

Kinetic-arrest induced phase coexistence and metastability in (Mn,Fe)₂(P,Si)

Xuefei Miao

FAME, TU Delft

x.f.miao@tudelft.nl

Outline

Background

Neutron diffraction

□ In-field x-ray diffraction

□ Magnetic relaxation measurements

Background

Phase coexistence in first-order phase transition

Background

Kinetic arrest

Examples of kinetic arrest

Kinetic arrest in a variety of magnetic materials:

Ce(Fe_{0.96}Ru_{0.04})₂,¹ Ni-Mn-X Heuslers,²

 Gd_5Ge_4 ,³ $Fe_{49}(Rh_{0.93}Pd_{0.07})_{51}$,⁴ manganites,⁵ *etc*.

Reference: [1] Manekar M.A. et al., Phys. Rev. B 64, 104416(2001).

[2] Sharma V.K. et al., Phys. Rev. B 76, 140401(2007).

[3] Roy S.B. et al., Phys. Rev. B 74, 012403(2006).

[4] Kushwaha P. et al., Phys. Rev. B 80, 174413 (2009).

[5] Kuwahara H. et al., Science 270, 961(1995).

Hexagonal (Mn,Fe)₂(P,Si)

Dung N.H. et al., Adv. Energy Mater. 1, 1215(2011)

Dung N.H. et al., Adv. Energy Mater. 1, 1215(2011)

Mn_{1.30}Fe_{0.65}P_{0.67}Si_{0.33}

2

(1) At low-*T*, ferrimagnetic or other magnetic structure with low magnetization;

(2) At low-*T*, FM + frozen PM (kinetic arrest).

Neutron diffraction

- **Sample:** Mn_{1.30}Fe_{0.65}P_{0.67}Si_{0.33}
- ***** Diffractometer: WISH, at ISIS facility, UK
- ***** Measurement: Data collected on cooling from 200 K to 1.5 K

T-dependent neutron diffraction pattern

T-dependent neutron diffraction pattern

Satellites show up at low T

Magnetic reflection at low Q

16

Incommensurate spin-density wave with $\vec{q} = 0.36 \cdot (1, 0, 0)$

Incommensurate spin-density wave with $\vec{q} = 0.36 \cdot (1, 0, 0)$

Incommensurate spin-density wave (SDW)

Unit cell

20

Short-range magnetic correlation

Integrated intensity

Lattice parameters

* PM \rightarrow SDW transition, $T_{SDW} \approx 62$ K, is a second-order transition;

***** SDW \rightarrow FM transition, $T_C \approx 50$ K, is a first-order transition;

Metastability of the SDW phase

□ In-field x-ray diffraction

□ Magnetic relaxation measurements

In-field x-ray diffraction

Sample: Mn_{1.30}Fe_{0.65}P_{0.67}Si_{0.33}

✤ Measurement: at 300 K and 10 K in magnetic field 0 – 5 T

In-field x-ray diffraction

Two phases at low-T (SDW \rightarrow stable FM)

Magnetic relaxation measurement

Due to small thermal energy at low *T*, the SDW-FM transition is kinetically arrested and phase coexistence is observed. The SDW phase is metastable.

E. Brück, N.H. van Dijk, I. Dugulan, N.V. Thang, A.J.E. Lefering, B. Zwart, M.P. Steenvoorden

L. Caron

P. Manuel

Y. Mitsui, K. Koyama

UNIVERSITY

K. Takahashia

150 years

E A We create chemistry

•

Thank you for your attention!