Magnetocaloric properties of reactively sintered La(Fe,Co,Si)₁₃

M. Katter, V. Zellmann, G.W. Reppel, K. Uestuener Vacuumschmelze GmbH & Co. KG Delft Days on Magnetocalorics

overview magnetic materials

new magnetocaloric materials

magnetocaloric materials

Cooltech Applications (2008)

conventional preparation of La(Fe,Si)₁₃

- casting
- anneal, e.g. 1080℃/140 h
- optionally load with hydrogen
- \Rightarrow long annealing times,
- \Rightarrow with hydrogen only powder
- S. Fujieda et al. 2005 F.X. Hu et al. 2005 (with Co)
- melt spinning
 short anneal, e.g. 1000℃/2 h
- \Rightarrow only flakes or powder, no shaped parts for heat exchangers
- O. Gutfleisch et al. 2005
- S. Hirosawa et al. 2006

Designs for active magnetic regenerators

J.A. Barclay and S. Sarangi 1984 in A.M. Tishin and Y.I. Spichkin 2003

Powder Metallurgical (PM) Processing of La-Fe-Si

Powder Metallurgical (PM) Processing of La-Fe-Si

-75

density = 6.6 g/cm^3

sample: 4,2 x 2 x 1,2 mm

La(Fe_{0.915}Si_{0.085})₁₃, sintered

adiabatic temperature change

field hysteresis

field sweep rate: 4.3 kOe/min

composition	temperature decreasing at -8 K/min			temperature increasing at +8 K/min			temperature hysteresis	field hysteresis
	$-\Delta S_{magn}$ (J/kgK)	T _{peak} (K)	$\Delta T_{ m WHH}$ (K)	$-\Delta S_{ m magn}$ (J/kgK)	T _{peak} (K)	$\Delta T_{ m WHH}$ (K)	$\Delta T_{ m peak}$ (K)	ΔH (kOe)
$La(Fe_{0.893}Si_{0.107})_{13}$	21.9	192.7	6.6	22.0	195.2	6.6	2.5	2.2
$La(Fe_{0.887}Si_{0.113})_{13}$	18.7	196.5	7.0	18.9	198.9	7.0	2.4	1.6
$La(Fe_{0.881}Si_{0.119})_{13}$	16.9	202.2	6.7	16.2	202.9	7.2	0.7	0.9

sintered La(Fe_{0.915}Co_xSi_{0.085})₁₃

several kg blocks 23x19x12 mm produced on labscale for prototyping

Adiabatic temperature change measured at Risø

Hydrogenation of sintered La-Fe-Co-Si

Conclusion

- La(Fe,Si)₁₃ sucessfully prepared by powder metallurgy
- bulk material available after reactive sintering for a few hours
- hysteresis decreases with increasing Si and Co content
- Curie temperature controllable by Co or H substitution
- entropy change similar or better compared to Gd
- several kg with various Curie temperatures produced
- process upscalable on an industrial basis
- temperature span comparable to Gd

