

Strain-mediated magnetoelectric and magnetocaloric effects in oxide heterostructures

X. Moya¹, L. E. Hueso^{2,3}, F. Maccherozzi⁴, A. I. Tovstolytkin⁵, D. I. Podyalovskii⁵,
 C. Ducati¹, L. C. Phillips¹, M. Ghidini^{1,6}, O. Hovorka², A. Berger², M. E. Vickers¹,
 E. Defaÿ^{1,7}, S. S. Dhesi⁴ and N. D. Mathur¹

¹Department of Materials Science, University of Cambridge, UK
²CIC nanoGUNE Consolider, San Sebastian, Spain
³IKERBASQUE, Basque Foundation for Science, Spain
⁴Diamond Light Source, Didcot, UK
⁵Institute of Magnetism, Kyiv, Ukraine
⁶Department of Physics, University of Parma, Italy
⁷CEA, LETI, Grenoble, France

Financial support: Herchel Smith Fund, Royal Society

Ferromagnetic films on BaTiO₃ substrates

Structural transitions BTO

G. H. Kwei et al., J. Phys. Chem. 97, 2368 (1993)

Magnetic changes LSMO/BTO

W. Eerenstein et al. Nature Materials 6, 348 (2007)

Magnetocaloric effect

Coupling between magnetic and thermal properties

MCE magnitudes:

$$\Delta S = \mu_0 \int_0^H \left(\frac{\partial M}{\partial T}\right)_{H'} dH'$$

$$\Delta T = -\frac{T}{C} \Delta S$$

Large at phase transitions

1st order

O. Tegus *et al.* Nature **415**, 150 (2002)

Giant magnetocaloric materials

Material	T _t (K)	Δ <i>S/</i> μ ₀ Δ <i>H</i> (J K⁻¹ kg⁻¹ T⁻¹)	Reference
Gd ₅ Si ₂ Ge ₂	276	-3.8	Pecharsky <i>et al.</i> PRL 78 , 4494 (1997)
Gd ₅ Si ₁ Ge ₃	136	-13.6	Pecharsky <i>et al.</i> APL 70 , 3299 (1997)
MnAs	318	-6.4	Wada <i>et al.</i> APL 79 , 3302 (2001)
$Mn_{1.24}Fe_{0.71}P_{0.46}Si_{0.54}$	320	-3.6	Tegus <i>et al.</i> Nature 415 , 150 (2002)
MnCoGeB _{0.02}	277	-9.5	Trung <i>et al.</i> APL 96 , 172504 (2010)
LaFe _{11.57} Si _{1.43} H _{1.3}	291	-5.6	Fujita <i>et al.</i> PRB 67 , 104416 (2003)
CoMnSi _{0.95} Ge _{0.05}	215	1.8	Sandeman <i>et al.</i> PRB 74 , 224436 (2006)
Ni ₅₃ Mn ₂₃ Ga ₂₄	295	-3.6	Hu <i>et al.</i> PRB 64 , 132412 (2001)
$Ni_{50}Mn_{37}Sn_{13}$	299	3.8	Krenke <i>et al.</i> Nat. Mat. 4 , 450 (2005)
Ni ₅₀ Mn ₃₄ In ₁₆	219	2.4	Moya <i>et al.</i> PRB 75 , 184412 (2007)
LCMO	259	-0.87	Zhang <i>et al.</i> APL 69 , 3596 (1996)

Few materials, suffer hysteresis

LCMO/BTO

Samples grown by PLD

34 nm La_{0.7}Ca_{0.3}MnO₃

0.5 mm BaTiO₃ (001)

Macroscopic magnetic properties

LSMO Anisotropy change

LCMO Entropy change

M(*T*)

Temperature-Driven Phase Interconversion

LCMO/BTO PEEM-XMCD

Temperature-Driven Phase Interconversion

LCMO/BTO PEEM-XMCD

Magnetic-Field-Driven Phase Interconversion

Detail of transition in M(T)

Drive transition directly Reversible

Schematics

Quantifying the MC effect (1)

Detail of transition in M(T)

Clausius-Clapeyron: $\frac{dT_0}{\mu_0 dH} = -\frac{\Delta M_0}{\Delta S}$

Quantifying the MC effect (2)

Giant magnetocaloric materials

Material	T _t (K)	Δ <i>S/</i> μ ₀ Δ <i>H</i> (J K⁻¹ kg⁻¹ T⁻¹)	Reference
Gd ₅ Si ₂ Ge ₂	276	-3.8	Pecharsky <i>et al.</i> PRL 78 , 4494 (1997)
Gd ₅ Si ₁ Ge ₃	136	-13.6	Pecharsky <i>et al.</i> APL 70 , 3299 (1997)
MnAs	318	-6.4	Wada <i>et al.</i> APL 79 , 3302 (2001)
$Mn_{1.24}Fe_{0.71}P_{0.46}Si_{0.54}$	320	-3.6	Tegus <i>et al.</i> Nature 415 , 150 (2002)
MnCoGeB _{0.02}	277	-9.5	Trung <i>et al.</i> APL 96 , 172504 (2010)
LaFe _{11.57} Si _{1.43} H _{1.3}	291	-5.6	Fujita <i>et al.</i> PRB 67 , 104416 (2003)
CoMnSi _{0.95} Ge _{0.05}	215	1.8	Sandeman <i>et al.</i> PRB 74 , 224436 (2006)
Ni ₅₃ Mn ₂₃ Ga ₂₄	295	-3.6	Hu <i>et al.</i> PRB 64 , 132412 (2001)
$Ni_{50}Mn_{37}Sn_{13}$	299	3.8	Krenke <i>et al.</i> Nat. Mat. 4 , 450 (2005)
Ni ₅₀ Mn ₃₄ In ₁₆	219	2.4	Moya <i>et al.</i> PRB 75 , 184412 (2007)
LCMO	259	-0.87	Zhang <i>et al.</i> APL 69 , 3596 (1996)

Giant magnetocaloric materials

Material	T _t (K)	Δ <i>S/</i> μ ₀ Δ <i>H</i> (J K⁻¹ kg⁻¹ T⁻¹)	Reference
Gd ₅ Si ₂ Ge ₂	276	-3.8	Pecharsky <i>et al.</i> PRL 78 , 4494 (1997)
Gd ₅ Si ₁ Ge ₃	136	-13.6	Pecharsky <i>et al.</i> APL 70 , 3299 (1997)
MnAs	318	-6.4	Wada <i>et al.</i> APL 79 , 3302 (2001)
$Mn_{1.24}Fe_{0.71}P_{0.46}Si_{0.54}$	320	-3.6	Tegus <i>et al.</i> Nature 415 , 150 (2002)
MnCoGeB _{0.02}	277	-9.5	Trung <i>et al.</i> APL 96 , 172504 (2010)
LaFe _{11.57} Si _{1.43} H _{1.3}	291	-5.6	Fujita <i>et al.</i> PRB 67 , 104416 (2003)
CoMnSi _{0.95} Ge _{0.05}	215	1.8	Sandeman <i>et al.</i> PRB 74 , 224436 (2006)
Ni ₅₃ Mn ₂₃ Ga ₂₄	295	-3.6	Hu <i>et al.</i> PRB 64 , 132412 (2001)
Ni ₅₀ Mn ₃₇ Sn ₁₃	299	3.8	Krenke <i>et al.</i> Nat. Mat. 4 , 450 (2005)
Ni ₅₀ Mn ₃₄ In ₁₆	219	2.4	Moya <i>et al.</i> PRB 75 , 184412 (2007)
LCMO/BTO	186	-9	Extrinsic

X. Moya et al., Nat. Mat. 12, 52 (2013)

Strain-mediated magnetoelectric and magnetocaloric effects in oxide heterostructures

BTO strain creates extrinsic magnetic transitions

LSMO/BTO: *T* and *E* control of magnetic anisotropy sharp and persistent ME effects

LCMO/BTO: *T* and *H* control of phase interconversion giant and reversible MC effects

Other geometries: nanocomposites, core-shell particles

(68 nm-thick bilayer
$$\Delta S/\mu_0 \Delta H \sim -4.7 \text{ J K}^{-1} \text{ kg}^{-1} \text{ T}^{-1}$$
)
 $\Delta S^{\text{BTO}}_{O \rightarrow R} \sim -1.6 \text{ J K}^{-1} \text{ kg}^{-1}$