
Delft, October/Oktober 2011

Thermodynamics of Active Magnetic RegeneratorsThermodynamics of Active Magnetic Regenerators

The equations governing the physics of active magnetic 
regenerators are presented in simplified form. These are 
used as the basis for a numerical model which is 
compared to experimental results for validation.

Tom Burdyny, Andrew Rowe



•AMR Thermodynamics

•Governing behaviour, losses, magnetic cycle

•Goal: To find TSpan

 

and Qc

 

as a function of TH

•Model based on simplified theory

•Comparison to experimental results

•Current issues

•Future work

•Summary

OverviewOverview
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MotivationMotivation
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•What is the purpose of a model based on simplified theory?

•Quick solutions

•Immediate sensitivity analysis

•Optimization

•Parameters linked to equipment sizing and costs

•Beneficial for all researchers in a group



Assuming Tf

 

= Ts

 

and keff

 

= kf

 

+ ks

 

:

where R is the thermal mass ratio,  is utilization and Tad

 

is the 
adiabatic temperature change of the material.

Fluid:

Solid:

1Rowe A. Thermodynamics of active magnetic regenerators: Part I. 
Cryogenics (2011), doi:10.1016/j.cryogenics.2011.09.005
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Governing EquationsGoverning Equations11
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Against other terms conduction is then assumed to be small:

Eq.(4) used to find the temperature at any point in the magnetic

 cycle relative to a single state point.

For convenience a secondary definition of utilization is:

where the subscript H represents the utilization during a hot blow 
and C for a cold blow.

1Rowe A. Thermodynamics of active magnetic regenerators: Part I. 
Cryogenics (2011), doi:10.1016/j.cryogenics.2011.09.005
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Governing Equations cont.Governing Equations cont.11
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Energy BalanceEnergy Balance22
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2Rowe A. Thermodynamics of active magnetic regenerators: Part II. 
Cryogenics (2011), doi:10.1016/j.cryogenics.2011.09.007
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Using the BC’s, Ta0

 

and Ta1

 

, Eq.(10) can be solved for Ta

 

(x)



•Using Eq.(4) and Ta

 

(x), temperatures Tb,

 

Tc,

 

Td

 

are found

•The fluid temperature, Tf

 

(x), is then:
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Magnetic CycleMagnetic Cycle
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Cooling PowerCooling Power
•Cooling Power is post-calculated

(12)
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3

3Tura, A. Cryogenic AMR Test Apparatus. CEC-ICMC, Keystone, 
Colorado, 2005
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ModelModel
Inputs

•Ta0

 

and Ta1 (Boundary Condition’s)

•Operating parameters, fluid/solid properties

Outputs

•TSpan

•Cooling power, work, efficiency



4Tura, A. Active Magnetic Regenerator Experimental Optimization. 
Master’s Thesis, University of Victoria, 2005
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Experimental DataExperimental Data44

•Data is from the SC-AMRTA at the University of Victoria

•Working fluid is Helium (R~1)

•Materials are Gd, GdTb and GdEr flakes

•Experiments use either single, double or triple pucks of material
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Model Results SummaryModel Results Summary
•Comparison to experimental results

•Qc

 

vs TSpan

•TSpan

 

vs TH

•Regenerator temperatures profile

•Effect of utilization (U) on calculated results
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Results: QResults: Qcc
 

vs Tvs TSpanSpan
 

(T(THH
 

=292K)=292K)

Qamr

Qamr‐QNTU

Qamr‐QNTU‐Qamb
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Results: QResults: Qcc
 

vs Tvs TSpanSpan
 

(T(THH
 

=292K)=292K)

Qc

Qc = 0W
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Results: TResults: THH
 

vs Tvs TSpanSpan
 

(Q(Qcc
 

= 0W) = 0W) 
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Results: TResults: THH
 

vs Tvs TSpanSpan
 

(Q(Qcc
 

= 0W) = 0W) 
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Results: Interface TemperatureResults: Interface Temperature
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Results: Effect of Utilization, UResults: Effect of Utilization, U
•Near the Curie point curves destabilize for high U

•Prevents TSpan

 

from being calculated at TH

 

= 310.7K
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Results: Effect of UtilizationResults: Effect of Utilization
•R = 1 for He, R = 1.5 for water

•
 

= 0.27 at 9.5atm, 
 

= 0.17 at 6atm
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CommentsComments
•Other losses

•Demagnetization

•Other heat leaks

•Model over predicts by a consistent amount

•Simulations take ~3s for each set of BC’s

•For a desired TH

 

value multiple simulations (i.e. various BC’s) need 
to be performed and the data interpolated

•One specific data point (TH

 

, TC

 

) takes ~15s
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Future WorkFuture Work
•Allow for the user to choose a specific field strength

•Account for further losses 

•Layering

•Use model in conjunction with:

•Costing

•Optimization of parameters
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SummarySummary
•Simplified AMR thermodynamics were presented

•A model was created using this theory

•Model compared to experimental results

•Shows similarities to experiments

•Requires further data comparisons (GdTb)
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