Giant magnetocaloric effect and magneto-crystalline coupling

Luana Caron

Outlook

Magneto-crystalline coupling

How to change the coupling: Fe₂P chemical pressure x physical pressure Fe₂P to (Fe,Mn)₂(P, ?) similarities and differences What information can we obtain from it?

Conclusions

Magneto-crystalline coupling

magnetic interaction is

dependent on interatomic distance

UPPSALA

UNIVERSITET

Chemical pressure: Fe₂P

Chemical pressure: Fe₂P

y

1/4

1/4

Fe - tetrahedral 0.5 μ_B Mn - pyramidal 2.6 μ_B

Watanabe et al. JPSJ 1973

	Interatomic distance Å	Sign of exchange interaction		
Fe-Fe	2.631	antiferromagnetic		
Fe-Mn	2.661 2.766 2.79	critical* (ferromagnetic) antiferromagnetic critical*		
Mn-Mn	3.05	antiferromagnetic		

* "critical" means that the interaction is in the region where the sign changes from antiferromagnetic to ferromagnetic.

antiferromagnetic Co₂P - orthorhombic

Chemical pressure $FeMnP_{1-x}A_x$ A = As, Ge, Si

Nominal, x	0.25	0.35	0.45	0.50	0.53	0.55(I)	0.65
a (Å)	6.0392	6.0677	6.1080	6.1290	6.1628	6.1739	6.2120
<i>c</i> (Å)	3.4870	3.4874	3.4900	3.4805	3.4946	3.4511	3.4633
c/a	0.5774	0.5748	0.5714	0.5679	0.5670	0.5590	0.5575
$T_{\rm C}({\rm K})$	168	213	240	282	290	300(I)	332
						307(II)	

MnFeP_{1-x}As_x

ferromagnetism and Fe₂P structure are recovered

Tegus, PhD thesis University of Amsterdam

Chemical pressure FeMnP_{1-x}A_x A = As, Ge, Si

У	c/a	$\Delta T_{ m hys}$ (K)	Т _с (К)	$-\Delta S_{m,\max}$ (J kg ⁻¹ K ⁻¹)	RCP (J kg ⁻¹)
0.80	0.5626	1	288	20.3	151
0.78	0.5638	2	274	15.3	162
0.76	0.5646	2	254	16.4	151
0.70	0.5651	0	230	9.8	155
Gadolini	um ^a	0	293	4.2	166

Mn_{2-y}Fe_yP_{0.75}Ge_{0.25}

ferromagnetism and Fe₂P structure are recovered

Appl. Phys. Lett. 94, 102513 (2009)

UPPSALA

Probing the coupling with pressure

Fe₂P- like behavior

Probing the coupling with pressure

 $Mn_{1.16}Fe_{0.84}P_{0.75}Ge_{0.25}$

Why no change in T_C ?

UPPSALA

UNIVERSITET

Why no change in T_C ?

$Fe_{0.84}Mn_{1.16}P_{0.75}Ge_{0.25}$

Conclusions?

- Fe₂P-based compounds present different behaviors under pressure
- chemical pressure is not always equivalent to physical pressure
- how to understand the entire picture?

UNIVERSITET

Acknowledgements

- The Delft "magnetocalorics" group: Ekkes Brück, Jürgen Buschow, Lian Zhang, ZhiQiang Ou, Trung T. Nguyen, Dung Nguyen, Anton Lefering, O. Tegus, D. T. Cam Thanh, Bastian Knoors, Merien Uitterhoeve, Remco Addink
- Uppsala's Angstrom group: Per Nordblad, Roland Mathieu, Matthias Hudl, Viktor Höglin
- UNICAMP group: Sérgio Gama and Adelino de Aguiar Coelho

Thank you for your attention!