Study on iron-rich (Mn,Fe)_{1.95}(P,Si) magneto-caloric material

Z.Q. Ou, L. Zhang, H.D. Nguyen, A.J.E. Lefering, J.C. Vieira Leitao, E. Brück

Fundamental Aspects of Materials and Energy (FAME), Faculty of Applied Sciences (TNW), TU Delft (TUD)

Motivation

Magneto-caloric effect, couples the magnetic moments to the lattice, is defined as heating or cooling a magnetic material by exposing the material to

a changing magnetic field.

Applications:

- Magnetic Refrigeration:[1]
 - High efficiency
- Environmentally friendly
- Power Generation:[2]
 - High efficiency - Waste heat to power
 - waste heat to power

★ Fe₂P-based (Mn,Fe)₂(P,Si) materials:

Large magneto-caloric effect Large working temperature range Cheap materials

★ Problems:

Large thermal hysteresis Impurity phase (Mn,Fe)₃Si

Experimental results

- Off-stoichiometric composition
- ✓ Ball-milling technology

Fig.1 Temperature dependent X-ray diffraction patterns of $Mn_{0.75}Fe_{1.20}P_{0.66}Si_{0.34}$. The arrows indicate the coexistence of FM and PM phases.

- Crystallizes in Fe₂P-type hex. structure
- No (Mn,Fe)₃Si impurity phase is observed

References & Acknowledgements

[1] V. K. Pecharsky, K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

[2] E. Brück, O. Tegus and K. Buschow, INTERMAG 2006, IEEE International, P85.

The authors would like to thank FOM and BASF for the financial support.

Delft Days on Magnetocalorics October 24–25 2011

Fig. 2 Temperature dependence of the magnetization of Mn_{1.95-x}Fe_xP_{0.66}Si_{0.34} measured in a field of 1 T. The insert shows the M-B curves measured at 5 K.

- Tc can be adjusted by changing the Mn/Fe ratio
- ΔT_{hys} can be reduced by increasing Fe concentration
- Saturation magnetization at 5 K decreases with increasing Fe content

Fig. 3 Magnetization curves of $Mn_{1.95,x}Fe_xP_{0.66}Si_{0.34}$ (x = 1.20 (a) and x = 1.40 (c)) in the vicinity of their Curie temperatures and the magnetic entropy changes (x = 1.20 (b) and x = 1.40 (d)) for different magnetic field changes.

- Field induced transition is observed (x = 1.2), but is depressed with higher Fe content (x = 1.4)
- Large $-\Delta S_M$ is obtained on Iron-rich (Mn,Fe)_{1.95}(P,Si) compounds, but the value is strongly reduced with further increasing Fe concentration

Conclusions:

- + Single phase sample is obtained by using ball-milling technology.
- + Thermal hysteresis decreases with increasing Fe concentration.
- For the iron-rich (Mn,Fe)_{1.95}(P,Si) compounds, the Mn:Fe and/or P:Si ratio(s) still need to be optimized.

Challenge the future

University of

Technoloav

z.ou@tudelft.nl

Email: