Magnetostriction - a way to detect lattice contributions to the magnetocaloric effect in CoMnSi based materials

A Barcza, K G Sandeman

Department of Materials Science Device Materials Group University of Cambridge

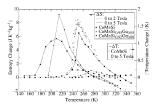
31 Oct 2008 / Delft Days on Magnetocalorics

Outline

Introduction

- Motivation
- Total entropy change
- 2 Ex
 - Examples
 - Well studied materials

8 Results on CoMnSi-based compounds


- Magnetic data
- Capacitance dilatometry
- Calorimetry

Conclusions

Why do we study CoMnSi based alloys?

CoMnSi based compounds are:

- relatively cheap metals
- not (very) toxic alloys
- magnetic properties can be tailored by substituting elements

- maximal entropy changes of $\sim 10~J/kgK$ in magnetic field changes from 0 T to 5 T around room temperature
- What are the individual contributions to the total entropy change?

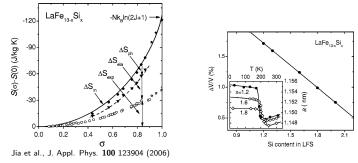
Total entropy change

To a first order approach the total entropy change can be split up into individual parts:

 $\Delta S_{total}(T, H, V) = \Delta S_{lat}(T, H, V) + \Delta S_{el}(T, V) + \Delta S_{mag}(T, H, V)$

•
$$\Delta S_{lat} = \Delta S_{ph} + \Delta S_{ela}$$

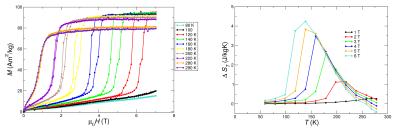
•
$$\Delta S_{el} = \gamma T$$


• $\Delta S_{mag}^{max} = -Nk_B ln(2J+1)$

イロト 不得下 イヨト イヨト 二日

Total entropy change

The individual parts have only been studied in a very small number of compounds:


• LaFeSi: magnetic entropy change dominates but is reduced by a large opposed lattice entropy

Isothermal magnetisation

 $Co_{0.95}Ni_{0.05}MnSi:$

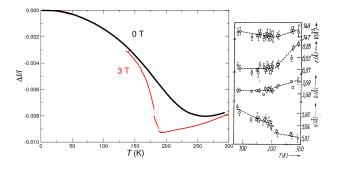
- Isothermal entropy change ΔS_T was calculated from magnetisation data via the Maxwell equation.
- $\bullet\,$ maximal entropy change of \sim 6 J/kgK

• What are the individual contributions to the total entropy change?

Thermal expansion and magnetostriction

Capacitance dilatometry is a macroscopic method:

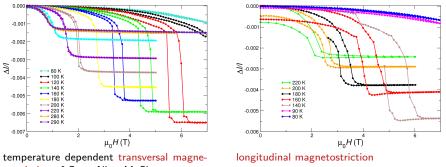
- measuring length change of a macroscopic sample under various conditions
- with very high sensitivity $\frac{\Delta l}{l} \sim 10^{-9}$
- having a simple design
- useable in a wide range of temperatures (0.01 K 1000 K) and magnetic fields (50 T)



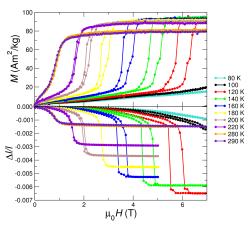
dilation $\sim \frac{area}{capacitance}$

イロト 不得下 イヨト イヨト 二日

Thermal expansion of Co_{0.95}Ni_{0.05}MnSi

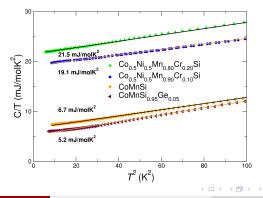

- negative thermal expansion from 2 K to metamagnetic transition temperature
- broad transition in zero magnetic field around 250 K
- magnetic field shifts transition to lower temperatures
- samples break during magnetic field sweeps!

S. Nizioł et al., Phys. Stat. Sol. (a) 45 591 (1978)


Magnetostriction of Co_{0.95}Ni_{0.05}MnSi

- $\bullet\,$ very large magnetostriction values up to 0.5 % in 6 T
- volume changes during the magnetic field induced phase transition
- transition becomes more first order at lower temperatures

tostriction of Co_{0.95}Ni_{0.05}MnSi


Magnetostriction versus magnetisation

- critical fields match very well!
- coefficient of magnetostriction increases with decreasing temperature
- lattice contraction has a contribution to the total entropy

Heat capacity

- large difference in electronic heat capacity between antiferro- and ferromagnetic materials
- expected to have similar order of magnitude in one material
- electronic part of entropy during the antiferro- to ferromagnetic transition is expected to be $\Delta S_{el} \sim 30 \text{ J/kgK}$ for $T_t = 280 \text{ K}$

Conclusions:

- we performed macroscopic thermal expansion, magnetostriction, and heat capacity measurements
- results suggest large electronic and lattice contributions
- magnetic contributions for the order-order transition are expected to be smaller

Acknowledgements: Herwig Michor, TU Vienna for heat capacity measurements