Damping the latent heat in MnFe(P,x) magnetocaloric materials

TU Delft team FAME, Delft University, Mekelweg 15, 2629 JB Delft, The Netherlands f.guillou@tudelft.nl

An experimental report on MnFe(P,Si,B) MCE materials

Challenge the future

Outline

1- Generalities

2- MnFe(P,Si,B) MCE

optimisation of M_{sat} # optimisation of ΔT_{ad}

3- B interstitial or substitution ?

- 4- Mechanical stability
- 5- Origin of the "Boron effect" ?

(work in progress)

"Giant" MCE MCE Second Order Transition (SOT) First Order Transition (FOT) S **B=0** (Total entropy) B=0 B>0 **ΔS MCE** ΔT_ ΔS_{tr} ΔS ഗ T (Temperature) **Indirect :** - Magnetization **<u>Direct</u>** : $\Delta T_{ad} = T_F(B) - T_i(0)$ $\Delta S(T; \Delta B) = \frac{\partial}{\partial T} \int_{\Omega}^{B} M(T, B') dB'$ In our <u>case</u> cyclic, <u>A</u> for FOT ΔT_{ad} - Heat Capacity **Reversible= measured** $S(T,B) = \int_{0}^{T} \frac{C(T;B)}{T} dT$ "Virgin" $-\Delta S(T; \Delta B) = \left[S(T, B) - S(T, 0)\right]^{-1}$ state Irreversible $\Delta T_{ad}(T;\Delta B) = [T(S,B) - T(S,0)]_{S_{a}(T)}$

MCE Materials

At room temperature, for $\Delta B = 1 T$ (=available with permanent magnets)

Large-Scale Applications:

MnFe(P,As) Delft, O. Tegus et al., Nature 415, 150 (2002) Hexagonal Fe₂P type of structure « Magneto-elastic » FOT M c/a Space group: P62m ╋ Mn 3g sites Fe 3f sites P/As 1b&2c sites С Tc T_{c} e Fe Bacmann, JMMM 1994 Mn a,b 20 5 Mn_{1.1}Fe_{0.9}P_{0.47}As_{0.53} ----- MnFeP_{0.45}As_{0.55} $\Delta B = 1.45 \text{ T}$ 2 & 5 T MnFePnasAsnas MnFeP_{0.47}As_{0.53} 15 ΔT_{ad} (K) 3 2 1

0 285

But, As is toxic...

290

295

300

T(K)

305

Challenge the future

310

315

5/27

45m (J kg⁻¹ K⁻¹)

260

TUDelft

280

300

T(K)

320

340

MnFe(P,Ge)

Delft, N.T. Trung et al., Appl. Phys. Lett. 94, 102513 (2009)

MnFe(P,Si) Delft, for more details see presentations: H. Yibole and X.F. Miao

 $\Delta B = 1 T : \Delta S \sim 10 Jkg^{-1}K^{-1}$

∆T_{ad} ~ 1,9 K

Properties still having to be optimized :

	Room T. ΔB=1 T	ΔS ^{max} (J kg⁻¹ K⁻¹)	ΔT ^{max} ad (K)	∆T _{ad} + M + Mechar	1 _{sat} nical
	Gd	3	2,4	stabilit	V
_	$LaFe_{11,6}Si_{1,4}H_1$	9,5 ??	2,6 ??		
	Mn _{1,25} Fe _{0,7} P _{0,51} Si _{0,49}	10,5	1,9	Challenge the future	8/27

Taming the FOT in MnFeP_{2/3}Si_{1/3} by Boron Substitution

Going toward "more first order" is not the only way to reach high MCE (at least for $\Delta B \leq 2 T$)!

Controversy about B addition: interstitial or substitution ???

Fe₂P_{1-x}B_x: (3 studies 80's; 3 studies since last year) Substitution

B in MnFe(P,Si): Patent CN 102881393A, filled 16/01/2013 $Mn_{1,2}Fe_{0,8}P_{1-y}Si_yB_z$

 $0.4 \leq y \leq 0.55, 0 \leq z \leq 0.05$

Interstitial!

B in MnFe(P,Si,Ge): D.Wang *et al.*, Acta Metal. Sinica 47, 344 (2011)

 $MnFeP_{0.63}Ge_{0.12}Si_{0.25}B_x x = 0-0,03$ **Interstitial** !

B in MnFe(P,As): Z. Q. Ou *et al.*, Results in Physics 2, 110 (2012)

-	Compounds	$V(Å^3)$	_		
8.	Mn _{0.95} Fe _{1.05} P _{0.5} As _{0.5} B _x	(250 K/340 K)	_ 	Interstitial !	
	x = 0	113.61/114.29	v 1	Interstitiar.	
	x = 0.01	113.70/114.46	V/		
	x = 0.02	113.88/114.65		Challenge the future 15/2	27
	x = 0.04	113.97/114.74	✓		

Cubic $\Delta V \approx 3\Delta L \approx -1 \%$

F.-X. Hu *et al.*, Appl. Phys. Lett. **78**, 3675 (2001)

TUDelft

J. Lyubina *et al.*, Adv. Mater. **22**, 3735 (2010)

Challenge the future

G. Porcari's Setup

1st Conclusion, MnFe(P,Si,B): a new generation of Fe₂P Giant-MCE materials

Room T. ΔB=1 T	ΔS ^{max} (J kg ⁻¹ K ⁻¹)	ΔT ^{max} ad (K)	
Gd	3	2,5	
$LaFe_{11,6}Si_{1,4}H_1$	~12	2,6	
Mn _{1,25} Fe _{0,7} P _{0,51} Si _{0,49}	10,5	1.9	
MnFe(P,Si,B)	10,5	2,8 ←	-2013

- Not toxic
- Not expensive

(Boron only 0.5 wt%)

-Good mechanical stability -Easy tunability of T_c

Mn/Fe + P/Si + B, from 130 K to 450 K (will be developed during 58^{th} MMM)

Challenge the future

Some suggestions on the origin of the "Boron effect" in MnFe(P,Si) materials

(Work in progress, For more details on Fe₂P materials see also <u>Z. Gercsi</u> and <u>L. Caron</u>)

<u>Reminder</u>: MCE: positive effect of B substitution comes from his ability to decrease L (= $\Delta S_{tr} T_C$) and thermal hysteresis while keeping M_{sat} unmodified.

- "in Fe₂P_{0.92}B_{0.08} the 3f sublattice has a stronger tendency to form a finite-moment state compared to Fe₂P"
- "Coupling 3g -3f becomes less significant with increasing B at the P site"
 P.R.B 88, 024417 (2012) Z. Gercsi

- "With doping (-B) [...] altering the balance between magnetic moment formation and bond formation"

2nd Conclusion: General remarks # Be careful to B addition in "Fe₂P" materials

Role of B on the FOT in MnFe(P,Si) ?

Importance of L (or ∆S_{tr}) when designing new MCE materials ! More precisely, we are ↘ L !!!

Giant MCE with ΔV = 0 i) ≠ some predictions Scripta Materialia, 67 (2012) 572-577, K.A. Gschneidner Jr. et al. ii) Mechanical stability

Distinction between total/reversible MCE

Thank you for your attention

f.guillou@tudelft.nl Thanks a lot in advance !

Challenge the future

BASF Direct ΔT_{ad}

Sweeping mode

