Determining the magnetocaloric effect in hysteretic materials

Luana Caron

Fundamental Aspects of Materials and Energy Reactor Instituut Delft

Delft Days on Magnetocalorics

October 30, 2008

1

Delft University of Technology

The magnetocaloric effect

October 30, 2008

Measurement

Direct measurements - ΔS and ΔT_{ad}

Indirect measurements – calculate ΔS from isothermal magnetization

Maxwell relations

$$\left(\frac{\partial S(T,H)}{\partial H}\right)_{T} = \left(\frac{\partial M(T,H)}{\partial T}\right)_{H} \rightarrow \Delta S_{T}(T)_{\Delta H} = \int_{H_{1}}^{H_{2}} \left(\frac{dM}{dT}\right)_{H} dH$$

October 30, 2008

Reasons for questioning the validity of the Maxwell relations

October 30, 2008

Colossal Magnetocaloric Effect

October 30, 2008

Validity of the Maxwell relations

2nd order – Maxwell is valid 1st order – Clausius-Clapeyron or Maxwell?

$$\frac{dH}{dT} = -\frac{\Delta S_M}{\Delta M} \Leftrightarrow \left(\frac{\partial S}{\partial H}\right)_{T,P} = \left(\frac{\partial M}{\partial T}\right)_{H,P}$$

Sun et al. PRL 85 4191

October 30, 2008

Liu's solution

Liu et al. Appl. Phys. Lett. 90 032507

October 30, 2008

What are we measuring?

TUDelft

October 30, 2008

$\partial S(T,H)$) _	$\left(\frac{\partial I}{\partial I}\right)$	M(T, H)	H)
∂H	\int_T	-	∂T	$ \int_{H} $

October 30, 2008

October 30, 2008

October 30, 2008

October 30, 2008

October 30, 2008

October 30, 2008

Conclusions

The entropy change calculated from magnetic isothermal measurements using the Maxwell relation is a very good tool around 1st order magnetic phase transitions as long as the history of the sample is taken into account when planning a measurement.

