RISØ DTU

Numerical modeling of parallel-plate based AMR

Kaspar K. Nielsen^{a,b}, K. Engelbrecht^b and N. Pryds^b.

^{a)} Technical University of Denmark, Department of Mechanical Engineering.

^{b)} Risø National Laboratory for Sustainable Energy, Technical University of Denmark.

Delft Days on Magnetocalorics, 30-31 October 2008

Outline

The Danish effort in magnetic refrigeration

□ Focus on the modeling

Results from both experiment and modeling

Discussion

Risø's work on magnetic refrigeration

Partnership between

Duration: 4 years

- Starting date: 01.01.2007
- Ending date: 31.12.2010

Funding: € 2.6M

- 5 Ph.D. students
- 3 Postdocs

RISØ

Challenges Demonstrate cost-effective systems at commercially relevant temperature spans with high efficiency and environmentally friendly materials

Max: 1.671

Configuration of our effort

Details on the experiment

- Parallel plate based AMR
- Reciprocating
- Permanent magnet
- Materials used include Gd and LaCaSrMnO₃
- Plate thickness from 0.3 to 0.9 mm
- Channel thickness from 0.5 to
 1.0 mm

Plates for the regenerator

Example of $La_{0.67}Ca_{0.26}Sr_{0.07}Mn_{1.05}O_3$ plates (40x25x0.3 mm) **RISØ**

DTU

Ħ

The permanent Halbach magnet

Numerical AMR modeling

Key features of our numerical AMR model

2.5-dimensional

Parallel-plate based

Versatile

□ Fast!

Schematic of the model

Details of the model

RISØ DTU

Details of the model

Γ	x		Plastic tube		
	$R_{fluid} + R_{pl} + R_{conv}$	$R_{fg}+R_{pl}+R_{conv}$	RMCM+Rpl+Rconv	$R_{fg}+R_{pl}+R_{conv}$	Rfluid+Rpl+Rconv
z	Rpist Reav Bluid	Flow guide	R _{MCM} +R _{fg} R _{MCM} +R _{fg}	Flow guide	R _{pist} +R _{conv}
	$R_{fluid} + R_{pl} + R_{conv}$	$R_{fg}+R_{pl}+R_{conv}$	RMCM+Rpl+Rconv	$R_{fg}+R_{pl}+R_{conv}$	$R_{fluid}+R_{pl}+R_{conv}$
		-	Plastic tube		

Experiments and modeling

RISØ

Each experiment was configured as follows

- □ 13 plates of commercial grade Gd (92 g)
- Plate thickness: 0.9 mm
- Channel thickness: 0.8 mm
- □ A cycle timing of 9 s

Heat load results

RISØ

DTU

Fluid movement results

Timing results

A versatile experimental AMR was presented

- A corresponding advanced 2.5D numerical model was described
- Selected results from experiment and model were compared and to a certain extent the agreement is satisfactory

Future work

 Further development of the model to include e.g. passive regeneration and composite materials

- Present large range of experiments with corresponding modeling of various materials
- Detailed study of demagnetization effects
- Work on composite materials

References

- Petersen, T. F.; Pryds, N.; Smith, A.; Hattel, J.; Schmidt, H. & Knudsen, H. "Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator" *International Journal of Refrigeration*, **2008**, *31*, 432-443
- Bjørk, R.; Bahl, C. R. H.; Smith, A. & Pryds, N.
 "Optimization and improvement of Halbach cylinder design" *Journal of Applied Physics, AIP*, 2008, 104, 013910
- Bahl, C.; Petersen, T.; Pryds, N. & Smith, A.
 "A versatile magnetic refrigeration test device" *Review of Scientific Instruments*, **2008**, *79*, 093906