A Peltier cells differential calorimeter for the measurement of $c_p(H;T)$ and $\Delta s(H;T)$ of magnetocaloric materials

<u>Vittorio Basso</u>, Carlo Paolo Sasso, Michaela Kuepferling Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy

Outline

I. Peltier calorimetry in magnetic field

2. Materials

- La(FeCoSi), La(FeMnSi)-H,
- Materials with spin reorientation (low/no hysteresis)
- Heusler alloys (large hysteresis)
- 3. Open issues and conclusions

Isothermal Peltier cell active calorimetry

isothermal Δs

use of Peltier heat to set constant temperature

[Basso-2008, RSI]

Isothermal entropy change with Peltier cell sensors

Peltier cell calorimetry

differential scanning calorimetry (DSC) in magnetic field

room temperature setup (-30 / +80 °C)

In air, heat sensors RMT 5x5 mm

low temperature setup (4K / 350 K)

Oxford cryostat: cold finger in vacuum Micropelt cells (2.5x2.5x0.9mm³)

[Plackowski-2002] Poland [Marcos-2003] Spain [Jeppesen-2008] Denmark

Electromagnet: 2T max

V.Basso et al., Rev. Sci. Instrum (2010)

Calibration

with Sapphire standard

V.Basso et al., Rev. Sci. Instr. (2010)

Peltier cell calorimetry

V.Basso et al., Rev. Sci. Instr. (2010)

La(FeCoSi)₁₃

second order La(Fe_{0.84}Co_{0.08}Si_{0.08})₁₃

c_p(H,T)

V. Basso, INRIM Torino, Italy. A Peltier cell calorimeter for MCE materials. 24 october 2011, Delft NL

La(FeCoSi)₁₃

second order La(Fe_{0.84}Co_{0.08}Si_{0.08})₁₃

La(FeCoSi)₁₃

second order La(Fe_{0.84}Co_{0.08}Si_{0.08})₁₃

La(FeCoSi)₁₃

second order La(Fe_{0.84}Co_{0.08}Si_{0.08})₁₃

T(H,s)-T(0,s) temperature change

V.Basso, Basics of the magnetocaloric effect", book in preparation (O.Gutfleisch, K.Sandeman eds.) Wiley

La(FeMnSi)₁₃-H

VAC hydrogenated La(FeMnSi)13

K. Morrison, K.G. Sandeman L.F. Cohen, C.P. Sasso V. Basso, A. Barcza, M. Katter, J.D. Moore, K.P. Skokov and O. Gutfleisch Int. J. Refrigeration, submitted

La(FeMnSi)₁₃-H

K. Morrison, K.G. Sandeman L.F. Cohen, C.P. Sasso V. Basso, A. Barcza, M. Katter, J.D. Moore, K.P. Skokov and O. Gutfleisch Int. J. Refrigeration, submitted

Er₂Fe₁₄B

V. Basso, INRIM Torino, Italy. A Peltier cell calorimeter for MCE materials. 24 october 2011, Delft NL

W-type ferrite

M. LoBue, V. Loyau, F. Mazaleyrat, A. Pasko, V. Basso, M. Kupferling, and C. P. Sasso, JAP accepted (MMM2011 Conf)

Heusler alloys

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni53.3Mn20.1Ga26.6

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni₅₀Mn₃₆Co₁Sn₁₃

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni₅₀Mn₃₆Co₁Sn₁₃

V.Basso et al., Rev. Sci. Instrum (2010)

Ni53.3Mn20.1Ga26.6

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni₅₀Mn₃₆Co₁Sn₁₃

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni53.3Mn20.1Ga26.6

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Ni₅₀Mn₃₆Co₁Sn₁₃

V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V.V. Khovaylo, PRB, submitted

Conclusion

advantages of Peltier calorimetry

- I. able to fully characterize the magnetocaloric properties
- 2. appropriate to determine hysteresis and irreversibilities

open issues

I. calibration to repeat periodically (time degradation of the cells - a few % in I2 months periods)

2. good thermal contacts are needed! (problems with powders)

3. finite shape / demagnetizing field

Acknowledgements

SSEEC Solid State Energy Efficient Cooling

7th Framework Programme project (2008-2011)

- 1 Imperial College, London, U.K. 🏶 (Karl Sandeman, coordinator)
- (Lesley Cohen) - 2 Leibniz-IFW, Dresden, Germany — (Oliver Gutfleisch)
- 3 SATIE-ICMPE CNRS, France (Martino LoBue)
- 4 INRIM, Torino, Italy () (Vittorio Basso, Carlo Sasso, Michaela Kuepferling)
- 5 Clivet S.p.A. Italy () (End-user)
- 6 Vacuumschmelze GmbH, Germany = (Materials and magnet supplier)
- 7 Camfridge Ltd. U.K. 🏶 (SME)

Thanks for your attention