Magnetocrystalline anisotropy and the magnetocaloric effect in Fe_2P

L. Caron, M. Hudl, V. Höglin, N. H. Dung, C. P. Gomez, M. Sahlberg, Y. Andersson, P. Nordblad and E. Brück

Delft Days on Magnetocalorics 2013

Outline

Why go back to Fe₂P? (Fe,Mn)₂(P,A) Fe₂P
Fe₂P structure what is in literature polycrystal single-crystal *anisotropy & MCE intermezzo* anisotropy & the nature of Fe₂P's magnetic moments

Conclusions

Delft Days on Magnetocalorics 2013

$(Mn,Fe)_{2-\delta}(P,X)$

Delft Days on Magnetocalorics 2013

Fe_2P

Delft Days on Magnetocalorics 2013

-- 0.5 T —

220

Temperature (K)

270

Fujii et al. JPSJ 43, 41 (1977)

3

2.5

2

1

0.5

0

170

123-135

2 1.5 1.5 1

Delft Days on Magnetocalorics 2013

Polycrystalline Fe₂P

Delft Days on Magnetocalorics 2013

Challenge the future 6

TUDelft

Delft Days on Magnetocalorics 2013

Single-crystalline Fe₂P *c-direction*

TUDelft

Delft Days on Magnetocalorics 2013

Entropy changes

TUDelft

Delft Days on Magnetocalorics 2013

Single-crystalline Fe₂P a-direction

Delft Days on Magnetocalorics 2013

Field dependence of T_C

Sandeman Scripta Materialia 67, 566 (2012)

Delft Days on Magnetocalorics 2013

However...

- Crystals are not flawless impurities, asymmetries...
- External magnetic fields are not 100% homogeneous over the sample volume

and

С

• Alignment is rarely perfect

The magnetization in all directions needs to be measured.

Fe₂P

TUDelft

Delft Days on Magnetocalorics 2013

Track the rotation of the magnetization...

Delft Days on Magnetocalorics 2013

ACADÉMIE DES SCIENCES.

PHYSIQUE. — Sur un nouveau phénomene magnétocalorique. Note de MM. PIERRE WEISS et AUGUSTE PICCARD, présentée par M. Paul Painlevé.

II. Ce phénomène est, comme la discontinuité de la chaleur spécifique au point de Curie, une conséquence du champ moléculaire. La chaleur élémentaire communiquée à l'unité est

 $d\mathbf{Q} = \mathbf{C}_{\sigma} dt - (\mathbf{H} + \mathbf{H}_m) d\sigma,$

où σ est l'aimantation spécifique, C_{σ} la chaleur spécifique à aimantation constante, H le champ extérieur, H_m le champ moléculaire.

Comptes rendus hebdomadaires des séances de l'Académie des sciences 1918

Fe,P

352

The magnetization in all directions needs to be measured.

Fe,P

TUDelft

Delft Days on Magnetocalorics 2013

Entropy Change

TUDelft

Delft Days on Magnetocalorics 2013

TUDelft

Magnetization anisotropy

Delft Days on Magnetocalorics 2013

TUDelft

Magnetic Anisotropy

Delft Days on Magnetocalorics 2013

Conclusions

- Full MCE characterization of high purity stoichiometric samples
- Low $\Delta S_{M} \sim 4 \text{ J/kgK} (0 5 \text{ T})$
- Huge $dT_C/d\mu_0H$
- Magnetization anisotropy
 localized character of the moment
- Anisotropy plays a crucial role in the MCE for single crystals both components of the magnetization must be checked!

PHYSICAL REVIEW B 88, 094440 (2013)

Acknowledgements

Thank you for your attention!

Delft Days on Magnetocalorics 2013