Imperial College London

Magnetocaloric Materials Design By Density Functional Theory

Zsolt Gercsi

Dept. of Physics, Blackett Laboratory Imperial College London (Trinity College Dublin)

Delft Days on Magnetocalorics (DDMC) 2013

Introduction

LONGON

FM-AFM,CO,OO,SO

Poster session: A Hybrid-exchange Density Functional Study of $La_{1-x}Ca_{x}MnO_{3}$ by R. Korotana

Stable Cubic NaZn₁₃ type of structure around 10 % Si (Kripyakewich et al. 1968)

La – 8a sites Fe (I) – 8b sites Fe/Si (II) – 96i sites

Fe/Si clusters around La

_a(Fe,Si)₁₃ - IEM transition

Imperial College

Londor

Magnetoelastic transition (no symmetry change, low volume change)

APL Zhang et al 2000

Theory - FPLO-FSM

Very shallow energy plateau

M. Kuz'min and M. Richter PRB 76, 092401 (2007)

Theory - FPLO-FSM

Very shallow energy plateau

Experimental

Experimentally observed (??) under pressure in hydrogenated samples

M. Kuz'min and M. Richter PRB 76, 092401 (2007)

J. Lyubina et. al. PRL 101, 177203 (2008)

Imperial College London La(Fe,Si)₁₃ - IEM transition

Experimental

Hydrogen disproportionation at the Curie temperature

 $La_{1.04}Fe_{11.44}Si_{1.56}H_{1.35}$:

- Produced by induction melting.
- Hydrogenated at 514 K.
- Stored in air at $T_{\rm C}$ for 35 days.

A. Barcza et al. IEEE Trans Magn, 47 10 (2011)

Also see in: M. Krautz et al. J. Appl. Phys. **112**, 083918 (2012) C. B. Zimm et al. J. Appl. Phys. **113**, 17A908 (2013)

London La(Fe,Si)₁₃ - IEM transition

Imperial College

Experimental

Hydrogen disproportionation at the Curie temperature

Also see in: M. Krautz et al. J. Appl. Phys. **112**, 083918 (2012) C. B. Zimm et al. J. Appl. Phys. **113**, 17A908 (2013)

La – 8a sites Fe (I) – 8b sites Fe/Si (II) – 96i sites

The calculated multi-minima structure depends strongly on the theory used as well as on the Si occupation considered.

A. Fujita, H. Yako/Scripta Materialia 67 (2012) 578-583

LaFe^{II}12Si^I

The multiplicity of transition fades and concave–convex variation appears (M= $5\mu_B$ state is stable).

$$\begin{array}{c} 0.30\\ 0.25\\ 0.20\\ 0.15\\ 0.10\\ 0.05\\ 0.00\\ 30\\ 25\\ 20\\ 15\\ 10\\ 5\\ 0\\ 1.11\\ 1.12\\ \lambda (nm) \end{array}$$

Si occupation of the 96i site

show gives stable $0\mu_{\rm B}$

non-magnetic state.

 $La[Fe^{II}_{11}Si^{II}]Fe^{I} La[Fe^{II}_{11}Si^{II}]Fe^{I} La[Fe^{I}_{11}Si^{II}]Fe^{I} La[Fe^{I}_{11}Si^{I}]Fe^{I} La[Fe^{I}_{11}Si^{I}]Fe^{$

 $La[Fe^{II}_{10.5}Si^{II}_{1.5}]Fe^{I}$

CPA simulations gives the FM state most stable.

Imperial College London MMnX-based metallic alloys M – void or d-block element p-block element X – Symmetry change over magnetic transition **MnAs** MnAs_{1-x}Sb Hexagonal Orthorhombic Mn_{1-x}Fe_xAs (Fe,P, NiAs, Ni,In) (Pnma) Co_{1-x}MnGe No symmetry change No symmetry change CoMnSi CoMnGeB_{_} Fe₂P NiMnGe_{1-x}Si_x MnFeP_{1-x}As_x $Mn_{3}Sn_{2}$, ... MnFeP_{1-v}Si_v, ...

Experimental

Fjellvag et. al. JMMM 46, 29, (1984)

Magnetostructural transitions – MnAs

DFT

Strong (giant) coupling between lattice and magnetic interactions

Mn atoms move in the hexagonal a-b plane in one direction, while As atoms move along the c-direction

consistent with experimental findings (neutron diffraction)

For more, see in J. Łazewski et al., PRL 104, 147205 (2010)

Imperial College London MMnX-based metallic alloys M – void or d-block element p-block element X – Symmetry change over magnetic transition **MnAs** MnAs_{1-x}Sb Hexagonal Orthorhombic Mn_{1-x}Fe_xAs (Fe,P, NiAs, Ni,In) (Pnma) Co_{1-x}MnGe No symmetry change No symmetry change **CoMnSi** CoMnGeB_{_} Fe₂P NiMnGe_{1-x}Si_x MnFeP_{1-x}As_x $Mn_{3}Sn_{2}$, ... MnFeP_{1-v}Si_v, ...

Imperial College London

Orthorhombic (Pnma) metamagnet:

after H. Binczycka, A. Szytula, Phys. Stat. Sol. A, **35** K69-K72 (1976)

K.G. Sandeman et al. Phys. Rev. B 74, 224436 (2006)

Imperial College

μ_{Mn}≈2.6μ_B , μ_{Co}≈0.3μ_B

London

Orthorhombic (Pnma) metamagnet:

С +120° С +120° С a

High Resolution Powder Diffraction (ISIS, Didcot, UK)

Imperial College

μ_{Mn}≈2.6μ_B , μ_{Co}≈0.3μ_B

London

Orthorhombic (Pnma) metamagnet:

High Resolution Powder Diffraction (ISIS, Didcot, UK)

С +120° С +120° С a

We found giant changes in Mn-Mn distances (d_1, d_2) link to the metamagnetic transition.

A. Barcza, Z. Gercsi, K.S. Knight and K.G. Sandeman Phys. Rev. Lett. 104, 247202 (2010)

Imperial College London

DFT theory to map the magnetic phase stability vs. lattice volume using the prototype (MnP) structure

Imperial College London

DFT theory to map the magnetic phase stability vs. lattice volume using the prototype (MnP) structure

• Total energy curve predicts ferromagnetic ground state in accordance with experimental.

• These energies can also be plotted with respect to the FM phase using a more informative (Mn-Mn interatomic) scale.

New metamagnet from DFT: CoMn(GeP)

The stability plot predicts stable AFM ground state for $CoMnGe_{1-x}P_x$ with x~0.5.

New metamagnet from DFT: CoMn(GeP)

The stability plot predicts stable AFM ground state for $CoMnGe_{1-x}P_x$ with x~0.5.

New metamagnet from DFT: CoMn(GeP)

AFM ground state with metamagnetism for x=0.5,0.55, 0.6 as predicted!

Z. Gercsi, K. Hono and K.G. Sandeman Phys. Rev. B 83, 174403 (2011)

Imperial College

 $\mu_{Mn} \approx 2.6 \mu_{B}$, $\mu_{Co} \approx 0.3 \mu_{B}$

Londor

Orthorhombic (Pnma) metamagnet:

Our recent works on these materials:

A. Barcza, Z. Gercsi, et al. Phys. Rev. Lett. 104, 247202 (2010)
Z. Gercsi and K.G. Sandeman Phys. Rev. B 81, 224426 (2010)
Z. Gercsi, K. Hono and K.G. Sandeman Phys. Rev. B 83, 174403 (2011)
A. Barcza, Z. Gercsi et al. Phys. Rev. B 87, 064410 (2013)
Q. Recour, V. Ban, Z. Gercsi et al. Phys. Rev. B 88, 054429 (2013)
J. B. Staunton, M. dos Santos Dias, J. Peace, Z. Gercsi, and K. G. Sandeman Phys. Rev. B 87, 060404 (2013)

09:30 – 10:00 Tuning the metamagnetism of an antiferromagnetic metal J. Staunton – Warwick University

Imperial College London MMnX-based metallic alloys M – void or d-block element p-block element X – Symmetry change over magnetic transition MnAs MnAs_{1-x}Sb Hexagonal Orthorhombic Mn_{1-x}Fe_xAs (Fe,P, NiAs, Ni,In) (Pnma) Co_{1-x}MnGe No symmetry change No symmetry change CoMnSi CoMnGeB_{_} Fe,P NiMnGe_{1-x}Si_x MnFeP_{1-x}As_x $Mn_{3}Sn_{2}$, ... MnFeP_{1-v}Si_v, ...

Parent \rightarrow Fe₂PFe₁3f sites ~0.8µ
BP-62m (189)Fe₁3g sites ~2.4µ
P

 Fe_2P is the prototype of the space group with unusual magnetic properties.

Strong dependence of magnetic ordering temperature with doping

Data combined from:

- P. Jernberg et al. J. Sol. State Chem. 53 (1984)
- R. Chandra et al. J. Sol. State Chem. 34 (1980)
- A. Catalano et al. J. Sol. State Chem. 7 (1973)

Magnetic properties

Strong influence on doping with broadening transition

Magnetoelastic effects in doped Fe2P Z. Gercsi et al. Phys. Rev. B **88**, 024417 (2013) MCE of Fe2P single crystal L. Caron et al. PRB **88**, 094440 (2013)

Introduction

Metamagnetic transition in Fe₂P-based alloys

Tunable, field-dependent magnetic transition with large accompanying MCE

N. Dung et al. Adv. Energy Mater. 1 1215–1219 (2011)

Introduction

Metamagnetic transition in Fe₂P-based alloys

N. Dung et al. Adv. Energy Mater. **1** 1215–1219 (2011) Also, Mn has a strong 3g-site preference as found experimentally.

Magneto-elastic response Neutron diffraction (HRPD-ISIS) "Counteracting" change in lattice parameters over the transition. 5.888 3.462 ⊷ Fe ୃP 3.460 5.886 3.458 Fe₂P_{0.96}B_{0.04} 5.884 3.456 -Fe₂P_{0.96}C_{0.04} 3.454 5.882 3.452 3.450 5.880 a,b (Ang.) 3.448 **O** 5.878 3.446 3.444 0 3.442 5.876 5.874 3.440 3.438 5.872 3.436 5.870 3.434 3.432 5.868 3.430 5.866 3.428 50 100 150 200 250 300 350 400 450 0 Temperature (K) Magnetoelastic effects in doped Fe2P Z. Gercsi et al. Phys. Rev. B 88, 024417 (2013)

Magneto-elastic response

We observed an increase in the shortest Fe₁-Fe₁ distance and metal-metal distance (Fe₁-Fe₁) at the transition temperature.

Z. Gercsi et al. Phys. Rev. B 88, 024417 (2013)

The calculations revealed \rightarrow the basal plane is sensitive to the magnetic properties.

The calculations revealed \rightarrow the basal plane is sensitive to the magnetic properties.

Density Functional Theory

Magnetisation density plot in the *a-c* plane of Fe,P

Low magnetisation state

1-0(

High magnetisation state

The closest metal-metal and metal-metalloid distances—the latter also linked to the metamagnetic 3f site—are strongly altered by both the d-d and p-d hybridization energies at the transition. As a result, the delocalization of the magnetization from the 3f site along the FeI -PII chains in the c-axis direction occurs, implying its strong influence on bonding.

Magnetisation density plot in the a-c plane of Fe₂P

Thank you for your attention!

Acknowledgement	•K. G. Sandeman, Imperial College, London, UK
C	•J. B. Staunton, Warwick University, UK
	•E. K. Delczeg-Czirjak, L. Vitos, UU - KTH, Sweden
	•Kevin Knight, A. Daoud-Aladine, ISIS, UK
	•K. Hono, NIMS, Japan

For further details, please see in

Z. Gercsi, E. K. Delczeg-Czirjak et al. Phys. Rev. B 88, 024417 (2013)

E. K. Delczeg-Czirjak, Z. Gercsi et al. Phys. Rev. B 85, 224435 (2012)

E. K. Delczeg-Czirjak, L. Bergqvist, O. Eriksson, Z. Gercsi et al. Phys. Rev. B 86, 045126 (2012)

CoMnSi related works:

J. B. Staunton, M. dos Santos Dias, J. Peace, Z. Gercsi, and K. G. Sandeman Phys. Rev. B 87, 060404 (2013)

A. Barcza, Z. Gercsi et al. Phys. Rev. B 87, 064410 (2013)

Q. Recour, V. Ban, Z. Gercsi et al. Phys. Rev. B 88, 054429 (2013)

Z. Gercsi, K. Hono and K.G. Sandeman Phys. Rev. B 83, 174403 (2011)

Z. Gercsi and K.G. Sandeman Phys. Rev. B 81, 224426 (2010)

A. Barcza, Z. Gercsi, K.S. Knight and K.G. Sandeman Phys. Rev. Lett. 104, 247202 (2010)

The research leading to these results has received funding from the European Community's 7th Framework Programme under Grant agreement 310748 "DRREAM". Computing resources provided by Darwin HPC and Camgrid facilities at the University of Cambridge and the HPC Service at Imperial College London are gratefully acknowledged.