organizing map

(SOM) neural network. Hu et al. (2001) developed

range-dependent hybrid neural networks (RDNN),

which are virtually threshold ANNs, to forecast

annual and daily streamflows. Pal et al. (2003)

proposed a hybrid ANN model that combines the

self-organizing feature map (SOFM) and the MLP

network for temperature prediction, where the SOFM

serves to partition the training data.

In addition, perhaps the most thorough DAC

algorithm is the nearest neighbor method (NNM), in

which a time series is reconstructed in a multi-

dimensional state-space and then local approximation

models (parametric or non-parametric) are fitted to the

nearest neighbors in the space. Parametric NNM

could be linear or nonlinear depending on what type

of local parametric models are used. NNM has been

applied to streamflow forecasting by many research-

ers (e.g. Yakowitz and Karlsson, 1987; Bordignon and

Lisi, 2000; Sivakumar et al., 2001).

In this study, three types of hybrid ANN models,

namely, the threshold ANN (TANN) and the cluster-

based ANN (CANN), and periodic ANN (PANN), are

used to forecast daily streamflows, and the model

performance is compared with normal ANN models

that are fitted to the data without any grouping. The

organization of this paper is as follows. Section 2

gives a brief description of the study area and data

used, followed by the introduction to the concept of

state space reconstruction, a method used here to

determine the number of inputs of ANN models for

univariate time series. A brief review of ANN

modeling methods is presented in Section 3, then
normal ANNs are applied to forecasting 1- to 10-day

ahead daily streamflows. In Section 4, different ANN

hybridization approaches are presented, and forecasts

are made with these hybrid ANNs. Some discussions

and conclusions of the study are given in Sections 5

and 6, respectively.
2. State-space reconstruction of the daily stream-

flow series

2.1. Study area and data used

The case study area is the headwater region of the

Yellow River, located in the northeastern Tibet

Plateau in China. In this area, the discharge gauging

station Tangnaihai has a 133,650 km2 drainage area,

including a permanently snow-covered area of

192 km2. The length of main channel of this

watershed is over 1500 km. Most of the watershed is

3000–4000 m above sea level. Snowmelt water

composes about 5% of total runoff. Most rain falls

in summer. Because the watershed is partly perma-

nently snow-covered and sparsely populated, having

no large-scale hydraulic works, it is fairly pristine.

The average annual runoff volume (1956–2000) at

Tangnaihai gauging station is 20.4 billion cubic

meters, about 35% of the whole Yellow River

Basin. Therefore, it is the main runoff generation

area of the Yellow River basin. Discharges at

Tangnaihai has been recorded since January 1, 1956.

In this study, daily average discharges from January 1,

1956 to December 31, 2000 are used. The mean

values as well as standard deviations of the stream-

flow series in each day over the year are plotted in

Fig. 1.

2.2. State-space reconstruction

To describe the temporal evolution of a dynamical

system in a multi-dimensional state space with a

scalar time series, one needs to employ some

techniques to unfold the multi-dimensional structure

using the available data. Packard et al. (1980) and

Takens (1981) proposed the time delay coordinate

method to reconstruct the state space from a scalar

time series. According to the method, the state vector

Xi in a new space, the embedding space, is formed
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from time delayed values of the scalar measurements

{xi} as XiZ[xi,xiKt,.,xiK(mK1)t], where xi is the

observed value of the time series at time i, m is the

embedding dimension, and t is the delay time.

There are lots of discussions about the parameter

options for state-space reconstruction (e.g. Kantz and

Schreiber, 2004, p 30–47). An optimum value of t
should give the best separation of neighboring

trajectories within the minimum embedding phase-

space. Popular methods for determining the optimum

value of t include the autocorrelation function method

and the mutual information method. Due to the strong

annual seasonality, according to the autocorrelation

function method and the mutual information method,

the t value would be about 1/4 of the annual period of
the daily streamflow process, namely about 91 days

(Wang et al., 2005b). However, for the purpose of

forecasting, although the reconstructed phase-space is

redundant with a value of tZ1, we tolerate having

some information redundancy in preference to losing

any useful information.

A method to determine the minimal sufficient

embedding dimension m was proposed by Kennel

et al. (1992), called the ‘false nearest neighbor’

method. The minimal embedding dimension m for a

given time series means that m is the minimal value

that is sufficient to insure that in a m-dimensional

embedded space the reconstructed attractor is a one-

to-one image of the attractor in the original phase

space. If the series is embedded in a m 0-dimensional

space with m 0!m, then some points that are actually

far from each other will appear as neighbors because

the geometric structure of the attractor has been

projected down to a smaller space. These points are

called false neighbors. For false neighbors, their

trajectories will move far away as the

embedding dimension increases. Suppose the point
XiZ ½xiKpC1;.; xi� has a neighbor XjZ ½xjKpC1;.; xj�

in a p-dimensional space. Calculate the distance

kXiKXjk and compute

Ri Z
jxiC1KxjC1j

jjXiKXjjj
: (1)

If Ri exceeds a given threshold RT (say, 10 or 15),

the point Xi is marked as having a false nearest

neighbor. We say the embedding dimension p is high

enough if the fraction of points that have false nearest

neighbors is actually zero, or sufficiently small, say,

smaller than a criterion Rf.

Setting the false neighbor threshold RTZ10, we

calculate the fraction of false nearest neighbors as a

function of the embedding dimension for daily

streamflow series at Tangnaihai, shown in Fig. 2. If

we set the fraction criterion RfZ0.01, then the

embedding dimension is five, which means that the

state of streamflow process is determined by five

lagged observed values. Correspondingly, when

fitting an ANN model to the series, we use five

lagged values as input to forecast the one-step-ahead

value.
3. Fitting normal ANN models to daily streamflow

series

3.1. ANN structure

When building a neural network model, a number

of decisions must be made, including the neural

network type, network structure, methods of pre- and

post-processing of input/output data, training algor-

ithm and training stop criteria.
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The feed-forward multi-layer perceptron (MLP)

ANN is the most widely used type of ANN in

hydrological modeling, and is also adopted in this

study. Network architecture mainly denotes the

number of input/output variables, the number of

hidden layers and the number of neurons in each

hidden layer. It determines the number of connec-

tion weights and the way information flows through

the network. The major concern of the designer of

an ANN structure is to determine the appropriate

number of hidden layers and the number of neurons

in each layer. There is no systematic way to

establish a suitable architecture, and the selection

of the appropriate number of neurons is basically

problem specific. Hornik et al. (1989) proved that a

single hidden layer network containing a suffi-

ciently large number of neurons can be used to

approximate any measurable functional relationship

between the input data and the output variable to

any desired accuracy. De Villars and Barnard

(1993) showed that an ANN comprised of two

hidden layers tends to be less robust and converges

with less accuracy than its single hidden layer

counterpart. Furthermore, some studies indicate that

the benefits of using a second hidden layer are

marginal to the rainfall-runoff modeling problem

(e.g. Minns and Hall, 1996; Abrahart and See,

2000). Taking recognizance of the above studies, a

single hidden layer is used in this study.

There are some algorithms, including pruning and

constructive algorithms, to determine an ‘optimum’

number of neurons in the hidden layer(s) during

training. However, a trial and error procedure using

different number of neurons is still the preferred

choice of most users (e.g. Shamseldin, 1997; Zealand

et al., 1999; Abrahart and See, 2000) and is the

method used also in this research.

The number of ANN input/output variables is

comparatively easy to determine. According to the

result of state space reconstruction discussed in

Section 2.2, we use the known discharges of QtK4;

QtK3;.;Qt of day tK4 to day t, respectively, as the

inputs. The output of the ANN is the predicted

discharge QtC1 of day tC1. Before fitting an ANN

model, the data should be preprocessed. There are

basically two reasons for preprocessing. Firstly,

preprocessing can ensure that all variables receive

equal attention during the training process. Otherwise,
input variables measured on different scales will

dominate training to a greater or lesser extent because

initial weights within a network are randomized to the

same finite range (Dawson and Wilby, 2001).

Secondly, preprocessing is important for the effi-

ciency of training algorithms. For example, the

gradient descent algorithm (error backpropagation)

used to train the MLP is particularly sensitive to the

scale of data used. Due to the nature of this algorithm,

large values slow training because the gradient of the

sigmoid function at extreme values approximates zero

(Dawson and Wilby, 2001). In general, there are

fundamentally two types of preprocessing methods.

The first is to rescale the data to a small interval

(referred to as rescaling), such as [K1, 1] or [0, 1],

depending on the transfer (activation) function used in

the neurons, because some transfer functions are

bounded (e.g. logistic and hyperbolic tangent func-

tion). Another is to standardize the data by subtracting

the mean and dividing by the standard deviation to

make the data have a mean of 0 and variance 1

(referred to as standardization).

3.2. ANN training

The ANN training is fundamentally a problem of

nonlinear optimization, which minimizes the error

between the network output and the target output

by repeatedly changing the values of ANN’s

connection weights according to a predetermined

algorithm. Error backpropagation (e.g. Rumelhart

et al., 1986) is by far the most widely used

algorithm for optimizing feedforward ANNs. In this

study, training was implemented using the traingdm

function in Matlab Neural Network Toolbox, which

uses the error backpropagation algorithm by

updating the weight and bias values according to

gradient descent with momentum. Networks trained

with the backpropagation algorithm are sensitive to

initial conditions and susceptible to local minima in

the error surface. On the other hand, there may be

many parameter sets within a model structure that

are equally acceptable as simulators of a dynamical

process of interest. Consequently, instead of

attempting to find a best single ANN model, we

may make predictions based on an ensemble of

neural networks trained for the same task (see e.g.

Sharkey, 1996). In this present study, the idea of



W. Wang et al. / Journal of Hydrology xx (2005) 1–176

DTD 5 ARTICLE IN PRESS
ensemble prediction is adopted, and the simple

average ensemble method is used. For each ANN

model, we train it ten times so as to get 10

networks, and choose five best ones according to

their training performances. With the five selected

networks, we get five outputs. Then we take a

simple average of the five outputs to be the final

output.

A very important issue about training an ANN is

how to decide when to stop the training because

ANNs are prone to either underfitting or overfitting if

their trainings are not stopped appropriately. The

cross-validated early stopping technique is most

commonly used (e.g. Braddock et al., 1998) to avoid

stopping too late (i.e. resulting in overfitting).

However, Amari et al. (1997) showed that overfitting

would not occur if the ratio of the number of training

data sets to the number of the weights in the network

exceeds 30. In such cases, training can be stopped

when the training error has reached a sufficiently

small value or when changes in the training error

remain small. In fact, some experiments with

simulated time series show that (Wang et al.,

2005a), even when the ratio is as high as 50, very

slight overfitting still can be observed in some cases.

But cross-validation generally does not help to

improve, in many cases even degrades, the generality

of ANNs when the ratio is larger than 20. In our study,

the ratio of the number of input data sets and the

number of network weights is far larger than 50,

therefore, the use of cross-validation data was not

considered necessary. The training is stopped after

3000 epochs.

3.3. Model performance measures

There is an extensive literature on model

forecasting evaluation indices (e.g. Nash and

Sutcliffe, 1970; Garrick et al., 1978; Wilmott et

al., 1985; Legates et al., 1999; Kneale et al., 2001).

Despite its crudeness and identified weaknesses

(Kachroo and Natale, 1992), the coefficient of

efficiency (CE) introduced by Nash and Sutcliffe

(1970) is still one of the most widely used criteria

for the assessment of model performance. The CE,

which provides a measure of the ability of a model

to predict values that are different from the mean,

has the form
CEZ 1K

Pn
iZ1

ðQiKQ̂iÞ
2

Pn
iZ1

ðQiK �QÞ2
; (2)

where Qi is the observed value, Q̂i is the predicted

value, �Q is the mean value of the observed data. A

CE of 0.9 and above is generally considered very

satisfactory, 0.8–0.9 represents a fairly good model,

and below 0.8 is considered unsatisfactory (Sham-

seldin, 1997). Because CE is a global measure of

comparing the predicted value with the overall

mean value, it is not efficient enough to evaluate

the predictions for those series whose mean values

change with seasons, which is almost always the

case for hydrological processes. Therefore, a

seasonally-adjusted coefficient of efficiency

(SACE) (Wang et al., 2004b), which is originally

named as adjusted coefficient of efficiency (ACE),

is also used here for evaluating the model

performance. SACE is calculated by

SACEZ 1K

Pn
iZ1

ðQiKQ̂iÞ
2

Pn
iZ1

ðQiK �QmÞ
2

; (3)

where mZi mod S (mod is the operator calculating

the remainder), ranging from 0 to SK1; and S is

the total number of ‘season’ (Note that, a ‘season’

here is not a real season. It may be a month or a

day depending on the timescale of the time series.

For daily streamflow series, one season is one day

over the year.); �Qm is the mean value of season m.

Besides the above two measures, the mean squared

error (MSE) or equivalently root mean squared error

(RMSE), is another popular measure because it is very

sensitive to even small errors, which is good for

comparing small differences of model performances.

RMSE is calculated by

RMSEZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
iZ1

ðQiKQ̂iÞ
2

s
: (4)
3.4. Forecasting with normal ANN models

For comparison with the hybrid ANN modeling

approaches, the normal MLP–ANN models are first
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fitted to the daily flow series without any data grouping

or clustering procedure. The models are fitted using the

daily discharge data at Tangnaihai from 1956 to 1995,

and 1- to 10-day ahead forecasts are made for year

1996–2000. The purpose of making 1- to 10-day

forecasts is to explore the differences ofmodel behavior

when making forecasts for short to long lead times. By

splitting the total available data into a training data set of

40 years and a validation (i.e. forecasting) data set of 5

years, we have enough data to avoid the problem of

overfitting when training the ANN models and have

enough data to make the performance evaluation results

on the basis of validation data statistically meaningful.

To predict daily discharges up to 10 days of lead time, a

simple recursive algorithm will be used to obtain

forecasts for successive lead times. AnANNmodel will

first predict QtC1, and the predicted QtC1 will then be

used to update the input variables into the ANN so as to

predict QtC2. This procedure is thus repeated until the

forecasted values ranging fromQtC1 toQtC10 aremade.

Matlab Neural Network Toolbox is used to

construct different one-hidden-layer MLP networks

with a range of 3–10 hidden neurons in the hidden

layer. The model forecasting results with different

architectures indicate that 3-node networks generally

perform best. Therefore, the chosen configuration for

MLP–ANNs is 5–3–1, namely, five inputs, one hidden

layer with three hidden neurons and one output. This

MLP structure is adopted throughout all the ANN

models in this study.

To compare the influence of different preproces-

sing procedures on model performance, six different

preprocessing procedures are applied:

† Standardizing the raw data series;

† Rescaling the raw data series;

† Standardizing the log-transformed data series;

† Rescaling the log-transformed data series;

† Deseasonalizing the log-transformed data series;

† Deseasonalizing the log-transformed data series

and then rescaling the deseasonalized series.

The deseasonalization is a special type of

standardization, which is commonly used when

fitting time series model to streamflow series (e.g.

Hipel and Mcleod, 1994). But instead of using the

overall mean value and the overall deviation to

make the standardization, the deseasonalization is
accomplished by subtracting the seasonal (e.g. daily,

monthly) means and dividing by the seasonal standard

deviations. Because the activation (or transfer)

function in the hidden neurons used in this study is

the tan-sigmoid function, which is mathematically

equivalent to the hyperbolic tangent function, in the

form of f ðxÞZ2=ð1CeK2xÞK1, and the output value

of the tan-sigmoid function is bounded between K1

and 1, so when rescaling the data, we rescale both the

input and output data to [K1, 1] with

xZ
2ðxKxminÞ

ðxmaxKxminÞ
K1 (5)

where xmin and xmax are the minimum and maximum

values in the data set, respectively.

In total, six MLP models are fitted to the daily

streamflow data, each of which has a different

preprocessing procedure. When making forecasts,

post-processing is needed to inversely transform the

outputs to their original scale. Table 1 lists model

performance evaluation results of the 1- to 10-day

ahead forecasts with the MLP models. It is shown

that: (i) MLP models fitted to standardized data

perform better than those fitted to rescaled data (note

that deseasonalization without rescaling is a special

type of standardization); (ii) in the case of the longer

lead time forecasts, it is better to do a log-

transformation before standardizing of the data; and

(iii) Overall, the MLP model fitted to the deseasona-

lized data, without rescaling, performs best, and the

advantage becomes more evident as the lead time

increases.
4. Forecasting with hybrid ANN models

In this study, three hybrid ANN models, namely,

the periodic ANN model (PANN), the threshold ANN

(TANN), and the cluster-based hybrid ANN (CANN),

are built. The three hybrid ANN models are briefly

described as follows.
4.1. Threshold ANN (TANN)

The threshold ANN (TANN), analogous to the

threshold regression model, divides the streamflow

series into several regimes according to some
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Fig. 3. Probability density estimate of log-transformed daily

streamflows at Tangnaihai.

Table 1

Forecasting performances with normal MLP–ANN models for daily flows at Tangnaihai

Lead

time

(days)

1 2 3 4 5 6 7 8 9 10

CE Raw_std 0.989 0.966 0.938 0.910 0.881 0.849 0.814 0.776 0.739 0.699

Raw_rescale 0.981 0.955 0.918 0.887 0.851 0.815 0.774 0.735 0.694 0.655

Ln_std 0.988 0.965 0.942 0.919 0.895 0.870 0.843 0.815 0.788 0.760

Ln_rescale 0.963 0.942 0.919 0.894 0.864 0.834 0.806 0.778 0.750 0.723

Ln_DS 0.989 0.967 0.943 0.92 0.897 0.873 0.848 0.823 0.799 0.775

Ln_DS_rescale 0.985 0.964 0.939 0.916 0.891 0.866 0.838 0.811 0.785 0.758

SACE raw_std 0.980 0.936 0.885 0.834 0.779 0.721 0.654 0.585 0.516 0.442

raw_rescale 0.965 0.916 0.848 0.791 0.724 0.657 0.582 0.508 0.434 0.36

Ln_std 0.978 0.935 0.892 0.849 0.806 0.759 0.708 0.658 0.607 0.555

Ln_rescale 0.932 0.893 0.849 0.803 0.748 0.692 0.641 0.588 0.536 0.487

Ln_DS 0.980 0.938 0.894 0.852 0.810 0.765 0.719 0.672 0.628 0.582

Ln_DS_rescale 0.972 0.933 0.887 0.845 0.799 0.751 0.700 0.65 0.601 0.551

Note: ‘Raw’ denotes the raw data; ‘ln’ denotes log-transformation; ‘std’ denotes the standardization by subtracting the mean and dividing by the

standard deviation; ‘DS’ denotes the deseasonalization by subtracting seasonal means and dividing by seasonal standard deviations; ‘rescale’

denotes rescaling to K1 to 1.
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threshold values, and then builds one ANN model for

each regime.

To fit a threshold model, whether it is a threshold

linear model or a threshold nonlinear model, the main

concern is to determine the threshold value. Tong

(1983) suggested that the location of modes and

antimodes of the univariate histogram for xt and the

bivariate histogram for (xt, xtKi) (iZ1, 2,.,p, say)

may assist in the identification of the threshold

parameters. Histogram is the simplest estimator of

the probability density function (pdf). An improved

histogram estimate is the kernel density estimate,

which can overcome the histogram’s sensitivity to

choice of data origin and bin (i.e. class interval) width

(Silverman, 1986). The kernel pdf is estimated as

f ðxÞZ
1

nh

Xn
iZ1

K
xKxi
h

� �
(6)

where n is the sample size, xiZ1,.,n are the data, h is

the bandwidth, and K(u) is the kernel function, in this

case the Gaussian kernel function.

The kernel density estimate of pdf is calculated for

the daily streamflow of the Yellow River at

Tangnaihai. Fig. 3 shows that the streamflow series

has a bimodal pdf, whose two modes may indicate two

regimes of the flow process dynamics, and the

antimode may correspond to a point of separation of

the two regimes. The low-flow regime is around
195 m3/s (zexp(5.273)), and the high-flow regime

around 671 m3/s(zexp(6.508)), the two regimes

being separated at the antimode, near 381 m3/s(z
exp(5.942)).

Therefore, we divide the streamflow states in the

reconstructed state-space (described in Section 2.2)

into two regimes, namely, one regime composed of

the streamflow states whose average discharges are

larger than 381 m3/s, and another one composed of the

streamflow states less than 381 m3/s. Then one MLP

network is fitted to the streamflows in each regime.
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4.2. Cluster-based ANN (CANN)

For the cluster-based ANN (CANN) model, we

divide the streamflow state vectors in the recon-

structed state space into several clusters based on

cluster analysis techniques, and then build one

ANN model for each cluster. The fuzzy C-means

(FCM) clustering technique is applied in the

present study to do the clustering, so that we can

cluster the streamflow state vectors both softly and

crisply.

FCM clustering is proposed by Bezdek (1981) as

an improvement over the hard k-means clustering

algorithm. The FCM method partitions a set of n

vector xj, jZ1,.,n, into c fuzzy clusters, and each

data point belongs to a cluster to a degree specified by

a membership grade uij between 0 and 1. We define a

matrix U consisting of the elements uij, and assume

that the summation of degrees of belonging for a data

point is equal to 1, i.e.
Pc
iZ1

uijZ1; cjZ1;.; n. The

goal of the FCM algorithm is to find c cluster centers

such that the cost function of dissimilarity (or

distance) measure is minimized. The cost function is

defined by

JðU; v1;.; vcÞZ
Xc
iZ1

Ji Z
Xc

iZ1

Xn
jZ1

umij d
2
ij (7)

where vi is the cluster center of the fuzzy group i;

dijZkviKxjk is the Euclidean distance between

the ith cluster center and the jth data point; and

mR1 is a weighting exponent, taken as 2 here.

The necessary conditions for Eq. (7) to reach its
0
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Fig. 4. Membership grades of the daily streamflows in
minimum are:

vi Z

Pn
jZ1

umij xj

Pn
jZ1

umij

(8)

and

uij Z
Xc
kZ1

dij

dkj

� �2=ðmK1Þ
" #K1

(9)

The fuzzy C-means algorithm is an iterative

procedure that satisfies the preceding two necess-

ary conditions as follows.

(1) Initialize the membership matrix U with

random values between 0 and 1.

(2) Calculate c fuzzy cluster centers vi, iZ1,.,c,

using Eq. (8).

(3) Compute the cost function according to Eq.

(7). Stop if either it is below a tolerance value

or its improvement over the previous iteration

is below a certain threshold.

(4) Compute a newU using Eq. (9). Return to step (2)

.

The streamflow states in the reconstructed state

space of the Yellow River at Tangnaihai are grouped

into three clusters using the FCM clustering method.

The FCM clustering result of the streamflow states in

a typical year is shown in Fig. 4. Compared with

Fig. 1, it is seen that, when grouping the streamflow

states into three clusters, the three groups basically

represent three different daily flow regimes, i.e. low

flow, medium flow and high flow. However, for some

years, three groups may be much more fragmented.
250 300 350
ear

Cluster 1

Cluster 2

Clusaer 3

a typical year with the FCM of three clusters.
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After the streamflow state vectors in the recon-

structed state space are grouped into three clusters, we

thenfit oneANN to the streamflowstates in each cluster,

three ANN models in total. When making a forecast

from a current streamflow state, the final output of the

overall CANN model is a weighted average of the

outputs of the three ANN models. The weights are

determined according to the distance between the

current streamflow state and each cluster center.
4.3. Periodic ANN (PANN) model

The periodic ANN (PANN) model essentially is a

group of ANN models, each of which is fitted to the

streamflows that occurred in a separate ‘season’ (notice

that, seasonhere does notmean a real season. Itmay be a

group of neighbouring days or months over the year).

The idea of fitting PANN model to daily streamflows is

adopted from that of fitting the periodic autoregressive

(PAR) model (Wang et al., 2004a). When we build a

PAR model for monthly flows, one AR model may be

built for each month over the year. However, it is

unfeasible to fit one AR model for each day of the year

when building a PARmodel for daily flows. In order to

make the periodic model ‘parsimonious’, an approach

was proposedbyWanget al. (2004a)whereby a periodic

AR model is fitted to daily streamflows based on

partitioning of days over the year with clustering

techniques. This approach is followed here to build

the periodic ANN model.

The PANN differs from the CANN in that, in the

construction of the CANN we clusters the discharges

in the reconstructed phase-space, whereas in the

construction of the PANN we cluster the days over
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Fig. 5. Daily autocorrelations at different lag d
the year according to the characters of the discharges

of each day. When partitioning the days over the year

with the clustering analysis method, the raw average

daily discharge data and the autocorrelation values at

different lag times (1–10 days, as shown in Fig. 5) are

used. The daily discharge data and the autocorrela-

tion coefficients are organized as a matrix of the size

(NC10)!365, where N is the number of years (in

this case, NZ45) and ‘10’ represents the autocorre-

lation values at 10 lags. To eliminate the influence of

big differences among data values on cluster analysis

result, the log-transformation is first applied to the

daily discharges before making the cluster analysis.

Then the 365 days over the year are partitioned

with the fuzzy c-means clustering described in

Section 4.2. The cluster result is shown in Fig. 6.

Comparing Figs. 1 and 6, we see that if we just

follow the clustering result to partition the days

over a year into five groups, the dynamics of

streamflow is not well captured because cluster

two and three in Fig. 6 mix the streamflow rising

limb and falling limb shown in Fig. 1. Therefore,

according to the FCM clustering result, and

considering the dynamics of the streamflow

process, we partition the 365 days over the year

into seven hard segments, as listed in Table 2.

The days over the year can also be softly

partitioned, such that each day could belong to

several partitions. The essence of soft partitioning is

the determination of the membership grade (or

membership function) of each partition, which is

one of the most crucial issues in the foundation of

fuzzy reasoning. In this study, following the pattern

of the FCM clustering result, the membership grade
0 240 300 360
er the year

lag = 1 day
lag = 5 days
lag = 10 days

ays for daily flow series at Tangnaihai.



Table 2

Hard partitioning of the days over the year for the daily streamflows at Tangnaihai

Partition 1 2 3 4 5 6 7

Day span 1–77, 349–365/366 78–114 115–167 168–237 238–302 303–322 323–348
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Fig. 6. Membership grades of the days over the year for the daily streamflows at Tangnaihai with the FCM of five clusters.
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is formed intuitively for the days over the year, as

shown in Fig. 7.

Based on the partitioning results, the PANN

model is built, whereby one MLP model is fitted to

each (hard) seasonal partition. When forecasting,

different MLP models are used depending on what

seasonal partition the date for which the forecasted is

made lies in. The fitted PANN model can be applied

to forecasting in two ways: based on hard partition-

ing (referred to as hard PANN) and based on soft

partitioning (referred to as soft PANN). When soft

partitioning is applied, one day could belong to

several season partitions. Correspondingly, the final

output would be a weighted average of the outputs of

the several ANN models fitted for these seasonal
0
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Fig. 7. Soft partitioning of the days over the year for the daily strea
partitions. The weight is equal to the membership

grade obtained with the FCM clustering results.
4.4. Performances of hybrid ANN models

The components of all the hybrid ANN models

have the same 5–3–1 MLP structure, as identified for

normal MLP–ANN models considered in Section

3.4. According to the comparison among different

data preprocessing methods described in Section 3,

deseasonalization is the best choice of preprocessing

method. However, because TANN and CANN divide

up the streamflow states into different regimes

according to their values, it is more convenient to

standardize the data than to deseasonalize the data
200 250 300 350

er the year

4
5

6

7
1

mflows at Tangnaihai according to the FCM of five clusters.



Table 3

Forecasting performances with hybrid ANN models for daily flows at Tangnaihai

Lead

time

(days)

1 2 3 4 5 6 7 8 9 10

CE CANN 0.984 0.942 0.898 0.856 0.815 0.774 0.735 0.698 0.665 0.633

TANN 0.989 0.967 0.941 0.916 0.892 0.867 0.839 0.811 0.784 0.755

Hard PANN 0.989 0.966 0.942 0.919 0.895 0.870 0.844 0.818 0.793 0.769

Soft PANN 0.990 0.967 0.943 0.920 0.897 0.873 0.848 0.823 0.799 0.776

SACE CANN 0.969 0.893 0.810 0.733 0.657 0.581 0.508 0.441 0.378 0.320

TANN 0.980 0.938 0.891 0.845 0.799 0.753 0.702 0.650 0.599 0.546

Hard PANN 0.980 0.937 0.892 0.849 0.805 0.759 0.711 0.663 0.617 0.571

Soft PANN 0.981 0.940 0.895 0.852 0.808 0.765 0.718 0.671 0.628 0.584
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for building TANN and CANN models. Therefore,

the input/output data are log-transformed and then

standardized before fitting the TANN model and the

CANN model, and log-transformed and then desea-

sonalized before fitting the PANN model.

Table 3 lists performance evaluation results of the

1- to 10-day ahead forecasts with these four ANN
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Fig. 8. Scatter plots of (a) 1-day; (b) 5-day and (c) 1-Zday ahead discharge

partitions.
models (including hard PANN and soft PANN). It is

shown that the PANN model performs best among

three types of hybrid ANN models, and the soft

PANN performs better than the hard PANN. The

scatter plots of one-day ahead, 5-day ahead and 10-

day ahead forecasted versus observed daily dis-

charges for year 1996–2000 with the soft- partition
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forecasts for year 1996–2000 with the PANN based on soft seasonal
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based PANN are shown in Fig. 8. The five-day ahead

forecasted hydrograph versus observed hydrograph

of daily discharges in year 1999 and 2000 is shown in

Fig. 9, and the 10-day ahead forecasted hydrograph

shown in Fig. 10. Because the hydrograph of one-day

ahead forecast is not very informative due to high

forecast accuracy, it is not shown here to save the

space.

Because the model performance difference

measured with CE and SACE is not very informative

(comparing Tables 1 and 3), in order to give a more

clear comparison between the PANN models and

the normal MLP–ANN model that is fitted to

the deseansonalized data without rescaling or any

grouping procedure, the RMSE measure is used to

evaluate the model performance. The results are

listed in Table 4, where it is seen that for the shorter

lead times, the soft PANN performs better than the
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Fig. 10. Ten-day ahead discharge forecasts with t
normal MLP model, but the advantage vanishes as

the lead time increases (R4 days).
5. Some discussions

5.1. About the preprocessing of input/output data

It is recognized that data preprocessing can have a

significant effect onmodel performance (e.g. Maier and

Dandy, 2000). It is commonly considered that, because

the outputs of some transfer functions are bounded, the

outputs of anMLP ANNmust be in the interval [0,1] or

[K1,1] depending on the transfer function used in the

neurons. Some authors suggest using even smaller

intervals for streamflow modelling, such as [0.1, 0.85]

(Shamseldin, 1997), [0.1, 0.9] (e.g. Hsu et al., 1995;

Abrahart and See, 2000) and [K0.9, 0.9] (e.g. Braddock
000 12/31/2000

ate

Observed

Forecasted

he PANN based on soft seasonal partitions.



Table 4

Forecasting performances of the normal MLP–ANN model and PANN models

Lead

time

(days)

1 2 3 4 5 6 7 8 9 10

MLP 45.9 80.3 105.0 123.9 140.6 156.2 171.0 184.5 196.6 208.3

RMSE Hard PANN 45.5 80.6 105.7 125.3 142.4 158.1 173.3 187.2 199.5 211.0

Soft PANN 44.8 79.2 104.4 124.1 141.1 156.3 171.1 184.8 196.7 207.9

Note: The normal MLP–ANN model is fitted to the deseasonalized and non-rescaled series.
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et al., 1998), so that extreme (high and low) flow events

occurring outside the range of the calibration data may

be accommodated. For model building convenience, it

is common that both input and output data are rescaled

before fitting ANN models (e.g. Hsu et al., 1995;

Rajurkar et al., 2004). However, the advantage of

rescaling the data into a small interval is not supported

by this study. In the case of forecasting for the daily

flows at Tangnaihai, not only is the general performance

of the MLP-ANN with standardization preprocessing

better than theMLP-ANNwith rescaling preprocessing,

but the performance for low flow and high flow periods

is also better.

There are two explanations for this result. On the

one hand, suppose we only consider the relationship

between one input and one neuron with a hyperbolic

tangent transfer function tansig(x). To rescale the

input data to [K1, 1] would limit the output range of

the tansig(x) function approximately to [K0.7616,

0.7616]. To rescale the input range to [K0.9, 0.9]

would further shrink the output range approximately

to [K0.7163, 0.7163]. Both 0.7616 and 0.7163 are

still far away from the extreme limits of the tansig(x)

function, whereas such a small output data range will

make the output less sensitive to the change of the

weights between the hidden layer and output layer,

and will therefore possibly make the training process

more difficult. On the other hand, because the

neurons in an ANN are combined linearly with

many weights (as in a MLP model), any rescaling of

the input vector can be effectively offset by changing

the corresponding weights and biases. Therefore, to

standardize the input/output data may be a better

choice than to rescale them into a small interval (e.g.,

[K1,1]), especially when the data size is large

enough to include possible data extremes.
A related subject is the choice of transfer function.

The most commonly used transfer functions are the

logistic sigmoid function and hyperbolic tangent

function, the logistic sigmoid function ðlogsigðxÞZ
1=ð1CeKxÞÞ being much more frequently used than

the hyperbolic tangent function in hydrologic

forecasting (e.g. Hsu et al., 1995; Minns and Hall,

1996; Zealand et al., 1999; Abrahart and See, 2000).

However, Kalman and Kwasny (1992) argue that the

hyperbolic tangent transfer function should be used,

and the empirical results obtained by Maier and

Dandy (1998) also indicate that not only is the

training with the hyperbolic tangent function faster

than the training with the logistic sigmoid transfer

function, but the predictions obtained using networks

with the hyperbolic tangent are slightly better than

those with the logistic sigmoid transfer functions.

Kalman and Kwasny (1992) show mathematically

that the hyperbolic tangent function possesses

particular properties that make it appealing for use

while training. However, no comparison of the

logistic sigmoid function and hyperbolic tangent

function is carried out in this present study. We only

make a heuristic analysis about this problem here.

Suppose we only consider the relationship between

one input and one neuron with a logistic sigmoid

function. When the input is in the interval [K1,1],

then the output is in the range [0.26894–0.73106]

(log sig(K1)z0.26894, log sig(1)z0.73106), less

than 1/3 of that of the hyperbolic tangent function. It

is possible that, because the output of the logistic

sigmoid function is constrained into a much smaller

range than that of the hyperbolic tangent function,

this results in the output of the ANN with logistic

sigmoid functions being less sensitive to the change

of connection weights, consequently making the
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training of ANNs with the logistic sigmoid function

more difficult than that of ANNs with the hyperbolic

tangent function.
5.2. About the selection of the optimal ANN model

It is well known that anANN is sensitive to the initial

weights. When building an ANNmodel, every time we

train it, we may get a different set of parameters. One

way to increase the likelihood of obtaining near-

optimum set of parameters is to train the ANN with

different independent initial weights, then the model

builders choose the best ANN model according to the

training or validation performance among many

competitive ANN models (e.g. Rajurkar et al., 2004).

However, in practical applications, real validation data

are future values, which virtually do not exist when we

fit an ANN model, therefore we cannot choose the best

model according to the validation performance. On the

other hand, if we choose the best ANNmodel according

to the training performances, the best training perform-

ance actually does not guarantee best validation

performance, especially for multi-step forecasting,

although the best training performance mostly indicate

the best validation performance. That means, suppose

we split all the available data into three parts, namely

one training data set, and two validation data sets (A and

B), a model which is the best for validation set A does

not necessarily perform the best for validation set B.

This is because the generality of an ANNmodel may be

limited even though the size of training data may be

sufficiently large, especially in the case of a natural

watershed system which may have more or less

underlying changes due to climate changes and

human activities. On the other hand, as mentioned in

Section 3.2, there may be many parameter sets within a

model structure that are equally acceptable as simu-

lators of a dynamical process of interest. Therefore, the

attempt to choose a best ANN model is not sound.

Instead, it is much better tomake the ensemble forecast.

One robust way of making ensemble forecast is simply

taking the average of the forecasts of an ensemble of

ANN models. To minimize the possibility that some of

the ensemble members are poorly trained due to the

effects of localminima in the error surface,wemay train

a number of networks (say, 10) first, then choose several

best ones (say, 5) as ensemble members according to
their training performances. This is the approach taken

in this study.
6. Conclusions

For modeling complicated streamflow processes

efficiently, lots of models have been proposed based

on the principle of divide-and-conquer (DAC), which

deals with a complex problem by dividing it into simple

problems,which are solved independently. In this study,

three types of hybrid ANN models based on the DAC

principle, namely, the threshold-based ANN (TANN),

the cluster-based ANN (CANN), and the periodic ANN

(PANN), are used as univariate streamflow time series

models to forecast 1- to10-dayaheaddaily dischargesof

the upper Yellow River at Tangnaihai in China. For the

purpose of comparing the forecasting efficiency, the

normal multi-layer perceptron form of ANN (MLP–

ANN) is selected as the baseline ANN model. The

model evaluation results indicate that, among three

types of hybrid ANN models, the PANN model

performs best. Furthermore, the PANN based on soft

seasonal partitions performs better than the PANN

based on hard seasonal partitions. Compared with the

normal MLP models, the PANN models perform

generally better than normal MLP–ANN models,

although the advantage vanishes as the lead time

increases (R4 days) compared with the normal MLP–

ANN model that is fitted to the deseansonalized data

without rescaling or any grouping procedure.

In addition, the influence of different data

preprocessing procedures, namely, standardization,

log-transformation, rescaling, deseasonalization, and

their combinations, on the ANN model performance

is analyzed. It is shown that, for MLP networks with

a tan-sigmoid transfer function, standardizing the

data by subtracting the mean value and dividing by

the standard deviation is better than rescaling the

data to a small interval of [K1, 1]. Furthermore, for

seasonal data such as streamflow series, deseasoni-

zation accomplished by subtracting the seasonal (e.g.

daily or monthly) means and dividing by the seasonal

standard deviations, is a better choice than other

preprocessing methods.

One limitation of the current study is that only one

data series (the daily streamflow series of the Yellow

River at the Tangnaihai gauging station) is
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considered for analysis. To establish generality of

the conclusions, more streamflow processes should

be analysed, and exogenous variables of the runoff

generating processes such as rainfall processes

should be employed. But be careful that, when

exogenous variables, the preprocessing procedure of

deseasonalization may not work because the season-

ality of different variables would not be identical,

therefore seasonal information may be useful in

forecasting. In consequence, the standardization may

work better in the case of having exogenous

variables involved. Besides cluster-based and

threshold-based approaches, there is a variety of

other techniques available now to break the

complicated streamflow forecasting problem down

before solving the resulting sub-problems with

different neural networks. It would be interesting to

further compare the season-based PANN approach

with other techniques, such as Bayesian-concept

based modular ANN (e.g. Zhang and Govindaraju,

2000), fuzzy-logic based hybrid modelling (e.g. See

and Openshaw, 1999) and SOM-cluster based hybrid

modelling (Abrahart and See, 2000).
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