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Gijsje H Koenderink

Available online at www.sciencedirect.com

ScienceDirect
Cell shape and mechanics are determined by the interplay of

three distinct cytoskeletal networks, made of actin filaments,

microtubules, and intermediate filaments. These three types of

cytoskeletal polymers have rather different structural and

physical properties, enabling specific cellular functions.

However, there is growing evidence that the three cytoskeletal

subsystems also exhibit strongly coupled functions necessary

for polarization, cell migration, and mechano-responsiveness.

Here we summarize this evidence from a biophysical point of

view, focusing on physical (direct) interactions between the

cytoskeletal elements and their influence on cell mechanics

and cell migration.
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Introduction
Animal cells undergo substantial changes in shape as they

grow, divide, and move. Yet, they also have an extraordi-

nary ability to maintain their characteristic shape upon

exposure to mechanical forces. Understanding how cells

can combine dynamic shape control with mechanical

stability is a shared goal of cell biologists and biophysi-

cists. The principal molecular machinery responsible for

cell shape and mechanics is the cytoskeleton. Given its

enormous molecular complexity, it is common to study it

in terms of distinct functional subsystems: actin filaments

(AFs), microtubules (MTs), and intermediate filaments

(IFs). There has been extensive experimental and theor-

etical work to understand the mechanisms that regulate

the turnover dynamics and spatial organization of each

subsystem in cells. AFs and MTs are both polar filaments,

which exhibit fast out-of-equilibrium polymerization

dynamics, and network-wide turnover rates on the order
www.sciencedirect.com 
of minutes. By contrast, IFs have no structural polarity,

polymerize in the minute time-scale, and have network-

wide remodeling rates in the time-scale of hours. As

powerful as the division into cytoskeleton subsystems

has been in the past, it partly obstructed the view of the

cytoskeleton as a highly intertwined entity. The last

decade has brought growing evidence for strong coupling

between all three cytoskeletal subsystems during key

cellular functions ranging from cell motility and division

to mechano-responsiveness [1–3]. In this review we sum-

marize these findings from a biophysical point of view,

focusing on physical (direct) interactions between the

cytoskeletal elements and their implications for the

mechanical properties and migratory behavior of animal

cells. Since the human IF family encompasses more than

65 different members, with cell-specific and tissue-

specific functions, and given that we wish to focus on

general physical concepts applicable to different cellular

settings, we mainly consider the two most ubiquitous IFs:

vimentin and keratin.

Evidence for three-way cytoskeletal crosstalk
There is a wealth of evidence that the three cytoskeletal

subsystems interact indirectly via biochemical signaling

[2,4�,5] and gene regulation [6,7]. In addition, they also

interact through direct physical contact, mediated by

direct binding, cross-linkers, or through steric effects

(as summarized in Figure 1). In vivo and in vitro studies

have highlighted direct binding between filamentous

actin and vimentin [8] and between dephosphorylated

neurofilaments and MTs [9]. More established is a

variety of cross-linking protein complexes which include

both active (i.e. AF-based and MT-based motor proteins)

and passive components (i.e. plectins, members of the

plakin family, [10]). There are also interconnections

mediated by protein complexes situated at cell–matrix

and cell–cell junctions and at the nuclear envelope

[11,12�]. Finally, the three cytoskeletal subsystems can

also interact through nonspecific steric interactions. A

recent study of mouse fibroblasts on micropatterns [13]

for instance clearly showed how MTs interpenetrate a

dense network of AFs near the cell periphery, and a dense

network of vimentin in the cytoplasm (Figure 2a–c).

Steric interactions, while often ignored, can contribute

importantly to cell mechanics and shape control by

influencing the mobility of cytoskeletal filaments [14]

and by synergistically reinforcing the cytoskeleton, as

reviewed below.
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Multiple physical interactions exist within and in between the three cytoskeletal subsystems: intermediate filaments (IFs), microtubules (MTs) and

actin filaments (AFs). In regions of spatial overlap (center), the subsystems interact via steric effects between IFs and MTs (mainly in the cell

interior), MTs and AFs (mainly in the cell periphery), and IFs and AFs (mainly at the periphery of the IF network). For each individual cytoskeleton

subsystem, there are cross-linkers and motors for AFs [15,16] and for MTs [5,17], while IFs are only connected by cross-linkers [18]. Crosstalk

between AFs and IFs is facilitated by cross-linkers and motors [2,18] and also by direct binding in the case of vimentin [8]. Crosstalk between MTs

and IFs is also mediated by cross-linkers and motors [2,5], and direct binding in the case of neurofilaments (NFs) [9,20]. Crosstalk between AFs

and MTs is mediated by numerous cross-linkers [1,5,21] as well as AF-based [1,22,23] and MT-based motors [1].
Role of cytoskeletal crosstalk in cell
mechanics
A plethora of biophysical techniques is now available to

probe the mechanical properties of single cells, usually

by inducing local or whole-cell deformations through

contact-based, hydrodynamic, magnetic, or optical

forces [15,24]. Cells show large variations in mechanical

properties [25] depending on intrinsic factors such as

cell type and cycle, and on external factors such as

substrate stiffness. It is still an unresolved question how

the three cytoskeletal elements contribute individually
Current Opinion in Cell Biology 2015, 32:39–47 
to the mechanical behavior of cells. Usually, cells are

perturbed with drugs or genetic methods to manipulate

one of the cytoskeletal subsystems. However, this often

leads to secondary changes in the other two subsystems,

such as keratin gene up-regulation following actin depo-

lymerization [7].

AFs and IFs are generally considered the main determi-

nants of cell stiffness and strength [26��,27,28]. Their

relative contributions seem to depend on external cues

such as substrate stiffness [28] and applied mechanical
www.sciencedirect.com
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Figure 2
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Contribution of the cytoskeleton to the mechanical properties of cells, highlighted by in vitro studies. IFs, AF and MTs markedly differ in their

polarity, turn-over dynamics and persistence length (a, b, c from [13]). Cytoskeletal networks display a wide range of elastic moduli at small

deformations (d), spanning about five orders of magnitude, depending on their concentration and on the extent of cross-linking. Data were taken

from [31,33,70–73]. The elastic modulus increases as a power law with concentration with exponents of 7/5 for entangled networks and 11/5 for

cross-linked networks (dashed lines). A particularity of IF network is their non-linear response to large strain (d) [31]. MTs promote strain-stiffening

of actin networks by suppressing inhomogeneous AF deformations (d, inset) [33]. Actin and IF networks provide an elastic background network

that reinforces MTs against compressive forces (e), increasing the critical buckling force fc [34��]. All scale bars shown are 5mm.
stress [29]. Local mechanical probing has shown that

vimentin contributes mainly to cytoplasmic stiffness,

whereas actin dominates cortical stiffness [30]. Since

the complex interlacing of the three cytoskeletal subsys-

tems often hampers an unambiguous conclusion, quan-

titative rheological measurements on in vitro
reconstituted networks have become a popular comp-

lementary approach [24,25]. Such in vitro studies have

led to detailed predictive models of the mechanical

properties of one-component cytoskeletal networks in

terms of network architecture and the intrinsic mechan-

ical properties of the filaments and cross-linking proteins

[29]. The three cytoskeletal subsystems differ markedly

in their mechanical behavior (Figure 2). At the single

filament level, IFs are the softest, with a persistence

length (roughly a measure of the distance over which a

filament is straight) in the 1 mm range [24]. AFs have an

intermediate persistence length of about 10 mm, and

MTs are the stiffest, with a persistence length on the
www.sciencedirect.com 
order of millimeters [15,24]. Furthermore, IFs can be

stretched by up to 3 times their original length [19],

whereas AFs and MTs tend to break at strains of less

than 50% [31]. These differences at the single filament

level cause marked differences in stiffness and strength at

the whole-network level (Figure 2d). Concomitantly, IF

networks tend to be softer than MT and actin networks at

low strain, but they can withstand much larger defor-

mations [31]. Thus, IFs are generally believed to dom-

inate the mechanical response of cells at large

deformations, which is supported by recent coarse-

grained simulations [32].

Recent studies have revealed that the composite nature of

the cytoskeleton promotes surprising emergent mechan-

ical behavior that cannot be expected simply by a sum of

the parts. For instance, the elastic filamentous background

provided by AFs and IFs stabilizes MTs against buckling.

In cells, MTs usually display multiple short-wavelength
Current Opinion in Cell Biology 2015, 32:39–47
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bends (Figure 2e) and can withstand compressive forces

that are more than a 100-fold larger than the critical

buckling force of an isolated microtubule [34��]. Theor-

etical modeling revealed that this reinforcement is a gen-

eric consequence of embedding stiff MTs in an elastic

medium comprised of more flexible filaments [35]. Con-

versely, MTs were found to promote stiffening of actin

networks (inset in Figure 2d) under an applied mechanical

shear [33]. At low cross-linker density, actin networks tend

to deform inhomogeneously by non-affine deformation

modes that are sensitive to the local architecture of the

network. Computational modeling has shown that

inclusion of stiff MTs can suppress these soft modes

and thereby favor strain-stiffening [36]. Simulations and

experiments have further shown that the inclusion of stiff

MTs in an otherwise incompressible actin matrix can make

the network compressible as a whole [37,38]. Thus, the

interpenetration and steric interactions among different

cytoskeletal networks combined with specific cross-linking

(i.e. by plectins) are likely to strongly influence the overall

mechanical response of cells [39]. It may be fruitful to

compare observations from in vitro experiments and single

cell rheological measurements with findings from materials

science, which already widely exploits the synergistic

interplay that emerges from combining polymers with

disparate stiffness to design stronger materials [40].

Role of cytoskeletal crosstalk in cell shape
control
Three-way cytoskeletal crosstalk also plays an important

role in orchestrating cellular shape changes. A prominent

example is cell migration, which is realized through a

series of cytoskeletal remodeling processes which depend

on cell type and extra-cellular environment [41]. Here, we

focus on crawling (or mesenchymal) cell migration on flat

substrates, since cytoskeletal crosstalk has been studied

most extensively in this context.

Functional modules for cell migration
From a functional perspective, cell crawling can be dis-

sected into three largely autonomous modules

(Figure 3a). The first module, responsible for force gener-

ation, comprises a protrusive element that induces expan-

sion and a contractile element that counteracts it. With

few known exceptions [5,15], the acto-myosin cytoske-

leton serves as the major protrusive and contractile

element. Protrusion is driven by a dense actin meshwork

in the lamellipodium which is interspersed with parallel

bundles of AFs in filopodia [16,42]. AF nucleation and

polymerization at the cell edge drive actin network

expansion, which is followed by delayed network disas-

sembly at the lamellum, and consequent directed flow of

actin structures away from the leading edge. Contraction

is driven by myosin motors that exert pulling forces on

AFs organized in anti-parallel bundles in the lamellum

[16], as well as in stress-fibers which span the length of the

cell. The second functional module required for cell
Current Opinion in Cell Biology 2015, 32:39–47 
crawling is comprised of cell-to-matrix adhesions, which

transmit cell-generated forces to the substrate. The third

functional module is a mechanical element, that is, the

entire cytoskeleton as a compound material, which

ensures mechanical integration between the force-gen-

erating and adhesion modules. Although the functional

modules contain the ability to drive cell migration, con-

trolled and directed motion requires their tight coordi-

nation. Perturbations of any of the three functional

elements can be deleterious for proper migration. For

instance, weakening the central mechanical element by

removing keratins [26��] or reducing contractile activity

by impairing myosin motor activity [43] can lead to

unbalanced motion of the front and rear of the cell,

resulting in cell fragmentation (Figure 3b).

From autonomous functional modules to cell
movement via cytoskeletal crosstalk
Coordination between the three functional modules

involved in cell crawling requires that cells integrate

the functions of all three cytoskeletal subsystems. This,

however, makes it difficult to dissect their individual

contributions. In the context of cell migration, the actin

cytoskeleton has been the most extensively studied cyto-

skeletal component [15,16]. However, there is increasing

appreciation of the crucial contributions of MTs [1,5] and

IFs [3] to cell migration based on a growing list of

observations on cytoskeletal interactions (Figure 4). We

note, though, that the precise behaviors that stem from

such instances of cytoskeletal crosstalk are generally not

yet understood on a mechanistic level.

The most fundamental requirement for net cell motion is

a polarized organization of the cytoskeleton (Figure 3c).

Until recently, polarity establishment was mostly

ascribed to the actin and MT cytoskeleton and their

interactions with cell-to-matrix adhesions and with the

nucleus. There is, however, growing evidence that IFs are

also decisively involved in cell motion [44��,45�] and

mechano-sensing [46]. Figure 4 summarizes some of

the main cytoskeletal crosstalk instances in the cell

polarization pathway, including those in which vimentin

has been implicated. The first important instance controls

the selective disassembly of cell-to-matrix adhesion sites.

It is well-known that adhesion formation and maturation

are tightly coupled to the dynamics of the actin network at

the leading edge of cells and to stress-fiber contractility

[42,47]. Focal adhesions promote stress-fiber maturation

[47,48], which in turn promotes focal adhesion maturation

via contractile forces. There is evidence that the polarized

disassembly of focal adhesions relies on crosstalk between

AFs and MTs [5,49]. In vivo and in vitro work has

demonstrated that actin stress fibers serve as guiding

tracks for growing MTs, which can thus target adhesion

sites with their growing ends [49,50], an essential step

in triggering focal adhesion disassembly. Several IFs

have now also been shown to interact with cell–matrix
www.sciencedirect.com
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Figure 3
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Crawling cell migration requires close coordination between three distinct functional modules. (a) Forward forces are generated by protrusive

elements (lamellipodium/lamellum, filopodia), which are opposed by contractile elements (actin-myosin assemblies such as stress fibers).

Movement is generated by transmitting forces to the substrate via cell adhesions that interact with all three cytoskeletal subsystems. A visco-

elastic mechanical module (represented in terms of springs and dashpots in A), provides physical coupling between the other two modules. (b)

Perturbations of one module can cause cell fragmentation [26��,43]. (c) Net cell movement requires a polarized organization of the cytoskeleton.

One way to break symmetry is by suppressing actin-based protrusions via an as yet unknown pathway involving vimentin [44��]. Once polarized,

the asymmetrical distribution of protrusions produces a polar AF flux and thereby a net force (d). Acto-myosin driven contraction along the polar

axis can also result in overall movement if combined with a gradient in adhesion strength.
adhesions. In the case of vimentin, this interaction is

mediated by plectin [51]. Interestingly, this interaction

leads to a reciprocal crosstalk where vimentin causes

strengthening of the adhesion sites [51–53], while the

adhesions serve as sites of de novo vimentin network

formation via as yet unknown pathways [51]. Finally,

vimentin also influences the selective disassembly of

cell-to-matrix adhesions by mediating the recycling of

integrins, together with filamin [54].

A second important instance of cytoskeletal crosstalk con-

trols the maintenance of a polarized cell shape. Recent work

shows that vimentin can have a pro-migratory function
www.sciencedirect.com 
through interactions with actin networks at the cell per-

iphery. The strong observed correlation between lamelli-

podia formation and vimentin network disassembly [44��]
suggests that vimentin locally suppresses the formation of

actin-based lamellipodia, leading to an asymmetrical distri-

bution of protrusions and thereby a net force (Figure 3c,d).

Furthermore, it has been shown that upon vimentin

removal, motile cells adopt epithelial-like shapes

[44��,45�], an effect that can be reversed by vimentin

micro-injection. Vimentin network assembly [45�,55] and

spatial organization [53,56�] are also tightly coupled to the

MT cytoskeleton, for instance through transport by kinesin

motors [55] or regulated polymerization along MTs
Current Opinion in Cell Biology 2015, 32:39–47



44 Cell architecture

Figure 4
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On the left, a sketch of the three cytoskeletal networks in an adherent cell crawling on a flat substrate. The three boxed regions (labeled 1, 2, 3 on

the left panel) illustrate areas of intense cytoskeletal crosstalk. On the right, an overview of experimentally observed interactions between IFs

(shown here: vimentin), MTs, and AFs, which take place within the lamellipodium (Box 1), at cell–matrix adhesion sites (Box 2), and in the more

interior cytoplasm (Box 3). Although some of the drawn interactions are known to be linked to specific molecular mediators (e.g. MT guidance

along actin bundles by spectraplakins such as MACF [50]), others remain mostly descriptive. We also expect the number of relevant interactions

to increase fast with future in vivo observations (See reference [69]).
controlled by MT plus-end trackers [56�]. Conversely, a

recent study on micro-patterned cells showed that the polar

organization of MTs in turn relies partly on the presence of

vimentin (Figure 4) [13]. Given that the MT cytoskeleton

plays a crucial role in cell polarity through its control of focal

adhesion turnover and nuclear positioning [5], this further

implicates vimentin in cell polarity establishment and

maintenance. Finally, single-molecule tracking of vimentin

subunits along the MT cytoskeleton showed that the actin

cytoskeleton can restrict IF transport [55], pointing to a

complex three-way cytoskeletal crosstalk.

Unlike vimentin, keratin is usually associated with inhi-

bition of cell migration since its expression is generally

associated with epithelial-to-mesenchymal transitions [3].

Different from vimentin, keratin organization seems to

depend mostly on interactions with AFs [3,45�]. Cell-to-

matrix adhesions for instance contribute to keratin

nucleation [57,58]. However, recent observations suggest

that keratin-MT crosstalk also occurs, by destabilization

of MTs via an unresolved mechanism that involves plec-

tin [59].
Current Opinion in Cell Biology 2015, 32:39–47 
How cytoskeleton crosstalk contributes to 3D cell motility

strategies, such as bleb-based motion in tissues [60] or

cancer cell invasion remains largely unknown. Interest-

ingly, both vimentin and microtubules were recently

shown to be necessary for elongation of the actin-based

invadopodia of metastatic cancer cells [30]. Likewise, it

remains poorly understood how cytoskeletal crosstalk con-

tributes to collective cell migration during tissue morpho-

genesis in developing embryos and in wound healing of

epithelial tissues [12�,61]. IFs seem to play a key role in the

response of cell–cell junctions to inter-cellular tension and

in maintaining the cell sheet’s integrity. Pulling on cadher-

ins of Xenopus laevis embryo cells by magnetic tweezers was

recently observed to trigger recruitment of keratin, which

was shown to be required for persistent migration [12�].
Wound healing assays using different cell types further

showed faster wound closure upon keratin down-regula-

tion [62] or knockout [63]. Depending on cell type, this was

accompanied by a loss of cell–cell contacts [62]. This

phenomenon probably contributes to keratin’s reported

involvement in decreasing cell invasiveness [26��]. Vimen-

tin crosstalk with integrin-based focal adhesions was shown
www.sciencedirect.com
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to be involved in migration of repair cells at the leading

edge of wounded lens epithelia, contributing essentially to

wound closure [64].

Future directions
It is now clear that reciprocal regulation and physical

interactions between all three cytoskeletal subsystems

(AFs, MTs, and IFs) are essential to ensure both the

mechanical stability and dynamic shape changes of cells.

Indeed, many of the basic components are highly con-

served and hence co-evolved over long periods of time

[65]. The different cytoskeletal systems strongly differ at

the single-filament level, in terms of structure and

dynamics, as well as at the network level, in terms of

architecture and mechanics. Cytoskeletal crosstalk pro-

vides a powerful strategy to combine those disparate

properties without having to reinvent entirely new

materials for each task. A variety of interactions involving

structural links based on cross-linkers and motor proteins,

as well as regulatory pathways, makes diverse mechanical

and functional settings feasible. Future cell and devel-

opmental biology studies will have to decipher the key

molecular elements that mediate this inter-cytoskeletal

regulation in different tissue contexts. An important

technical challenge remains to simultaneously image all

three cytoskeletal subsystems in live cells and model

organisms with comparative levels of spatio-temporal

accuracy. We expect that advances in fluorescent label-

ing, super-resolution fluorescence microscopy, and elec-

tron microscopy will greatly accelerate this research. In

addition, a precise dissection of the molecular mechan-

isms of cytoskeletal crosstalk will also require comp-

lementary in vitro experiments. Advanced methods in

microfabrication such as high-resolution surface pattern-

ing [13,66,67] and confinement in microfluidic devices

[68] are likely to play an important role in bridging the gap

between in vivo and in vitro observations by offering the

possibility to ‘standardize’ live cell experiments.
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