

Recent developments in (Mn,Fe)₂(P,Si) materials

H. Yibole

Fundamental Aspects of Materials and Energy, TU Delft, The Netherlands

DDMC 2015, 2nd Nov

Outline

Part I:

- Parameters influencing the cyclability of the MCE
 - in (Mn,Fe)₂(P,Si,B) compounds
- Compositional mapping of magnetocaloric figure of merit
- Mechanical stability

Part II:

- Growth of single-crystalline (Mn,Fe)₂(P,Si)
- Magnetocrystalline anisotropy
- Magnetic behaviour towards the ferromagnetic state

Fe₂P-based manganese compounds

Magneto-elastic First-order phase transition

N.H. Dung *et al.*, Adv. Energy Mater. 1, 1215 (2011)

Cyclability of the MCE

- Thermal hysteresis
- Finite transition width
- Shift of the transition due to the field

Cyclability is a complex question !

. . . .

Boron doped (Mn,Fe)₂(P,Si) materials

- Mn/Fe = 1, optimization of saturation *M*
- Metalloid site, controlling the phase transition

Promising MCE properties

Other promising compositions in this system?

Influence of B content on hysteresis and sensitivity of transition to field

$MnFe_{0.95}P_{0.67-x}Si_{0.33}B_{x}$		
x = 0.070	$dT_{tr}/dB = 4.2 \text{ K/T}$ $dT_{tr}/dB (1T) > \text{hysteresis}$	
x = 0.065	$dT_{tr}/dB = 4.1 \text{ K/T}$ $dT_{tr}/dB (1T) > \text{hysteresis}$	
x = 0.060	d <i>T</i> _{tr} /d <i>B</i> = 3.6 K/T d <i>T</i> _{tr} /d <i>B</i> (1T) ≈ hysteresis	
x = 0, but Si=0.45	$dT_{tr}/dB = 2.1 \text{ K/T}$ $dT_{tr}/dB (1T) < hysteresis$	

Magnetocaloric effect in $B \sim 1 \text{ T}$

TUDelft

Threshold hysteresis for MCE cyclability

- Distinction between ΔT_{ad} and ΔT_{cyclic} for materials with hysteresis.
- d*T*_{tr}/d*B* (1T) ≈ hysteresis:
 threshold for MCE cyclability.
- In (Mn,Fe)₂(P,Si,B), dT_{tr}/dB ≈ 4.2 K the maximal hysteresis ≤ 4 K for B ~1 T.

ŤUDelft

Mapping of magnetocaloric figure of merit

TUDelft

Mechanical stability of (Mn,Fe)₂(P,Si,B) a

The degradation of material may result from:

- The volumetric stress resulting from volume change
- Anisotropic internal stress
- Sample A: $MnFe_{0.95}P_{0.582}B_{0.078}Si_{0.34}$ (boron doped)
- Sample B: $Mn_{1.25}Fe_{0.7}P_{0.5}Si_{0.5}$ (Mn-rich)
- Sample C: $MnFe_{0.95}P_{0.55}Si_{0.45}$ (Mn/Fe = 1)

ŤUDelft

Mechanical stability

Vickers micro-hardness measurements

- MnFe_{0.95}P_{0.585}Si_{0.34}B_{0.075} ~ no ΔV, small Δ(c/a)
- $Mn_{1.25}Fe_{0.7}P_{0.5}Si_{0.5}$ limited ΔV , small Δ (c/a)
 - $MnFe_{0.95}P_{0.55}Si_{0.45}$ limited ΔV , large Δ (c/a)

Conclusions

Part I:

- Definition of a thermal hysteresis threshold ensuring the cyclic character of the MCE in the MnFe(P,Si,B) system
- Compositional mapping of the magnetocaloric performances : identification of MnFe(P,Si,B)
 compositions with promising performances on a broad temperature range 150 < T < 380 K.
- Quantification of mechanical ageing due to cycling across the transition by DSC, resistivity micro-hardness. The mechanical degradation is highly dependent on the (c/a) change.

Part II: Single-crystalline (Mn,Fe)₂(P,Si)

(Mn,Fe)₂(P,Si) Single Crystals

Needs for single crystals:

- Anisotropy
- Homogeneity
- Absence of grain boundaries

Viktor Hoglin, PhD Thesis, Uppsala Universitet.

(Mn,Fe)₂(P,Si) Single Crystals

- Growth technique: Flux method
- Metallic flux: tin
- Crystal habit: prismatic
- Crystal surface: regular and homogeneous
- Average dimension: $\sim 0.15 \times 0.15 \times 1.5 \text{ mm}^3$
- Colour: metallic

Single crystal diffraction and refinement

Bruker AXS Kappa APEX II Diffractometer

- Chemical composition (EDS): Mn_{0.83}Fe_{1.17}P_{0.72}Si_{0.28}
- Crystal structure: Hexagonal Fe₂P
- Space group: $P\overline{6}2m$
- Refinement method: full-matrix least-squares on F^2

Atomic position:

 $3g(x_1, 0, 1/2); 3f(x_2, 0, 0); 2c(1/3, 2/3, 0); 1b(0, 0, 1/2)$

Reciprocal-Space mapping

Temperature (K)	100	280
a (Å)	6.0838(9)	5.997(6)
<i>c</i> (Å)	3.3556(5)	3.484(3)
Volume ($Å^3$)	107.56(4)	108.5(2)
x_1	0.5936(2)	0.5904(2)
x_2	0.2563(2)	0.2548(2)
Collected reflections	180	182
RF^2	0.0242	0.0243
Goodness-of-fit on F^2	1.096	1.050

Magnetic properties of ferromagnetic crystal

First-order ferromagnetic transition !

Mangetocrystalline anisotropy in Mn_{0.83}Fe_{1.17}P_{0.72}Si_{0.28} crystal

Corrected demagnetization field

ŤUDelft

Mangetocrystalline anisotropy energy for hexagonal system

```
E \approx K_1 \sin^2 \theta + K_2 \sin^4 \theta
```


The preferred magnetization direction --- along the c axis !

Mangetocrystalline anisotropy of related polycrystalline compounds

Fe-rich $Mn_{0.66}Fe_{1.29}P_{1-x}Si_x$ (x = 0.42, 0.37, 0.34) angle with c-axis 67°, 46°, 29°

Ou et al, J. Mag. Magn. Mater. 340, 80 (2013)

- MnFeP₀₅As₀₅ along c-axis Bacmann et al, J. Mag. Magn. Mater. 134, 59 (1994)
- Mn-rich $Mn_{1,3}Fe_{0,64}P_{0,5}Si_{0,5}$ and $Mn_{1,1}Fe_{0,9}P_{0,8}Ge_{0,2}$ (a,b) plane Dung et al, PRB 86, 045134 (2012); Liu et al, PRB 79, 014435 (2009); **ÍU**Delft

L. Caron et al, PRB 88, 094440 (2013)

Peculiar magnetic behaviour towards ferromagnetic state

Spontaneous magnetization jumps

- Phase transition behaviour

TUDelft

Not magnetic screening by eddy currents or domain wall movements

Possible interpretations for magnetization jumps

- (i) An underlying antiferromagnetic order
 - Prompted by chemical disorder on 3f and 3g site

G. Li et al, Appl. Phys. Lett. 105, 262405 (2014).

- (ii) A dynamical phase separation phenomenon
 - General to a First-order phase transition (Manganites, Gd₅Ge₄, Heusler alloys, CeFe₂, FeRh,etc.)

(iii) A combination of both

Conclusions

Part II:

- (Mn,Fe)₂(P,Si) single crystals presenting FOMT have been grown for the first time.
- Crystal structure and magnetic properties support the findings of previous works on polycrystals.
- The weakening of the magnetocrystalline anisotropy from Fe_2P to $Mn_{0.83}Fe_{1.17}P_{0.72}Si_{0.28}$ is beneficial for magnetocaloric application.
- The magnetization process toward the ferromagnetic state turns out to be complex.

Acknowledgements

Dr. Francois Guillou Dr. Giacomo Porcari Dr. Lian Zhang Dr. Niels van Dijk Prof. Dr. Ekkes Brück

Dr. YingKai Huang, Van der Waals-Zeeman Institute

UNIVERSITEIT VAN AMSTERDAM

university of groningen

Dr. Graeme R. Blake, Zernike Institute for Advanced Materials

Thank you for your attention!

More details:

H. Yibole *et al.*, Appl. Phys. Lett. 107, 162403 (2015).

F. Guillou *et al.*, Adv. Mater. 26, 2671 (2014).

H. Yibole *et al.*, J. Phys. D: Appl. Phys. 47 075002 (2014).

F. Guillou et al., J. Appl. Phys. 116, 063903 (2014).

F. Guillou *et al.*, J. Alloys & Compd. 617, 569 (2014).

F. Guillou *et al.*, Phys. status solidi (c) 11, 1007 (2014).

F. Guillou *et al.*, J. Alloys & Compd. 632, 717 (2015).

ŤUDelft