
1Astronautics Corp of America Astronautics Corp of America 

Modeling Magnetic Refrigeration

Dr. Steven Jacobs (primary author)  s.jacobs@astronautics.com
Dr. Carl Zimm (presenter)  c.zimm@astronautics.com 

Astronautics Corporation of America
Madison and Milwaukee, WI USA

Delft Days on Magnetocalorics, Oct 30-31, 2008

machines, materials, modeling



2Astronautics Corp of America Astronautics Corp of America 

DRIVE MOTOR

MAGNET

VALVE 
ASSEMBLY

Rotary Magnet Magnetic Refrigerator (BB2)

TORQUEMETER

BED ASSEMBLY



3Astronautics Corp of America Astronautics Corp of America 

Modeling the Magnetic Refrigeration System1
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1Engelbrecht 2008 Ph.D. Thesis, UW ME Dept. 
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Solving The MR Thermal Profile Equations 

• ACA developed new and extremely efficient method for solving 
the thermal profile equations

• Easily handles layered beds with discontinuous properties

• Exploits smoothness of temperature profiles within layer by 
using high-order, rapidly converging techniques

• On the order of 100 times faster than other published methods
– In some cases (low flow rate, small span) ~ 500 x faster

• Evaluation of refrigerator performance fast enough that:
– Equation solver can be coupled to numerical optimization software 

to perform automated optimal design of refrigeration system
– Large scale parameter studies can be performed
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Software Validation
System with 5 layers of LaFeSiH (36% porosity), 120 RPM, 4 lit/min, 1.4 T field
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Modeling Magnetocaloric Properties 

• Magnetocaloric properties
– Cb(B,Tb), S(B,Tb)

• High-order methods employed in 
solution of thermal profile equations 
requires smooth dependence on B, Tb

– Precludes interpolation

• Should satisfy thermodynamic 
constraints

– S = T integral of C/T
– S decreasing function of B

• ACA developed new analytic 
representation for C such that S can 
be expressed in closed form and 
satisfies thermodynamic constraints

• Free parameters in representation 
chosen to fit to data and enforce 
thermodynamic constraints

• Excellent fit to Cb data for a variety of 
MCM (first-order, second-order)
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Optimized System Design – Engineering Prototype (BB3)

• 5 layers of LaFeSiH with 
37% porosity, particle 
diameter fixed at 205 
microns

• Bed dimensions fixed by size 
of existing magnet

• Peak magnet field = 1.4 T
• Goal: maximize cooling 

power with pressure drop ≤
15 PSI

298.15  (upper bound)Hot reservoir temp (K)

2.00000 (upper bound)Frequency (Hz)

3.07974Flow rate (L/min)

294.4460-field Curie point 5th layer (K)

291.2710-field Curie point 4th layer (K)

287.9850-field Curie point 3rd layer (K)

284.6700-field Curie point 2nd layer (K)

281.6530-field Curie point 1st layer (K)

ValueSystem Parameter

≥ 10

≤ 15

≥ 5

≥ 750

Target

14Span (K)

15.053Pressure drop (PSI)

8.671COP (W/W)

1476.4Total cooling load (W)

ValuePerformance Parameter
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Optimized System Design – Supplemental Electronics Cooler (SEC)

• Layered bed of LaFeSiH
• Bed dimensions can be 

chosen by optimization
• Peak magnet field = 1.5 T
• Hot reservoir temperature 

fixed at 44 C
• Goal: minimize cold outlet 

temperature with pressure 
drop ≤ 20 PSI, COP ≥ 10, 
and cooling power ≥ 3 kW

293.258 K0-field Curie point 6th layer

290.870 K0-field Curie point 5th layer

288.292 K0-field Curie point 4th layer

285.671 K0-field Curie point 3rd layer

283.066 K0-field Curie point 2nd layer

280.803 K0-field Curie point 1st layer

6Number of layers

6.5812 sq. cmBed cross-sectional area

40.03 mmBed length

304.911 KCold reservoir temperature

4.791 lit/minFlow rate

upper bound250 micronsParticle diameter

upper bound2.0 HzMagnet rotation frequency

upper bound0.37Porosity

NotesValueSystem parameter

≤ 33 C29.5 CCold outlet temperature

≤ 20 PSI20.15 PSIPressure drop

≥10 W/W10.37 W/WCOP

≥ 3 kW2.999 kWTotal cooling power

Design TargetValuePerformance Parameter
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The Advantages of a Layered Bed
THot = 25 C  120 RPM   3.1 lit/min   Bed Volume = 15.6 cm3   1.4 T Field
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Sensitivity of Optimized Designs to Random Variation in 
Curie Temperatures  

• Lack of control during fabrication will cause variation in Curie temperatures

– Strong sensitivity to Curie temperatures → low fabrication yield

• Curie temperatures may change over time while in service

– Strong sensitivity to Curie temperatures → short service life

• Use Monte-Carlo analysis to evaluate sensitivity in performance to random Curie point 
variation of up to ± 0.5 K

• Cooling load dropped < 8% over 400 Monte-Carlo trials

• No trial exceeded the cooling load of the design – establishes validity of optimization process
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Sensitivity of Optimized designs to Flow Imbalance 
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Systems are sensitive to flow imbalance

• 5% imbalance reduces cooling load by 27% for SEC, 37% for BB3

• Must design flow control system to minimize any possible flow imbalance
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The Effect of Eddy Currents 

• Bed and metal shell used to seal bed and attach it to plenum are subjected to strong, 
time-varying magnetic field which generates eddy currents

• Eddy currents cause Joule heating as they flow in resistive shell and bed

• Does this effect need to be included in thermal profile equations?

• Can metal with higher conductivity be used for bed shell, other bed parts?

Bed of MCM

Metal shell fits 
over bed
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Eddy Currents in the Bed Shell 
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Eddy Currents in the Bed

• Difficult to model eddy current generation in bed exactly because electrical 
conductivity of porous bed is complicated function of position

• Get an upper bound on the eddy current generation by treating bed as solid block of 
material with conductivity (1 – ε) × σ where ε = bed porosity, σ = conductivity of 
spherical particles composing the bed

• Assume σ = 1.4 × 10-6 mhos/m (same as stainless steel)
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Simulating the Effect of Dead Volume 

• Dead volume is the volume at each 
end of the bed where substantial 
mixing can occur between inlet and 
outlet fluids, which are generally at 
different temperatures

• Model dead volume by adding a 
layer at each end of the bed 
composed of packed, inert particles

– Particles are thermally conductive 
but have no magnetocaloric effect

– Dead volume layers have same 
porosity as active portion of bed

• Particles serve to “mix” the inlet and 
outlet fluids, simulating the 
enhanced thermal interaction 
between them due to their complex 
flow pattern

• The “Dead Volume Ratio” is the 
ratio of the volume of one dead 
volume layer to the fluid volume of 
the active bed layers = l / L

Cold 
Reservoir

Hot Reservoir

P
o

ro
u

s b
ed

 o
f 

M
C

M

F
luid flow

x = 0

x = L

x = L+l

x = -l Dead 
volume

Dead 
volume



16Astronautics Corp of America Astronautics Corp of America 

The Effect of Dead Volume on Optimized System Performance
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The presence of dead volume can significantly degrade machine performance

Dead volume has a substantial detrimental effect at small temperature spans 
where the cooling load is largest and therefore the temperature difference 
between inlet and outlet fluids is largest

As the span increases and cooling load decreases, the inlet and outlet 
temperature difference decreases so the effect of dead volume decreases
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Theoretical and Experimental Performance of BB2 with Gd Beds
60 RPM   0.75 lit/min   1.4 T Peak Field
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Excellent agreement at zero 
span precludes existence of 

dead volume

Over-performance of machine at 
zero span probably due to 

convective cooling to ambient at 
this relatively high temperature

Under-performance 
of machine at large 
span is consistent 

with 4% flow 
imbalance (see next 

slide)
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Theoretical and Experimental Performance of BB2 with Gd Beds
4% Flow Imbalance 
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