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Peltier cell calorimetry

Oxford cryostat: cold finger in vacuum
Micropelt cells (2.5x2.5x0.9mm3)
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room temperature setup (-30 / +80 °C ) low temperature setup (4K / 350 K)

Electromagnet: 2T max

In air, 
heat sensors RMT 5x5 mm
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Where T0 is the solution of

τP
dT0

dt
+ (T0 − Tb(t)) = 0 (21)

If dTb/dt � const, then in the stationary state

dT0

dt
=

dTb

dt
(22)

Then

T1 = Tb − τP
dTb

dt
+

1

�
vP (23)

and the derivative:

dT1

dt
=

1

�

dvP

dt
+

dT0

dt
=

1

�

dvP

dt
+

dTb

dt
(24)

C. Calibration

In the following we assume an ideal thermal contact

between sample and cells and a negligible thermal resis-

tance of the sample(1/Ks) → 0, then we have Ts = T1.

We measure a reference sample (of known heat capacity

Cref (Ts)) on both heating and cooling runs with the same

rate |Ṫb|. We have two equations

qs = Cref
dTs

dt
(25)

− 1

SP

�
vP + τP

dvP

dt

�
= Cref

�
Ṫb +

1

�

dvP

dt

�
(26)

Rearranging we get

SP (Ts) = − 1

Cref (Ts)

�
vP + τP

dvP

dt

� �
Ṫb +

1

�

dvP

dt

�−1

(27)

that has to be a single valued function when plotted ver-

sus

Ts = Tb − τP Ṫb +
1

�
vP (28)

D. Specific heat capacity measurement

The specific heat is:

cp =
Cs

m
= − 1

m

1

SP (Ts)

�
vP + τP

dvP

dt

� �
Ṫb +

1

�

dvP

dt

�−1

(29)

and the temperature:

Ts = Tb − τP Ṫb +
1

�
vP (30)

E. MCE measurement

The equations at the sample with qMCE are

Ts = − 1

Ks
qs (31)

If Tb is constant (dTb/dt = 0) we have

Ts = Tb +
1

�
vP (32)

dTs

dt
=

1

�

dvP

dt
(33)

qMCE = qs − Cs
dTs

dt
(34)

qMCE = qs −
Cs

�

dvP

dt
(35)

qMCE = qs −
1

SP

Cs

KP

dvP

dt
(36)

qMCE = − 1

SP

�
vP +

�
τP +

Cs

KP

�
dvP

dt

�
(37)

III. EXPERIMENTAL

A. Calibration with sapphire

The calibration was performed with a sapphire sam-

ple (Al2O3) of mass m = 61 mg. The specific heat of

sapphire [7] is well described by the equation: cp(T ) =

717.97 + 2.43 · T − 6.59 · 10−3 · T 2 + 1.26 · 10−5 · T 3 −
1.72 ·10−8 ·T 4 with the temperature measured in ◦C and

the specific heat in Jkg−1K−1. Fig.4 shows the sapphire

heat capacity and the capacity resulting from an empty

run. Fig.5 shows the sensitivity of the cells SP derived

from Eq.27.
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FIG. 1: Scheme of the Peltier calorimeter

FIG. 2: Picture of the Peltier calorimeter

From the theory of thermoelectric effects we know that:

v1 = �(T1 − Tb) (7)

v0 = �(T0 − Tb) (8)

where � is the Seebeck coefficient. Therefore

vP = �(T1 − T0) (9)

To go from the voltage vP and temperature Tb to the

heat to the sample qs and the temperature of the sample
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S
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FIG. 3: Equivalent thermal circuit of the differential Peltier
calorimeter

Ts we have solve the circuit equations. For the cell 0 (no

sample):

T0 − Tb = − 1

KP
q0 (10)

q0 = CP
dT0

dt
(11)

and for the cell 1 (sample):

T1 − Tb = − 1

KP
q1 (12)

q1 − qs = CP
dT1

dt
(13)

Therefore we have

qs = q1 − CP
dT1

dt
= q1 − q0 − CP

d

dt
(T1 − T0) (14)

qs = −KP (T1 − T0)− CP
d

dt
(T1 − T0) (15)

from which we have to derive the heat flux qs and the

temperature T1 as a function of vP and Tb.

• Heat flux qs

T1 − T0 =
1

�
vP (16)

qs = −KP

�

�
vP +

CP

KP

dvP

dt

�
(17)

qs = − 1

SP

�
vP + τP

dvP

dt

�
(18)

where we have defined the sensitivity of the cell

SP = KP /�.

• Temperature T1

T1 = (T1 − T0) + T0 =
1

�
vP −

1

KP
q0 + Tb (19)

T1 =
1

�
vP − τP

dT0

dt
+ Tb (20)

(Seebeck effect)
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Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
(Dated: April 2, 2009)

Progress report for the 6 month meeting SSEEC project

PACS numbers:

I. INTRODUCTION

The measurement of specific heat of solids can be per-

formed by several methods including including DSC [1],

heat pulse calorimetry [2], and Peltier cell calorimetry

[3]. Here we describe the measurement of the specific

heat and magnetocaloric effect [4, 5] of La-Fe-Co-Si and

Gd by Peltier cells calorimetry.

A. Equations

The heat flow to the sample is described by the ther-

modynamics of the material [6]:

qs = Ts
∂Ss

∂t
= Ts

�
∂Ss

∂Ts

∂Ts

∂t
+

∂Ss

∂H

∂H

∂t

�
(1)

If we define a heat capacity Cs and a heat source qMCE ,

the heat flow to the sample is therefore

qs = Cs
dTs

dt
+ qMCE (2)

with

Cs = Ts
∂Ss

∂Ts
(3)

and

qMCE = Ts
∂Ss

∂H

∂H

∂t
(4)

The measuring Peltier cell is represented by an element

with a finite thermal conductance KP and finite heat

capacity CP . The thermal diffusion equation of the cell

is

CP
dT

dt
+KP (T − Tb) = q (5)

where Tb is the temperature at the bath side and q is

the heat flow at the sample side. The time constant,

characteristic of the cell, is τP = CP /KP .

II. PELTIER CALORIMETRY

A. System

The setup of the differential scanning calorimeter is

shown in Fig.1. The heat flow sensors are miniaturized

Peltier cells with high sensitivity (RMT 1MT03-066-13,

size 6x5.5 mm) connected differentially (A). The sensors

and the sample are placed inside the brass cylinder (B)

(32x16mm, diameter x height) acting as a thermal reser-

voir and thermal shield (picture of Fig.2). The tempera-

ture of the cylinder Tb is measured by a PT100 platinum

resistance thermometer (C) placed in the middle of the

cylinder. The temperature of the cylinder is changed by

means of four power Peltier cells (D) (Supercool PF-071-

14-15, size 30x30 mm) placed on the top and the bottom

of the cylinder, respectively. The external (upper and

lower) faces of the power Peltier cells are in thermal con-

tact with two brass blocks (E) kept at room temperature

by a water circulation system for heat dissipation. The

lateral sides of the cylinder are wrapped with a thermally

insulation layer (F) to minimize heat loss with the sur-

roundings. The temperature can be changed in the range

-30
◦
C +70

◦
C by driving an electric current. The whole

setup is inserted inside the gap of an electromagnet able

to reach a maximum magnetic field of 2 T. The magnetic

field is applied parallel to the planes of the measuring

cells and measured by a Hall probe placed immediately

outside the cylinder. The thermoelectric voltage of the

measuring cells vP is measured by a digital nanovolt-

meter. The temperature Tb is measuring with a 4 wire

connection to the resistance of the PT100 sensor by a

digital multimeter.

B. Equivalent thermal circuit and solution

The thermal diffusion problem can be represented as

an equivalent circuit in which the thermal conductance

is represented by a resistive element and the heat capac-

ity by a capacitor (Fig.3). In the experimental setup the

measured quantities are the differential voltages are the

cells vP and the temperature of the bath Tb. The differ-

ential voltage is

vP = v1 − v0 (6)
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Peltier cell calorimetry
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spin reorientation transition!

single crystal

2

netic field.

In order to clarify the physical mechanisms and to

quantify the magneto-caloric effect in spin reorientation

compounds, in this paper we study the specific heat un-

der magnetic field cp(Ha, T ) and the magnetic field in-

duced isothermal entropy change ∆s(Ha, T ) of Er2Fe14B

single crystal by direct calorimetry and magnetic mea-

surements. The measured data is interpreted by a model

of the magnetization process taking into account a tem-

perature dependent uniaxial anisotropy constant K1(T ),

the magnetic field energy and the effect of the demagne-

tizing field.

II. EXPERIMENTAL

Er2Fe14B single crystals were prepared as described

in Ref.[6]. The sample under investigation has a mass

of 119.0 mg and lateral sizes of about 3 mm. Specific

heat and isothermal entropy change were measured by a

home made differential scanning calorimeter (described

in Refs.[15, 16]) using Peltier cells (RMT 1MT03-066-

13) as heat flux sensors, working in the temperature

range 243-343 K, and with magnetic field generated by

an electromagnet (2T maximum). Isothermal magneti-

zation curves were measured using SQUID magnetome-

ter (Quantum Design MPMS-SS). The magnetization

M(Ha, T ) was measured as a function of the magnetic

field in isothermal conditions at selected temperatures in

the range 200-350 K.

Heating and cooling calorimetric runs under constant

applied magnetic field Ha were performed at a rate of

|dT/dt| = 0.1 Ks
−1

between a minimum of 250 K and a

maximum of 350 K. The specific heat is shown in Fig.1

and has been computed from the measured heat flux as

described in Ref.[15, 16]. Under zero magnetic field we

see a clear peak in correspondence to the spin reorien-

tation transition temperature. The maximum occurs at

T0 = 322 K in agreement with Ref.[5]. The inset of Fig.1

shows the cp under zero magnetic field obtained by in-

creasing and decreasing temperature. There is a 0.2 K

of difference between the position of the two peaks. This

value is very close to the experimental error for the tem-

perature (±0.1 K) and we have to conclude that any tem-

perature hysteresis of the transition is hardly detectable.

We then represent the cp of Fig.1 as the average of heat-

ing and cooling curves. The physical justification of this

fact will be also discussed later in the theory section. In

Fig.1 cp(Ha, T ) is shown for selected values of Ha. With

Ha = 0, the area under the peak is ∆Q = 244±12 Jkg
−1

.

To evaluate the corresponding entropy change we fit the

specific heat before and after the peak (c
(EP )
p and c

(EA)
p ,

see Fig.1) and we compute the entropy in EP and EA

by s
(EP )

=
�

dTc
(EP )
p /T and s

(EA)
= ∆s+

�
dTc

(EA)
p /T

where ∆s is the entropy increase related to the spin reori-

entation. From the data we get ∆s = 0.74 Jkg
−1

K
−1

at

322 K. The curves under magnetic field the peak shows a

smoothed peak and shifted in temperature. A magnetic

field parallel to the c axis shifts progressively the peak

to lower temperatures whereas the opposite occurs when

the field is perpendicular to c. A complete interpretation

of this phenomenology will be clear in the last section by

the comparison with the model.
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FIG. 1: Specific heat cp(Ha, T ) of Er2Fe14B single crystal
measured by scanning calorimetry, as a function of the mag-
netic field applied parallel (Ha�c) and perpendicular (Ha⊥c)
to the c axis. The inset shows the details of the heat-
ing and cooling peak measured under zero magnetic field.
The baseline cp is well described by the functions c

(EP )
p =

418.7 + 0.6 · (T − T0) before the peak (dashed line) and

c
(EA)
p = 414.6 + 0.5 · (T − T0) after the peak (full line), with

T0 = 322 K.

The isothermal entropy change was measured by sta-

bilizing the temperature to the desired value, applying

and removing the magnetic field (up to 1T) at the rate

µ0dHa/dt = 0.016 Ts
−1

, measuring the corresponding

heat flux qs and computing the entropy change by the

equation:

∆s =
1

m

� t

t0

qs

Ts
dt (1)

where Ha = 0 at t0 and the result of the integration is

represented versus the applied field Ha(t). Fig. 2 shows

the measured ∆s versus the magnetic field applied par-

allel (Ha�c, full lines) and perpendicular (Ha⊥c, dashed

lines) to the c axis, respectively. We see that the paral-

lel magnetic field has strong effects only when the sys-

tem is initially in the EP state (at temperatures below

TSR). In this case the entropy change is positive mean-

ing that by turning the magnetization toward the c axis

the system goes to a higher entropy state. The opposite

situation occurs for perpendicular fields with the set of

curves shown in Fig.2 with dashed lines. Here, at temper-

atures above TSR, by turning the magnetization toward

the plane state, the system entropy decreases.

The entropy change can be also computed form the
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FIG. 2: Isothermal entropy change ∆s(Ha, T ) of Er2Fe14B
single crystal measured by changing the magnetic field parallel
to the c axis (H�c, full lines) and perpendicular (H⊥c, dashed
lines) at several selected temperatures T (in Kelvin).

cp(Ha, T ) data itself. From the measured cp(Ha, T ) the
entropy change is given by the integral:

s(Ha, T )− s(0, T ) = s(Ha, Ti)− s(0, Ti)

+
�

T

Ti

cp(Ha, T
�)− cp(0, T

�)
T � dT

� (2)

where the constant term s(Ha, Ti) − s(0, Ti) is a ver-
tical shift of the curve. In Fig.3 we show the differ-
ence ∆s of Eq.2 (lines) where the vertical position has
been determined by using the isothermal measurements
at Ti = 324.3 K for Ha�c and Ti = 313.2K for Ha⊥c. In
the same graph we have reported the points correspond-
ing to the isothermal entropy change for all the other
temperature values (from Fig.2). We observe that the
agreement between the two methods for the determina-
tion of ∆s is very good and is within the measurement
error for ∆s (±5%) that is mainly due to the spurious
heat fluxes measured by the setup and accumulated in
the time integrations.

From the magnetization measurements we computed
the entropy change by integrating the Maxwell relation
∂s/∂Ha = µ0∂M/∂T . Fig.4 shows the result where ∆s

is given by the expression

∆s =
∂

∂T

��
Ha

0
µ0M(Ha, T )dHa

�
(3)

where the integrals and the derivative are done numeri-
cally and M(Ha, T ) is the measured data (shown in the
inset for Ha�c). The agreement between the calorimetric
results of Fig.3 and the magnetic results of Fig.4 is very
good as it is expected for systems close to thermodynamic
equilibrium.
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III. THEORY

To understand the shape of ∆s curves of Figs. 2 and
3 we consider the energy of the sample by taking into
account anisotropy and magnetic field energy. We con-
sider a single domain where θ is the angle formed by the
magnetization vector with the c axis and H� and H⊥ are
the components of the internal field parallel and perpen-
dicular to the c axis. The expression for the energy is
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III. THEORY

To understand the shape of ∆s curves of Figs. 2 and
3 we consider the energy of the sample by taking into
account anisotropy and magnetic field energy. We con-
sider a single domain where θ is the angle formed by the
magnetization vector with the c axis and H� and H⊥ are
the components of the internal field parallel and perpen-
dicular to the c axis. The expression for the energy is
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GL(θ, �H, T ) = G0(T ) + K1 sin2 θ + K2 sin4 θ

− µ0Ms

�
H� cos θ + H⊥ sin θ

�
(4)

where G0(T ) is a term which depends on the tempera-
ture only and the anisotropy is uniaxial and expanded up
to the second anisotropy constant [17]. The equilibrium
angle θeq for the magnetization is given by the conditions
∂GL/∂θ = 0 and ∂2

GL/∂θ2
> 0. The entropy of the sys-

tem is given by the temperature derivative of the energy
computed for the equilibrium angle:

s = − dGL

dT

����
θeq

(5)

Under zero magnetic field the equilibrium angle is θeq = 0
(EA) with K1 > 0 and θeq = π/2 (EP) with K1 < 0.
The sign of K2 determines if the transition occurs by
the coexistence of EP and EA (K2 < 0) or by the pas-
sage through an intermediate easy cone state (K2 > 0)
[18]. In the first case there exists an energy barrier be-
tween EP and EA related to the second order anisotropy
constant while in the second case there is no energy
barrier. In both cases the entropy change from EA to
EP under zero field is related to the temperature de-
pendence of the magneto-crystalline anisotropy constants
∆sK = dK1/dT + dK2/dT .

In Er2Fe14B at the spin reorientation temperature K2

is expected to be small [1]. Taking K2 = 0 leads to
absence of temperature hysteresis in the first-order spin
reorientation transformation as it is observed in the cp

curves measured by heating and cooling, therefore we
develop in detail the theory for K2 = 0. By defining the
anisotropy field HAN = 2|K1|/(µ0Ms) and normalizing
the magnetic fields to the anisotropy field h = H/HAN

we have the energy

gL = ±1
2

sin2 θ − (h� cos θ + h⊥ sin θ) (6)

where ± is the sign of K1. By defining the anisotropy
field HAN = 2|K1|/(µ0Ms) and normalizing the mag-
netic fields to the anisotropy field h = H/HAN we have
the following two cases. i) For K1 < 0, the angle is always
θeq = π/2 for perpendicular field and it rotates out of the
EP under a magnetic field h� parallel to c as cos θ = h�
(cos θ = 1 for h� > 1). ii) For K1 > 0 the equilibrium an-
gle is θeq = 0 for parallel field h� and sin θ = h⊥ (sin θ = 1
for h⊥ > 1) for a magnetic field h⊥ > 1 perpendicular to
c. The entropy is

s−s0 =
dK1

dT
(1−sin2 θeq)+µ0

dMs

dT

�
H� cos θeq + H⊥ sin θeq

�

(7)
where s0 is the entropy of the EP state under zero field
s0 = −dG0/dT − dK1/dT . The first term of the right

hand side of Eq.(7) is related to the temperature variation
of the anisotropy constant, while the second term to the
temperature dependence of the saturation magnetization.
For a sample of finite shape we consider the internal field
H as due to the applied field Ha and the demagnetizing
field. In the parallel and perpendicular components we
have: H� = Ha� −N�M� and H⊥ = Ha⊥ −N⊥M⊥. We
obtain the following expressions for the entropy change
for the case in which the magnetic field Ha is applied
parallel or perpendicular to the c axis.

A. K1 < 0 easy plane (EP)

Ha�c. Under a field parallel to c we have the coherent
rotation of the magnetization toward the c axis which is
the hard direction. The magnetization along c is M� =
Ms cos θ, the equilibrium angle is cos θ = H�/HAN for
H� < HAN , then

H�

HAN
=

Ha�

HAN + N�Ms
(8)

while for H� > HAN , M� = Ms and H� = Ha� −N�Ms.
By defining H

∗
� = HAN +N�Ms, the entropy change due

to a parallel field is:

sP (Ha�)− s(0) =
�

dK1

dT
+ µ0

dMs

dT
HAN

� �
Ha�

H
∗
�

�2

(9)

for Ha� < H
∗
� , and

sP (Ha�)− s(0) =
dK1

dT
+ µ0

dMs

dT

�
Ha� −N�Ms

�
(10)

for Ha� > H
∗
� .

Ha⊥c. Under a field perpendicular to c the magneti-
zation perpendicular to c is M� = Ms sin θ, the equilib-
rium angle is θ = π/2 and the entropy change is zero for
Ha⊥ < N⊥Ms and

sP (Ha⊥)− s(0) = µ0
dMs

dT
(Ha⊥ −N⊥Ms) (11)

for Ha⊥ > N⊥Ms.

B. K1 > 0, easy axis (EA)

Ha⊥c. When the magnetization is spontaneously ori-
ented along the EA for a field perpendicular to c we have
the reversible rotation of the magnetization. Similarly to
the previous case, we have M⊥/Ms = sin θ = H⊥/HAN

for H⊥ < HAN , then
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tropy change in internal field by setting Nd = 0 (Fig.7).
The magnetic field at which the entropy change due to
the reorientation is saturated H

∗ is now H
∗ = HAN .

This means that by fixing a constant magnetic field
H, the condition H > HAN (T ) determines a temper-
ature range in which the full entropy change ∆sK can
be achieved. The condition is (1/2)µ0HMs = dK/dT ·
(T − TSR). If we take as a first approximation, all
the coefficients independent of temperature, the inter-
val is proportional to the magnetic field H, ∆T =
(1/2)µ0HMs/(dK/dT ) = βµ0H. For Er2Fe14B the pa-
rameter β = (1/2)Ms/(dK/dT ) is 54 KT−1. In Fig.7
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we can see this effect by the shape of the ∆s curves
computed at H = 0.1, 0.2 and 0.3 T. In the ∆T in-
terval over which the effect is saturated one has a much
lower adiabatic temperature change ∆Tad. This value
can be computed from the s(H,T ) curves and is typi-
cally ∆Tad = ∆sKTSR/cp = 0.57 K.

As previously mentioned, the spin reorientation is par-
ticularly attractive for magnetic refrigeration because the
entropy can be changed by the rotation of a constant
magnetic field rather than by the variation of the am-
plitude of the magnetic field. Furthermore in the case
of rotations the entropy change is definite positive for
a magnetic field rotation from perpendicular to parallel
and definite negative from parallel to perpendicular. For
Nd = 0, and using h = Ha/HAN , the entropy change for
rotation from (⊥) to (�) is given by:

∆s(⊥)→(�) = ∆sKh
2 ± µ0

dMs

dT
HAN h (1− h) (16)

for h < 1, where ± is the sign of the anisotropy constant,
and

∆s(⊥)→(�) = ∆sK (17)

for h > 1. The model predictions computed with the pa-
rameters of the Er2Fe14B are reported in Fig.7 bottom.
Er2Fe14B around the spin reorientation temperature has
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Conclusion

1. able to fully characterize the magnetocaloric properties

2. appropriate to determine hysteresis and irreversibilities

1. calibration to repeat periodically (time degradation of the 
cells - a few % in 12 months periods)

2. good thermal contacts are needed! (problems with powders)

3. finite shape / demagnetizing field

advantages of Peltier calorimetry

open issues
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