# **FUDelft**

# Pressure effects on the thermal hysteresis in MnFe(P,Ge) compounds

## **O. Tegus**

Department Radiation, Radionuclides & Reactors Faculty of Applied Sciences Delft University of Technology

Inner Mongolia Key Lab for Physics and Chemistry of Functional Materials Hohhot, China

Delft days on magnetocalorics, 31 Oct. 2008

# **Introduction**

# **Experimental results**

**Theoretical model and Experimental results** 

**Conclusions** 



### **Examples: Pressure effect**

Iron becomes superconductor(<2 K): 10-30 GPa

Hydrogen becomes metal: 400 GPa (static pressure 1 Matm, dynamic pressure 10 Matm)

Silane becomes Superconductor: 50 GPa

#### SiH<sub>4</sub>



#### Effects of pressure on magnetism

#### **Pressure effects on magnetization**

ErCo<sub>2</sub>

1<sup>st</sup>order phase transition

$$T_{c} = 32 \text{ K}$$





#### **Pressure effects on exchange interactions**



 $T_{\rm h}$  decreases with increasing p











Edwards PRB (1972)

#### Pressure effect on MnFe(P,As) Brück et. al.

$$\label{eq:masses} \begin{split} &\mathsf{MnFeP}_{0.65}\mathsf{As}_{0.35}\\ &\mathsf{dT}_c/\mathsf{dp} \ \mathsf{decreases} \ \mathsf{with} \ \mathsf{p}\\ &\mathsf{MnFeP}_{0.45}\mathsf{As}_{0.55} \ \mathsf{increases}\\ &\mathsf{with} \ \mathsf{p} \end{split}$$





T(K)

#### To summarize

| compound                                               | Т <sub>с</sub> (К) | dTc/dp (K/GPa) |
|--------------------------------------------------------|--------------------|----------------|
| Ni <sub>2.15</sub> Mn <sub>0.85</sub> Ga               | 335                | 4.7            |
| ErCo <sub>2</sub>                                      | 33                 | -16.6          |
| Gd <sub>5</sub> Si <sub>2</sub> Ge <sub>2</sub>        | 276                | 30             |
| MnAs <sub>0.9</sub> Sb <sub>0.1</sub>                  | >300               | -30            |
| La <sub>0.69</sub> Ca <sub>0.31</sub> MnO <sub>3</sub> |                    | 21.4           |
| La(FeSi) <sub>13</sub>                                 |                    | -90            |
| MnFe(P,Ge)                                             |                    | negative       |

dT<sub>c</sub>/dp depends on pressure

Thermal hysteresis also depends on pressure.

#### **MnFeP<sub>1-x</sub>As<sub>x</sub> compounds**



#### ■ X ~ 0.5: T<sub>C</sub> ~ RT

#### A large magnetocaloric effect at RT --> magnetic refrigerant

Tegus et al. Nature 415 (2002) 150.

а

P, As

Fe, (

# MnFeP<sub>1-x</sub>As<sub>x</sub> compounds Magnetic moments in MnFeP<sub>0.5</sub>As<sub>0.5</sub> Neutron diffraction Bacmann et al. (1994) Magnetic moments at 200 K Mn: $m_{Mn} = 2.02 \ \mu_{B}$ Fe : $m_{\rm Fe} = 1.48 \ \mu_{\rm B}$ Band structure calc. by Yamada & Terao (2002) in c-plane hybridization of Fe(3d)-Fe(3d) in c-plane --> suppresses (unstable) m<sub>Fe</sub> (interlayer) hybridization of Fe(3d)-Mn(3d) --> enhances (stable) m<sub>Fe</sub> Applying pressure a decreases and c increases $\rightarrow$ FM state becomes unstable

#### **Problems & Purpose of this study**

MnFe(P,As) MnFe(P,Ge)



MnFe(P,Si)



1.New phenomenon: low transition point, irreversible, why?

2.Large thermal hysteresis, what is the mechanism?

#### **Theoretical model**

including the coupling between the strain and magnetization

Gibbs free energy of the system

$$g = g_0 + A\sigma^2 + B\sigma^4 + C\sigma^6 + D\omega\sigma^2 + E\omega\sigma^4 + p\omega + \frac{1}{2K}\omega^2$$

σ : spontaneous magnetization,
ω : relative volume change,
K: the compresibility,
p: applied pressure.

$$\omega = \frac{V - V_0}{V_0}$$

A, B, and C are the Landau coefficients

**D** and **E** represent coefficients of the third and fifth order coupling between strain and magnetization.

#### **The equilibrium conditions**

$$\frac{\partial g}{\partial \sigma} = 0$$

$$A + 2(B + E\omega)\sigma^2 + 3C\sigma^4 + D\omega = 0$$

$$\frac{\partial g}{\partial \omega} = 0$$

$$p + \frac{\omega}{K} + D\sigma^2 + E\sigma^4 = 0.$$

#### The solution of $\boldsymbol{\sigma}$

where

$$\sigma^2 = \frac{-B' + (B'^2 - 4A'C')^{1/2}}{2C'}$$

$$A' = A - DKp$$
$$B' = 2B - D^{2}K - 2EKp$$
$$C' = 3(C - EDK)$$

# $T_0$ - At which the theoretical magnetic susceptibility becomes infinite;

 $T_h$  - the highest temperature for which the ferromagneticc phase can exist as a metastable state

 $T_{\rm c}$  - the lowest temperature for which the paramagnetic phase can exist as a metastable state.



The high-temperature paramagnetic phase remains metastable until A' = 0, taken  $A = A_0(T-T_0)$ 

$$T_c = T_0 + \frac{DK}{A_0} p$$

$$\frac{dT_c}{dp} = \frac{DK}{A_0}.$$

 $T_c$  linearly depends on pressure If DK > 0  $T_c$  increases with *p* If DK < 0  $T_c$  decreases with *p* If D = 0  $T_c = T_{0,}$  no *p* dependent. Experiment show that  $T_c$  depends on P, therefore, D  $\neq$  0, indicating third-order coupling between strain and magnetization should exist.

#### A possible explanation of the virgin effect



$$T_c = T_0 + \frac{DK}{A_0} p$$

DK < 0

Misfit strain exists. Additional elastic energy Product phase becomes powder, or occurs microcracks Release misfit strain, disconnected Only exist in cooling, and once!



# The low-temperature ferromagnetic phase remains metastable until $B'^2 = 4 A'C'$

$$T_{h} = T_{c} + \frac{(2B - D^{2}K - 2EKp)^{2}}{12A_{0}(C - EDK)}$$

T<sub>h</sub> is not linearly dependent on p.

#### If $\mathbf{E} = \mathbf{0}$

$$T_{h} = T_{c} + \frac{(2B - D^{2}K)^{2}}{12A_{0}(C - EDK)} = T_{0} + \frac{(2B - D^{2}K)^{2}}{12A_{0}C} + \frac{DK}{A_{0}}p$$

Then T<sub>h</sub> also linearly depends on p

#### The spread of the thermal hysteresis

$$\Delta T = T_h - T_c = \frac{(2B - D^2 K - 2EKp)^2}{12A_0(C - EDK)}$$

**P** dependent

If E = 0 
$$\Delta T = T_h - T_c = \frac{(2B - D^2 K)^2}{12A_0 C}$$

#### **P** independent

E ≠ 0 indicates the fifth order coupling between the strain and magnetization should exist.

The pressure dependence of the thermal hysteresis is caused by the fifth order coupling between the strain and the magnetization.

#### When p = 0, then

$$\Delta T = T_h - T_c = \frac{(2B - D^2 K)^2}{12A_0(C - EDK)}$$

#### Without coupling between strain and magnetization

$$\Delta T = T_h - T_c = \frac{B^2}{3A_0C}$$

### **Experimental results**

#### **Pressure effect on magnetization**



#### **Pressure effects on thermal hysteresis**



 $T_c = T_0$ 

#### **Pressure effects on MCE**



#### Conclusions

**1.** The  $T_c$ , M,  $\Delta S_m$  decrease with increasing pressure

2. The thermal hysteresis increases.

3.These pressure dependence of the behaviors can be understood in the framework of Landau theory, but the Gibbs free energy should include the third and fifth order couplings between strain and magnetization.

4.The third order coupling leads to a decrease of T<sub>c</sub> and the fifth order coupling results in the increase of thermal hysteresis.

#### Acknowledgments

E. Brück , F.R. de Boer, K.H.J. Buschow A. Magnus B. G. Carvalho, C. A. A. Coelho, D. S. Gama Cam Thanh Z.Q. Ou

KNAW China Natural Science Foundation











Thank you for your attention!