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help of the Stoner model of itinerant magnetism. In this
model the reciprocal susceptibility, !M

−1=E!!M", is given by a
simple formula12

!M
−1 = "B

−2!DM
−1 − I" , !1"

where I#0.5 eV is the Stoner parameter and DM is the ef-
fective DOS at the Fermi level, defined by

DM =
4

DM+
−1 + DM−

−1 . !2"

The Stoner theory adopts the rigid-band approximation,
whereby the DOS of a spin-polarized state is obtained from
the nonmagnetic DOS D!E" by simply shifting the latter
along the energy axis. Accordingly, the entering into Eq. !2"
DOS at the Fermi level in the majority and minority sub-
bands are given by DM±= 1

2D!EF,M±", where the shifted
Fermi levels are determined from an obvious condition,

$
EF,0

EF,M±

D!E"dE = ±
M

2
, !3"

EF,0 being the Fermi energy of the unpolarized state. The
somewhat heavy use of the subscript M in Eqs. !1"–!3" is to
emphasize that the quantities defined therein are functions of
the independent variable M, the spin magnetic moment.

Turning now to LaFe12Si, its nonmagnetic DOS is pre-
sented in Fig. 2. The arrows mark the positions of the shifted
Fermi level in the majority and/or minority subbands, the
numbers corresponding to the labeling of the minima in

Fig. 1. In reality there is a finite interval of allowed M values
around each arrow, wherein !M #0 and E!M" is curved up-
wards. The exact equilibrium positions within the intervals
depend on the assumed value of the lattice parameter a. The
allowed intervals are interlaid with forbidden ones, wherein
the DOS at the Fermi level in both spin channels is so high
that DM exceeds I−1 and consequently !M is negative. Such
forbidden values of M correspond to unstable states. The
instability criterion, IDM #1, is known as the generalized
Stoner condition.12

Recapitulating, the Stoner theory links the oscillatory be-
havior of the FSM profiles of LaFe12Si !Fig. 1" to a series of
high peaks and deep valleys in its DOS !Fig. 2". Earlier it
was suggested13 that the magnetic instability in LaFe13−xSix
might be akin to that in face-centered-cubic !fcc" iron, where
several magnetically distinct phases had been predicted.14

This view was supported by an argument that the iron atoms
situated on the 96i sites form icosahedral clusters similar to
the coordination polyhedra in the fcc structure. Examining
the DOS of fcc iron,15 we found no narrow peaks or valleys
that could enable us to draw a parallel between fcc Fe and
LaFe13−xSix. The preferred values of the atomic moments
are also dissimilar: thus, the third minimum in Fig. 1!a"
!#1.75"B /Fe atom" corresponds to a prominent maximum
in the E!M" dependence of fcc iron.14 The two compounds
are still broadly analogous, in the sense that the magnetic
instability in both of them is governed by the generalized
Stoner criterion, IDM #1.

Our next goal is to find out what the FSM profile of an
ideal magnetic refrigerant should look like. With this end in
view, let us first clarify what determines the relative cooling
power !RCP" of a refrigerant with a single first-order transi-
tion. An intersection point of the temperature dependences of
the free energies of the two phases involved defines the tran-
sition temperature T0, Fig. 3!a". The negative slopes of the
two curves are the entropies S1,2, the respective magnetiza-
tions being M1,2. Assume for definiteness that M2#M1.
Then a magnetic field B will suffice to induce a transition
from phase 1 to phase 2 anywhere within the interval be-
tween T0 and T0+$T, where $T is determined from an ob-
vious condition, $T!S1−S2"=B!M2−M1". This will be ac-
companied by an entropy change of $S%S2−S1, see Fig.
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FIG. 1. Total energy vs spin magnetic moment, calculated at the
indicated values of the lattice parameter.
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FIG. 2. Non-spin-polarized density of states of LaFe12Si.
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X-ray diffraction (XRD) measurements at different tempera-
tures reveal that the LaFe11.4Si1.6 retains a cubic NaZn13-type
structure but the cell parameter changes dramatically with TC.
The negative expansion of lattice parameter reaches 0.4%with the
appearance of FM ordering for LaFe11.4Si1.6, while only a small
change of lattice parameter is observed for LaFe10.4Si2.6 (see
Fig. 3a). The occurrence of the large jDSj in LaFe11.4Si1.6 is
attributed to the rapid change of magnetization at TC, which is
caused by a dramatic negative lattice expansion. For comparison,
Figure 2c also presents the entropy change for LaFe10.4Si2.6, and
its value is much smaller than that of LaFe11.4Si1.6. The saturation
magnetizations of LaFe11.4Si1.6 and LaFe10.4Si2.6 were determined
to be 2.1 and 1.9mB/Fe from theM–H curves at 5 K. The influence
of the small difference in saturation magnetization between the
two samples on the jDSj should be very small, and the large
negative lattice expansion at TC should be the key reason for the
very large jDSj in LaFe11.4Si1.6.

As mentioned above, the first-order nature of the phase
transition in LaFe13!xSix is strengthened with lowering Si content
and an evolution of the transition from second-order to first-order
can take place. For the samples with x" 1.5, thermal and
magnetic hysteresis appears inevitably because of the first-order
nature of the transition. Details about hysteresis loss can be seen
in the following sections. Figure 3b displays the typical DS as a
function of temperature under a field change of 0!5T for
LaFe13!xSix with different Si contents, x.[24] The maximal jDSj is

#29 J kg!1 K!1 when x¼ 1.2. However, from a simple analysis it
can be concluded that the maximal jDSj for LaFe13!xSix will be
#40 J kg!1 K!1. It is easy to see that there should be a one-to-one
correspondence between the field-induced magnetization change
(Ds) and DS. By comparing the data from different compounds, a
DS–Ds relation can be obtained, and the largest entropy change
will be the result corresponding toDs¼ 1. A remarkable feature is
the rapid drop in DS with x for lower Si content, while there is
slow variation with x for higher Si content, as shown in the inset
of Figure 3b. The negative lattice expansion near TC increases
rapidly with reducing Si content (see Fig. 3a). This is a signature
of the crossover of the magnetic transition from second- to
first-order. These results reveal a fact that large entropy changes
occur always accompanies the first-order phase transition.

3.2. Neutron Diffraction and Mössbauer Studies
of LaFe13!xSix

A detailed investigation of the magnetic phase transition driven
by temperature and magnetic field can give an insight into the
mechanism of large magnetic entropy changes in these
compounds. It is well known that neutron diffraction is a
powerful and direct technique to investigate phase transitions,
especially magnetic phase transitions. Wang et al.[25] carried out
neutron diffraction investigations on LaFe11.4Si1.6. Rietveld
refinements of powder diffraction patterns showed that the
occupancies of Fe atoms were#90.5 (%1.7)% and#87.0 (%1.8)%
for FeI and FeII sites, respectively. Thus, Si atoms are almost
randomly distributed between these two Fe sites. It is noted that
the diffraction profiles at 2 and 300K can be fitted by one cubic
NaZn13-type lattice, whereas that at 191 K (very close to the Curie
temperature) must be fitted by two cubic NaZn13-type lattices
with different lattice parameters (Fig. 4). The onset of the
ferromagnetic ordering results in a large volume expansion,
exerting no influence on the symmetry of the atomic lattice. The
volume changes discontinuously and the large volume ferro-
magnetic phase coexist with a small volume paramagnetic phase
at 191K. The refinement shows that, at 191K, the sample is
composed of #12% of the large volume phase and #83% of the
small one (the rest is #5% a-Fe). The coexistence of two phases
implies that the first-order magnetic phase transition and strong
interplay between lattice andmagnetism take place, in agreement
with the observations in La(Fe0.88Si0.12)13 from XRD.[26]

It has also been found[25] that the lattice parameter is strongly
correlated with the Fe moment. With temperature decreasing
from 300 to 250K, the compound displays a normal thermal
contraction resulting from the anharmonic vibrations of atoms.
Since the Invar effect is caused by expansion resulting from the
spontaneousmagnetostriction, which cancels the normal thermal
contraction, one may infer that short-range magnetic correlation
appears far above the Curie temperature in LaFe11.4Si1.6. With
further reductions in temperature, the effect of the spontaneous
magnetostriction increases and the lattice parameter shows a
large jump with a long-range ferromagnetic ordering. Even below
the Curie temperature, the contribution of magnetic thermal
expansion is still related to the increase of the magnetic
correlation as the temperature is lowered.

Figure 3. a) Lattice parameter a and b) entropy changeDS, as a function of
temperature under a field change of 0–5 T for LaFe13!xSix. The inset plot
showsDS as a function of Si content for LaFe13!xSix under a field change of
0–2 T (adapted from [24]).
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sider the structural entropy entering the transition. They

applied the model to MnAs systems and found a colossal

contribution to ∆s from the lattice. However the results

obtained so far are controversial, as it was later demon-

strated that the experimental values of ∆s used by the

authors were overestimated due to an incorrect applica-

tion of Maxwell relations in presence of hysteresis in the

magnetization curves [18–23]. To fit the colossal peaks,

Refs. [15,16] employed the Grüneisen parameter γ, which

gives the volume dependence of the Debye temperature,

as a free fitting parameter. This method suffers from the

problem that the relation αp = γκT cv/v, between the coef-

ficient of thermal expansion αp, the isothermal compress-

ibility κT , the specific heat at constant volume cv, the

specific volume v and γ, must be always satisfied [24, 25].

The mentioned parameters are then not all independent

each other. This fact points at a reconsideration of the ap-

proach used in Refs. [15,16]. In a further development [17],

the Debye theory is modified by making the a priory as-

sumption that the volume change is proportional to the

squared magnetization. This procedure do not permit a

deep physical understanding, as this proportionality has to

be derived from the magneto-volume mechanism instead

of being postulated as an ad hoc assumption.

A different approach to the magneto-volume problem

has been undertaken by Jia et al. [26], who have noticed

that if at the transition the volume changes discontinu-

ously, then also the entropy of the lattice will change.

Considering temperature increase, the lattice entropy is

added to the magnetic one when the volume expands,

while it is subtracted when the volume contracts. To

sustain this idea, in Refs. [26–28] the authors have rep-

resented the experimental entropy change ∆s of several

magnetocaloric alloys (Gd5SixGe1−x, LaFe13−xSix and

Ni2.15Mn0.85−xCuxGa) as a function of the magnetization

changes. By comparing the data with the theoretical mag-

netic entropy, they were able to show, from the difference,

which is the sign and the amplitude of the structural con-

tribution. In Gd5Si2Ge2 and Ni2.15Mn0.85−xCuxGa the

lattice contribution increases the entropy change at the

transition while in LaFe13−xSix, even if the magnetic en-

tropy change is large, the role of the lattice entropy is that

of decreasing the magnetocaloric effect. The same situa-

tion is valid for MnAs, for which it was already shown in

Ref. [11] that at the first order phase transition, the mag-

netic entropy in increasing but the structural entropy is

decreasing. The fact that the contribution of the lattice is

small [11] is probably the reason of the good fit obtained

in Refs. [13, 14].

In this paper I derive the conditions giving the sum or

the subtraction of the structural entropy at the first-order

transition. In Ref. [11] it was shown that the order of

the phase transition from FM to PM is determined by

η, a parameter which depends on β, the steepness of the

change of ferromagnetic exchange with volume, and κp the

isothermal compressibility of the lattice. To derive our re-

sult I take the free energy of the system as the sum of the

ferromagnetic free energy and the free energy of the struc-

tural lattice. Differently from Ref. [15,16], I make a power

expansion of the structural lattice free energy around the

temperature T0 and the volume v0. Then, in a limited

temperature and volume range, κT , αp, and cp are three

independent constants. In this way we fully exploit the

role played by the thermal expansion of the structural

lattice as indicated in the generalization of the free en-

ergy of Ref. [11]. By the minimization of the free energy

I compute the entropy at the first order magnetic phase

transition. The result is that the sign and amplitude of

the structural change is determined by the dimensionless

parameter ζ (zeta) defined as ζ = αpβT0. For ζ < 0 the

magnetic and lattice entropy change have the same sign

giving rise to an enhancement of the total entropy change.

This is the condition to have the GMCE. With 0 < ζ < 1

the magnetic entropy is positive, but the lattice entropy is

negative. Their sum is still larger than zero, but the total

entropy change is less that the magnetic one. For ζ > 1

the PM is stable at low temperature, i.e. the transition

may occurs on heating in the inverted fashion, i.e. from

a low temperature PM to an high temperature FM. Fi-

nally above a critical value ζJ (ζ > ζJ) the lattice entropy

change is positive and is, in absolute value, larger than

the magnetic one, which is negative. However the total

entropy change is less than the structural one.

Magneto-volume coupling. – The Landau free en-

ergy density of the material fL(M,ω, T ) is the sum of the

ferromagnetic free energy and the free energy of the struc-

tural lattice:

fL = −1

2
W (ω)µ0M

2 − TsM (M) + fS(ω, T ) (1)

where the first term on the right hand side is the ferromag-

netic exchange energy in mean field theory, W is the Weiss

molecular field coefficient, ω = (v − v0)/v0 is the reduced

volume, v is the specific volume, v0 is the specific volume

at T = T0, µ0 is the permeability of vacuum, M is the mag-

netization (in mass density), sM is the magnetic entropy

and fS(ω, T ) is the free energy describing the structural

lattice. We assume as in Ref. [11] that the molecular field

coefficient W depends linearly on the reduced volume as

W (ω) = W0(1 + βω). The structural lattice free energy

should include all the contribution other than magnetic:

the elastic energy, the phonons energy, the electrons en-

ergy and so on. In metals the relevant contribution is due

to phonons. Refs. [11,15] used the Debye formula to have

an explicit expression of fS . Although it is desirable to

use an expression for fS derived from first principles and

valid in a wide temperature range [29], for the aim of the

present paper it is sufficient to take a power expansion of

the free energy around the values ω = 0 and T = T0 [30].

To make the expansion of the free energy, we take linear

equation of state as a function of the intensive variables:

the pressure p and the temperature T . The linear state

p-2

lattice free energy

total free energy

V. Basso, J.Phys. Condens. Matter 23 (2011) 226004.
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exchange
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KBNA ln(2J+1)

21

fL = −1
2
NW (ω)µ0M

2 − Ts(M)

+
v0

κT

ω2

2
− αpv0

κT
ω(T − T0)− bv

1
2
(T − T0)2

− s0(T − T0)− v0ωp0 (184)

fL = −1
2
NW (ω)µ0M

2 +
1
2

1
K

ω2 − Ts (185)

The exchange interaction is dependent on the typical atomic distance. Therefore it is possible that a change in
structure is accompanied by a change in the kind of magnetic order. In the mean field theory we have seen that the
exchange interaction is described by the molecular field coefficient. We then assume that the molecular field coefficient
depends on the reduced volume:

NW (ω) = NW0(1 + βω) (186)

where we define the reduced volume:

ω =
v − v0

v0
(187)

∂NW

∂ω
= NW0β (188)

and then the potentials reads:

gL(Ha, p, T ;M, ω) = fL(M, ω, T )− µ0HaM + pv0(ω + 1) (189)

We now impose the two conditions of minimum of the Landau free energy. The reduced volume condition is

∂fL

∂ω
= −v0p (190)

giving:

−1
2
NW0βµ0M

2 +
v0

κT
ω − αpv0

κT
(T − T0)− v0p0 = −v0p (191)

The magnetization condition is

∂fL

∂M
= µ0Ha (192)

giving:

−NW (ω)µ0M − T
∂s

∂M
= µ0Ha (193)

From the first condition we derive:

ω(M) = αp(T − T0)− κT (p− p0) +
1
2

NW0βκT µ0

v0
M

2 (194)
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allows the frequencies to change with the volume v. In the Debye model this is introduced through the Grüneisen
parameter

γ = −∂ ln νD

∂ ln v
(48)

expressing the volume dependence of the Debye frequency νD. From the definition of the Grüneisen parameter also
the Debye temperature TD(ω) is found to be dependent of the reduced volume ω, introducing a volume dependence
in the term fD.

Electronic band energy. In metals, due to the Fermi-Dirac statistics, the contribution of the fluctuations of the
electronic states in energy bands is limited to an energy region of amplitude kBT around the Fermi level. The result
of this statistics is found in solid state textbooks [8] and the leading order of a power expansion as a function of the
temperature gives the term:

fele = −π2

6
n(kBT )2n(�F ) (49)

where n(�F ) is the density of states of the unsplit band at the Fermi level and the integral of the density of states
n(�) up the Fermi level gives the number of valence electrons per atom. The contribution to the entropy is

sele =
π2

3
nk2

BTn(�F ) (50)

is linear with T and is generally much smaller than the other contributions to the entropy and is relevant to the
specific heat only at low temperatures.

State equation of a solid. By using the mentioned approximations to describe an isotropic solid we arrive to an
expression of the free energy

fS(ω, T ) = fela(ω) + fD(ω, T ) + fele(T ) (51)

which is a function of ω and T . The corresponding equations of state are given applying Eqs.(2) and (3). By
considering the behavior around ω = 0 and T = T0 one will have the linear state equations:

p = − 1
κT

ω +
αp

κT
(T − T0) (52)

sS = sS0 +
v0αp

κT
ω + bv(T − T0) (53)

which verify the Maxwell relation v0∂ω/∂T = −∂s/∂p and where the parameter bv = dsS/dT |v is the specific entropy
capacity at constant volume for the solid related to the specific heat at constant volume by bv = cv/T0. We take the
elastic term as the first term of the power expansion and a linear expansion of the volume dependence of the Debye
temperature TD(ω) = TD0(1−γω), defining y0 = TD0/T0. We can then derive the values of the parameters appearing
in the equations of state (52) and (53) as a function of the parameters of the elastic, Debye and electronic free energy.
The inverse of the isothermal compressibility is

1
κT

=
∂

∂ω

�
1
v0

∂fS

∂ω

�
(54)

and results

1
κT

=
1
κ0
− cv(y0)T0γ2

v0
(55)

The thermal expansion is obtained by the entropy change with the volume

elastic phonons electrons 15
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2. Structural lattice and electrons free energy

In solids, the main contributions to the free energy, other than magnetic, are elastic, phonon and electronic bands.
The sum of these three terms give rise to the equation of state of a solid for its lattice and electronic part [8–11]. It
is worth to consider them in detail to have an approximate description of the related free energy terms.

Elastic energy. The elastic energy term fela represents the potential energy related to interatomic forces between
the atoms in the lattice and depends on the strain tensor. In a first order approximation one may consider isotropic
effects and take the elastic energy to be a function of the specific volume change ω. By using a power expansion we
have

fela(ω) =
v0

2κ0
ω2 +O(ω3) (41)

where ω = (v − v0)/v0 is related to the specific volume v and to the rest specific volume v0.
Phonon energy. The phonon term of the structural free energy is due to thermal vibration modes of the atomic

masses in the lattice. In a classical approach, because of the law of the equipartition of the energy, one would have
kBT contribution for each degree-of-freedom of the atom (i.e. 3 for an atom in a solid). In a quantum approach one
has to consider the atomic masses as quantum harmonic oscillators and take the spectrum of the vibration modes.
A good approximation is given by the Debye model in which the phonon spectrum is taken as isotropic in the wave-
vector space with a maximum frequency defined as the Debye frequency νD. In the Debye model the free energy of
the phonons ([9] p.275) is

fD = f(0) + 3nkBT

�
ln [1− exp (−y)]− 1

3
D (y)

�
(42)

with

y =
TD

T
(43)

where TD is the Debye temperature related to the Debye frequency by hνD = kBTD and D(y) is the Debye function

D(y) =
3
y3

� y

0

x3

exp(x)− 1
dx (44)

The Debye model gives a very good description of the specific heat at constant volume of solids which is

cv = T
∂s

∂T

����
v

(45)

where s = −∂fD/∂T is the entropy, obtaining

cv = 3nkBC(y) (46)

where

C(y) = 4D (y)− 3y

exp (y)− 1
(47)

is a function that for T > TD gives approximately cv � 3nkB , which is the law of Dulong and Petit. The Debye
temperature TD is the only parameter in Eq.(46) and is a characteristic of the solid. To describe the thermal expansion
in the context of the Debye theory one has to introduce the presence of anharmonic effects of the atomic potential
[93]. When atoms change their interatomic distances, the non linearities of the potential give rise to slight changes
of the phonon vibration frequencies. In the quasi-harmonic approximation one still considers harmonic waves, but
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D (y)
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with
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TD

T
(43)

where TD is the Debye temperature related to the Debye frequency by hνD = kBTD and D(y) is the Debye function

D(y) =
3
y3

� y

0

x3

exp(x)− 1
dx (44)

The Debye model gives a very good description of the specific heat at constant volume of solids which is

cv = T
∂s

∂T

����
v

(45)

where s = −∂fD/∂T is the entropy, obtaining

cv = 3nkBC(y) (46)

where

C(y) = 4D (y)− 3y

exp (y)− 1
(47)

is a function that for T > TD gives approximately cv � 3nkB , which is the law of Dulong and Petit. The Debye
temperature TD is the only parameter in Eq.(46) and is a characteristic of the solid. To describe the thermal expansion
in the context of the Debye theory one has to introduce the presence of anharmonic effects of the atomic potential
[93]. When atoms change their interatomic distances, the non linearities of the potential give rise to slight changes
of the phonon vibration frequencies. In the quasi-harmonic approximation one still considers harmonic waves, but
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allows the frequencies to change with the volume v. In the Debye model this is introduced through the Grüneisen
parameter

γ = −∂ ln νD

∂ ln v
(48)

expressing the volume dependence of the Debye frequency νD. From the definition of the Grüneisen parameter also
the Debye temperature TD(ω) is found to be dependent of the reduced volume ω, introducing a volume dependence
in the term fD.

Electronic band energy. In metals, due to the Fermi-Dirac statistics, the contribution of the fluctuations of the
electronic states in energy bands is limited to an energy region of amplitude kBT around the Fermi level. The result
of this statistics is found in solid state textbooks [8] and the leading order of a power expansion as a function of the
temperature gives the term:

fele = −π2

6
n(kBT )2n(�F ) (49)

where n(�F ) is the density of states of the unsplit band at the Fermi level and the integral of the density of states
n(�) up the Fermi level gives the number of valence electrons per atom. The contribution to the entropy is

sele =
π2

3
nk2

BTn(�F ) (50)

is linear with T and is generally much smaller than the other contributions to the entropy and is relevant to the
specific heat only at low temperatures.

State equation of a solid. By using the mentioned approximations to describe an isotropic solid we arrive to an
expression of the free energy

fS(ω, T ) = fela(ω) + fD(ω, T ) + fele(T ) (51)

which is a function of ω and T . The corresponding equations of state are given applying Eqs.(2) and (3). By
considering the behavior around ω = 0 and T = T0 one will have the linear state equations:

p = − 1
κT

ω +
αp

κT
(T − T0) (52)

sS = sS0 +
v0αp

κT
ω + bv(T − T0) (53)

which verify the Maxwell relation v0∂ω/∂T = −∂s/∂p and where the parameter bv = dsS/dT |v is the specific entropy
capacity at constant volume for the solid related to the specific heat at constant volume by bv = cv/T0. We take the
elastic term as the first term of the power expansion and a linear expansion of the volume dependence of the Debye
temperature TD(ω) = TD0(1−γω), defining y0 = TD0/T0. We can then derive the values of the parameters appearing
in the equations of state (52) and (53) as a function of the parameters of the elastic, Debye and electronic free energy.
The inverse of the isothermal compressibility is

1
κT

=
∂

∂ω

�
1
v0

∂fS

∂ω

�
(54)

and results

1
κT

=
1
κ0
− cv(y0)T0γ2

v0
(55)

The thermal expansion is obtained by the entropy change with the volume

Debye function

Debye

isotropic solid

small contribution...

Debye 
temperature

Anharmonic 
effects
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Magnetocaloric effect at first-order magneto-volume phase transition

equations of state, valid around p = 0 and T = T0, are:

ω = −κT p + αp(T − T0) (2)

sS − s0 = −v0αpp + bp(T − T0) (3)

where s0 is a reference value (at T = T0 and p = 0)

and the three parameters describing the structural lattice

are: κT = −(1/v0)dv/dp|T the isothermal compressibility,

αp = (1/v0)dv/dT |p the thermal expansion coefficient and

bp = dsS/dT |p the specific entropy capacity at constant

pressure which is related to the specific heat capacity at

constant pressure cp by bp = cp/T . The three parame-

ters are specific properties of the structural part alone,

while the material properties will be derived after solving

the problem including the magnetic part. In the follow-

ing we take the three independent coefficients κT , αp, bp of

Eqs.(2) and (3) as constants. In this way, one immediately

verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the

thermodynamic compatibility of the equations. After a

few passages, one can show that the free energy giving the

state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T−T0)−bv

1

2
(T−T0)

2

(4)

where the parameter bv = dsS/dT |v is the specific entropy

capacity at constant volume for the structural lattice, re-

lated to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the

conditions (1/v0)∂fL/∂ω = −p and ∂fL/∂M = µ0H

where H is the magnetic field. By imposing the first con-

dition we obtain the equilibrium value for ω:

ω = −κT

�
p− η

3βκT
m

2

�
+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we

have introduced the dimensionless parameter η of Bean

and Rodbell [11]:

η =
3

2

β2κT µ0M
2
0 W0

v0
(6)

By comparing Eq.(5) with Eq.(2), we see that the depen-

dence of the ferromagnetic exchange forces on the volume

gives rise to an extra term which is the exchange mag-

netostriction and is due to an equivalent magneto-volume
pressure pW = −η m

2
/(3βκT ). From the second condition

we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and divid-

ing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0)− κT p)] m − 1
3ηm

3 −
taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ
µ0M

2
0 W0

nkB
(8)

where n is the mass density of atomic magnetic mo-

ments, aJ is a coefficient dependent on the atomic mag-

netic moments and kB is the Boltzmann constant. The

temperature T0 of Eqs.(2) and (3) is arbitrary, then, by

taking T0 = Tc0 , we write the term linear on m as

− [1 + ζ(t− 1)− π ]m where we define the dimensionless

pressure π = βκT p and the dimensionless parameter ζ
(zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic

magnetic moments characterized by the total angular mo-

mentum quantum number J of electrons. From the Boltz-

mann statistics one obtains that sM (0) = nkB ln(2J + 1)

and −∂sM/∂m = nkBM
−1
J (m) where MJ(x) is the Bril-

louin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�

(10)

The magnetization m is given by the solution of the equa-

tion

h = − [1 + ζ(t− 1)− π ]m− 1

3
ηm

3
+ t aJ M

−1
J (m) (11)

The number of possible stable solutions of Eq.(11) is eval-

uated by taking the power expansion up to the third order

of the inverse function M
−1
J (m). One obtains

aJM
−1
J (m) � m + bJm

3
+O(m

5
) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J
2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3

+ tO(m
5
) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For

h = 0, m = 0 (PM) is always a solution. PM is an en-

ergy minimum for c1 > 0 i.e. (t − 1)(1 − ζ) + π > 0. For

c1 < 0 PM is an energy maximum but there is always

one stable solution with m > 0 (FM). We have then de-

rived one of the main results of this paper: by defining

tP = 1 − π/(1 − ζ) we have that for ζ < 1 the P state is

stable at temperatures above tP (t > tP ) while for ζ > 1

the PM state is stable at temperatures below tP (t < tP ).

In the last case the transformation on heating is inverted

and occurs from PM to FM. This is possible only for posi-

tive ζ, i.e. for positive β. The high temperature FM state

may eventually transforms again to PM at higher temper-

atures if β decreases to zero or changes sign. The order

of the transition is determined by the sign of c3. When

the PM solution is marginally stable (c1 = 0), there is a

FM solution if c3 < 0. This means that the transition is of

first-oder if η > 3bJ tP and second-order if η < 3bJ tP .More

insight on the role played by ζ is obtained by computing

the entropy.

p-3

linear elasticity for the lattice around T0
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compatibility of the equations. After a few passages, one can show that the free energy

giving the state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

[

αpv0

κT

ω + s0

]

(T − T0) − bv

1

2
(T − T0)

2 (4)

where the parameter bv = dsS/dT |v is the specific entropy capacity at constant volume

for the structural lattice, related to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the conditions (1/v0)∂fL/∂ω = −p
and ∂fL/∂M = µ0H where H is the magnetic field. By imposing the first condition we

obtain the equilibrium value for ω:

ω = −κT

(

p −
η

3βκT

m2

)

+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we have introduced the

dimensionless parameter η of Bean and Rodbell [11]:

η =
3

2

β2κT µ0M2
0 W0

v0

(6)

By comparing Eq.(5) with Eq.(2), we see that the dependence of the ferromagnetic

exchange forces on the volume gives rise to an extra term which is the exchange

magnetostriction and is due to an equivalent magneto-elastic pressure pW =

−η m2/(3βκT ). From the second condition we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and dividing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0) − κT p)]m− 1

3
ηm3− taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ

µ0M2
0 W0

nkB

(8)

where n is the mass density of atomic magnetic moments, aJ is a coefficient dependent

on the atomic magnetic moments and kB is the Boltzmann constant. The temperature
T0 of Eqs.(2) and (3) is arbitrary, then, by taking T0 = Tc0, we write the term linear on

m as − [1 + ζ(t − 1) − π ] m where we define the dimensionless pressure π = βκT p and

the dimensionless parameter ζ (zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic magnetic moments characterized
by the total angular momentum quantum number J of electrons. From the Boltzmann

statistics one obtains that sM(0) = nkB ln(2J +1) and −∂sM/∂m = nkBM
−1

J (m) where

MJ(x) is the Brillouin function:

MJ(x) =
2J + 1

2J
coth

(

2J + 1

2J
x
)

−
1

2J
coth

(

1

2J
x
)

(10)

The magnetization m is given by the solution of the equation

h = − [1 + ζ(t − 1) − π ] m −
1

3
ηm3 + t aJ M

−1

J (m) (11)

lattice free energy around T0

term representing the Gruneisen parameter of the 
Debye theory 

lattice free energy
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�
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�
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By comparing Eq.(5) with Eq.(2), we see that the dependence of the ferromagnetic

exchange forces on the volume gives rise to an extra term which is the exchange

magnetostriction and is due to an equivalent magneto-elastic pressure pW =
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2
/(3βκT ). From the second condition we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and dividing all terms by µ0H0 = µ0M0W0 we have
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where n is the mass density of atomic magnetic moments, aJ is a coefficient dependent

on the atomic magnetic moments and kB is the Boltzmann constant. The temperature

T0 of Eqs.(2) and (3) is arbitrary, then, by taking T0 = Tc0 , we write the term linear on

m as − [1 + ζ(t− 1)− π ] m where we define the dimensionless pressure π = βκT p and

the dimensionless parameter ζ (zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic magnetic moments characterized

by the total angular momentum quantum number J of electrons. From the Boltzmann

statistics one obtains that sM(0) = nkB ln(2J +1) and −∂sM/∂m = nkBM−1
J (m) where

MJ(x) is the Brillouin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�
(10)

The magnetization m is given by the solution of the equation

h = − [1 + ζ(t− 1)− π ] m− 1

3
ηm

3 + t aJ M−1
J (m) (11)

3 free parameters
kT - isothermal compressibility
αp - thermal expansion coefficient
cv - specific heat ( bv = cv /T0 - entropy coefficient)
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fL = −1
2
NW (ω)µ0M

2 − Ts(M)

+
v0

κT

ω2

2
− αpv0

κT
ω(T − T0)− bv

1
2
(T − T0)2

− s0(T − T0)− v0ωp0 (184)

fL = −1
2
NW (ω)µ0M

2 +
1
2

1
K

ω2 − Ts (185)

The exchange interaction is dependent on the typical atomic distance. Therefore it is possible that a change in
structure is accompanied by a change in the kind of magnetic order. In the mean field theory we have seen that the
exchange interaction is described by the molecular field coefficient. We then assume that the molecular field coefficient
depends on the reduced volume:

NW (ω) = NW0(1 + βω) (186)

where we define the reduced volume:

ω =
v − v0

v0
(187)

∂NW

∂ω
= NW0β (188)

and then the potentials reads:

gL(Ha, p, T ;M, ω) = fL(M, ω, T )− µ0HaM + pv0(ω + 1) (189)

We now impose the two conditions of minimum of the Landau free energy. The reduced volume condition is

∂fL

∂ω
= −v0p (190)

∂fL

∂ω
= 0 (191)

giving:

−1
2
NW0βµ0M

2 +
v0

κT
ω − αpv0

κT
(T − T0)− v0p0 = −v0p (192)

The magnetization condition is

∂fL

∂M
= µ0Ha (193)

giving:

−NW (ω)µ0M − T
∂s

∂M
= µ0Ha (194)

η<1
second-order

η>1
first-order

Bean and Rodbell, Phys Rev (1962)
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zero, but the total entropy change is less than the magnetic one. For ζ > 1 the PM

is stable at low temperature, i.e. the transition may occurs on heating in the inverted

fashion, i.e. from a low temperature PM to an high temperature FM. Finally above a

critical value ζJ (ζ > ζJ) the lattice entropy change is positive and is, in absolute value,

larger than the magnetic one, which is negative. However the total entropy change is

less than the structural one.

2. Magneto-volume coupling

The Landau free energy density of the material fL(M, ω, T ) is the sum of the

ferromagnetic free energy and the free energy of the structural lattice:

fL = −1

2
W (ω)µ0M

2 − TsM(M) + fS(ω, T ) (1)

where the first term on the right hand side is the ferromagnetic exchange energy in

mean field theory, W is the Weiss molecular field coefficient, ω = (v − v0)/v0 is the

reduced volume, v is the specific volume, v0 is the specific volume at T = T0, µ0 is the

permeability of vacuum, M is the magnetization (in mass density), sM is the magnetic

entropy and fS(ω, T ) is the free energy describing the structural lattice. We assume

as in Ref.[11] that the molecular field coefficient W depends linearly on the reduced

volume as W (ω) = W0(1+βω). The structural lattice free energy should include all the

contribution other than magnetic: the elastic energy, the phonons energy, the electrons

energy and so on. In metals the relevant contribution is due to phonons. Refs.[11, 15]

used the Debye formula to have an explicit expression of fS. Although it is desirable to

use an expression for fS derived from first principles and valid in a wide temperature

range [29], for the aim of the present paper it is sufficient to take a power expansion of

the free energy around the values ω = 0 and T = T0 [30]. To make the expansion of the

free energy, we take linear equation of state as a function of the intensive variables: the

pressure p and the temperature T . The linear equations of state, valid around p = 0

and T = T0, are:

ω = − κT p + αp(T − T0) (2)

sS − s0 = − v0αpp + bp(T − T0) (3)

where s0 is a reference entropy value (at T = T0 and p = 0) and the three

parameters describing the structural lattice are: κT = −(1/v0)dv/dp|T the isothermal

compressibility, αp = (1/v0)dv/dT |p the thermal expansion coefficient and bp = dsS/dT |p
the specific entropy capacity at constant pressure which is related to the specific heat

capacity at constant pressure cp by bp = cp/T . The three parameters are specific

properties of the structural part alone, while the material properties will be derived

after solving the problem including the magnetic part. In the following we take the

three independent coefficients κT , αp, bp of Eqs.(2) and (3) as constants. In this way, one

immediately verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the thermodynamic
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compatibility of the equations. After a few passages, one can show that the free energy

giving the state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T − T0)− bv

1

2
(T − T0)

2 (4)

where the parameter bv = dsS/dT |v is the specific entropy capacity at constant volume

for the structural lattice, related to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the conditions (1/v0)∂fL/∂ω = −p

and ∂fL/∂M = µ0H where H is the magnetic field. By imposing the first condition we

obtain the equilibrium value for ω:

ω = −κT

�

p− η

3βκT
m

2

�

+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we have introduced the

dimensionless parameter η of Bean and Rodbell [11]:

η =
3

2

β2κT µ0M
2
0 W0

v0
(6)

By comparing Eq.(5) with Eq.(2), we see that the dependence of the ferromagnetic

exchange forces on the volume gives rise to an extra term which is the exchange

magnetostriction and is due to an equivalent magneto-elastic pressure pW =

−η m
2
/(3βκT ). From the second condition we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and dividing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0)− κT p)] m− 1
3ηm

3− taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ
µ0M

2
0 W0

nkB
(8)

where n is the mass density of atomic magnetic moments, aJ is a coefficient dependent

on the atomic magnetic moments and kB is the Boltzmann constant. The temperature

T0 of Eqs.(2) and (3) is arbitrary, then, by taking T0 = Tc0 , we write the term linear on

m as − [1 + ζ(t− 1)− π ] m where we define the dimensionless pressure π = βκT p and

the dimensionless parameter ζ (zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic magnetic moments characterized

by the total angular momentum quantum number J of electrons. From the Boltzmann

statistics one obtains that sM(0) = nkB ln(2J +1) and −∂sM/∂m = nkBM−1
J (m) where

MJ(x) is the Brillouin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�
(10)

The magnetization m is given by the solution of the equation

h = − [1 + ζ(t− 1)− π ] m− 1

3
ηm

3 + t aJ M−1
J (m) (11)
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zero, but the total entropy change is less than the magnetic one. For ζ > 1 the PM

is stable at low temperature, i.e. the transition may occurs on heating in the inverted

fashion, i.e. from a low temperature PM to an high temperature FM. Finally above a

critical value ζJ (ζ > ζJ) the lattice entropy change is positive and is, in absolute value,

larger than the magnetic one, which is negative. However the total entropy change is

less than the structural one.

2. Magneto-volume coupling

The Landau free energy density of the material fL(M, ω, T ) is the sum of the

ferromagnetic free energy and the free energy of the structural lattice:

fL = −1

2
W (ω)µ0M

2 − TsM(M) + fS(ω, T ) (1)

where the first term on the right hand side is the ferromagnetic exchange energy in

mean field theory, W is the Weiss molecular field coefficient, ω = (v − v0)/v0 is the

reduced volume, v is the specific volume, v0 is the specific volume at T = T0, µ0 is the

permeability of vacuum, M is the magnetization (in mass density), sM is the magnetic

entropy and fS(ω, T ) is the free energy describing the structural lattice. We assume

as in Ref.[11] that the molecular field coefficient W depends linearly on the reduced

volume as W (ω) = W0(1+βω). The structural lattice free energy should include all the

contribution other than magnetic: the elastic energy, the phonons energy, the electrons

energy and so on. In metals the relevant contribution is due to phonons. Refs.[11, 15]

used the Debye formula to have an explicit expression of fS. Although it is desirable to

use an expression for fS derived from first principles and valid in a wide temperature

range [29], for the aim of the present paper it is sufficient to take a power expansion of

the free energy around the values ω = 0 and T = T0 [30]. To make the expansion of the

free energy, we take linear equation of state as a function of the intensive variables: the

pressure p and the temperature T . The linear equations of state, valid around p = 0

and T = T0, are:

ω = − κT p + αp(T − T0) (2)

sS − s0 = − v0αpp + bp(T − T0) (3)

where s0 is a reference entropy value (at T = T0 and p = 0) and the three

parameters describing the structural lattice are: κT = −(1/v0)dv/dp|T the isothermal

compressibility, αp = (1/v0)dv/dT |p the thermal expansion coefficient and bp = dsS/dT |p
the specific entropy capacity at constant pressure which is related to the specific heat

capacity at constant pressure cp by bp = cp/T . The three parameters are specific

properties of the structural part alone, while the material properties will be derived

after solving the problem including the magnetic part. In the following we take the

three independent coefficients κT , αp, bp of Eqs.(2) and (3) as constants. In this way, one

immediately verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the thermodynamic
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Fig. 9

−aJsJ(0) = − 1

12
ηM4

J(x)− aJsJ (x) (101)

We obtain η = 8.265616 for J = 1/2 and η � 12.0827949 for J → ∞

3 Anti-ferromagnetism in the Neel style

3.1 Next neighbors interactions

We consider here an extension of the previous idea following Neel ferri-magnet.
We take a bcc lattice made of two interpenetrating cubic latteces A and B. Then
we consider the interaction between A and B (first neighbors) and A-A and B-B
(next neighbors).

fexc = −2WABµ0MAMB −Wµ0M
2
A −Wµ0M

2
B (102)

By using the magnetization M = MA + MB and the antimagnetization A =
MA −MB we have

fexc = −1

2
(WAB +W )µ0M

2 +
1

2
(WAB −W )µ0A

2 (103)

Consider now that WAB is allowed to vary with the reduced volume Ω = (v −
v0)/v0 as:

WAB = W0βΩ (104)

andW is a positive constantW < W0 with w = W/W0. We have the normalized
(µ0M2

0W0) exchange free energy

f̂exc = −1

2
(βΩ+ w)m2 +

1

2
(βΩ− w)a2 (105)
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equations of state, valid around p = 0 and T = T0, are:

ω = −κT p + αp(T − T0) (2)

sS − s0 = −v0αpp + bp(T − T0) (3)

where s0 is a reference value (at T = T0 and p = 0)

and the three parameters describing the structural lattice

are: κT = −(1/v0)dv/dp|T the isothermal compressibility,

αp = (1/v0)dv/dT |p the thermal expansion coefficient and

bp = dsS/dT |p the specific entropy capacity at constant

pressure which is related to the specific heat capacity at

constant pressure cp by bp = cp/T . The three parame-

ters are specific properties of the structural part alone,

while the material properties will be derived after solving

the problem including the magnetic part. In the follow-

ing we take the three independent coefficients κT , αp, bp of

Eqs.(2) and (3) as constants. In this way, one immediately

verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the

thermodynamic compatibility of the equations. After a

few passages, one can show that the free energy giving the

state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T−T0)−bv

1

2
(T−T0)

2

(4)

where the parameter bv = dsS/dT |v is the specific entropy

capacity at constant volume for the structural lattice, re-

lated to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the

conditions (1/v0)∂fL/∂ω = −p and ∂fL/∂M = µ0H

where H is the magnetic field. By imposing the first con-

dition we obtain the equilibrium value for ω:

ω = −κT

�
p− η

3βκT
m

2

�
+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we

have introduced the dimensionless parameter η of Bean

and Rodbell [11]:

η =
3

2

β2κT µ0M
2
0 W0

v0
(6)

By comparing Eq.(5) with Eq.(2), we see that the depen-

dence of the ferromagnetic exchange forces on the volume

gives rise to an extra term which is the exchange mag-

netostriction and is due to an equivalent magneto-volume
pressure pW = −η m

2
/(3βκT ). From the second condition

we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and divid-

ing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0)− κT p)] m − 1
3ηm

3 −
taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ
µ0M

2
0 W0

nkB
(8)

where n is the mass density of atomic magnetic mo-

ments, aJ is a coefficient dependent on the atomic mag-

netic moments and kB is the Boltzmann constant. The

temperature T0 of Eqs.(2) and (3) is arbitrary, then, by

taking T0 = Tc0 , we write the term linear on m as

− [1 + ζ(t− 1)− π ]m where we define the dimensionless

pressure π = βκT p and the dimensionless parameter ζ
(zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic

magnetic moments characterized by the total angular mo-

mentum quantum number J of electrons. From the Boltz-

mann statistics one obtains that sM (0) = nkB ln(2J + 1)

and −∂sM/∂m = nkBM
−1
J (m) where MJ(x) is the Bril-

louin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�

(10)

The magnetization m is given by the solution of the equa-

tion

h = − [1 + ζ(t− 1)− π ]m− 1

3
ηm

3
+ t aJ M

−1
J (m) (11)

The number of possible stable solutions of Eq.(11) is eval-

uated by taking the power expansion up to the third order

of the inverse function M
−1
J (m). One obtains

aJM
−1
J (m) � m + bJm

3
+O(m

5
) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J
2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3

+ tO(m
5
) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For

h = 0, m = 0 (PM) is always a solution. PM is an en-

ergy minimum for c1 > 0 i.e. (t − 1)(1 − ζ) + π > 0. For

c1 < 0 PM is an energy maximum but there is always

one stable solution with m > 0 (FM). We have then de-

rived one of the main results of this paper: by defining

tP = 1 − π/(1 − ζ) we have that for ζ < 1 the P state is

stable at temperatures above tP (t > tP ) while for ζ > 1

the PM state is stable at temperatures below tP (t < tP ).

In the last case the transformation on heating is inverted

and occurs from PM to FM. This is possible only for posi-

tive ζ, i.e. for positive β. The high temperature FM state

may eventually transforms again to PM at higher temper-

atures if β decreases to zero or changes sign. The order

of the transition is determined by the sign of c3. When

the PM solution is marginally stable (c1 = 0), there is a

FM solution if c3 < 0. This means that the transition is of

first-oder if η > 3bJ tP and second-order if η < 3bJ tP .More

insight on the role played by ζ is obtained by computing

the entropy.
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zero, but the total entropy change is less than the magnetic one. For ζ > 1 the PM

is stable at low temperature, i.e. the transition may occurs on heating in the inverted

fashion, i.e. from a low temperature PM to an high temperature FM. Finally above a

critical value ζJ (ζ > ζJ) the lattice entropy change is positive and is, in absolute value,

larger than the magnetic one, which is negative. However the total entropy change is

less than the structural one.

2. Magneto-volume coupling

The Landau free energy density of the material fL(M, ω, T ) is the sum of the

ferromagnetic free energy and the free energy of the structural lattice:

fL = −1

2
W (ω)µ0M

2 − TsM(M) + fS(ω, T ) (1)

where the first term on the right hand side is the ferromagnetic exchange energy in

mean field theory, W is the Weiss molecular field coefficient, ω = (v − v0)/v0 is the

reduced volume, v is the specific volume, v0 is the specific volume at T = T0, µ0 is the

permeability of vacuum, M is the magnetization (in mass density), sM is the magnetic

entropy and fS(ω, T ) is the free energy describing the structural lattice. We assume

as in Ref.[11] that the molecular field coefficient W depends linearly on the reduced

volume as W (ω) = W0(1+βω). The structural lattice free energy should include all the

contribution other than magnetic: the elastic energy, the phonons energy, the electrons

energy and so on. In metals the relevant contribution is due to phonons. Refs.[11, 15]

used the Debye formula to have an explicit expression of fS. Although it is desirable to

use an expression for fS derived from first principles and valid in a wide temperature

range [29], for the aim of the present paper it is sufficient to take a power expansion of

the free energy around the values ω = 0 and T = T0 [30]. To make the expansion of the

free energy, we take linear equation of state as a function of the intensive variables: the

pressure p and the temperature T . The linear equations of state, valid around p = 0

and T = T0, are:

ω = − κT p + αp(T − T0) (2)

sS − s0 = − v0αpp + bp(T − T0) (3)

where s0 is a reference entropy value (at T = T0 and p = 0) and the three

parameters describing the structural lattice are: κT = −(1/v0)dv/dp|T the isothermal

compressibility, αp = (1/v0)dv/dT |p the thermal expansion coefficient and bp = dsS/dT |p
the specific entropy capacity at constant pressure which is related to the specific heat

capacity at constant pressure cp by bp = cp/T . The three parameters are specific

properties of the structural part alone, while the material properties will be derived

after solving the problem including the magnetic part. In the following we take the

three independent coefficients κT , αp, bp of Eqs.(2) and (3) as constants. In this way, one

immediately verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the thermodynamic

AB

w=0

w>1

M Piazzi et al, Physica B (2015)
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sider the structural entropy entering the transition. They

applied the model to MnAs systems and found a colossal

contribution to ∆s from the lattice. However the results

obtained so far are controversial, as it was later demon-

strated that the experimental values of ∆s used by the

authors were overestimated due to an incorrect applica-

tion of Maxwell relations in presence of hysteresis in the

magnetization curves [18–23]. To fit the colossal peaks,

Refs. [15,16] employed the Grüneisen parameter γ, which

gives the volume dependence of the Debye temperature,

as a free fitting parameter. This method suffers from the

problem that the relation αp = γκT cv/v, between the coef-

ficient of thermal expansion αp, the isothermal compress-

ibility κT , the specific heat at constant volume cv, the

specific volume v and γ, must be always satisfied [24, 25].

The mentioned parameters are then not all independent

each other. This fact points at a reconsideration of the ap-

proach used in Refs. [15,16]. In a further development [17],

the Debye theory is modified by making the a priory as-

sumption that the volume change is proportional to the

squared magnetization. This procedure do not permit a

deep physical understanding, as this proportionality has to

be derived from the magneto-volume mechanism instead

of being postulated as an ad hoc assumption.

A different approach to the magneto-volume problem

has been undertaken by Jia et al. [26], who have noticed

that if at the transition the volume changes discontinu-

ously, then also the entropy of the lattice will change.

Considering temperature increase, the lattice entropy is

added to the magnetic one when the volume expands,

while it is subtracted when the volume contracts. To

sustain this idea, in Refs. [26–28] the authors have rep-

resented the experimental entropy change ∆s of several

magnetocaloric alloys (Gd5SixGe1−x, LaFe13−xSix and

Ni2.15Mn0.85−xCuxGa) as a function of the magnetization

changes. By comparing the data with the theoretical mag-

netic entropy, they were able to show, from the difference,

which is the sign and the amplitude of the structural con-

tribution. In Gd5Si2Ge2 and Ni2.15Mn0.85−xCuxGa the

lattice contribution increases the entropy change at the

transition while in LaFe13−xSix, even if the magnetic en-

tropy change is large, the role of the lattice entropy is that

of decreasing the magnetocaloric effect. The same situa-

tion is valid for MnAs, for which it was already shown in

Ref. [11] that at the first order phase transition, the mag-

netic entropy in increasing but the structural entropy is

decreasing. The fact that the contribution of the lattice is

small [11] is probably the reason of the good fit obtained

in Refs. [13, 14].

In this paper I derive the conditions giving the sum or

the subtraction of the structural entropy at the first-order

transition. In Ref. [11] it was shown that the order of

the phase transition from FM to PM is determined by

η, a parameter which depends on β, the steepness of the

change of ferromagnetic exchange with volume, and κp the

isothermal compressibility of the lattice. To derive our re-

sult I take the free energy of the system as the sum of the

ferromagnetic free energy and the free energy of the struc-

tural lattice. Differently from Ref. [15,16], I make a power

expansion of the structural lattice free energy around the

temperature T0 and the volume v0. Then, in a limited

temperature and volume range, κT , αp, and cp are three

independent constants. In this way we fully exploit the

role played by the thermal expansion of the structural

lattice as indicated in the generalization of the free en-

ergy of Ref. [11]. By the minimization of the free energy

I compute the entropy at the first order magnetic phase

transition. The result is that the sign and amplitude of

the structural change is determined by the dimensionless

parameter ζ (zeta) defined as ζ = αpβT0. For ζ < 0 the

magnetic and lattice entropy change have the same sign

giving rise to an enhancement of the total entropy change.

This is the condition to have the GMCE. With 0 < ζ < 1

the magnetic entropy is positive, but the lattice entropy is

negative. Their sum is still larger than zero, but the total

entropy change is less that the magnetic one. For ζ > 1

the PM is stable at low temperature, i.e. the transition

may occurs on heating in the inverted fashion, i.e. from

a low temperature PM to an high temperature FM. Fi-

nally above a critical value ζJ (ζ > ζJ) the lattice entropy

change is positive and is, in absolute value, larger than

the magnetic one, which is negative. However the total

entropy change is less than the structural one.

Magneto-volume coupling. – The Landau free en-

ergy density of the material fL(M,ω, T ) is the sum of the

ferromagnetic free energy and the free energy of the struc-

tural lattice:

fL = −1

2
W (ω)µ0M

2 − TsM (M) + fS(ω, T ) (1)

where the first term on the right hand side is the ferromag-

netic exchange energy in mean field theory, W is the Weiss

molecular field coefficient, ω = (v − v0)/v0 is the reduced

volume, v is the specific volume, v0 is the specific volume

at T = T0, µ0 is the permeability of vacuum, M is the mag-

netization (in mass density), sM is the magnetic entropy

and fS(ω, T ) is the free energy describing the structural

lattice. We assume as in Ref. [11] that the molecular field

coefficient W depends linearly on the reduced volume as

W (ω) = W0(1 + βω). The structural lattice free energy

should include all the contribution other than magnetic:

the elastic energy, the phonons energy, the electrons en-

ergy and so on. In metals the relevant contribution is due

to phonons. Refs. [11,15] used the Debye formula to have

an explicit expression of fS . Although it is desirable to

use an expression for fS derived from first principles and

valid in a wide temperature range [29], for the aim of the

present paper it is sufficient to take a power expansion of

the free energy around the values ω = 0 and T = T0 [30].

To make the expansion of the free energy, we take linear

equation of state as a function of the intensive variables:

the pressure p and the temperature T . The linear state

p-2
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equations of state, valid around p = 0 and T = T0, are:

ω = −κT p + αp(T − T0) (2)

sS − s0 = −v0αpp + bp(T − T0) (3)

where s0 is a reference value (at T = T0 and p = 0)

and the three parameters describing the structural lattice

are: κT = −(1/v0)dv/dp|T the isothermal compressibility,

αp = (1/v0)dv/dT |p the thermal expansion coefficient and

bp = dsS/dT |p the specific entropy capacity at constant

pressure which is related to the specific heat capacity at

constant pressure cp by bp = cp/T . The three parame-

ters are specific properties of the structural part alone,

while the material properties will be derived after solving

the problem including the magnetic part. In the follow-

ing we take the three independent coefficients κT , αp, bp of

Eqs.(2) and (3) as constants. In this way, one immediately

verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the

thermodynamic compatibility of the equations. After a

few passages, one can show that the free energy giving the

state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T−T0)−bv

1

2
(T−T0)

2

(4)

where the parameter bv = dsS/dT |v is the specific entropy

capacity at constant volume for the structural lattice, re-

lated to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the

conditions (1/v0)∂fL/∂ω = −p and ∂fL/∂M = µ0H

where H is the magnetic field. By imposing the first con-

dition we obtain the equilibrium value for ω:

ω = −κT

�
p− η

3βκT
m

2

�
+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we

have introduced the dimensionless parameter η of Bean

and Rodbell [11]:

η =
3

2

β2κT µ0M
2
0 W0

v0
(6)

By comparing Eq.(5) with Eq.(2), we see that the depen-

dence of the ferromagnetic exchange forces on the volume

gives rise to an extra term which is the exchange mag-

netostriction and is due to an equivalent magneto-volume
pressure pW = −η m

2
/(3βκT ). From the second condition

we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and divid-

ing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0)− κT p)] m − 1
3ηm

3 −
taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ
µ0M

2
0 W0

nkB
(8)

where n is the mass density of atomic magnetic mo-

ments, aJ is a coefficient dependent on the atomic mag-

netic moments and kB is the Boltzmann constant. The

temperature T0 of Eqs.(2) and (3) is arbitrary, then, by

taking T0 = Tc0 , we write the term linear on m as

− [1 + ζ(t− 1)− π ]m where we define the dimensionless

pressure π = βκT p and the dimensionless parameter ζ
(zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic

magnetic moments characterized by the total angular mo-

mentum quantum number J of electrons. From the Boltz-

mann statistics one obtains that sM (0) = nkB ln(2J + 1)

and −∂sM/∂m = nkBM
−1
J (m) where MJ(x) is the Bril-

louin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�

(10)

The magnetization m is given by the solution of the equa-

tion

h = − [1 + ζ(t− 1)− π ]m− 1

3
ηm

3
+ t aJ M

−1
J (m) (11)

The number of possible stable solutions of Eq.(11) is eval-

uated by taking the power expansion up to the third order

of the inverse function M
−1
J (m). One obtains

aJM
−1
J (m) � m + bJm

3
+O(m

5
) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J
2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3

+ tO(m
5
) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For

h = 0, m = 0 (PM) is always a solution. PM is an en-

ergy minimum for c1 > 0 i.e. (t − 1)(1 − ζ) + π > 0. For

c1 < 0 PM is an energy maximum but there is always

one stable solution with m > 0 (FM). We have then de-

rived one of the main results of this paper: by defining

tP = 1 − π/(1 − ζ) we have that for ζ < 1 the P state is

stable at temperatures above tP (t > tP ) while for ζ > 1

the PM state is stable at temperatures below tP (t < tP ).

In the last case the transformation on heating is inverted

and occurs from PM to FM. This is possible only for posi-

tive ζ, i.e. for positive β. The high temperature FM state

may eventually transforms again to PM at higher temper-

atures if β decreases to zero or changes sign. The order

of the transition is determined by the sign of c3. When

the PM solution is marginally stable (c1 = 0), there is a

FM solution if c3 < 0. This means that the transition is of

first-oder if η > 3bJ tP and second-order if η < 3bJ tP .More

insight on the role played by ζ is obtained by computing

the entropy.

p-3
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The number of possible stable solutions of Eq.(11) is evaluated by taking the power

expansion up to the third order of the inverse function M−1

J (m). One obtains

aJM
−1

J (m) ! m + bJm3 + O(m5) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3 + tO(m5) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For h = 0, m = 0, i.e. the

PM state, is always a solution. But PM is an energy minimum only for c1 > 0 i.e.

(t − 1)(1 − ζ) + π > 0. For c1 < 0 PM is an energy maximum but there is always one

stable solution with m > 0, i.e. a FM state. We have then derived one of the main

results of this paper: by defining tP = 1 − π/(1 − ζ) we have that for ζ < 1 the PM
state is stable at temperatures above tP (t > tP ) while for ζ > 1 the PM state is stable

at temperatures below tP (t < tP ). In the latter case, the transformation on heating

is inverted and occurs from PM to FM. This is possible only for positive ζ . The high

temperature FM state may eventually transforms again to PM at higher temperatures

if β decreases to zero or changes sign. The order of the transition is determined by the

sign of c3. When the PM solution is marginally stable (c1 = 0), there is a FM solution
if c3 < 0. This means that the transition is of first-oder if η > 3bJtP and second-order

if η < 3bJtP . Finally it has also to be noticed that theory is valid only if the molecular

field coefficient is positive W > 0. This condition is verified if 1 + βω > 0, i.e. with

p = 0 and in the PM state (m = 0), for t < 1 − 1/ζ if ζ < 0 and t > 1 − 1/ζ if ζ > 0.

More insight on the role played by ζ is obtained by computing the entropy.

3. Entropy change

The entropy is given by s = −∂fL/∂T |m,ω. By taking the derivative of Eq.(1) with
respect to T and substituting Eq.(5) we obtain

s = sM(m) + sW (m) + sS(p, T ) (15)

where sM(m) is the magnetic entropy, sS is the structural lattice entropy of Eq.(3) and

the extra term sW (m) is the magneto-elastic entropy, sW (m) = −αpv0pW (m). sW (m) is
a term of structural lattice origin, induced by the ferromagnetic exchange forces through

the magneto-elastic interaction. The magnetic entropy sM(m) has a maximum at m = 0

and it decreases to the zero for m = 1. The magneto-elastic entropy, sW (m), can be

written as

sW (m) =
nkB

2aJ

ζm2 (16)

where we observe that its amplitude and sign are determined by the parameter ζ . To

analyze the competition between sM and sW (the only two terms dependent on m)
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difference is between the entropy at m = 0 and m = 1, ∆ŝmax = ŝ(0) − ŝ(1) is :

∆ŝmax = ln(2J + 1) −
1

2aJ

ζ (17)

which is equal to zero at the critical value ζJ = 2aJ ln(2J + 1). When the transition is

of first-order between the low temperature phase (LT) and the high temperature phase

(HT), the entropy increases discontinuously at the transition temperature with a jump

∆s = sH − sL > 0. By expanding the magnetic entropy sM in power series up to the

fourth order around m = 0 we obtain

ŝ = ln(2J + 1) −
1

2aJ

[

(1 − ζ)m2 +
bJ

2
m4 + O(m6)

]

(18)

For ζ < 1, where the transition is from LT-FM (m "= 0) to HT-PM (m = 0), the magnetic
entropy change is positive, ∆sM > 0. With ζ < 0 also the magneto-elastic entropy

change is positive, ∆sW > 0, and we may have an enhancement of the total entropy

change, ∆s > ∆sM . With 0 < ζ < 1 the magneto-elastic entropy change is negative,

∆sW < 0, with a reduction of the total entropy change ∆s < ∆sM . With ζ → 1 at the

second order (m2) the two contributions are opposite each other ∆sW → −∆sM . For

ζ > 1 where the transition occurs in the opposite order i.e. from LT-PM to HT-FM the
magnetic entropy change is negative ∆sM < 0, but the magneto-elastic entropy change

is positive. With ζ > ζJ , ∆sW > −∆sM , therefore at the transition ∆s > 0, but the

total entropy change is lower than the magneto-elastic one ∆s < ∆sW .

Figure 3. Entropy change ∆s as a function of ζ at the first-order phase transition
with J = 1/2 and h = 0. ln 2 − ζ/2 is the maximum entropy change valid for the
transition on heating from m = 1 and m = 0, ζ/2 − ln 2 is the maximum entropy
change valid for the transition on heating from m = 0 to m = 1.
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The number of possible stable solutions of Eq.(11) is evaluated by taking the power

expansion up to the third order of the inverse function M−1

J (m). One obtains

aJM
−1

J (m) ! m + bJm3 + O(m5) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3 + tO(m5) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For h = 0, m = 0, i.e. the

PM state, is always a solution. But PM is an energy minimum only for c1 > 0 i.e.

(t − 1)(1 − ζ) + π > 0. For c1 < 0 PM is an energy maximum but there is always one

stable solution with m > 0, i.e. a FM state. We have then derived one of the main

results of this paper: by defining tP = 1 − π/(1 − ζ) we have that for ζ < 1 the PM
state is stable at temperatures above tP (t > tP ) while for ζ > 1 the PM state is stable

at temperatures below tP (t < tP ). In the latter case, the transformation on heating

is inverted and occurs from PM to FM. This is possible only for positive ζ . The high

temperature FM state may eventually transforms again to PM at higher temperatures

if β decreases to zero or changes sign. The order of the transition is determined by the

sign of c3. When the PM solution is marginally stable (c1 = 0), there is a FM solution
if c3 < 0. This means that the transition is of first-oder if η > 3bJtP and second-order

if η < 3bJtP . Finally it has also to be noticed that theory is valid only if the molecular

field coefficient is positive W > 0. This condition is verified if 1 + βω > 0, i.e. with

p = 0 and in the PM state (m = 0), for t < 1 − 1/ζ if ζ < 0 and t > 1 − 1/ζ if ζ > 0.

More insight on the role played by ζ is obtained by computing the entropy.

3. Entropy change

The entropy is given by s = −∂fL/∂T |m,ω. By taking the derivative of Eq.(1) with
respect to T and substituting Eq.(5) we obtain

s = sM(m) + sW (m) + sS(p, T ) (15)

where sM(m) is the magnetic entropy, sS is the structural lattice entropy of Eq.(3) and

the extra term sW (m) is the magneto-elastic entropy, sW (m) = −αpv0pW (m). sW (m) is
a term of structural lattice origin, induced by the ferromagnetic exchange forces through

the magneto-elastic interaction. The magnetic entropy sM(m) has a maximum at m = 0

and it decreases to the zero for m = 1. The magneto-elastic entropy, sW (m), can be

written as

sW (m) =
nkB

2aJ

ζm2 (16)

where we observe that its amplitude and sign are determined by the parameter ζ . To

analyze the competition between sM and sW (the only two terms dependent on m)

total free energy

result

entropy at the first order transition
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h = [(t− 1)(1− ζ) + π]m +

�
t bj −

η

3

�
m3

+ tO(m5
) (73)

By defining

tP = 1− π

1− ζ
(74)

we have that for h = 0, the PM state with m = 0, is always a solution. But the PM state is an energy minimum

only for t > tP , while for t < tP there is always one stable solution with m > 0, i.e. a FM state [73]. The order of

the transition is determined by the sign of (tP bj − η/3). By defining the critical value ηc = 3bjtP we have that when

the PM solution is marginally stable (t = tP ), there is a FM solution if η > ηc, this means that the PM and FM may

coexist and the transition is of first-oder. The normalized Landau free energy f̂L(m, t) as a function of m of Eq.(71)

is shown in Fig.4 for j = 1/2, tP = 1, ηc = 1 and η = 2 for different values of t showing the coexistence of PM and

FM states. If η < ηc there is no possible coexistence and the transition is of second order.

2. Magnetocaloric effect around the first order phase transition

The entropy is given by

s = − ∂fL

∂T

����
m,ω

(75)

By taking the derivative of Eq.(63) with respect to T and substituting Eq.(66) we obtain

s = sM (m) + sW (m) + sS(p, T ) (76)

where sM (m) is the magnetic entropy of Eq.(24), sS(p, T ) is the structural lattice entropy of Eq.(61) and

sW (m) =
nkB

2aJ

ζm2
(77)

is the magneto-elastic entropy, a term of structural lattice origin, induced by the ferromagnetic exchange forces

through the magneto-elastic interaction. The magnetic entropy sM (m) has a maximum at m = 0 and it decreases

to the zero for m = 1. The magneto-elastic entropy depends on the parameter ζ and is proportional to m2
. To

analyze the competition between sM and sW , the two terms which depends on m, we introduce the normalized

entropy ŝ(m) = (sM (m) + sW (m))/(nkB). The maximum difference is between the entropy at m = 0 and m = 1,

∆ŝmax = ŝ(0)− ŝ(1) is :

∆ŝmax = ln(2j + 1)− 1

2aj

ζ (78)

By using for sM the power expansion of Eq.(26) we obtain

ŝ = ln(2j + 1)− 1

2aj

�
(1− ζ)m2

+
bj

2
m4

+O(m6
)

�
(79)

where we see that the entropy may be increased or decreased depending on the sign of ζ. When η > ηc the transition

is of the first order, then there is a discontinuous jump of the magnetization m. At the transition temperature between

the low temperature phase (LT) and the high temperature phase (HT), the entropy ŝ increases discontinuously with

a jump ∆s = sHT − sLT > 0. We have the following cases:

• for ζ < 1 the transition is from LT-FM (m �= 0) to HT-PM (m = 0) and the magnetic entropy change is positive,

∆sM > 0:
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Boltzmann constant kB 1.381 · 10−23 J·K−1

Avogadro constant NA 6.022 · 1023 mol−1

Planck constant h 6.626 · 10−34 m2·kg· s−1

elementary charge e 1.602 · 10−19 A· s
electron mass me 9.109 · 10−31 kg

Bohr magneton µB 9.27 · 10−24 A·m2

kB/µB 1.49 T K−1

kBNA 8.31 J K−1 mol−1

µBNA 5.58 Am2mol−1

The energy of the magnetic moment in the magnetic field H is

E0 = µ0gmjµBH (18)

where µ0 = 4π · 10−7 is the permeability of vacuum. Being the atomic moment distinguishable, the partition function
Z is given by the sum over the states of the Boltzmann weight

Z =
+j�

mj=−j

exp
�
− E0

kBT

�
(19)

where kB is the Boltzmann constant. The specific Gibbs free energy for an ensemble n magnetic moments per unit
mass is g = −nkBT lnZ and results

g = −nkBT

�
ln

�
sinh

�
2j + 1

2j
x

��
− ln

�
sinh

�
1
2j

x

���
(20)

where the variable x is defined as

x =
µ0gjµBH

kBT
(21)

The magnetization is given by Eq.(4) and is

M = M0Mj (x) (22)

where M0 = nm0 = ngjµB is the saturation magnetization at T = 0, and Mj(x) is the Brillouin function:

Mj(x) =
2j + 1

2j
coth

�
2j + 1

2j
x

�
− 1

2j
coth

�
1
2j

x

�
(23)

The entropy is given by Eq.(6) and is

s = nkBsj(x) (24)

where sj(x) is the Brillouin entropy function

sj(x) = ln
�
sinh

�
2j + 1

2j
x

��
− ln

�
sinh

�
1
2j

x

��
− xMj(x) (25)

By expressing sj as a function of the normalized magnetization m = M/M0, the first terms of the power series
expansion are:

sj(m) =
�
ln(2j + 1)− 1

aj

�
1
2
m

2 +
bj

4
m

4 +O(m6)
��

(26)
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αp =
κT

v0

∂

∂ω

�
−∂fS

∂T

�
(56)

and is

αp =
κT γcv(y0)

v0
(57)

The specific entropy capacity at constant volume is given by bv = cv/T0 where

cv = 3nkBC(y0) +
π2

3
nk2

BT0n(�F ) (58)

is the specific heat at constant volume. By taking the three parameters κT αp and bv as constants, the free energy
fS(ω, T ) can be expressed as a power expansion around the values ω = 0 and T = T0 [11]

fS(ω, T ) = fS0(0, T0) +
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T − T0)− bv

1
2
(T − T0)2 (59)

The linear state equations for the reduced volume ω and the entropy of the structural part sS , valid around p = 0
and T = T0, are:

ω = −κT p + αp(T − T0) (60)
sS − sS0 = −v0αpp + bp(T − T0) (61)

where sS0 is a reference entropy value (at T = T0 and p = 0) and bp is related to bv by the expression bv = bp−α2
pv0/κT

and is related to the specific heat at constant pressure by bp = cp/T0. The corresponding Gibbs free energy the
structural lattice is finally

gS(p, T ) = gS(0, T0)−
1
2
v0κT p2 + (v0pαp − s0)(T − T0)−

1
2
bp(T − T0)2 (62)

B. First order transition due to magneto-elastic coupling

A paradigmatic case leading to a magnetic transition of the first order is given by the Bean and Rodbell model of
magneto-elastic coupling [19]. The basic idea of the model is to describe a ferromagnet in which the the interatomic
distance influence the exchange interaction. If the change of interatomic distance is reflected in a global volume change
the ferromagnetic exchange depends explicitly on the volume and one has a coupling between the elastic and magnetic
part of the free energy. The first order nature of the transition is revealed by the minimization of the total free energy
due to the sum of the magnetic and the elastic free energy. The Bean and Rodbell model is as a paradigmatic example
for the MCE because it shows how the entropy of the structural lattice may be involved in the magnetic field induced
entropy change.

1. The Bean-Rodbell model

The specific Landau free energy fL(M,ω, T ) is:

fL = −1
2
W (ω)µ0M

2 − TsM (M) + fS(ω, T ) (63)

where the first two terms on the right hand side are the free energy of the ferromagnet, Eq.(29), and fS(ω, T ) is
the free energy describing the structural lattice. The molecular field coefficient W is assumed to depend linearly on

for FM to PM
GMCE only for ζ<0 !

of structural lattice origin
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lattice only

magneto-elastic
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equations of state, valid around p = 0 and T = T0, are:

ω = −κT p + αp(T − T0) (2)

sS − s0 = −v0αpp + bp(T − T0) (3)

where s0 is a reference value (at T = T0 and p = 0)

and the three parameters describing the structural lattice

are: κT = −(1/v0)dv/dp|T the isothermal compressibility,

αp = (1/v0)dv/dT |p the thermal expansion coefficient and

bp = dsS/dT |p the specific entropy capacity at constant

pressure which is related to the specific heat capacity at

constant pressure cp by bp = cp/T . The three parame-

ters are specific properties of the structural part alone,

while the material properties will be derived after solving

the problem including the magnetic part. In the follow-

ing we take the three independent coefficients κT , αp, bp of

Eqs.(2) and (3) as constants. In this way, one immediately

verifies, by the Maxwell relation v0∂ω/∂T = −∂s/∂p, the

thermodynamic compatibility of the equations. After a

few passages, one can show that the free energy giving the

state equations of Eqs.(2) and (3) is:

fS(ω, T ) =
v0

κT

ω2

2
−

�
αpv0

κT
ω + s0

�
(T−T0)−bv

1

2
(T−T0)

2

(4)

where the parameter bv = dsS/dT |v is the specific entropy

capacity at constant volume for the structural lattice, re-

lated to bp by the expression bv = bp − α2
pv0/κT .

The state equations for the material are given by the

conditions (1/v0)∂fL/∂ω = −p and ∂fL/∂M = µ0H

where H is the magnetic field. By imposing the first con-

dition we obtain the equilibrium value for ω:

ω = −κT

�
p− η

3βκT
m

2

�
+ αp(T − T0) (5)

where m = M/M0 is the reduced magnetization and we

have introduced the dimensionless parameter η of Bean

and Rodbell [11]:

η =
3

2

β2κT µ0M
2
0 W0

v0
(6)

By comparing Eq.(5) with Eq.(2), we see that the depen-

dence of the ferromagnetic exchange forces on the volume

gives rise to an extra term which is the exchange mag-

netostriction and is due to an equivalent magneto-volume
pressure pW = −η m

2
/(3βκT ). From the second condition

we obtain the equation

−W (ω)µ0M − T∂sM/∂M = µ0H (7)

By substituting ω from Eq.(5) and divid-

ing all terms by µ0H0 = µ0M0W0 we have

h = − [1 + β(αp(T − T0)− κT p)] m − 1
3ηm

3 −
taJ/(nkB)(∂sM/∂m) where t = T/Tc0 and

Tc0 = aJ
µ0M

2
0 W0

nkB
(8)

where n is the mass density of atomic magnetic mo-

ments, aJ is a coefficient dependent on the atomic mag-

netic moments and kB is the Boltzmann constant. The

temperature T0 of Eqs.(2) and (3) is arbitrary, then, by

taking T0 = Tc0 , we write the term linear on m as

− [1 + ζ(t− 1)− π ]m where we define the dimensionless

pressure π = βκT p and the dimensionless parameter ζ
(zeta)

ζ = αp β Tc0 (9)

The magnetic entropy is evaluated for localized atomic

magnetic moments characterized by the total angular mo-

mentum quantum number J of electrons. From the Boltz-

mann statistics one obtains that sM (0) = nkB ln(2J + 1)

and −∂sM/∂m = nkBM
−1
J (m) where MJ(x) is the Bril-

louin function:

MJ(x) =
2J + 1

2J
coth

�
2J + 1

2J
x

�
− 1

2J
coth

�
1

2J
x

�

(10)

The magnetization m is given by the solution of the equa-

tion

h = − [1 + ζ(t− 1)− π ]m− 1

3
ηm

3
+ t aJ M

−1
J (m) (11)

The number of possible stable solutions of Eq.(11) is eval-

uated by taking the power expansion up to the third order

of the inverse function M
−1
J (m). One obtains

aJM
−1
J (m) � m + bJm

3
+O(m

5
) (12)

where aJ = (J + 1)/(3J) and

bJ =
3

10

[(J + 1)2 + J
2]

(J + 1)2
(13)

Eq.(11) is then:

h = c1m + c3m
3

+ tO(m
5
) (14)

with c1 = (t − 1)(1 − ζ) + π and c3 = t bJ − η/3. For

h = 0, m = 0 (PM) is always a solution. PM is an en-

ergy minimum for c1 > 0 i.e. (t − 1)(1 − ζ) + π > 0. For

c1 < 0 PM is an energy maximum but there is always

one stable solution with m > 0 (FM). We have then de-

rived one of the main results of this paper: by defining

tP = 1 − π/(1 − ζ) we have that for ζ < 1 the P state is

stable at temperatures above tP (t > tP ) while for ζ > 1

the PM state is stable at temperatures below tP (t < tP ).

In the last case the transformation on heating is inverted

and occurs from PM to FM. This is possible only for posi-

tive ζ, i.e. for positive β. The high temperature FM state

may eventually transforms again to PM at higher temper-

atures if β decreases to zero or changes sign. The order

of the transition is determined by the sign of c3. When

the PM solution is marginally stable (c1 = 0), there is a

FM solution if c3 < 0. This means that the transition is of

first-oder if η > 3bJ tP and second-order if η < 3bJ tP .More

insight on the role played by ζ is obtained by computing

the entropy.

p-3

for known MCE materials

prediction
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Fig. 1: Magnetization m as a function of temperature t for
several magnetic fields h going from 0 to 0.04 (left to right) in
steps of 0.004. Numerical solution of Eq.(11) with J = 1/2,
π = 0, η = 2, ζ = −0.5 lower frame, ζ = 0 central frame
ζ = 0.5 upper frame.

Entropy change. – The entropy is given by s =

−∂fL/∂T |m,ω. By taking the derivative of Eq.(1) with

respect to T and substituting Eq.(5) we obtain

s = sM (m) + sW (m) + sS(p, T ) (15)

where sM (m) is the magnetic entropy, sS is the structural

lattice entropy of Eq.(3) and the extra term sW (m) is the

magneto-volume entropy sW (m) = −αpv0pW (m). sW (m)

is a term of structural lattice origin, induced by the fer-

romagnetic exchange forces through the magneto-volume

interaction. The magnetic entropy sM (m) has maximum

at m = 0 and it decreases to the zero for m = 1. The

magneto-volume entropy sW (m) can be written as

sW (m) =
nkB

2aJ

ζm2
(16)

where we observe that its amplitude and sign are deter-

mined by the parameter ζ. To analyze the competition

between sM and sW (the only two terms dependent on

m) we introduce the reduced entropy ŝ(m) = (sM (m) +

sW (m))/(nkB). The maximum difference is between the

entropy at m = 0 and m = 1, ∆ŝmax = ŝ(0)− ŝ(1) is :

∆ŝmax = ln(2J + 1)− 1

2aJ

ζ (17)

which is equal to zero at the critical value ζJ = 2aJ ln(2J+

1). When the transition is of first-order between the low

temperature phase (LT) and the high temperature phase

(HT) the entropy increases discontinuously at the transi-

tion temperature with a jump ∆s = sH − sL > 0. By

expanding the magnetic entropy sM in power series up to

the fourth order around m = 0 we obtain

ŝ = ln(2J + 1)− 1

2aJ

�
(1− ζ) m2

+ O(m4
)
�

(18)
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Fig. 2: Entropy ŝ as a function of temperature t for several
magnetic fields h going from 0 to 0.04 (left to right) in steps
of 0.004 (parameters of Fig.1). For J = 1/2 the maximum
entropy is ln 2− ζ/2.

For ζ < 1, where the transition is from LT-FM (m �= 0) to

HT-PM (m = 0), the magnetic entropy change is positive,

∆sM > 0. With ζ < 0 also the magneto-volume entropy

change is positive, ∆sW > 0, and we may have an en-

hancement of the total entropy change ∆s > ∆sM . With

0 < ζ < 1 the magneto-volume entropy change is negative,

∆sW < 0, with a reduction of the total entropy change

∆s < ∆sM . With ζ → 1 at the second order (m2
) the two

contributions are opposite each other ∆sW → −∆sM . For

ζ > 1 where the transition occurs in the opposite order

i.e. from LT-PM to HT-FM the magnetic entropy change

is negative ∆sM < 0, but the magneto-volume entropy

change is positive. With ζ > ζJ , ∆sW > −∆sM , then at

the transition ∆s > 0 but the total entropy change is less

than the magneto-volume entropy one ∆s < ∆sW .
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Figure 1. (a) The cubic NaZn13-type structure of hypothetical LaFe13. It should be noted that
each cluster is formed by one central FeI atom and its nearest neighbours of 12 FeII atoms, where
the FeI atom enclosed by an icosahedron of 12 FeII atoms is not displayed. (b) The (001) projection
of a part of the unit cell.

air conditioning, etc. Although no working magnetic refrigerator exists today, a great deal of
research on looking for large MCE materials has been reported. Recently, the giant near-room-
temperature MCE induced by first-order magnetic phase transitions has attracted extensive
attention. Three types of materials have been found: (1) Gd-based alloys Gd5(Si, Ge)4 [3–5],
(2) transition-metal-based phosphide–arsenides MnFe(P, As) [6] and (3) Fe-based rare-earth
transition-metal intermetallic compounds La(Fe, Co, Al/Si)13 [7–9]. Compared with the broad
λ-like peak of magnetic entropy change "SM(T ), induced by the second-order magnetic
phase transition, the widths of the "SM(T ) peak in these new giant MCE materials are quite
narrow and the maximum value is much higher. The peak values of "SM for magnetic field
changes from 0 to 5 T, derived from the data of the isothermal magnetization measurement, are
19 J kg−1 K−1 for Gd5Si2Ge2 at 277 K [3], 18 J kg−1 K−1 for MnFe(P0.45As0.55) at 310 K [6]
and 20.3 J kg−1 K−1 for La(Fe11.2Co0.7Si1.1) at 274 K [7]. All of these values are nearly twice
those of the "SM ∼ 9.80 J kg−1 K−1 for Gd (at 293 K), a typical near-room-temperature large
MCE material induced by the second-order phase transition.

The pseudo-binary intermetallic compounds La(Fe, Co, Al/Si)13 crystallize into the cubic
NaZn13-type structure (space group: Fm3̄c) by substituting Al [8–10] or Si [7, 11, 12] for
part of the Fe although the binary intermetallic LaFe13 does not exist. As seen in figure 1, in
the hypothetical LaFe13 the Fe atoms are located at two different symmetric sites, FeI at 8b
(0, 0, 0) and FeII at 96i(0, y, z), in a ratio of 1:12. La atoms at 8a(1/4, 1/4, 1/4) are
surrounded by 24 FeII atoms. One central FeI atom and its nearest neighbours of 12 FeII

atoms form a cluster. Besides the giant MCE, strong critical behaviour and different magnetic
transitions, such as ferromagnetic, antiferromagnetic and metamagnetic, were also reported in
La(Fe1−x Al/Six)13 [7–12]. In the present study, we study the crystallographic and magnetic
structures of LaFe11.4Si1.6 by high-resolution neutron powder diffraction. Random distribution
of Si atoms and strong interplay between the lattice and magnetism are observed. The
relationship between Fe–Fe bond lengths and magnetic properties is discussed in detail.

2. Experiment

The LaFe11.6Si1.4 sample was prepared by arc melting in an atmosphere of ultra-pure argon gas.
The purities of the starting elements were better than 99.9%. The sample was subsequently

Fe (1)  1.54 μB 
bonds:
- 12 Fe (1)
 

Fe (II) 2.16 μB

bonds: 
- 1 Fe (I) short bond
- 5 inter-cluster Fe(II) short bond
- 2 intra-cluster Fe(II): long bond

fcc-like coord

bcc-like coord
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combine:
- substitution of Fe with Mn
- hydrogenation at saturation

samples prepared by VAC
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FIG. 12: Magnetization of the magnetovolume FD model. η = 0.0, 0.2, 0.4 0.6, 0.8, 1.0. ∆�0 = 0.5. The temperature of each
curve is shifted of 0.2 to show all curves.

FIG. 13: Entropy of the magnetovolume FD model. η = 0.0, 0.2, 0.4 0.6, 0.8, 1.0. ∆�0 = 0.5. The temperature of each curve
is shifted of 0.02 to show all curves.

and

ζ = αpβT0 (74)

15

ηc = 3tc
�
bJ − aJ2(∆�0/tc)

2L� (∆�0/tc)
�

(69)

For J = 1/2 and �0 = 0.5 is ηc = 0.214332.
Gnuplot
f(x)= 1/x**2-1/sinh(x)**2
a(x)=(x+1)/(3*x)
b(x)=(3/10.)*((x+1)**2+x**2)/(x+1)**2
tc = 0.795905
p [0:10][]3*tc*(b(x)-2*a(x)*(0.5/tc)**2*f(0.5/tc))
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FIG. 11: Entropy change of the magnetovolume FD model. η = 0.0, 0.6, ∆�0 = 0, 0.4, 0.5.
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VIII. MODELING La(FeMnSi)13 −H

Average atomic weight 0.0531 kg mol−1. Number of magnetic atoms 0.73. The magnetization extrapolated at zero
K can be between 110 and 120 Am2K−1. This corresponds to about 1.1 spin per atom (i.e. 1.5 spin per magnetic
atom). If we use the electron spin we have the entropy coefficient s0 = 172.2 J kg−1K−1. The parameters are

T0 = aJ
µ0WM

2
0

nkB
(70)

µ0H0 =
nkB

aJM0
T0 (71)

H0 = aJ
µ0WM

2
0

nkB
(72)

η =
3

2

β2κTnkB

aJv0
T0 (73)

first order/second order

lattice entropy sums or subtracts

M Piazzi et al , JMMM (2015)
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Conclusions
La(Fe-Mn-Si)13H1.65 model

• Mn influences the exchange W0 (yMn)
• β (magnetoelasticity) depends on the 1:13 structure

Fe Mn Si T0 µ0H0 η
(K) (T)

11.22 0.46 1.32 272 405 1.0
11.33 0.37 1.30 286 426 1.1
11.47 0.25 1.28 305 455 1.15
11.60 0.18 1.22 320.5 478 1.2
11.76 0.06 1.18 339 505 1.2

Table 1: Parameters T0, µ0H0 and η used to model the entropy

change behaviour of La(FexMnySiz)13-H1.65 samples with compo-

sitions x (Fe), y (Mn), z (Si) shown in the first, second and third

columns, respectively.

amplitude of −∆s. The result of the balance of the three
effects is not trivial and the choice of the values of the
parameters leaves some arbitrariness. As a result we have
found a good agreement with experiments by choosing the
same coefficient nkB = 170 Jkg−1K−1 for all the samples.
The changes in the shape of the curves obtained by lower-
ing the Mn content are well described by slight changes in
the value of η and a positive ζ is needed to fit the whole
set of curves. The value is approximately the same for all
the series and it is ζ = 0.25. The comparison between
the experimental −∆s and the theoretical one evaluated
with the above η, ζ and nkB values is shown in Fig. 3.
To compare the experimental entropy with the theoreti-
cal expected one we have subtracted from the experimen-
tal s(H,T ) a contribution sPM (T ), depending only on T ,
representing the lattice contribution in the HT-PM phase.
This term is evaluated as sPM (T ) =

�
cPM/TdT , where

cPM is the constant value of the specific heat evaluated
above the transition. The experimental s(H,T )− sPM (T )
curves are shown in Fig. 4, top panel, and the results
from theory are displayed below. The comparison shows
that the model is able to reproduce the entropy change at
the transition.

The values found for η are approximately linear with
T0, in agreement with Eq. (9). By making a linear fit of
the η values reported in Table 1 versus the correspond-
ing T0 values we find a linear coefficient of 3.7 · 10−3 K−1.
The latter can be used to determine the value of β through
Eq.(9). By taking a literature value for the compressibility
κT = 8.6 · 10−12 Pa−1 [17] we find β � 15 for all the sam-
ples, independently of the Mn content. This value appears
reasonable in comparision with other estimates made on
different magnetocaloric materials [12]. At the same time
Eq. (10) gives another relation linking this time β and
ζ. We have therefore an alternative independent route to
check the feasibility of the chosen value of ζ, i.e. ζ � 0.25.
If in Eq. (10) we substitute αp � 5 · 10−5 K−1, the typical
value of the thermal expansion coefficient for iron alloys
(that in the model should be an expansion due to the lat-
tice only) we end up with ζ values ranging between 0.2 and
0.25, depending on the transition temperature. Since we
do not have a very precise method to fit with accuracy ζ
from the experimental data, the fact that the value fixed at

the beginning, i.e. ζ � 0.25, is within the calculated range
is quite satisfactory. This result provides global coherency
of the whole modeling approach.

4. Discussion

The physical picture of the phase transitions occurring
in La(Fe-Mn-Si)13-H1.65 compounds emerging from the
comparison between the model and the experiments can
be summarized as follows. The phase transition is driven
by magnetoelastic effects. The latter are at the same time
responsible for the transformation of the phase transition
from second to first order (η ≥ 1) and for a decrease of the
entropy change −∆s at the transition (ζ > 0). The varia-
tion of Mn content in the compounds results exclusively in
a change of the transition temperature T0, i.e. in a change
of the strength of the exchange interaction W ∝ T0 (see
Sec. 2). On the opposite, the magnetoelastic coefficient
β, linking W to the specific volume Ω, is basically inde-
pendent on the variation in Mn content. This fact may
be explained by noting that it is the particular arrange-
ment of the magnetic atoms in the La(Fe-Si)13 unit cell to
be responsible for the magnetoelastic effects, so for the β
value. The partial substitution of Fe atoms with Mn does
not change too much the arrangement of the atoms, but
it weakens the effective FM interaction between them.

Moreover, our results show that in magnetocaloric ma-
terials in which the transition is from a LT magnetically
ordered to a HT magnetically disordered state (ζ < 1),
the origin of the entropy change at the transition shall
be searched in the spin contribution, since lattice entropy
plays only a minor counteracting role. Another important
point to mention is that the performed modeling led us to
consider magnetoelastic effects with both β > 0 and ζ > 0.
This is a confirmation of the results obtained by Jia et al.
[9], foreseeing a lattice entropy decrease at the FM-PM
magnetic transition accompanied by lattice shrink. The
result recently obtained by Gruner et al. [10] may be due
to the fact that the experimental technique used by the
authors to access the phonon density of states may dis-
play a sensitivity on magnetic fluctuations. Therefore, the
results they have obtained may represent the sum of both
magnetic and structural contributions to the entropy and
not the lattice contribution alone.

Some final comments on the physical robustness of the
overall model can be argued by looking in more detail an-
other interesting aspect, concerning the choice of the nkB

coefficient we have made. In the fit with the experimental
data (see Sec. 3) nkB has been treated as a free parameter.
However, the density of spins (i.e. of magnetic moments)
n in a given compound can be calculated knowing the sat-
uration magnetization M0. Indeed, M0 = ngLµBJ and
n can be expressed as n = (NA/PM )NmNs, where NA is
the Avogadro’s number, PM is the molecular weight of the
system under consideration, Nm represents the number of
magnetic ions per formula unit and Ns is the number of
spins per magnetic ion. In particular, for the La(Fe-Si)13
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Fe Mn Si T0 µ0H0 η
(K) (T)

11.22 0.46 1.32 272 405 1.0
11.33 0.37 1.30 286 426 1.1
11.47 0.25 1.28 305 455 1.15
11.60 0.18 1.22 320.5 478 1.2
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Table 1: Parameters T0, µ0H0 and η used to model the entropy

change behaviour of La(FexMnySiz)13-H1.65 samples with compo-

sitions x (Fe), y (Mn), z (Si) shown in the first, second and third

columns, respectively.
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effects is not trivial and the choice of the values of the
parameters leaves some arbitrariness. As a result we have
found a good agreement with experiments by choosing the
same coefficient nkB = 170 Jkg−1K−1 for all the samples.
The changes in the shape of the curves obtained by lower-
ing the Mn content are well described by slight changes in
the value of η and a positive ζ is needed to fit the whole
set of curves. The value is approximately the same for all
the series and it is ζ = 0.25. The comparison between
the experimental −∆s and the theoretical one evaluated
with the above η, ζ and nkB values is shown in Fig. 3.
To compare the experimental entropy with the theoreti-
cal expected one we have subtracted from the experimen-
tal s(H,T ) a contribution sPM (T ), depending only on T ,
representing the lattice contribution in the HT-PM phase.
This term is evaluated as sPM (T ) =
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cPM/TdT , where

cPM is the constant value of the specific heat evaluated
above the transition. The experimental s(H,T )− sPM (T )
curves are shown in Fig. 4, top panel, and the results
from theory are displayed below. The comparison shows
that the model is able to reproduce the entropy change at
the transition.

The values found for η are approximately linear with
T0, in agreement with Eq. (9). By making a linear fit of
the η values reported in Table 1 versus the correspond-
ing T0 values we find a linear coefficient of 3.7 · 10−3 K−1.
The latter can be used to determine the value of β through
Eq.(9). By taking a literature value for the compressibility
κT = 8.6 · 10−12 Pa−1 [17] we find β � 15 for all the sam-
ples, independently of the Mn content. This value appears
reasonable in comparision with other estimates made on
different magnetocaloric materials [12]. At the same time
Eq. (10) gives another relation linking this time β and
ζ. We have therefore an alternative independent route to
check the feasibility of the chosen value of ζ, i.e. ζ � 0.25.
If in Eq. (10) we substitute αp � 5 · 10−5 K−1, the typical
value of the thermal expansion coefficient for iron alloys
(that in the model should be an expansion due to the lat-
tice only) we end up with ζ values ranging between 0.2 and
0.25, depending on the transition temperature. Since we
do not have a very precise method to fit with accuracy ζ
from the experimental data, the fact that the value fixed at

the beginning, i.e. ζ � 0.25, is within the calculated range
is quite satisfactory. This result provides global coherency
of the whole modeling approach.

4. Discussion

The physical picture of the phase transitions occurring
in La(Fe-Mn-Si)13-H1.65 compounds emerging from the
comparison between the model and the experiments can
be summarized as follows. The phase transition is driven
by magnetoelastic effects. The latter are at the same time
responsible for the transformation of the phase transition
from second to first order (η ≥ 1) and for a decrease of the
entropy change −∆s at the transition (ζ > 0). The varia-
tion of Mn content in the compounds results exclusively in
a change of the transition temperature T0, i.e. in a change
of the strength of the exchange interaction W ∝ T0 (see
Sec. 2). On the opposite, the magnetoelastic coefficient
β, linking W to the specific volume Ω, is basically inde-
pendent on the variation in Mn content. This fact may
be explained by noting that it is the particular arrange-
ment of the magnetic atoms in the La(Fe-Si)13 unit cell to
be responsible for the magnetoelastic effects, so for the β
value. The partial substitution of Fe atoms with Mn does
not change too much the arrangement of the atoms, but
it weakens the effective FM interaction between them.

Moreover, our results show that in magnetocaloric ma-
terials in which the transition is from a LT magnetically
ordered to a HT magnetically disordered state (ζ < 1),
the origin of the entropy change at the transition shall
be searched in the spin contribution, since lattice entropy
plays only a minor counteracting role. Another important
point to mention is that the performed modeling led us to
consider magnetoelastic effects with both β > 0 and ζ > 0.
This is a confirmation of the results obtained by Jia et al.
[9], foreseeing a lattice entropy decrease at the FM-PM
magnetic transition accompanied by lattice shrink. The
result recently obtained by Gruner et al. [10] may be due
to the fact that the experimental technique used by the
authors to access the phonon density of states may dis-
play a sensitivity on magnetic fluctuations. Therefore, the
results they have obtained may represent the sum of both
magnetic and structural contributions to the entropy and
not the lattice contribution alone.

Some final comments on the physical robustness of the
overall model can be argued by looking in more detail an-
other interesting aspect, concerning the choice of the nkB

coefficient we have made. In the fit with the experimental
data (see Sec. 3) nkB has been treated as a free parameter.
However, the density of spins (i.e. of magnetic moments)
n in a given compound can be calculated knowing the sat-
uration magnetization M0. Indeed, M0 = ngLµBJ and
n can be expressed as n = (NA/PM )NmNs, where NA is
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amplitude of −∆s. The result of the balance of the three
effects is not trivial and the choice of the values of the
parameters leaves some arbitrariness. As a result we have
found a good agreement with experiments by choosing the
same coefficient nkB = 170 Jkg−1K−1 for all the samples.
The changes in the shape of the curves obtained by lower-
ing the Mn content are well described by slight changes in
the value of η and a positive ζ is needed to fit the whole
set of curves. The value is approximately the same for all
the series and it is ζ = 0.25. The comparison between
the experimental −∆s and the theoretical one evaluated
with the above η, ζ and nkB values is shown in Fig. 3.
To compare the experimental entropy with the theoreti-
cal expected one we have subtracted from the experimen-
tal s(H,T ) a contribution sPM (T ), depending only on T ,
representing the lattice contribution in the HT-PM phase.
This term is evaluated as sPM (T ) =
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cPM/TdT , where

cPM is the constant value of the specific heat evaluated
above the transition. The experimental s(H,T )− sPM (T )
curves are shown in Fig. 4, top panel, and the results
from theory are displayed below. The comparison shows
that the model is able to reproduce the entropy change at
the transition.

The values found for η are approximately linear with
T0, in agreement with Eq. (9). By making a linear fit of
the η values reported in Table 1 versus the correspond-
ing T0 values we find a linear coefficient of 3.7 · 10−3 K−1.
The latter can be used to determine the value of β through
Eq.(9). By taking a literature value for the compressibility
κT = 8.6 · 10−12 Pa−1 [17] we find β � 15 for all the sam-
ples, independently of the Mn content. This value appears
reasonable in comparision with other estimates made on
different magnetocaloric materials [12]. At the same time
Eq. (10) gives another relation linking this time β and
ζ. We have therefore an alternative independent route to
check the feasibility of the chosen value of ζ, i.e. ζ � 0.25.
If in Eq. (10) we substitute αp � 5 · 10−5 K−1, the typical
value of the thermal expansion coefficient for iron alloys
(that in the model should be an expansion due to the lat-
tice only) we end up with ζ values ranging between 0.2 and
0.25, depending on the transition temperature. Since we
do not have a very precise method to fit with accuracy ζ
from the experimental data, the fact that the value fixed at

the beginning, i.e. ζ � 0.25, is within the calculated range
is quite satisfactory. This result provides global coherency
of the whole modeling approach.

4. Discussion

The physical picture of the phase transitions occurring
in La(Fe-Mn-Si)13-H1.65 compounds emerging from the
comparison between the model and the experiments can
be summarized as follows. The phase transition is driven
by magnetoelastic effects. The latter are at the same time
responsible for the transformation of the phase transition
from second to first order (η ≥ 1) and for a decrease of the
entropy change −∆s at the transition (ζ > 0). The varia-
tion of Mn content in the compounds results exclusively in
a change of the transition temperature T0, i.e. in a change
of the strength of the exchange interaction W ∝ T0 (see
Sec. 2). On the opposite, the magnetoelastic coefficient
β, linking W to the specific volume Ω, is basically inde-
pendent on the variation in Mn content. This fact may
be explained by noting that it is the particular arrange-
ment of the magnetic atoms in the La(Fe-Si)13 unit cell to
be responsible for the magnetoelastic effects, so for the β
value. The partial substitution of Fe atoms with Mn does
not change too much the arrangement of the atoms, but
it weakens the effective FM interaction between them.

Moreover, our results show that in magnetocaloric ma-
terials in which the transition is from a LT magnetically
ordered to a HT magnetically disordered state (ζ < 1),
the origin of the entropy change at the transition shall
be searched in the spin contribution, since lattice entropy
plays only a minor counteracting role. Another important
point to mention is that the performed modeling led us to
consider magnetoelastic effects with both β > 0 and ζ > 0.
This is a confirmation of the results obtained by Jia et al.
[9], foreseeing a lattice entropy decrease at the FM-PM
magnetic transition accompanied by lattice shrink. The
result recently obtained by Gruner et al. [10] may be due
to the fact that the experimental technique used by the
authors to access the phonon density of states may dis-
play a sensitivity on magnetic fluctuations. Therefore, the
results they have obtained may represent the sum of both
magnetic and structural contributions to the entropy and
not the lattice contribution alone.

Some final comments on the physical robustness of the
overall model can be argued by looking in more detail an-
other interesting aspect, concerning the choice of the nkB

coefficient we have made. In the fit with the experimental
data (see Sec. 3) nkB has been treated as a free parameter.
However, the density of spins (i.e. of magnetic moments)
n in a given compound can be calculated knowing the sat-
uration magnetization M0. Indeed, M0 = ngLµBJ and
n can be expressed as n = (NA/PM )NmNs, where NA is
the Avogadro’s number, PM is the molecular weight of the
system under consideration, Nm represents the number of
magnetic ions per formula unit and Ns is the number of
spins per magnetic ion. In particular, for the La(Fe-Si)13
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Fe Mn Si T0 µ0H0 η
(K) (T)

11.22 0.46 1.32 272 405 1.0
11.33 0.37 1.30 286 426 1.1
11.47 0.25 1.28 305 455 1.15
11.60 0.18 1.22 320.5 478 1.2
11.76 0.06 1.18 339 505 1.2

Table 1: Parameters T0, µ0H0 and η used to model the entropy

change behaviour of La(FexMnySiz)13-H1.65 samples with compo-

sitions x (Fe), y (Mn), z (Si) shown in the first, second and third

columns, respectively.
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�
cPM/TdT , where
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ηc = 3tc
�
bJ − aJ2(∆�0/tc)

2L� (∆�0/tc)
�

(69)

For J = 1/2 and �0 = 0.5 is ηc = 0.214332.
Gnuplot
f(x)= 1/x**2-1/sinh(x)**2
a(x)=(x+1)/(3*x)
b(x)=(3/10.)*((x+1)**2+x**2)/(x+1)**2
tc = 0.795905
p [0:10][]3*tc*(b(x)-2*a(x)*(0.5/tc)**2*f(0.5/tc))
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FIG. 11: Entropy change of the magnetovolume FD model. η = 0.0, 0.6, ∆�0 = 0, 0.4, 0.5.
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VIII. MODELING La(FeMnSi)13 −H

Average atomic weight 0.0531 kg mol−1. Number of magnetic atoms 0.73. The magnetization extrapolated at zero
K can be between 110 and 120 Am2K−1. This corresponds to about 1.1 spin per atom (i.e. 1.5 spin per magnetic
atom). If we use the electron spin we have the entropy coefficient s0 = 172.2 J kg−1K−1. The parameters are

T0 = aJ
µ0WM

2
0

nkB
(70)

µ0H0 =
nkB

aJM0
T0 (71)

H0 = aJ
µ0WM

2
0

nkB
(72)

η =
3

2

β2κTnkB

aJv0
T0 (73)

first order/second order

16

FIG. 12: Magnetization of the magnetovolume FD model. η = 0.0, 0.2, 0.4 0.6, 0.8, 1.0. ∆�0 = 0.5. The temperature of each
curve is shifted of 0.2 to show all curves.

FIG. 13: Entropy of the magnetovolume FD model. η = 0.0, 0.2, 0.4 0.6, 0.8, 1.0. ∆�0 = 0.5. The temperature of each curve
is shifted of 0.02 to show all curves.

and

ζ = αpβT0 (74)
lattice entropy 

sums or subtracts

ζ = 0.25



V.Basso, Thermodynamic models, Delft days 2-3 november 2015

help of the Stoner model of itinerant magnetism. In this
model the reciprocal susceptibility, !M

−1=E!!M", is given by a
simple formula12

!M
−1 = "B

−2!DM
−1 − I" , !1"

where I#0.5 eV is the Stoner parameter and DM is the ef-
fective DOS at the Fermi level, defined by

DM =
4

DM+
−1 + DM−

−1 . !2"

The Stoner theory adopts the rigid-band approximation,
whereby the DOS of a spin-polarized state is obtained from
the nonmagnetic DOS D!E" by simply shifting the latter
along the energy axis. Accordingly, the entering into Eq. !2"
DOS at the Fermi level in the majority and minority sub-
bands are given by DM±= 1

2D!EF,M±", where the shifted
Fermi levels are determined from an obvious condition,

$
EF,0

EF,M±

D!E"dE = ±
M

2
, !3"

EF,0 being the Fermi energy of the unpolarized state. The
somewhat heavy use of the subscript M in Eqs. !1"–!3" is to
emphasize that the quantities defined therein are functions of
the independent variable M, the spin magnetic moment.

Turning now to LaFe12Si, its nonmagnetic DOS is pre-
sented in Fig. 2. The arrows mark the positions of the shifted
Fermi level in the majority and/or minority subbands, the
numbers corresponding to the labeling of the minima in

Fig. 1. In reality there is a finite interval of allowed M values
around each arrow, wherein !M #0 and E!M" is curved up-
wards. The exact equilibrium positions within the intervals
depend on the assumed value of the lattice parameter a. The
allowed intervals are interlaid with forbidden ones, wherein
the DOS at the Fermi level in both spin channels is so high
that DM exceeds I−1 and consequently !M is negative. Such
forbidden values of M correspond to unstable states. The
instability criterion, IDM #1, is known as the generalized
Stoner condition.12

Recapitulating, the Stoner theory links the oscillatory be-
havior of the FSM profiles of LaFe12Si !Fig. 1" to a series of
high peaks and deep valleys in its DOS !Fig. 2". Earlier it
was suggested13 that the magnetic instability in LaFe13−xSix
might be akin to that in face-centered-cubic !fcc" iron, where
several magnetically distinct phases had been predicted.14

This view was supported by an argument that the iron atoms
situated on the 96i sites form icosahedral clusters similar to
the coordination polyhedra in the fcc structure. Examining
the DOS of fcc iron,15 we found no narrow peaks or valleys
that could enable us to draw a parallel between fcc Fe and
LaFe13−xSix. The preferred values of the atomic moments
are also dissimilar: thus, the third minimum in Fig. 1!a"
!#1.75"B /Fe atom" corresponds to a prominent maximum
in the E!M" dependence of fcc iron.14 The two compounds
are still broadly analogous, in the sense that the magnetic
instability in both of them is governed by the generalized
Stoner criterion, IDM #1.

Our next goal is to find out what the FSM profile of an
ideal magnetic refrigerant should look like. With this end in
view, let us first clarify what determines the relative cooling
power !RCP" of a refrigerant with a single first-order transi-
tion. An intersection point of the temperature dependences of
the free energies of the two phases involved defines the tran-
sition temperature T0, Fig. 3!a". The negative slopes of the
two curves are the entropies S1,2, the respective magnetiza-
tions being M1,2. Assume for definiteness that M2#M1.
Then a magnetic field B will suffice to induce a transition
from phase 1 to phase 2 anywhere within the interval be-
tween T0 and T0+$T, where $T is determined from an ob-
vious condition, $T!S1−S2"=B!M2−M1". This will be ac-
companied by an entropy change of $S%S2−S1, see Fig.
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