

Fe₂P-based magnetocaloric materials fabricated using drop synthesis method

by Matthias Hudl

Uppsala University Department of Engineering Sciences Division of Solid State Physics

Outline

Introduction to Fe₂P-based magnetocaloric materials

Sample fabrication using drop synthesis

Characterization of (Fe,Mn)₂(P,Si) compounds

Concluding remarks

Acknowledgements

Theory

Olle Eriksson Levente Vitos Erna-Krisztina Delczeg

Petros Souvatzis

Fabrication

Yvonne Andersson **Viktor Höglin** Martin Sahlberg Characterization

Per Nordblad

Luana Caron

Lennart Häggström

Thin films

Petra Jönsson Evangelos Papaioannou Atieh Zamani Financial support from:

Vetenskapsrådet

Victoria Sternhagen (UU, MSL) for SEM pictures

Motivation for Fe₂P

[L. Lundgren and P. Nordblad UPTEC 8025 R Mars (1980)]

UPPSALA UNIVERSITET

Fe₂P – T dependence lattice parameter

Fig. 5. Temperature dependence of the linear thermal expansion along the a, b and c axes.

[Fujii et al. J. Phys. Soc. Jpn., 43:1, 1977]

Di-iron phosphide - Fe₂P

- Hexagonal structure (P-62m space group)
- Para- to ferromagnetic phase transition
- T_c ≈ 216 K
- Saturation magnetic moment $\approx 3 \mu_{\rm B}/{\rm f.u.}$
- Hyperfine fields Fe₁ and Fe₂ : 11 T and 17 T

Fig. 2. Magnetization curves along the direction parallel and perpendicular to the *c* axis at 4.2 K.

Fig. 3. Magnetic moment, σ_{g} , and inverse susceptibility, χ_{g}^{-1} , plotted against temperature.

[Fujii et al. J. Phys. Soc. Jpn., 43:1, 1977]

Mn and Si substitution in Fe₂P

Figure 1. The magnetic transition temperature as a function of composition x in $(Fe_{1-x}Mn_x)_2P$. The value of T_N for x = 0.5 is taken from Häggström *et al* (1987).

FIG. 1. The hexagonal/orthorhombic transition temperature T_s and the Curie temperature T_c function of x. Within each phase region a representative spectrum is shown.

Tunable magnetic and structural phase transition!

[Jernberg et al. J. Solid State Chem., 53:313, 1984]

[Srivastava et al. J. Phys. C.: Solid State Phys., 20:463, 1987]

(Fe,Mn)₂(P,Si) – Phase diagram

JOURNAL OF APPLIED PHYSICS 103, 07B318 (2008)

Structure, magnetism, and magnetocaloric properties of $MnFeP_{1-x}Si_x$ compounds

D. T. Cam Thanh,^{a)} E. Brück, N. T. Trung, J. C. P. Klaasse, and K. H. J. Buschow Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, Netherlands

Z. Q. Ou and O. Tegus

Key Lab for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China

L. Caron

UPPSALA UNIVERSITET

[L. Lundgren, P. Nordblad and O. Beckmann UPTEC (1980)]

Dependence of lattice parameters on Si content

UPPSALA UNIVERSITET

Experimental methods

Sample fabrication

High frequency induction furnace

" Drop synthesis method"

- Argon atmosphere
- Synthesis temperature 1350 °C
- Temperature measured by pyrometer
- Steady Fe-Si melt
- Start dropping Mn and P

Sample amount: 5 – 50(+) g

Sample heat treatment

Dependence of lattice parameters on Si & Mn content

Scanning electron microscopy (SEM) nom. FeMnP_{0.5}Si_{0.5}

Scanning electron microscopy (SEM)

nom. FeMnP_{0.5}Si_{0.5}

Scanning electron microscopy (SEM) nom. FeMnP_{0.5}Si_{0.5}

2-Theta - Scale

Magnetic measurements (SQUID)

- Indirect measurement of MCE
- Measure magnetisation $M(T,H) \rightarrow Entropy change$

$$\Delta S_m \approx \frac{\mu_0}{\Delta T} \int_0^{H_f} M(T + \Delta T, H) \, dH - \int_0^{H_f} M(T, H) \, dH$$

FeMnP_{0.5}Si_{0.5}

Tuning the magnetic phase transition

Tuning First-order magnetic phase transition to RT

Magnetic entropy change

Mössbauer spectroscopy

- Pyramidal 3g site \rightarrow Mn
- Tetrahedral 3f site \rightarrow Fe

Saturation moment FeMnP_{0.5}Si_{0.5} \approx 4.4 μ_B /f.u.

Neutron measurements

Pyramidal site (gray) \rightarrow Mn (2.5 μ_B) Tetrahedral site (black) \rightarrow Fe (1.9 μ_B)

→ Poster presentation Viktor Höglin

Concluding remarks

- (Fe,Mn)₂(P,Si) alloys exhibit good magnetocaloric properties which can be tuned by both Mn and Si substitution
- FeMnP_{0.5}Si_{0.5} holds high saturation moment of 4.4 $\mu_{\text{B}}/\text{f.u.}$
- Fe and Mn magnetic moments in FeMnP_{0.5}Si_{0.5}have orientation in the *ab*-plane
- Interest in fundamental understanding of the material

Thank you for your attention!