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An die Musik

Du holde Kunst, in wieviel grauen Stunden,
Wo mich des Lebens wilder Kreis umstrickt,
Hast du mein Herz zu warmer Lieb entzunden,
Hast mich in eine bessre Welt entrückt!

Oft hat eine Seufzer, deiner Harf entflossen
Ein süsser, heiliger Akkord von dir
Den Himmel bessrer Zeiten mir erschlossen,
Du holde Kunst, ich danke dir dafür!

Franz von Schober
(Musik: Franz Schubert)

Aan mijn moeder
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CHAPTER 1

Introduction

1.1 General Introduction

he discovery of superconductivity within a limited pressure
range (1.0-1.6 GPa) in UGe2 [1] provided an unanticipated example
of the coexistence of superconductivity and ferromagnetism, because
these phenomena were long thought to be exclusive. One year later,
a coexistence of these two phenomena was also found in URhGe [2].
The most striking difference with UGe2 is that this coexistence occurs

at ambient pressure and is therefore not a pressure induced effect. Just like in UGe2,
a coexistence was later found in UIr [3], where it occurs within a limited pressure
range (2.6-2.7 GPa), where ferromagnetic order is on the verge of its existence. With
the coexistence of ferromagnetism and superconductivity, these three U compounds
belong to a class of materials, which exhibit unconventional ground state properties
in a strongly correlated ferromagnetic system. In this class of materials UIr holds
a special place because it is a system in which the crystal structure lacks inversion
symmetry.

In the late 1950s, Bardeen, Cooper and Schrieffer (BCS) showed that supercon-
ductivity involves the formation of bound pairs of electrons, named Cooper pairs [4].
They argued that the electron pairs were “glued together” by excitations. Although
phonons were implicated in superconductivity many years before the BCS theory, it
was not until the 1960s that it became possible to definitively identify them as the
glue in conventional superconductivity. The model predicts that the attractive pair-
ing interaction is reduced in a magnetic field and, as a consequence, is suppressed by
ferromagnetic order. This prediction is consistent with experimental observations in
a number of systems where ferromagnetic order sets in below the superconducting
transition temperature and the superconducting pairing of the conduction electrons
is either weakened or completely suppressed. This is nicely demonstrated by the
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experiments on ErRh4B4 [5, 6] and HoMo6S8 [7], where the superconductivity is
suppressed when ferromagnetic order sets in.

The 1970s and 1980s led to the discovery of superconductivity in two new, un-
conventional classes of materials, the heavy-fermion [8] and high-temperature [9]
superconductors. Conventional superconductivity is suppressed by the tiniest con-
centration of magnetic atoms, but the unconventional superconductors contain a
dense array of magnetic atoms, which appear to be actively involved in electron
pairing. In the heavy-fermion systems, intermetallic compounds usually based on
Ce or U, the 4f or 5f electrons play a crucial role leading to the formation of qua-
siparticles with a large effective mass. A better understanding of superconductivity
in these type of materials has been sought ever since the pioneering discovery of
heavy-fermion superconductivity in CeCu2Si2 [8]. For these systems a new kind
of magnetically mediated superconductivity was proposed in which the glue that
causes electrons to form Cooper pairs is derived from magnetic fluctuations [10, 11].

However, until the discovery of the coexistence of ferromagnetic order and su-
perconductivity, it was generally believed that these two phenomena were mutually
exclusive. Superconductivity would be destroyed because of the paramagnetic effect
(aligning of the opposite spins) and by the orbital effect (opposite Lorentz forces).
With UGe2, URhGe, and UIr, a new class of materials has been shown to exhibit a
stable phase in which superconductivity coexists within the ferromagnetic ordered
state. This discovery has led to the study of intriguing new possibilities for uncon-
ventional mechanisms for magnetically mediated superconductivity.

Another fascinating feature of these three U-based ferromagnetic superconduc-
tors, is that this type of superconductivity was found to occur in the vicinity of
a quantum critical point (QCP). A phase transition from a magnetically ordered
phase to a disordered phase by tuning the pressure or by chemical substitution, is
called a quantum phase transition since quantum fluctuations lead to a breakdown
of the long-range order, in contrast to the classical phase transitions where thermal
fluctuations play a crucial role. The critical pressure, or critical chemical composi-
tion, where the ordering temperature is tuned to TC = 0 K is referred to as a QCP.
At this point the Fermi-liquid theory breaks down and new physics is observed.

Fermi-liquid theory has been successful in describing the low-temperature be-
havior of many metallic compounds. Within this theory the electron interactions
are accounted for by an effective mass for the conduction electrons. Many Ce and U
systems with very strong electronic correlations are well described in terms of Fermi-
liquid theory. In recent years, several systems where the Fermi-liquid scenario does
not apply, have been found. These systems, known as non-Fermi liquids, are mainly
found in the vicinity of a quantum critical point.

The coexistence of ferromagnetism and superconductivity in the vicinity of a
ferromagnetic quantum critical point, is the main motivation that the related com-
pounds are investigated thoroughly. The fact that magnetic fluctuations are en-
hanced near a quantum critical point, just where superconductivity is found, strongly
suggests that the attractive force between the electrons forming the Cooper pair,
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originates from the magnetic fluctuations.
The magnetic fluctuations and the non-Fermi-liquid behavior observed near a

ferromagnetic quantum critical point are not fully understood yet, neither how
magnetic fluctuations cause an attractive force between electrons, nor how supercon-
ductivity and ferromagnetism can coexist. It is therefore of utmost importance to
study the magnetic fluctuations, or more general, the magnetic properties, in UGe2,
URhGe, and UIr, in combination with non-Fermi-liquid behavior. This thesis has
the intention to contribute to the understanding of the role of ferromagnetism and
ferromagnetic spin fluctuations in their coexistence with superconductivity.

1.2 Outline of this thesis

In Chapter 2 the details of several experimental techniques are discussed. First,
the sample preparation is presented. After this, a description of the μSR technique
follows, including the used experimental set-ups, the interpretation of muon depo-
larization data, and a discussion about the magnetic field at the muon site. The
three-dimensional neutron depolarization technique is explained next. The Chap-
ter ends with a basic description of the macroscopic techniques used in this thesis:
magnetization, thermal expansion and magnetostriction, electrical resistivity, spe-
cific heat, and X-ray powder diffraction.

Chapter 3 deals with the relevant theory from solid state physics. A basic de-
scription is given about the main mechanism leading to the development of a strongly
correlated state at low temperatures - the Kondo effect. A magnetic phase diagram
results when the competition with the long-ranged RKKY interaction is taken into
account. The concept of a quantum critical point is explained, as well as Fermi-liquid
and non-Fermi-liquid behavior of the correlated electron system. After a review on
the Grüneisen analysis, which enables the study of the volume dependence of ther-
modynamic energy scales, a few thermodynamic considerations on phase transition
are presented. The Chapter ends with a review of the recent theories to explain the
coexistence of superconductivity with ferromagnetism.

In Chapter 4 the ferromagnetic domain structure in UGe2 is studied by neutron
depolarization. The question is whether the ferromagnetic domain size d is in the
order of micrometers (i.e. much larger than the superconducting coherence length
ξsc) or in the order of nanometers (comparable to ξsc). The implications of the
size of d with respect to ξsc are discussed. Subsequently, muon spin rotation and
relaxation measurements are presented. These measurements have been performed
under pressures up to 1.0 GPa. An inner phase transition (TX), which occurs within
the ferromagnetic phase, is monitored as a function of pressure. Subsequently, the
critical dynamics close to TC at a pressure of 0.95 GPa was studied. Conclusions
are drawn about the nature of the magnetic fluctuations and their influence on the
superconducting state.

In Chapter 5 experimental data on URhGe are presented. Thermal expansion
measurements were performed in order to determine the uniaxial pressure depen-
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dence of the Curie temperature TC. The data are analyzed with the help of the
Ehrenfest relation. The volume dependence of the energy scale for the spin fluc-
tuations at low temperature is calculated. The magnetism in URhGe is further
studied by muon experiments. The frequency scale and anisotropy of the magnetic
fluctuations are measured by field scans in the vicinity of TC.

In Chapter 6 a report is given on the attempts to tune URhGe to a quantum
critical point (TC = 0) by appropriate chemical substitutions: Rh is substituted for
Ru and for Co, and Ge for Si. The critical substitution concentration xcr is obtained
by measuring TC as a function of concentration x, deduced from magnetization and
electrical resistivity measurements. The URh1−xRuxGe samples are investigated
further by means of X-ray powder diffraction, specific heat, and magnetization under
pressure.

In Chapter 7 the magnetic properties of UIr are investigated by means of mag-
netization in a pulsed field up to 52 T, specific heat in fields up to 14 T, thermal
expansion in zero field and 5 T, and magnetostriction up to 10 T. The high field
measurements were performed to quantify the strength of the magnetic interactions
in UIr.



CHAPTER 2

Experimental Techniques

everal techniques have been employed in the study of the mag-
netic properties of the ferromagnetic superconductors UGe2, URhGe,
and UIr. They will be presented in this Chapter. After a brief discus-
sion on sample preparation, the muon spin rotation and relaxation
(μSR) technique is described in some detail, as well as the three-
dimensional neutron depolarization technique. Subsequently, a sim-

ple description is given of a few techniques which probe macroscopic thermodynamic
properties of the compounds under study: magnetization, electrical resistivity, spe-
cific heat, thermal expansion, and magnetostriction. The Chapter ends with a basic
discussion on X-ray powder diffraction.

2.1 Sample Preparation

All the samples used and described in this thesis were prepared at the Van der
Waals-Zeeman Institute (WZI) of the University of Amsterdam (UvA). Polycrystals
were prepared in collaboration with N. T. Huy and single-crystalline samples were
grown by Y. K. Huang and E. Brück. Only single crystals were used in the studies
of UGe2, URhGe, and UIr, whereas measurements on U(Rh,Ru)Ge, U(Rh,Co)Ge,
and URh(Ge,Si) were performed on polycrystals.

The polycrystalline samples were prepared by arc-melting the constituents in a
stoichiometric ratio in an arc furnace with a water cooled copper crucible under
an argon atmosphere (0.5 bar). The single-crystalline samples were grown from a
polycrystalline ingot using the Czochralski technique in a tri-arc furnace. For details
on the crystal growth of U intermetallic compounds, see e.g. Ref [12].

As far as the samples were annealed, they were wrapped in tantalum foil and
put in a quartz tube together with a piece of uranium that served as a getter. After
evacuating and sealing the tubes, the samples were annealed at high temperature.
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The temperature and duration of annealing depended on the sample. Details are
given in the experimental parts of the following Chapters.

The single crystals were checked for their single-crystalline nature by means of the
X-ray back-reflection Laue method [13] at Leiden University and at the University
of Amsterdam (UvA). After orientation of the single crystals with the help of the
computer program OrientExpress [14] the crystals were cut by spark-erosion in the
appropriate shapes (platelets, bars, cubes, cylinders, and spheres).

2.2 μSR Spectroscopy

The acronym μSR stands for Muon Spin Rotation, Relaxation, Resonance, or simply
Research. μSR is a widespread technique used in solid state physics and is closely
related to Nuclear Magnetic Resonance (NMR). The principle of the μSR technique
is quite simple. Positive muons are produced and implanted in a sample where they
localize at a particular site. The local magnetic field Bloc at this interstitial site
exerts a torque on the muon spin (Sμ = 1/2), so that the spin precesses around the
local magnetic field with a frequency of ω = γμ|Bloc|. Here γμ = 851.62 Mrad s−1T−1

is the gyromagnetic ratio of the muon. After a certain time, the muon decays and a
positron is emitted, preferentially in the direction of the muon spin, at the moment
of decay. The positron is detected. After collecting several million positrons the
time-evolution of the polarization of an ensemble of muons can be reconstructed.
The polarization function P (t) reflects the spatial and temporal distribution of the
magnetic field at the muon site. In this Section a few elements of the μSR technique
will be elaborated on. A more detailed general description can be found in Refs. [15,
16, 17]. Experimental results on some exemplary materials can be found in Refs. [18,
19, 20]. Some physical properties of the muon are given in Table 2.1.

2.2.1 Production, life, and decay of the muon

The production of intense muon beams starts in large accelerators where protons
(p) gain energies up to ∼ 600 MeV. These highly energetic protons are aimed at
a graphite or beryllium target. Several nuclear reactions take place between the
protons and the protons and neutrons (n) of the target, leading to the production
of pions (π):

p + p → p + n + π+

→ d + π+

→ p + p + π0

p + n → n + n + π+

→ p + n + π0

→ p + p + π−

(2.1)

where d stands for deuteron. The charged pions π+ and π− have an average life time
of 26 ns and decay into the muons μ+ and μ− and the accompanying (anti-)neutrinos
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Table 2.1: Several physical properties of the muon, compared to those of the electron (e)
and the proton (p).

mass mμ 206.763835 (11) me

0.1126096 mp

charge +e or −e

spin Sμ 1/2

magnetic moment μμ 8.8905981 (13) μN

3.1833452 (20) μp

gyromagnetic ratio γμ 851.62 Mrad s−1T−1

γμ/2π 135.53879 (1) MHz T−1

life time τμ 2.19714 (7) μs

(νμ and νμ) according to:

π+ → μ+ + νμ

π− → μ− + νμ

(2.2)

The neutral pion π0 plays no role in the μSR technique, since it has a very short
average life time of 0.089 fs before it decays into photons. In solid state physics
almost all μSR research is carried out using positive muons μ+.

Pions possess zero spin and neutrinos have a spin Sν = 1/2 polarized opposite to
their momentum. Because angular momentum has to be conserved, the muon spin
has to be antiparallel to its momentum in the rest frame of the pion. This allows
the production of a highly spin polarized μ+-beam.

After production the muons are directed to the μSR instruments by electromag-
netic guide fields using bending magnets and focussing quadrupole magnets. Along
the path an electric and magnetic field separator is included to remove contami-
nant particles (mainly positrons) from the muon beam. (These are however absent
in high-energy beamlines such as GPD, see Sec. 2.2.3.) After implantation in the
sample the muon will thermalize. Along the first part of its track the muon thermal-
izes by energy exchange through ionizing host atoms and creating vacancies. This
however does not influence the experimental results since the final area of localiza-
tion will not be affected. Along the last part of its track the muon thermalizes by
successive captures and dissociation of electrons from the host. The neutral bound
state with an electron is known as muonium (μ+e−), an exotic light version of the
hydrogen atom. In semi-conductors and insulators muonium can be stable, and it
can even be incorporated in some organic materials. In metals, however, muonium
finally dissociates, and the muon will localize at an interstitial site, where it will
be surrounded by a charge screening cloud of conduction electrons of its host. The
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Figure 2.1: The angular distribution We+(θ) of the decay positrons for (a) the maximum
positron energy of 52.83 MeV (a = 1) and (b) integrated over all energies (a = 1/3).

implantation and thermalization processes occur so rapidly (10−9 s) that depolariza-
tion is insignificant. At its localization site the muon magnetically interacts with the
surrounding matter. The muon carries a relatively large magnetic moment, which
even exceeds the proton’s magnetic moment: μμ = 3.2 μp. It therefore acts as a very
sensitive local magnetic field probe. Due to the absence of a quadrupolar electric
moment (Sμ = 1/2) the muon does not couple to electric field gradients.

The average muon life time is 2.2 μs after which the muon decays into a positron
e+ according to

μ+ → e+ + νe + νμ (2.3)

where νe and νμ are the neutrinos and antineutrinos associated with the positron
and the muon respectively. The decay positrons are emitted preferentially in the
direction of the μ+ spin which allows a determination of the time evolution of the
polarization. The probability distribution of the positron emission is given by

We+(θ) ∝
(
1 + a(E) cos θ

)
(2.4)

where θ is the angle between the muon spin at the moment of decay and the direction
in which the positron is emitted. In Fig. 2.1 two characteristic angular patterns
We+(θ) are represented. The asymmetry parameter a depends on the energy of
the positron. a increases monotonically with the positron energy and is 1 for the
maximum positron energy Emax = 52.83 MeV. For E = 0, a = −1/3 and changes
sign for E = 1

2
Emax. However, very few positrons are emitted with low energies and

those which are will usually not be detected. When integrated over all energies one
obtains a = 1/3 [21]. The positron detectors used around the world in μSR set-ups
do not determine the incoming energy of the positrons and therefore one always
measures the asymmetry parameter a averaged over all energies.

Because of their large kinetic energy (≈ 30 MeV), the positrons are only weakly
absorbed by the sample and cryostat walls. They are monitored and stored by
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detection electronics in a counts versus time histogram. The time histogram of the
collected intervals is of the form

Ne+(t) = N0e
−t/τμ [1 + aP (t) cos(φdet)] + b (2.5)

where b is a time independent background, N0 a normalization constant, and e−t/τμ

accounts for the μ+ decay with the average decay time τμ. P (t) reflects the time
dependence of the μ+ polarization and is normalized to unity for t = 0. The value of
the initial asymmetry a depends on the experimental set-up and is in practice smaller
than the theoretical value of 1/3. Due to the finite solid angle of the detectors,
energy dependent efficiency of detection and possible reduced beam polarization, a
is usually � 0.23 − 0.25. The phase factor φdet accounts for the angle between the
initial muon polarization and the positron detector.

2.2.2 Experimental Geometries

In μSR two types of experimental geometries are used. They are depicted in Fig. 2.2.
Measurements in zero magnetic field and in longitudinal field are performed with the
same geometry. The positron detectors are set parallel and antiparallel to the initial
beam polarization Sμ(0). They are called the “forward” and “backward” detector,
respectively.

By definition the magnetic field Bext is applied along the Z direction. In the
longitudinal geometry the field is applied parallel to the beam polarization Sμ(0).
The measured polarization function is called PZ(t). In the transverse geometry Bext

is perpendicular to Sμ(0), which is then along X. The positrons are detected in a
direction perpendicular to Bext, from which PX(t) is reconstructed.

It should be noted that for e.g. a ferromagnet in zero field, with Sμ(0) perpendic-
ular to the local field, PX(t) is measured and not PZ(t), although the measurements
are performed in zero applied magnetic field. Physically for the muon spin there is
no difference between a static externally applied magnetic field Bext or a constant
field with its origin in the ferromagnetism of the compound under study.

The transverse geometry is in practice often different from the situation in
Fig. 2.2. For practical reasons Bext is often directed along the beam direction and
the muon spin is rotated in the vertical direction.

2.2.3 μSR Spectrometers: EMU, GPS, and GPD

Muon beams are produced either as a continuous beam (PSI, Switzerland and TRI-
UMF, Canada) or as a pulsed one (ISIS, UK and KEK, Japan). For continuous
beams every event is treated separately. A clock is started at the moment that
a muon enters the sample. This clock is stopped when the corresponding decay
positron is detected. The elapsed time is stored in a counts versus time histogram.
For pulsed beams all muons come in at the same time t0. This pulse has however a
finite width distributed around t0. Due to this uncertainty in t0 continuous beams
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Figure 2.2: Two types of experimental geometry: the longitudinal and the transverse
set-up. Although the muon spin is actually antiparallel to the muon’s momentum, here
the muon spin is drawn parallel to the momentum for clarity. The arrows and cardioids in
the transverse set-up represent the Larmor precession of the muon spin in the applied field
and the accompanying angular positron distribution. This figure is taken from Ref. [18].

have a better time resolution than pulsed beams. The advantage of the pulsed
beams is their lower background. The background b of Eq. 2.5 is reduced since after
the pulse the beamline is shut and no other muons enter the sample. The lower
background leads to a longer time window for the pulsed beam sources. Typically,
the time window of a pulsed beam source is twice as long as for a conventional
continuous source.

All the μSR measurements presented in this thesis have been carried out at PSI
using the GPS and GPD spectrometers, and at ISIS on EMU.

GPS uses surface muons. They are called like this, since they are obtained from
the pions decaying at rest near the surface of the production target. The surface
beam is fully polarized and monochromatic, with a kinetic energy of 4.1 MeV. Due
to this small energy, the beam has a stopping range Leff = c/ρ, where c is around
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160-200 mg/cm2 and ρ the density of the compound in mg/cm3.
The GPD is a high-energy muon beam line. The pions that decay into muons

leave the target at high energies. The polarization of the muon beam is limited to
around 80 %. Muons are generated in bunches at a rate given by the frequency of
the accelerator (50.63 MHz at PSI). Although the bunch structure is smeared out
during the transport of the beam to the sample, it is still visible in the μSR spectra
as an oscillating accidental background in the time dependence of the number of
counts. In the analysis of the spectra additional oscillating terms are required, with
frequencies equal to the accelerator frequency and higher harmonics, multiplied by
et/τμ , to compensate for the muon decay in the fitting procedure. The penetration
depth of the muons into the sample is larger for the high-energy beam than that of
the surface beam and the former should therefore be used when studying samples
within pressure cells, as discussed in Chapter 4.

EMU is a 32-detector μSR spectrometer which is optimized for zero field and
longitudinal field measurements. The ISIS synchrotron produces a double pulse of
protons with a repetition rate of 50 Hz. Each pulse has a width of about 70 ns and
the two pulses are separated by 330 ns. Only one of these pulses is directed towards
the EMU spectrometer. The repetition rate of 50 Hz makes ISIS unsuitable for
measuring frequencies higher than 8 MHz and relaxation rates larger than 5 μs−1.
The advantage however is the very low background, i.e. b ≈ 0 in Eq. 2.5. The
polarization is then simply calculated by

aP (t) =
NF(t) − αNB(t)

NF(t) + αNB(t)
. (2.6)

Here NF(t) (NB(t)) is the number of counts in the forward (backward) detector and
α is an experimental factor determined by detector efficiencies, exact experimental
factors like distance between sample and detectors, cryostat, etc. It is measured by
applying a transverse field (in the paramagnetic state) at exactly the same experi-
mental conditions. With the correct α, PX(t) should oscillate symmetrically around
zero.

2.2.4 Depolarization and Relaxation Functions

In the previous Sections the basic ideas behind the μSR experiment have been dis-
cussed, as well as the spectrometers used in this thesis. The polarization function
Pα(t) (α = {X,Z}) extracted from the experiment contains the information on the
magnetic distribution at the muon site and the time scale of the magnetic fluctua-
tions. A few polarization functions will be discussed here, as far as they were used
in this thesis. For a more extensive study, see e.g. Refs. [18, 19, 17].

Static Magnetic Fields

The starting point of all calculations is the consideration of a single muon spin in
a static local magnetic field Bloc oriented in an arbitrary direction. As explained
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Figure 2.3: Muon spin precession describing a cone around a local magnetic field Bloc.
Here θ denotes the angle between the initial muon spin polarization and the local field.

before, the polarization function P(t) is measured either along the X axis or along
the Z axis. Therefore Pα(t), with α = {X,Z}, reflects the projection of Sμ(t) along
the X or Z direction. The Larmor precession of a single muon spin and its projection
along the α direction (depending on whether Sμ(0) ‖ X or Sμ(0) ‖ Z) are illustrated
in Fig. 2.3. If all muon spins precess in the same static magnetic field, oriented at
an angle θ relative to the initial muon spin direction Sμ(0), the Larmor equation
yields

Pα(t) = cos2 θ + sin2 θ cos (ωμt) . (2.7)

where ωμ = γμ |Bloc|. The polarization Pα(t) describes a cone with the local field
Bloc as the axis of rotation. It is only the component of the muon spin perpendicular
to Bloc which oscillates. The parallel component is time-independent. Both these
components are projected onto the X or Z direction, depending on the geometry.
Eq. 2.7 is the basic equation in μSR.

Clearly, the assumption of a single magnetic field direction for all muons through-
out the sample is a very simple model. Neglecting spin dynamics, the assumption
is only encountered in single crystals of ferromagnets and antiferromagnets with a
negligible volume fraction of domain walls. Helical structured magnets for exam-
ple are excluded, since in different unit cells the local field at the muon site will
have another direction. Obviously, the next step is to assume a field distribution
at the muon site. It is easy to see that the polarization function Pα(t) can then be
described by

Pα(t) =

∫
f (Bloc)

{
cos2 θ + sin2 θ cos (γμ |Bloc| t)

}
dBloc (2.8)

where f (Bloc) is the normalized magnetic field probability function. If only a single
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value of Bloc is present, f (Bloc) is a Dirac δ-function and Eq. 2.7 is recovered. For
a polycrystalline ferromagnet with no preferred direction for the grains (“texture”)
one can write f (Bloc) = 1/ (4πB2

0) δ (|Bloc| − B0) to obtain

Pα(t) =
1

3
+

2

3
cos (γμB0t) . (2.9)

A static distribution of local magnetic fields at the muon site, as the one aris-
ing from randomly oriented static nuclear magnetic moments through their dipole
fields, can be very well approximated by a Gaussian field distribution because of the
statistical law of large numbers. This distribution is isotropic and has zero average
field, so no net precession is observed. Including an external magnetic field Bext

parallel to Z leads to

f (Bloc) =(
γμ√
2πΔ

)3

exp

(
−(γμB

x
loc)

2

2Δ2

)
exp

(
−(γμB

y
loc)

2

2Δ2

)
exp

(
−

γ2
μ (Bz

loc − Bext)
2

2Δ2

)

(2.10)

where Δ2/γ2
μ = 〈B2

i 〉 is the square of the width of the field distribution along the
cartesian axis i = {X,Y, Z}. Introducing this function in Eq. 2.8 gives for the case
of Bext = 0 the well known Kubo-Toyabe function [22]

PKT(Δ, t) =
1

3
+

2

3

(
1 − Δ2t2

)
exp

(
−1

2
Δ2t2

)
. (2.11)

This function is illustrated in Fig. 2.4. It is seen that PKT(Δ, t) is a strongly damped
oscillation. The function has a minimum at t =

√
3/Δ and saturates at a value of

1/3. Solving the integral in Eq. 2.8 for Bext �= 0 is less obvious. For a longitudinal
external magnetic field (Bext ‖ Sμ(0)) the solution is [23]

PZ(Δ, Bext, t) = 1 − 2Δ2

γ2
μB

2
ext

{
1 − e−

1
2
Δ2t2 cos (γμBextt)

}

+
2Δ3

γ3
μB

3
ext

∫ Δt

0

e−
1
2
Δ2y2

cos

(
γμBext

Δ
y

)
dy.

(2.12)

This function is illustrated in Fig. 2.4 for several external field values, in units of
Δ/γμ. The horizontal axis shows t in units of Δ−1. The application of a longitudinal
field effectively aligns the random local field along the Z axis. This will reduce the
depolarization of the muon spin, as can be seen in Fig. 2.4. The general case for
transverse external fields (Bext ⊥ Sμ(0)) is beyond the scope of this thesis. For
sufficiently large magnetic fields, PX(t) is a Gaussian damped oscillation:

PX(Δ, Bext, t) = e−
1
2
Δ2t2 cos (γμBextt) . (2.13)
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Figure 2.4: The external magnetic field Bext dependence of the longitudinal depolariza-
tion function PZ(Δ, Bext, t) derived from a static Gaussian field distribution with width
Δ/γμ. The values of the external magnetic field are given in units of Δ/γμ. The Kubo-
Toyabe function corresponds to the curve labeled with 0.

The Kubo-Toyabe function is most often encountered in systems with nuclear
magnetic moments. Since these moments are small, the magnetic interaction is weak
and the fluctuation time is long. Therefore, the created magnetic field at the muon
site can be regarded as static on the scale of the muon life time. In Chapter 4 a
Cu-Be pressure cell is used in the study of UGe2. In this material it is found that
Δ = 0.345 μs−1 or

√
〈B2

i 〉 = 0.4 mT, because of the nuclear moments of 63Cu, 65Cu,
and 9Be. In Chapter 5 this function is found as a background coming from the EMU
spectrometer, with a typical value of 0.300 μs−1 for Δ.

For different types of magnetic systems, other field distributions at the muon
site than the Gaussian distribution can be relevant. For example, dilute magnetic
systems (spin glass) are often well described assuming a Lorentzian distribution.
Other case with different field distributions include helical structured magnetism or
the flux line lattice in a type-II superconductor [18].

Fluctuating Magnetic Fields

In contrast to the assumption of a static magnetic field at the muon site - static
compared to the life time of the muon - the magnetic fields are in reality more
often fluctuating on the muon time scale. This can be because of paramagnetic
fluctuations above the magnetic ordering temperature, or because of spin waves
below this temperature. In Strongly Correlated Electrons Systems (SCES), or heavy-
Fermion systems, a strong competition is present between the RKKY interaction and
the Kondo effect, leading to small ordered magnetic moments and large fluctuations.
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However, the local field at the muon site can also fluctuate because of the muon
itself, i.e. because of its diffusion through the sample. This effect is however not of
importance in this thesis and will not be discussed further.

A mathematical description of the polarization function Pα(ν, t) due to fluctuat-
ing magnetic fields can be obtained by applying the strong collision approximation.
In this model, it is assumed that the local field Bloc changes orientation and magni-
tude with a single fluctuation rate ν. According to Poisson statistics, the probability
of j jumps within a time t is νje−νt, where the time ti of the ith jump is arbitrary.
The only restriction is that t1 < . . . < ti < . . . < tj < t. After a “collision” the
field is randomly chosen from the probability distribution f(Bloc) applicable to the
compound under study and experimental conditions, without any correlation to the
field before the collision. Before the first collision the polarization Pα(t) should be
described by Eq. 2.8. After the first collision the ensemble of muons will further
depolarize according to the same function but with an initial time zero at the time
of collision. This process for multiple collisions is given by

Pα(ν, t) = e−νt

[
Pα(t) + ν

∫ t

0

Pα(t1)Pα(t − t1) dt1

+ ν2

∫ t

0

∫ t2

0

Pα(t1)Pα(t2 − t1)Pα(t − t2) dt1dt2 + . . .

]
.

(2.14)

In general, this expression can not be solved analytically and therefore one needs
numerical computation. It is possible [24] to write this formula as

Pα(ν, t) = Pα(t) e−νt + ν

∫ t

0

Pα(ν, t − t′) Pα(t′) e−νt′ dt′. (2.15)

This equation is much easier to solve numerically than Eq. 2.14, and is therefore
used in the computations of Pα(ν, t).

With Pα(t) equal to the zero-field Kubo-Toyabe function PKT(Δ, t) of Eq. 2.11,
the numerically calculated depolarization functions PKT

Z (ν, Δ, t) are shown in Fig. 2.5
for several values of ν in units of Δ. It is seen that for increasing ν, first the tail of
the function collapses, followed by an increase of PKT

Z (ν, Δ, t) at small t. For ν/Δ
sufficiently large, the Laplace transform can be used to find a useful approximate
analytical expression. The resultant formula [24] is given by

PKT
Z (ν, Δ, t) = exp

{
−2Δ2

ν2
[exp (−νt) − 1 + νt]

}
. (2.16)

In Fig. 2.5 this function is compared with the numerical calculation for ν/Δ = 3
and ν/Δ = 10. It is seen that the agreement is reasonably good. For very fast
fluctuations with respect to Δ, PKT

Z (ν, Δ, t) reduces to

PKT
Z (t) = exp (−λZt) with λZ = 2Δ2/ν. (2.17)

This the so-called motional narrowing limit.
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Figure 2.5: The dependence of the dynamical Kubo-Toyabe function on the fluctuation
rate ν, according to the strong collision approximation. The numbers indicate the fluc-
tuating rate in units of Δ. The static Kubo-Toyabe function corresponds to the curve
labeled with 0. For ν/Δ = 3 and ν/Δ = 10, a comparison is made between the numerical
solution (full line) and the approximation for large ν/Δ in Eq. 2.16 (dashed line).

For applied magnetic fields Bext the integrals in Eq. 2.14 can also be evaluated.
For a transverse field, the approximation

PKT
X (ν, Δ, Bext, t) = exp

{
−Δ2

ν2
[exp (−νt) − 1 + νt]

}
cos(γμBextt) (2.18)

is valid for large enough ν/Δ. This formula is found via the Laplace transform [24]
and is known in NMR as the “Abragam formula”. It reduces to

PX(ν, Δ, Bext, t) = e−λX t cos (γμBextt) with λX = Δ2/ν (2.19)

in the motional narrowing limit (ν/Δ 
 1). For a longitudinal magnetic field, a sec-
ond depolarization process should be considered. Up to now only a distribution in
Larmor precession frequencies has been considered as an origin for depolarization.
However, with a longitudinal field the muon energy is quantized into two energy
levels. The muon spin can be flipped between the two states. The occupancies of
these states are in theory governed by Boltzmann statistics at thermal equilibrium,
although in practice calculations lead to a high degree of equipopulation of the two
energy levels. The muon beam is however fully polarized at implantation and there-
fore the polarization will decrease towards the equilibrium. Note that transverse
perturbations (relative to the applied field) with an energy equal to the Zeeman
splitting are needed to flip the muon spin. In this way the spectral density function
J (γμBext) can be probed. A quantum-mechanical calculation [25, 26] shows that
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λZ , as appears in Eq. 2.17, is modified to

λZ(Bext) =
2Δ2ν

(γμBext)
2 + ν2

=
2Δ2τ

1 + γ2
μB

2
ext τ 2

(2.20)

with τ = 1/ν the correlation time of the fluctuation. This equation is only valid in
the limit of ν/Δ 
 1. This formula is used in Chapters 4 and 5. Here it is found
that a small applied longitudinal field of Bext = 2 mT is enough to reduce λZ to
almost 0. From the value of λZ(0) one can then estimate Δ.

Comments

By applying longitudinal magnetic fields a discrimination between static and fluc-
tuating fields can be made. An external field decouples the muon spin and internal
fields when these are static. The field distribution does not affect the time evolution
of the muon spin polarization. An example is shown in Fig. 2.4. For |Bext| > 10Δ/γμ

the polarization can be considered constant at 1. Fluctuations, however, are time
dependent perturbations and induce spin-flip transitions between the two Zeeman-
levels of the muon spin. An exponential function in zero field will therefore still be
exponential in non-zero field, although the value of λZ is reduced.

It often occurs that the muons stop at magnetically inequivalent sites. This
can be due to a phase separation in the sample (e.g. magnetic domains with a
different direction of the magnetization), but also the presence of more than one
muon stopping site at crystallographic inequivalent sites with different magnetic
environment belongs to the possibilities. In all these cases the polarization function
Pα(t) is the sum of the contributions from the inequivalent muon sites: aPα(t) =∑

i aiPα,i(t). Here the relative values of ai directly measure the volume or population
fraction of the stopping site, if the muons are implanted uniformly into the sample.

In the previous Sections it was explained that either PX(t) or PZ(t) is measured,
depending on the direction of the external field Bext relative to the initial muon spin
Sμ(0), see Fig. 2.2. However, even in zero field PX(t) is measured, when Sμ(0) is
perpendicular to the easy direction of e.g. a ferromagnet. The observed wiggles in
PX(t) are then referred to as “spontaneous precession”.

2.2.5 Magnetic Field at the Muon Site

The muon localizes at an interstitial site in the host crystal lattice. At this site a
local magnetic induction Bloc is present. The muon spin will precess with an angular
frequency ω = γμ|Bloc| (see Fig. 2.3). A detailed study of Bloc is given in Ref. [19].
In a metal, the field at the muon site can be split into several terms:

Bloc = Bext + Bdem + B′
dip + BL + Bcon + BP + Bdia, (2.21)

where Bext is the externally applied magnetic field and Bdem the associated demagne-
tization field, which is given by Bdem = −μ0NMbulk. Here N is the demagnetization
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factor tensor that depends only on the shape of the sample. Mbulk is the macro-
scopic or bulk magnetization. For a zero-field-cooled ferromagnet, Mbulk = 0, and
therefore, Bdem = 0.

A magnetic moment mi, localized at an atomic site, produces a dipolar field

Bi
dip =

μ0

4π

{
3 (mi · ri) ri

r5
i

− mi

r3
i

}
, (2.22)

where ri is the distance between the muon and the magnetic moment mi on atom i.
Since all magnetic atoms will contribute to Bloc, a sum has to be taken extending
over all magnetic atom positions in the sample. For this purpose a so-called Lorentz
sphere with radius rLS is defined with the muon at its center.

The magnetic moments outside the Lorentz sphere are regarded as a continuous
and homogeneous magnetization density and will contribute to BL. The Lorentz
sphere is a “non-magnetic cavity” in a magnetic environment. When the Lorentz
sphere is assumed to be within one single magnetic domain, then the field BL is
equal to BL = (μ0/3)M, where M is the saturation magnetization.

A discrete sum is taken over all the magnetic moments inside the Lorentz sphere:

B′
dip =

∑
ri< rLS

Bi
dip (2.23)

Together with the Lorentz field this results, for most ferromagnets and paramagnets
(in applied field), in

B′
dip + BL =

μ0

v
C (q = 0)m. (2.24)

Here it is assumed that all magnetic moments mi are equal (mi ≡ m, ∀ i). There-
fore, the macroscopic magnetization M is parallel to all mi. v is the volume per
magnetic atom. C (q) is the coupling tensor that generally depends on the wave
vector transfer q [27]. Because ferromagnets are considered in this thesis the wave
vector q is equal to 0. The dipolar interaction shows a strong angular dependence
(Eq. 2.22), and therefore C (q = 0) will be completely determined by the crystal
structure together with the assumed muon site. If T > TC, Eq. 2.24 can be written
as

B′
dip + BL = C (q = 0) χBext, (2.25)

where χ is the atomic susceptibility tensor with μ0Mbulk = χBext.
The next term in Eq. 2.21 is the Fermi contact hyperfine field Bcon. The origin of

this field is the spin polarization of the conduction electrons at the μ+ position, which
in turn predominantly originates from the RKKY exchange interaction between the
spins of the conduction electrons and the localized magnetic moments mi at the
magnetic atoms. Bcon can be expressed by [27]:

Bcon = μ0

(
rμH

4π

)
Mi

T>TC=

(
rμH

4π

)
χBext. (2.26)
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The term in the brackets is the contact coupling constant, which is in general a
tensor. However, as a first approximation it may be assumed to be isotropic (i.e.
a scalar) and temperature independent. Here rμ is the number of nearest-neighbor
magnetic ions to the muon localization site and H the hyperfine interaction tensor.

An additional small contribution BP is caused by the Pauli spin paramag-
netism of the conduction electrons: BP = APχPBext. Here AP is an isotropic
and temperature-independent tensor (and may therefore be replaced by the scalar
AP) and χP the Pauli spin susceptibility tensor.

The last contribution in Eq. 2.21, Bdia, is due to the diamagnetic response of the
electron screening of the muon charge. The diamagnetic screening produces only a
very small contribution to the local magnetic field. For materials with an enhanced
effective electron mass m∗, the small diamagnetic contribution is reduced by a factor
me/m

∗, becoming negligible for heavy-fermion compounds. For superconductors,
however, this term is important.

Knight Shift - determination of the muon site

For the case of a paramagnet in an externally applied field Bext with Sμ(0) ⊥ Bext,
a muon frequency shift is usually observed with respect to ω = 2πνμ = γμ|Bext|,
i.e. Bloc �= Bext [19, 28]. In a general case Bloc and Bext are not necessarily parallel
to each other. As |Bloc − Bext| � |Bext|, it is useful to define an experimental or
apparent muon Knight shift Kμ by the projection of (Bloc − Bext) onto Bext:

Kμ =
Bext · (Bloc − Bext)

|Bext|2
. (2.27)

This is, with respect to ω = 2πνμ = γμ|Bext|, the relative frequency shift experienced
by the muon spin.

Assuming the paramagnetic susceptibility tensor χ is diagonal with elements
χa, χb, and χc, and writing μ0Mbulk = χBext, Kμ can be written with the help of
Eq. 2.21 as (Bdia is neglected)

Ki =

[
Cii (q = 0) −N ii +

(
rμH

4π

)]
χi + APχP,

i = {a, b, c} , Bext ‖ i

(2.28)

which is independent of |Bext| and where a, b, and c represent the crystal axes. Here
C(q = 0) is the tensor that couples the U magnetic moments m to the magnetic field
B′

dip + BL (Eq. 2.24) at the muon site. For a spherically shaped sample (N ii = 1
3
)

the contribution of the demagnetization field Bdem and the Lorentz field BL cancel
exactly. Since Ki

μ depends linearly on χi, Kμ is presented as a function of χ for a
given direction of Bext with the temperature as an implicit parameter. From these
so-called Clogston-Jaccarino plots, together with the fact that TrC(q = 0) = 1,
the values of Cii(q = 0) and of rμH/4π can be extracted. Comparing the measured
values of Cii(q = 0) with calculated ones, the muon site can be determined.
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Figure 2.6: Schematic setup of the PANDA. Indicated are the monochromator M, the
polarizer P, the rotators R, the sample S, the analyzer A, and the detector D. The direction
of the neutron beam is denoted x and the vertical direction z. The applied magnetic field
is along z.

2.3 Three-Dimensional Neutron Depolarization

In this Section a brief summary is given on the three-dimensional neutron depolar-
ization (3DND) technique. In Fig. 2.6 a schematic picture of the set-up is given
of the poly axis neutron depolarization analyzer (PANDA) at the Reactor Institute
Delft (RID) of the Delft University of Technology.

The neutron depolarization (ND) technique is based on the loss of polarization
of a polarized neutron beam after transmission through a (ferro)magnetic sample.
Each neutron undergoes only a series of consecutive rotations on its passage through
the (ferro)magnetic domains in the sample. It is important to note that the beam
cross section covers a huge number of domains, which results in an averaging over the
magnetic structure of the whole illuminated sample volume. This averaging causes a
loss of polarization, which is related to the mean domain size and the mean direction
cosines of the domains. The rotation of the polarization during transmission probes
the average magnetization.

In a ND experiment, a 3 × 3 depolarization matrix D expresses the relation
between the polarization vector P0 before and P1 after transmission through the
sample according to [29, 30, 31]

P1 = D P0. (2.29)

The monochromator M selects a fixed neutron wave length of 2.03 Å which corre-
sponds to a velocity of 1949 m/s. The polarization of the monochromatic neutron
beam is created and analyzed by magnetic multilayer polarization mirrors (P and A
in Fig. 2.6). In order to obtain the complete matrix D, one polarization rotator (R)
is placed before the sample and another one right after the sample. Each rotator
provides the possibility to turn the polarization vector parallel or antiparallel to the
coordinate axes x, y, and z. The resultant neutron intensity is finally detected by
a 3He detector D. The polarization rotators enable the measurement of any matrix
element Dij with the aid of the intensity of the unpolarized beam IS

IS =
Iij + I−i,j

2
, (2.30)
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where Iij is the intensity for P0 along i and P1 along j. The matrix element Dij is
then calculated according to

Dij =
1

P0

IS − Iij

IS

, (2.31)

where P0 is the degree of polarization in the absence of a sample. In the present
case, P0 = 0.965, which is experimentally determined.

Now the correlation matrix αij is introduced as [29, 30, 31]

αij =

〈∫ L

0

dx′ΔBi(x, y, z)ΔBj(x
′, y, z)

〉
, (2.32)

where ΔB(r) = B(r) − 〈B〉 is the variation of the magnetic induction and angular
brackets denote the spatial average over the sample volume. The integral is taken
over the neutron transmission length L through the sample. Assuming αij ≡ 0 for
i �= j, the correlation function ξ is defined as

ξ =
∑

i

αii. (2.33)

With these quantities it can be shown that if there is no macroscopic magnetization
(〈B〉 = 0) the depolarization matrix is diagonal and under the assumption that
αij ≡ 0 for i �= j given by [29, 30, 31]

Dii = e−
γ2

v2 L{ξ−αii} i = x, y, z, (2.34)

where γ = 1.83 × 108 s−1T−1 is the gyromagnetic ratio of the neutron and v =
1949 m/s the neutron velocity.

The phenomenon that for magnetically isotropic media the depolarization de-
pends on the orientation of the polarization vector with respect to the propagation
direction of the neutron beam, is known as intrinsic anisotropy. The origin of this
intrinsic anisotropy is that the line integral of the demagnetization fields around
magnetized volumes in the sample along the neutron trajectory is not isotropic due
to ∇·B = 0. In the following it will be assumed that the demagnetization fields are
negligible for needle-shaped magnetic domains.

When the sample shows a net magnetization, the polarization vector will rotate in
a plane perpendicular to the magnetization direction. If the sample shape gives rise
to macroscopic stray fields, the rotation angle φ is related to the net magnetization
〈M〉 by

φ = η
γ

v
Lμ0〈M〉 = η

γ

v
Lμ0MS〈m〉, (2.35)

where η is a geometrically factor given in Eq. 4.51 for a rectangular-shaped sample
and 〈m〉 = M/MS the reduced sample magnetization in terms of the saturation mag-
netization MS = MS(T ). If the mean magnetic induction 〈B〉 in the sample is ori-
ented along the z axis, the depolarization matrix is, for φ 
 (γ/v)2 |αxx − αyy|L/2
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(the weak damping limit), given by [29, 30, 31]

Dxx = Dyy = e−
γ2

v2 L{ξ−αxx+αyy
2 } cos φ,

Dxy = −Dyx = e−
γ2

v2 L{ξ−αxx+αyy
2 } sin φ,

Dzz = e−
γ2

v2 L{ξ−αzz},

Dxz = Dzx = Dzy = Dyz = 0.

(2.36)

With the net magnetization along the z axis, the rotation angle φ of the beam
polarization is obtained from the measurements by

φ = arctan

(
Dxy − Dyx

Dxx + Dyy

)
(2.37)

and ξ is calculated with
ξ = −v2 ln {det D} /2γ2L. (2.38)

As mentioned earlier, ND provides information about the mean-square direction
cosines of the magnetic induction vector in the (ferro)magnetic domains. These are
directly given by the quantities γi = αii/ξ (i = x, y, z), and can be estimated from
the measurements by

γi = 1 − 2 ln {Dii} / ln {det D} . (2.39)

This equation is only valid for those directions that show no net rotation of the
beam polarization.

2.4 Macroscopic techniques

2.4.1 Magnetization

The measurements of magnetization M and magnetic susceptibility χ at ambient
pressure were performed on a Quantum Design’s magnetic property measurement
system (MPMS). This instrument uses a Superconducting QUantum Interface De-
vice (SQUID), which is the most sensitive device available for measuring magnetic
fields. The principles of operation are nicely demonstrated in Ref. [32]. Magnetiza-
tion measurements at fields up to 5.5 T were performed in the temperature range
of 1.8 to 300 K at Leiden University and the University of Amsterdam (UvA).

Magnetization measurements at pressures up to 0.43 GPa were performed us-
ing an Oxford Instruments MagLab vibrating sample magnetometer (VSM) at the
Physikalisches Institut of the Universität Karlsruhe (TH). Magnetic field scans were
performed in fields up to 12 T at several temperatures. The pressure clamp cell was
made of a CuBe alloy. The pressure was determined by measuring the superconduct-
ing transition temperature Ts of a piece of lead inside the pressure cell (Ts = 7.2 K
at ambient pressure). The pressure transmitting medium was a mixture of methanol
and ethanol (1 : 4).
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Magnetization at ambient pressure has also been measured in magnetic fields
up to 52 T using the pulsed magnetic field facility of the Laboratoire National des
Champs Magnétiques Pulsés (LNCMP) in Toulouse. The magnetization in pulsed
magnetic fields is deduced from the voltage V (t) induced by a time varying magnetic
induction B(t) in a pickup coil. Maxwell’s second law reads in differential form
∇× E = −∂B(t)/∂t and in integral form∮

C

E · dl = −
∫∫

∂B(t)

∂t
· dS (2.40)

where E is the electric field and l and S are the length and the enclosed area of the
contour C, respectively. For a coil with N windings and an inner area A it reduces
to

V (t) = −NA
∂B(t)

∂t
(2.41)

when B is parallel to the coil axis. Note that B = μ0 (H + M) where H is the
applied magnetic field and M the magnetization of the sample (along the coil axis).
To get M , the voltage induced by the external field has to be compensated by
additional compensation coils. The induced voltages can then be written as

V1(t) = −μ0NA

(
∂H(t)

∂t
+

∂M(t)

∂t

)
,

V2(t) = −μ0NA
∂H(t)

∂t
.

(2.42)

These two signals can be subtracted from one another, or the two coils can be
connected and wound in opposite direction. Apart from a calibration factor, the
magnetization M(t) is obtained by numerical integration of V (t) = V2(t) − V1(t)
over t. From the values of H(t), deduced from V2(t), it is possible to reconstruct
M(H).

2.4.2 Thermal Expansion and Magnetostriction

High-precision measurements of the sample length as a function of temperature T
or magnetic field B were performed on single-crystalline samples using the parallel-
plate capacitance method. The sample is connected to one of the plates, whereas
the other plate is fixed. Because the capacitance C is given by

C =
εA

d
, (2.43)

where d is the distance between the plates, A the area of the plates, and ε = εrε0 the
dielectric constant of the medium between the plates, the length of the sample is
inversely proportional to the capacitance. ε0 is the dielectric constant of the vacuum
and εr the dielectric constant of a medium, relative to ε0.
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Figure 2.7: Schematic illustration of a parallel-plate capacitance cell to measure thermal
expansion and magnetostriction. The two plates of the capacitor are electrically charged.
The sample is pressed against the lower plate of the capacitor by turning the screw, on the
bottom of the cell, tight. When the sample expands, it pushes the lower plate upwards,
thereby enlarging the capacitance.

A schematic illustration of the parallel-plate capacitance method is shown in
Fig. 2.7. In this thesis, measurements are presented which have been performed
using home-built measuring cells at the Van der Waals-Zeeman Institute (WZI) of
the University of Amsterdam (UvA) and at the Institut für Festkörperphysik (IFP)
of the Forschungszentrum Karlsruhe (FZK). Details can be found in Refs. [33, 34]
(Amsterdam) and Ref. [35] (Karlsruhe) or in Ref. [36] for a more general treatise on
thermal expansion measurements with the parallel-plate capacitance method.

In Fig. 2.7 one can see that the upper capacitance plate is fixed while the lower
is resting on the sample. The lower plate is positioned with springs, to ensure good
contact with the sample. The bottom of the sample is placed on a plateau, fixed by
a screw. The distance d between the two plates is chosen to be ∼ 100μm.

The coefficient of thermal expansion α is calculated by α = (1/L)(dL/dT ).
Here L is the length of the sample. In Amsterdam, the linear thermal expansion
was determined with a discrete method, i.e. the temperature is varied stepwise. In
Karlsruhe, the temperature was slowly raised at a reproducible rate of 20 mK/s over
the whole temperature range. Averages are made every 0.1 K. The linear thermal
expansion of the sample is calculated by

αsample = − 1

L

(
Δd

ΔT

)
cell+sample

+
1

L

(
Δd

ΔT

)
cell+Cu

+ αCu, (2.44)

where the first term corresponds to the change in the distance between the plates
when the sample is mounted in the cell. The second term accounts for the so-called
cell effect, i.e. the signal observed when a copper sample of the same length as the
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sample under investigation is mounted. This cell effect is found to reproduce very
well. The last term is the linear thermal expansion of the copper of the cell.

Because the capacitance can be measured very accurately, total length changes
down to 0.05 Å are measurable. This means that for samples of just 1 mm length,
a resolution of 5 · 10−8 K−1 can be obtained in α(T ) for a temperature step of
ΔT = 0.1 K.

The linear magnetostriction λ(B) = (L(B)−L(0))/L(0) was measured by mon-
itoring the length change of the sample as a function of the applied magnetic field
B at a constant temperature. The magnetostriction of the copper of the cell turns
out to be negligible. The measurements were performed in Karlsruhe during field
scans with a sweep rate of dB/dt = 0.25 T/min. The constant temperature was
controlled by a metal plate with low magnetoresistivity.

2.4.3 Electrical Resistivity

Electrical resistivity measurements were performed at the Van der Waals-Zeeman
Institute (WZI) of the University of Amsterdam (UvA) using a standard four probe
ac technique in zero field in the temperature range from to 2 to 300 K. A MagLab
system of Oxford Instruments was used.

2.4.4 Specific Heat

The specific heat Cp(T ) measurements presented in Chapter 6 were performed at
the Van der Waals-Zeeman Institute (WZI) of the University of Amsterdam (UvA)
using the semi-adiabatic method in combination with a mechanical heat switch in a
3He cryostat. The set-up was home-built. The samples were 3 - 4 grams in mass.

The specific heat Cp(T ) measurements presented in Chapter 7 were performed at
the Institut für Festkörperphysik (IFP) of the Forschungszentrum Karlsruhe (FZK)
using the commercially available Physical Property Measurement Systems (PPMS)
of Quantum Design. The measurements were performed by the heat relaxation
method in a temperature range between 3 and 300 K and in magnetic fields up to
14 T. Heat capacity was obtained by fitting a heat relaxation curve recorded after a
heat pulse caused a temperature increase of approximately 2 %. The heat capacity
of the addenda (Apiezon N grease) had been measured in a separate run without
the sample, and was subtracted from the data. For further details, see Ref. [37].

2.4.5 X-ray Powder Diffraction

X-ray diffraction measurements at room temperature were performed using a Bruker
D3 Advance X-ray diffractometer with Cu-Kα radiation. Powders prepared from
the polycrystalline samples were covered by Kapton foil to prevent contamination.
Rietveld analysis of the diffraction data was performed using the GSAS program [38].
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Figure 2.8: Illustration of how the angles θ at which constructive interference of scattered
waves occurs, can be found. Diffracted X-rays are in phase when the path length difference
2d sin θ is equal to nλ, with n an integer, i.e. an integral number of wave length λ.

X-ray powder diffraction is a powerful technique used to identify crystal struc-
tures of compounds. The principle behind this technique is based on the construc-
tive interference of X-rays, scattered from the illuminated sample. The measured
intensity as a function of the scattering angle 2θ yields information on the spacing
between planes of atoms in the crystal structure, as well as the sites of the atoms
within the unit cell.

In Fig. 2.8 it is illustrated how the Bragg angles θ at which constructive inter-
ference of scattered waves occurs, can be found. The diffracted rays will only be in
phase if the difference in path length is equal to an integer times the wavelength λ.
This is summarized by Bragg’s law

nλ = 2d sin θ (2.45)

where n is the order of diffraction and d the interplanar spacing.
The accuracy with which the lattice parameters of a compound can be deter-

mined, depends on the accuracy in the determination of 2θ. In this thesis (Chapter 6)
the lattice parameters were measured with an uncertainty of 0.01 Å.

The relative intensity of the diffraction peaks is mainly controlled by the struc-
ture factor. The structure factor Fhkl is given by

Fhkl =
N∑

n=1

fn exp
(
2πi (hun + kvn + lwn)

)
(2.46)

where h, k, and l are the Miller indices of the scattering plane and u, v, and w are
the reduced position indices of the N atoms in the unit cell. The atomic scattering
factor fn is a measure for the ability of an atom to scatter X-rays, relative to that
of a single electron. The scattered intensity I is proportional to |Fhkl|2.



CHAPTER 3

Theory

his Chapter intends to introduce the basic concepts of the theo-
ries relevant to the work described in this thesis and is organized as
follows. First, the nature of the electron correlations between the
conduction electrons and the f electrons from the magnetic ions is
described by introducing the relevant energy scales. Then the con-
cept of a quantum critical point is discussed, followed by a description

of Fermi liquid behavior and non-Fermi liquid behavior. After the introduction of
Grüneisen parameters and a review on (magnetic) phase transitions, a few recent
theories about ferromagnetic superconductors will be presented. This discussion is
not aimed to be complete but gives a general overview.

3.1 Heavy Fermions

In the field of strongly correlated electrons systems (SCES), different classes of
compounds are at the focus in present research. Among them, the intermetallic
compounds known as heavy-fermion compounds have already been studied exten-
sively. The known heavy-fermion compounds generally are Ce, Yb, and U based
intermetallics, although Np and Pu compounds are also reported. For these systems
the term “heavy” is connected to the large characteristic effective masses of the con-
duction electrons. Experimentally this is observed in a large electronic contribution
to the specific heat at low temperatures. Direct proof of heavy quasiparticles can be
obtained by the de Haas-van Alphen effect. Here one measures the cyclotron masses
of the quasiparticles in magnetic resonance measurements of the magnetization.

Within the standard description of heavy-fermion physics, the large mass en-
hancement is thought to be generated by an exchange interaction between localized
and conduction electrons. This is called the Kondo effect. Originally, the Kondo
effect was established for a single magnetic impurity interacting with the conduction
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electrons of a non-magnetic matrix [39]. In a lattice of magnetic ions that strongly
interact with the conduction electrons, a so-called Kondo lattice is formed.

Anderson Hamiltonian

In order to study the heavy-fermion state, it is useful to start with the single-
impurity case. Anderson considered a single magnetic impurity (in this thesis an
f -electron impurity will be assumed) within a non-magnetic metallic host lattice [40]
and reached at the often used Anderson model to describe magnetic impurities in a
host:

HA =
∑
kσ

ε(k)nkσ + εf

∑
m

nfm +
1

2
U

∑
m�=m′

nfmnfm′

+
∑
km

(
Vmσ(k)f+

mckσ + V ∗
mσ(k)c+

kσfm

)
(3.1)

The first term represents the energy of the conduction electrons. Here ε(k) is the
energy dispersion relation of the conduction-electron band and nkσ the number op-
erator for wave vector k and conduction electron spin σ. The second term accounts
for the energy of the f -electrons localized at the magnetic impurity, where εf is the
energy of the degenerate f -orbital and nfm is the number operator with m the spin
index of the 2j + 1 impurity states. The third term describes the on-site Coulomb
interaction between two localized f -states. U is the energy needed to add a second
f -electron to the localized, partially filled, f -orbital. It causes an energy splitting
of the valence states fn. If U is high enough, double occupancy is not favorable and
one state is pushed above the Fermi level. This leads to a polarized splitting and as
a consequence to a magnetic impurity state. The last term in Eq. 3.1 corresponds
to the hybridization between the f -states and the conduction electron states. Here
Vmσ(k) is the hybridization integral that mixes the localized and extended states.
The operators f+ and c+ (f and c) are the creation (annihilation) operators opera-
tors of the localized and conduction-electron states, respectively.

Kondo interaction

Due to the hybridization both f -states (spin “up” and spin “down”) are broadened.
The energy width of the state is defined as Γ = πN(EF)|V |2, where the matrix
elements V (k) have been averaged over the Fermi surface. N(EF) denotes the
density of states at the Fermi level EF. For a weak hybridization and a large enough
U , one impurity f -state is below the Fermi level and the other above, while neither
of them is significantly broadened, i.e. |Γ/(εf −EF)| � 1 and |Γ/(εf +U−EF)| � 1.

For a weak hybridization of the localized f -states and the conduction states the
Anderson Hamiltonian can be transformed into the Kondo Hamiltonian [41]

HK = −2J S · σ (3.2)
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where S is the localized impurity spin and σ the conduction-electron spin. J is an
effective exchange parameter which originates form the hybridization and can be
expressed as

J = |V |2 U

(εf − EF)(εf − EF + U)
< 0. (3.3)

Because of the negative value of J the coupling between the impurity spin and the
conduction-electron spin has an antiferromagnetic nature. In the ground state the
impurity spin is found to be completely screened (compensated) by the surrounding
conduction electron spins. The ground state of the system is a non-magnetic singlet.
This singlet state leads to the formation of a narrow peak in the density of states
close to the Fermi level, which is known as the Abrikosov-Suhl or Kondo resonance.

Due to the formation of a singlet the energy of the system is lowered. The
energy gain can be expressed by a characteristic temperature. This is the Kondo
temperature TK and can be written as

kBTK = D exp

(
− 1

N(EF)|J |

)
(3.4)

where D is the bandwidth of the Kondo resonance peak and is of the order of
kBTK. The classical signature of the Kondo effect is a minimum in the temperature
dependence of the electrical resistivity ρ(T ) followed by a logarithmic increase with
decreasing temperature. As a consequence of the enhanced density of states at the
Fermi level N(EF), a large linear term γ in the electronic specific heat is observed
at low temperatures. The scaling behavior corresponds to γ ∝ N(EF) ∝ 1/TK.

From Kondo impurity to Kondo lattice

So far a single magnetic impurity in a non-magnetic matrix has been considered.
However, intermetallic compounds without chemical substitution containing e.g. U
or Ce atoms form a periodic array of magnetic impurities. One then speaks of a
Kondo lattice.

The low-temperature properties of the Kondo lattice differ drastically from the
single-impurity Kondo case. In the latter case, the resistivity shows a minimum
around T = TK and follows ρ ∝ − ln(T/TK) at low temperatures. In the former
case, however, this upturn changes again into a decrease in ρ(T ) for decreasing
temperatures, with a T 2-temperature dependence at the lowest temperatures.

This behavior can be understood by considering the electron-screening cloud
around a localized moment. For T > TK local magnetic moments are observed,
(with Curie-Weiss behavior of the magnetic susceptibility) since thermal fluctuations
break the hybridization between the local moment and the conduction electrons.
Below T < TK the conduction electrons tend to screen the magnetic moment. This
electron-screening cloud has a certain correlation length which grows with decreasing
temperature. Below a certain temperature Tcoh < TK this correlation length is so
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Figure 3.1: Schematic picture of the density of states in the Kondo lattice. For high
temperatures (Tcoh < T < TK), a Kondo resonance peak is present around EF. For
low temperatures (T < Tcoh) the coherent electronic state is characterized by a narrow
many-body band just above EF.

large that the screening clouds show a significant overlap and a coherent many-body
band with Fermi-liquid characteristics is induced [42].

A schematic picture of the density of states in the Kondo lattice is presented in
Fig. 3.1 [34, 43]. As the temperature is lowered from high temperatures to below
TK, a broad peak develops around the Fermi level EF, originating from the Kondo
resonance, as explained above. In addition there are two peaks from the broadened
f -orbitals of the magnetic ions. These two peaks are separated by the Coulomb
interaction U . At these temperatures the characteristics of the system are still gov-
erned by the broad f -peak below EF (since the Kondo resonance, which is centered
just above EF, is not sharp enough to have much influence), resulting in a more
localized picture. For lower temperatures, the Kondo resonance peak transforms
into a very narrow many-body band just above EF and electronic coherence sets
in. This peak now accounts for the observed properties in heavy-fermion systems,
resulting in the characteristic Fermi-liquid behavior with a high effective mass for
the conducting quasiparticles.

A very nice example of this behavior is CeCu6 [44]. The resistivity data, pre-
sented in Fig. 3.2, clearly indicate the existence of the two energy scales. The high
temperature energy scale is the Kondo temperature TK ≈ 200 K. Below this tem-
perature the scattering is enhanced and still incoherent, due to the single-ion Kondo
effect. This results in a logarithmic increase below TK. As the temperature is low-
ered, coherence sets in which manifests itself in a maximum in the resistivity at
Tcoh ≈ 10 K. At low temperatures the resistivity shows a T 2 dependence.
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Figure 3.2: Temperature dependence of the electrical resistivity of CeCu6. The logarith-
mic increase below 200 K is associated with the incoherent single-ion Kondo effect. As
coherence sets in, a maximum is observed and the resistivity drops. At low temperatures
the resistivity shows a T 2 dependence.

RKKY interaction

In a system of well separated, localized magnetic moments there is hardly any di-
rect interaction between the moments. However, there does exist an indirect ex-
change through the polarization of the conduction electrons. This exchange causes
an interaction between the localized moments, called the RKKY interaction (after
Ruderman, Kittel, Kasuya, and Yosida [45, 46, 47]). It is based on the electrostatic
interaction in conjunction with the Pauli exclusion principle. Near a localized spin
S1 the spins of the conduction electrons are polarized due to an interaction which
can be described by a Hamiltonian identical to Eq. 3.2. The spin polarization is a
damped, oscillatory function in space and extends over a long range. A second spin
S2 at distance r is in turn polarized by the conduction-electron polarization. This
interaction can lead to magnetic order. The strength is characterized by an energy
equal to

kBTRKKY ∝ N(EF) J2 (3.5)

where J is the exchange parameter of the localized moment and the conduction-
electron spin.

Doniach phase diagram

The ground state of a Kondo-lattice system mainly depends on the balance of the
two aforementioned effects, both depending on the same exchange parameter J . On
the one hand the Kondo effect has the tendency to screen the localized moments
and produce a non-magnetic ground state, on the other hand the RKKY interaction
favors long-range magnetic order. The result of this competition is summarized in
the Doniach phase diagram [42, 48] presented in Fig. 3.3. Within this simple model
the compounds with stable f moments (characterized by TRKKY > TK) have a small
value for J . Long-range magnetic order is observed below the magnetic ordering
temperature TM, which is proportional to TRKKY. For larger values of J the Kondo
interaction gains in importance and TM starts to decrease. The system shows a
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Figure 3.3: The Doniach phase diagram. The characteristic RKKY and Kondo tempera-
tures are represented as functions of the exchange parameter J . Different types of ground
states are also represented. The thick solid line indicates the temperature of the magnetic
transition TM.

magnetic instability at a critical value of J = Jc. At this point the Kondo and
RKKY interaction strengths are equal. Because the magnetic fluctuations are not
thermally driven but quantum mechanical in nature, this point is called a quantum
critical point (QCP). For J > Jc the Kondo effect prevails (TK > TRKKY) and a non-
magnetic ground state is observed. Below Tcoh a coherent ground state is found, as
explained above.

Hill’s limit

As can be seen from the preceding discussion, the type of magnetic behavior depends
strongly on the strength of the interaction between the localized magnetic states
and the conduction electrons. When this interaction is mediated by the conduction
electrons, one speaks about an indirect exchange interaction, of which the RKKY
mechanism is an example. However, in the case of a 5f -electron system with a small
separation of the local moments, overlap between 5f -wave functions can also cause
a direct interaction.

Hill [49] has performed a systematic study of magnetic properties of intermetallic
uranium compounds, known at that time (1970) as a function of the nearest neighbor
distance dU−U. It was shown that for dU−U < 3.4 Å the uranium compounds had
a paramagnetic ground state and were often superconducting at low temperatures.
For dU−U > 3.6 Å the compounds were generally magnetic. The interpretation
for these observations is that the ground state is a consequence of the extent to
which the 5f -orbitals overlap. For small values of dU−U uranium f -electron orbitals
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in the lattice overlap directly with those of the neighboring U ions and produce
itinerant f -electron behavior. The f -electrons are delocalized from the U ion to
the conduction band and open the way to superconductivity. On the other hand,
for large values of dU−U long-ranged magnetic order sets in with the f -electrons
localized at the uranium ion. At dU−U ≈ 3.5 Å, the uranium systems, being on the
edge of becoming magnetic, exhibit strong spin fluctuations.

For more than one decade the Hill criterion was remarkable successful. However,
when several compounds, among which the heavy-fermion systems, were found to
violate this criterion, it was realized that the overlap of the 5f -orbital with s, p, or
d-orbitals of non-uranium neighbors could considerably contribute to the delocal-
ization of the U 5f -electrons.

The degree of delocalization of the 5f -orbitals due to f -ligand hybridization
(where ligand stands for non-5f atom) has been discussed by Koelling et al. [50].
It was shown that not the magnitude of the ligand orbital governs the f -ligand
hybridization, but its spatial curvature. A consequence is that the hybridization
is largest for the top of the ligand band i.e. the electron wave functions with the
highest kinetic energy. From the systematic trends in Ce and U compounds it was
concluded that in heavy-fermion systems it is the f -ligand hybridization, rather
than the direct f -f orbital overlap, which is the primary mechanism determining
the magnetic properties of the system.

3.2 Quantum Phase Transitions

Phase transitions occur upon variation of an external control parameter. Their
common characteristic is a qualitative change in the system properties. Well-known
phase transitions, like paramagnetism to magnetic order or from a metallic state
into a superconducting one, occur at finite temperature. Here macroscopic order
is destroyed by thermal fluctuations for increasing temperatures. A different class
of phase transitions shows a transition at zero temperature. It was pointed out by
Hertz [51] that when a non-thermal control parameter such as pressure, magnetic
field, or chemical composition is varied to access the transition point, long-range
order is destroyed solely by quantum fluctuations. Hence, one speaks of a quantum
phase transition. Experimental and theoretical developments in the last decades
have made clear that the presence of such zero-temperature phase transitions plays
an important role in the so-far unsolved puzzles in heavy-fermion compounds, see
e.g. Refs. [52, 53]. The physical properties of the quantum fluctuations, which
can destroy long-range order at absolute zero temperature, are quite distinct from
those of the thermal fluctuations responsible for traditional, finite-temperature phase
transitions [54, 55].

A transition is usually characterized by an order parameter. This is a thermo-
dynamic quantity that is zero in the disordered phase and non-zero in the ordered
phase. In the case of a ferromagnetic transition, the total magnetization is the or-
der parameter. While the thermodynamic average of the order parameter is zero
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in the disordered phase, its fluctuations are non-zero. When the critical point is
approached, the spatial correlation of the order parameter fluctuations become long-
range. Close to the critical point their typical length scale, the correlation length ξ,
diverges as

ξ ∝ |τ |−νcor (3.6)

where νcor is the correlation length critical exponent and τ = |T−TC|/TC. In addition
to the long-range correlations in space there are analogous long-range correlations in
time. The typical timescale for the decay of a fluctuation is the correlation time τc

which diverges as
τc ∝ ξz ∝ |τ |−νcorz (3.7)

where z is the dynamic critical exponent. Close to the critical point there are no
other characteristic length and time scale than ξ and τc, respectively.

Since close to the critical point the correlation length ξ is the only relevant length
scale, the physical properties must be unchanged if all lengths in the system (much
smaller than ξ) are rescaled by a common factor and at the same time the external
parameters are adjusted in such a way that the correlation length retains its old
value. In the case of a magnetic compound the external parameters are the reduced
temperature τ and the applied magnetic field B. This gives rise to the homogeneity
relation for the free energy density in the classically critical regime [56, 57, 58]:

f(τ, B) = b−df(τ b1/νcor , B byB), (3.8)

where yB is a critical exponent, b is an arbitrary positive number, and d the dimen-
sion of the system.

In order to address the question whether quantum mechanics influences the criti-
cal behavior, the characteristic energy of long-distance order parameter fluctuations,
�ωc, has to be compared to the thermal energy kBT . Since τc ∝ |τ |−νcorz, the typical
energy scale �ωc goes to zero as

�ωc ∝ |τ |νcorz. (3.9)

Quantum mechanics is unimportant as long as �ωc � kBT , which enables a purely
classical description of the order parameter fluctuations. On the other hand, a
quantum mechanical description of the fluctuations is inevitable when �ωc > kBT .

For all finite-temperature phase transitions with a transition temperature Tc a
temperature range can be found where �ωc ∝ |τ |νcorz < kBTc. In other words,
the critical behavior asymptotically close to the transition is entirely classical. Al-
though quantum mechanics can still be important on microscopic scales, the classical
thermal fluctuations dominate on the macroscopic scale, which controls the critical
behavior. If, however, the transition takes place at zero temperature as a function
of a non-thermal parameter r, like pressure, magnetic field, or chemical substitution
concentration, the behavior is always dominated by quantum fluctuations.

The interplay of classical and quantum fluctuations leads to an interesting phase
diagram in the vicinity of a quantum critical point (see Fig. 3.4). A classical phase
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Figure 3.4: Schematic phase diagram in the vicinity of a quantum critical point. The
horizontal axis represents the control parameter r used to tune the system through the
quantum phase transition, and the vertical axis is the temperature T . The solid line marks
the finite-temperature boundary between the ordered and thermally disordered phases.
Close to this line, the critical behavior is classical. The dashed lines indicate the boundaries
of the quantum critical region. These crossover lines are given by kBT ∝ |r−rc|νcorz. Figure
taken from Ref. [55].

transition is encountered upon variation of T at small r. The quantum critical
point can be viewed as the endpoint of the line of finite-temperature transitions.
Above this line, the system is thermally disordered. For r > rc at low T , the
physics is dominated by quantum fluctuations. An example is the Kondo effect,
discussed in the previous Section. Between these two disordered phases a quantum
critical region exists, where both types of fluctuations are important. It is located
near the critical point at r = rc. Its boundaries are determined by the condition
kBT > �ωc ∝ |r − rc|νcorz. Physically this means that the system looks critical with
respect to the tuning parameter r, but it is driven away from criticality by thermal
fluctuations. The upper boundary is determined as the temperature at which kBT
exceeds the characteristic microscopic energy scale, e.g. the exchange energy J for
magnetic materials. Since in the quantum critical region the physics is controlled
by the thermal excitations of the quantum critical ground state, unusual finite-
temperature properties, such as unconventional power laws and non-Fermi liquid
behavior, are observed. In other words, non-Fermi liquid properties arise because
close to r = rc the low-temperature thermodynamics is determined by collective
modes (excitations of the order parameter). This is in contrast to the single-fermion
excitations (quasiparticles) from collective interactions in the Fermi-liquid regime.
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Thermodynamic properties are derived from the partition function

Z = Tr e−H/kBT (3.10)

where H = Hkin + Hpot is the Hamiltonian of the system. In a classical system
the kinetic and potential part of H commute. Since in this case Z = ZkinZpot, the
dynamics and statics are decoupled. However, in a quantum mechanical approach
Hkin and Hpot in general do not commute, and therefore dynamics and statics are
coupled. According to Eq. 3.7, the correlation time scales as the zth power of a
correlation length. For second-order phase transformations the classical homogeneity
law (Eq. 3.8) for the free energy density can now, be written for the quantum
mechanical case at zero temperature as [55]

f(δ, B) = b−(d+z)f(δ b1/νcor , B byB), (3.11)

where δ = |r − rc|/rc. This shows that a quantum phase transition in d dimensions
is related to a classical transition in deff = d + z dimensions. With z = 3 for
ferromagnets, the effective dimension deff = 6. In this case the fluctuations may
then be accounted for in a self-consistent mean field approximation [56].

The search for a second order quantum phase transition in itinerant-electron sys-
tems, which is believed to be responsible for exotic quantum phases like magnetically
mediated superconductivity and non-Fermi liquid behavior, has become the subject
of many researchers in recent years. The compounds CePd2Si2 and CeIn3 [59] are
good examples of superconductivity emerging around a quantum phase transition.
However, also notable differences from standard second order behavior have been
found. MnSi [60] and ZrZn2 [61] undergo a first order quantum phase transition.
UGe2, one of the ferromagnetic compounds studied in this thesis, shows a first or-
der quantum phase transition at 1.6 GPa. Theoretical studies [62, 63] suggest that
ferromagnetic transitions in clean three-dimensional itinerant ferromagnets are al-
ways first order at T = 0 K. However, these compounds show the same behavior
(superconductivity and a non-Fermi liquid phase) as expected for materials with a
second order quantum phase transitions. The understanding of the physics of these
first order quantum phase transitions is still a challenge for both theoretical and
experimental studies [64].

3.3 Fermi liquid and non-Fermi liquid behavior

In the previous two Sections the terms Fermi liquid and non-Fermi liquid have been
mentioned several times. In this Section these terms will be explained further. First,
it is instructive to summarize a few properties of a gas of non-interacting electrons
- the Fermi gas.

The specific heat of a system of electrons within a lattice of magnetic ions can be
written as the sum of three components: c(T ) = cel(T ) + cphonon(T ) + cmag(T ). The
phonon contribution (due to vibrations of the lattice) is often described in terms
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of the Debye temperature ΘD and the Debye function [65]. At low temperatures

(T � ΘD) the phonon contribution can be approximated by cphonon = 12π4

5
nkB

(
T 3

ΘD

)
,

where n is the number of atoms per mole of formula units. The magnetic contribu-
tion (due to the atomic moments) depends strongly on the system under investiga-
tion. For a ferromagnet with a gapless magnon dispersion curve [65] one obtains at
low temperatures cmag(T ) ∝ T 3/2, but cmag(T ) ∝ T−1/2e−Δ/kBT if a gap Δ is present
in the dispersion curve [66].

3.3.1 Fermi gas

An electron gas consists of non-interacting, independent electrons. Note that inde-
pendent means that there are no interactions with the lattice of magnetic ions and
no interactions between the electrons other than the Pauli exclusion principle for
Fermions. The electrons gas itself has a specific heat of

cel(T ) =
π2

3
N(EF)k2

B T. (3.12)

This is usually written as cel(T ) = γ T and γ is called the Sommerfeld coefficient.
Note that the density of states amounts to N(EF) = (mekF)/(π2

�
2), with kF the

Fermi wave vector, is proportional to the electron mass me. Systems for which
the independent-electron model holds (Fermi gas), typically have values of γ ≈
1 mJ/mol K2.

The electrical resistivity is a measure for the scattering probabilities of elec-
trons when traveling through a sample. In a model of non-interacting electrons, the
Fermi gas itself has no resistivity. The electrons only scatter from lattice irregu-
larities and magnetic waves. The electrical resistivity can therefore be written as
ρ(T ) = ρ0 + ρphonon(T ) + ρmag(T ). Interaction of conduction electrons with lattice
imperfections (dislocations, stacking faults, vacancies, interstitials) causes a temper-
ature independent term ρ0. Thermally excited lattice vibrations yield pronounced
temperature dependencies. In the Debye model [67] it can be calculated that the
resistivity follows ρphonon(T ) ∝ T 5 at low temperatures (T � ΘD). The magnetic
contribution again depends on the system. For a magnet above its ordering tem-
perature there is a temperature independent contribution due to scattering by the
magnetic atomic moments. As the magnetic moments start to show order below the
ordering temperature, the magnetic contribution decreases for decreasing tempera-
tures. For a ferromagnet at low temperatures it can be written as ρ(T ) ∝ T 2.

When a magnetic field is applied to a gas of independent electrons the energy
of the electron is raised or lowered depending on its spin. As a consequence, the
corresponding energy bands shift with respect to each other, resulting in a higher
population of the up-band than the down-band. The so-called Pauli susceptibility
is essentially temperature independent and can be written as [67]

χP = μ0μ
2
BN(EF). (3.13)
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This susceptibility is usually small compared to the paramagnetic Curie-Weiss be-
havior of magnetic ions in the crystal. The Pauli susceptibility can therefore only
be observed in unordered compounds.

3.3.2 Fermi liquid

Up to now a gas of electrons was considered, i.e. independent electrons with no
interactions with each other or with the lattice (except for Fermi-Dirac statistics).
Although this model works for a limited amount of compounds, it is clear that
this picture does not apply in general. For example, in Sec. 3.1 the Kondo effect
was discussed, which is based on the interaction between a localized moment and
the conduction electrons (hybridization). Taking the Fermi-gas model as a starting
point, one can imagine gradually turning on the interactions. Then the step is made
to a Fermi liquid, which is a Fermi gas plus interactions.

The arguments leading to a Fermi liquid are very subtle. In the Fermi gas model
the electrons are independent. Then, quasiparticles are introduced that behave
as independent conduction electrons, with a parabolic energy dispersion. These
quasiparticles are also called dressed electrons as their properties are modified by
the interaction with the lattice. Analysis of electron-electron and electron-lattice
interactions lead to a substantially modified energy versus wave vector relation for
one-electron levels. It is, however, far from clear that there is still any validity in
treating the electrons as independent. Nevertheless, Landau has shown [68, 69, 70]
that this picture does in fact hold, at least for levels within kBT of the Fermi
energy. Since many of the most interesting electronic properties of a metal are
almost completely determined by electrons within kBT of the Fermi energy, the way
is open to a relatively simple description of the electronic states.

However, when interactions are strong, it is not likely that the independent
electron approximation is appropriate. Landau solved this problem by considering
an independent quasiparticle approximation. He showed that by gradually turning
on the interactions, the electron states evolve in a continuous way and therefore
have a one-to-one correspondence with the states of the noninteracting system. An
extensive description of the Fermi-liquid theory can be found in Refs. [71, 72].

A consequence of describing heavy-Fermion systems within the framework of the
Fermi-liquid theory, is the introduction of effective masses m∗ of the quasiparticles
exceeding the free-electron mass by a factor up to several hundred for heavy-fermion
systems, and correspondingly large values of the Sommerfeld coefficient γ and the
Pauli spin susceptibility χP.

With the correspondence of the quasiparticles of an interacting-electron system
with a free-electron gas, it can be derived [71, 72] that the low-temperature proper-
ties of the Fermi liquid obey the same laws as the Fermi gas, with a renormalized
effective mass m∗ and a few additional parameters taking into account the residual
interactions among the quasiparticles.
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The electronic part of the specific heat is given by

cel(T ) = γT ≡ (m∗/m0)γ0 T (3.14)

where γ0 = 1
3
π2N(EF)k2

B is the Sommerfeld constant of the free-electron gas given
in Eq. 3.12 and m0 the free-electron mass. Therefore, the specific-heat coefficient
at low temperatures gives direct information on the effective mass m∗. The Pauli
susceptibility of the Fermi liquid is given by

χP =
m∗

m0

χ0

1 + F a
0

(3.15)

where χ0 is the Pauli susceptibility of the free-electron gas (Eq. 3.13) and F a
0 an

antisymmetric Landau parameter [71, 72]. The electrical resistivity ρ(T ) at low
temperatures is the sum of the residual resistivity ρ0 and an additional quadratic
term that describes the electron-electron interaction:

ρ(T ) = ρ0 + AT 2. (3.16)

The coefficient A is related to γ by the empirical Kadowaki-Woods relation A/γ2 ≈
10 μΩ cm K2 mol2 J−2 [73]. As γ ∝ m∗ the coefficient A scales as A ∝ (m∗)2 It
should be noted that for a ferromagnet below TC the spin waves also give rise to a
ρ(T ) = afsw T 2 dependence at low temperatures, see Sec. 3.3.1. However, because of
the coherent Fermi-liquid state, A 
 afsw.

3.3.3 Non-Fermi liquid

The Fermi-liquid theory has been successful in describing the low-temperature be-
havior of many compounds. Even many actinide systems with very strong electronic
correlations are well described in terms of Fermi-liquid theory. In recent years, the
cases where the Fermi-liquid scenario does not apply have attracted much attention.

The main macroscopic properties of the systems that have been identified as
non-Fermi liquids are a diverging specific heat divided by temperature, c/T , a di-
verging magnetic susceptibility χ and a non-quadratic electric resistivity ρ ∝ T α

with α < 2. At present there is no theoretical model that yields a universal descrip-
tion of non-Fermi liquid behavior. Several models have been put forward in order to
describe the microscopic mechanisms that lead to non-Fermi liquid behavior. The
most important models will be discussed below. By comparing the measured tem-
perature dependencies of c/T , χ and ρ, it might be possible to determine which
model describes the system best.

Multichannel Kondo effect

In this model, M degenerate conduction-electron bands couple with identical ex-
change integrals to an impurity with spin SI [74, 75, 76]. When M > 2SI , the
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impurity spin is overscreened by the spins of the conduction electrons. As a con-
sequence, a non-trivial non-Fermi-liquid critical point governs the low-temperature
properties of the system. The most likely observable version of this model is the case
of M = 2, SI = 1/2 for rare-earth and actinide systems. This model is primarily
relevant for diluted heavy-fermion alloys, e.g. Y1−xUxPd3 [77], Th1−xUxRu2Si2 [78],
and La1−xCexCu2.2Si2 [79]. The characteristics are summarized as

c(T )

T
∝ −a ln T + b

χ(T ) ∝ − ln T (3.17)

ρ(T ) ∝ 1 − c T
1
2

Kondo disorder model

The central idea of the Kondo disorder model is that a moderate disorder in a lattice
model of localized moments is magnified due to the strong local correlations between
the moments and the conduction electrons. In particular, a broad distribution of lo-
cal energy scales (Kondo temperatures) is generated [80]. A few local sites with very
small Kondo temperatures are unquenched at low temperatures and dominate the
thermodynamic and transport properties, forming a dilute gas of low-lying excita-
tions above the disordered metallic ground state. The presence of these unquenched
moments leads to the formation of a non-Fermi-liquid phase. As in the case of the
multichannel Kondo effect, this model is applicable to substitutional system, but
only when the disorder is moderate. The properties of the compound UCu5−xPdx

with x = 1 and 1.5, are reported to be described by this model [81]. The predictions
are

c(T )

T
∝ − ln T + a

χ(T ) ∝ − ln T + b (3.18)

ρ(T ) ∝ 1 − c T

Proximity to a quantum critical point

As discussed in Sec. 3.2, a quantum critical point occurs when a critical point, e.g. a
ferromagnetic phase transition at some temperature Tcr, is tuned to 0 K by an exter-
nal parameter r. This can be pressure, magnetic field, or chemical substitution. At
the quantum critical point, the low-temperature thermodynamics is characterized by
collective modes corresponding to fluctuations of the order parameter, rather than
by single-fermion excitations as in a Fermi liquid. Therefore, non-Fermi-liquid prop-
erties arise. The temperature dependencies depend strongly on the dimensionality
d of the system and on the nature of the magnetic interactions. For a ferromagnet
z = 3 in Eq. 3.7, for an antiferromagnet z = 2. The dependencies are summarized
in Table 3.1.
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Table 3.1: Predicted scaling behavior of the Millis-Moriya spin-fluctuation model for
the temperature dependence of the linear specific heat coefficient c/T and the electrical
resistivity ρ at the QCP at low temperatures [82, 83, 84].

d = 3 d = 2

z = 3 z = 2 z = 3 z = 2

c/T − ln(T/T0) γ0 − β
√

T T−1/3 − ln(T/T0)

ρ T 5/3 T 3/2 T 4/3 T

Griffiths phase model

The Griffiths phase model takes into account the effect of disorder near a quantum
critial point [85]. The presence of disorder is considered to lead to the coexistence
of a metallic paramagnetic phase and a granular magnetic phase. In the former,
the magnetic moments are quenched by the Kondo interaction, giving rise to Fermi-
liquid behavior, while the latter is dominated by the RKKY interaction giving rise
to ordered regions.

There is an analogy with a lattice of magnetic atoms diluted with a concentra-
tion x of non-magnetic atoms. Long-range order is lost at a certain concentration
xcr when infinite clusters of magnetic moments can no longer be formed.

For small values of x, the RKKY interaction dominates and the system orders
magnetically. With increasing chemical substitution, the quantum fluctuations grow
due to the Kondo effect and the critical temperature, e.g. TC for a ferromagnet,
decreases until it vanishes at the critical value xcr. For larger values of x, i.e. in the
paramagnetic phase, only finite clusters of magnetic atoms can be found. Among
these clusters, there are some rare ones that are large and strongly coupled, in which
the spins behave coherently as a magnetic grain. In this phase, the thermodynamic
functions show essential singularities with strong effects at low temperatures. The
specific heat coefficient and the static susceptibility diverge as

c/T ∝ T−1+λ (3.19)

χ ∝ T−1+λ (3.20)

with λ < 1. The Fermi liquid is recovered for λ = 1. In general, non-Fermi-liquid
behavior can be observed over an extended region in the paramagnetic phase next
to a quantum critical point.

3.4 Grüneisen parameters

It is found experimentally that intermetallic compounds with unstable 4f or 5f
shells, like the heavy-fermion systems, show an anomalously large volume depen-
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dence for variations in temperature, magnetic field, and pressure. The electronic
properties of the heavy-fermion state are described by a certain characteristic tem-
perature T ∗. A measure of the volume dependence of this temperature can be
determined by a phenomenological Grüneisen parameter, that represents the cou-
pling between the relevant energy scale for the heavy fermions and the lattice. The
origin of this coupling lies in the single-ion Kondo or Kondo-lattice effect and the
presence of (paramagnetic) spin fluctuations.

For the volume dependence of the characteristic temperature T ∗ the Grüneisen
parameter is defined as [86, 87]

ΓT = −d ln T ∗

d ln V
(3.21)

which can be written as

ΓT =
V α

κ cV

. (3.22)

Here α = V −1(∂V/∂T ) is the linear volume thermal expansion coefficient, κ =
−V −1(∂V/∂P ) the compressibility, and cV the specific heat. Since several processes
contribute to the measured α(T ) and cV (T ), one experimentally measures the effec-
tive Grüneisen parameter Γeff(T ). If in a certain temperature range a certain energy
scale is dominant, Γeff(T ) will be equal to the Grüneisen parameter of this process.
For example, at high temperatures the phonon contribution is the largest factor in
the volume dependence and Γeff(T ) ≈ 2 is found. As the temperature is lowered
towards a magnetic transition temperature TC, the magnetic fluctuations will de-
termine the value of Γeff(T ). At the lowest temperatures, the physics is dominated
by the heavy-fermion state, characterized by a spin-fluctuation temperature Tsf and
therefore Γeff(T ) = d ln γ/d ln V , since Tsf ∝ N−1(EF) ∝ γ−1.

3.5 Thermodynamic Considerations

For a magnetic sample in an external magnetic field the thermodynamic quantities
can be derived from the Gibbs free energy

dG = −SdT + V dP − MdB (3.23)

where S is the entropy, T the temperature, V the volume, P the pressure, M
the magnetization, and B the magnetic field. The equilibrium of the system is
determined by the variables T , P , and B. The first derivatives of the Gibbs free
energy, S, V , and M , are found by differentiating G with respect to T , P , and B,
respectively, while keeping the other variables constant.

At a phase transition, the Gibbs free energy is continuous, i.e. dG = 0. However,
its first or second derivatives do not need to be continuous. When the first derivatives
are discontinuous, one speaks of a first-order phase transition. The thermodynamical
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properties at the phase-transition temperature TC are related by [88]

∂ xi

∂ xj

= −Δ yj

Δ yi

(3.24)

with {x1, x2, x3} = {T, P,B} and {y1, y2, y3} = {−S, V,−M}. Here Δ yi denotes
the step in yi at TC, i.e. the difference between yi(T ↓ TC) and yi(T ↑ TC). This
equation is known as the Clausius-Clapeyron relation.

In many systems the first derivatives of G are continuous, but the second deriv-
atives are not. Hence the name second-order phase transition. Since at TC there are
no steps in S, V , and M , the above equation does not apply. By expanding dS in
terms of T and P one obtains

dS =

(
∂S

∂T

)
P

d T +

(
∂S

∂P

)
T

dP. (3.25)

Noting that the entropy just above and below TC are equal (dS+ = dS−), one
obtains, together with the specific heat cP = VmT (∂S/∂T ) and the Maxwell relation
(∂S/∂P )T = (∂V/∂T )P , the Ehrenfest relation

dTC

dP
=

Δα Vm

Δ(cP /T )
. (3.26)

Here α = V −1(∂V/∂T )P is the linear thermal expansion coefficient and Vm is the
molar volume.

3.6 Ferromagnetic Superconductors

Since the discovery of superconductivity well within the ferromagnetic phase of
UGe2 [1] and URhGe [2], numerous theoretical studies have tried to answer the
question what the attractive forces are between the electrons leading to the formation
of the Cooper pairs [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]. The general features
of the proposed models are:

1. The superconducting pairing of the conduction electrons is mediated by spin
fluctuations rather than by phonons, as is the case in conventional supercon-
ductors.

2. In the superconducting state the quasiparticles form Cooper pairs in which
the spins are parallel (S = 1) in contrast to conventional superconductors
with opposite spin (S = 0).

3. The ferromagnetism is itinerant and therefore carried by the conduction elec-
trons. This arises from a splitting of the spin-up and spin-down band. A
consequence is that the ferromagnetism and the superconductivity is carried
by the same electrons.
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With these assumptions, it was possible to show [93] that for the quasiparticles
with a spin parallel to the ferromagnetic order a gap in the momentum distribution
is present, leading to superconductivity, whereas for quasiparticles with antiparal-
lel spins this gap is not present, leading to normal, non-superconducting behavior.
Moreover, a comparison [94, 95] between the superconducting pairing by ferromag-
netic spin fluctuations in the ferromagnetically ordered phase and the pairing in
the paramagnetic phase, indicate that the superconducting transition temperatures
in the ferromagnetically ordered phase are generally significantly higher than those
found in the paramagnetic phase. This is because the magnetic fluctuations are
stronger on the ferromagnetic side of the magnetic phase boundary, which substan-
tially enhances the pairing interaction of the conduction electrons. The maximum
transition temperatures are found just below the quantum critical point, in qualita-
tive agreement with the temperature-pressure phase diagram of UGe2.

Other studies [100, 101], however, have shown that spin-singlet superconduc-
tivity is still feasible under the constraint that conducting electrons involved in the
superconductivity and localized electrons involved in the ferromagnetic order belong
to different subsets of 5f electrons. The pairing mechanism is then based on the
interaction of electron spins via localized magnetic moments. A 73Ge-NQR study
under pressure [102, 103] clearly showed the existence of unconventional supercon-
ductivity with a line node gap, which would normally exclude the possibility of
s-wave (spin-singlet) superconductivity.



CHAPTER 4

UGe2

4.1 Introduction

oexistence of superconductivity and ferromagnetism, at
low temperatures, was found in the binary compound UGe2 [1]. It
crystallizes in the orthorhombic ZrGa2-type structure (space group
Cmmm) [104, 105]. The unit cell, with dimensions a = 4.036 Å,
b = 14.928 Å, and c = 4.116 Å, contains four formula units. The
structure is shown in Fig. 4.1 . The U atoms all occupy the 4j

positions (0, y, 1
2
), whereas the Ge atoms are at the 4i positions (0, y, 0), the 2a

positions (0, 0, 0), and at the 2c positions (1
2
, 0, 1

2
). The U atoms are arranged in

zig-zag chains of nearest neighbors in the a direction. The nearest neighbor distance
dU−U is equal to dU−U ≈ 3.82 Å at zero pressure, but is possibly reduced to about
3.5 Å at 1.3 GPa, due to a slight flattening of the chains [106]. This would compare
well with the Hill limit of 3.5 Å. See Ref. [49] and Sec. 3.1.

In UGe2 ferromagnetic order at ambient pressure is found below the Curie tem-
perature TC = 52 K. The magnetic moment is directed along the a axis, with a
saturation value of 1.4 μB/U at ambient pressure [107]. Magnetic measurements
indicate a very strong magnetocrystalline anisotropy [108]. TC is suppressed for in-
creasing pressures and finally vanishes at a pressure of PC = 1.5− 1.6 GPa. Within
the ferromagnetic phase, a second transition occurs. At ambient pressure, this tran-
sition takes place at TX ≈ 30 K, but is not pronounced. As the pressure is enhanced,
TX goes to 0 K, but the transition itself gets better observable. At a pressure of
P ≈ 1.2 GPa, TX = 0. Below TX the magnetic moment is enhanced and therefore
the temperature region between TC and TX was named the weakly polarized phase,
whereas the lower temperature region T < TX was called the strongly polarized
phase [109]. The origin of this transition is still not understood. Superconductivity
is found only in a limited pressure range between 1.0 and 1.5 GPa with a maximum
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Figure 4.1: The orthorhombic crystallographic structure of UGe2. The uranium atoms
are indicated in black and germanium atoms in gray. The figure shows the unit cell of
UGe2 containing four formula units.

transition temperature of Ts ≈ 0.7 K. In this pressure range, the magnetic moment
is still appreciable (1 μB/U).

The pressure dependence of the ferromagnetic transition temperature TC, the
transition temperature within the ferromagnetic state TX , and the superconducting
transition temperature Ts, is shown in Fig. 4.2. The data points were obtained from
measurements with various techniques [1, 110, 111, 112, 113, 114].

In a very small pressure region below PX , the pressure at which TX = 0, the
transition at TX is reported to be first order [102], in contrast to second order at
lower pressure. However, Tateiwa et al. [115] found on the basis of specific heat
measurements that the transition is only weakly first order or even second order.
The PM-WP phase transition at TC unambiguously changes from second to first
order around 1.2 GPa [114, 116].

In this Chapter two techniques are used, namely three-dimensional neutron de-
polarization and muon spin relaxation (μSR), to study the ferromagnetic order in
UGe2. It is generally accepted that antiferromagnetic order and superconductivity
can coexist, since the superconducting coherence length ξsc is much larger than the
periodicity of the static magnetic order. In contrast to antiferromagnets, for fer-
romagnets the reverse is the case. ξsc is much smaller than the periodicity of the
magnetic order (i.e. the domain size). However, based on jumps in the magneti-
zation at low temperature and at regular intervals of applied magnetic field, it was
suggested that the ferromagnetic domain size in UGe2 is so small, that it is even
smaller than ξsc [117, 118]. This would enable the coexistence of ferromagnetism and
superconductivity. In this thesis, however, it is shown with the three-dimensional
neutron depolarization technique that the ferromagnetic domain size is much larger
than ξsc, in contrast to Refs. [117, 118].

When superconductivity sets in at low temperatures and high pressures, conduc-
tion electrons condense into Cooper pairs. It is of utmost importance to investigate
the magnetic properties of UGe2, and specifically the conduction electrons, in detail.
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Figure 4.2: The temperature T versus pressure P magnetic phase diagram of UGe2.
Below the Curie temperature TC, there are two ferromagnetic phases, a weakly polarized
phase (WP), and a strongly polarized phase (SP). The transition temperature between
these two phases is denoted TX . Above the critical pressure Pc, the system remains
paramagnetic (PM) down to the lowest temperature. Around 1.2 GPa the PM-WP phase
transitions changes from second order (low P ) to first order (high P ). The change in
order for the WP-SP transition is still under discussion (see main text). For clarity the
superconducting region between 1.0 and 1.6 GPa (shaded area) is exaggerated. The lines
are guides to the eye. Figure taken from Ref. [102].

Muons are very sensitive magnetic probes and are sensitive to a time frame which is
complementary to neutron techniques. The μSR technique thus has the potentiality
to yield information on the question whether the magnetism found in UGe2 is of a
localized or an itinerant nature.

4.2 Three-Dimensional Neutron Depolarization*

4.2.1 Introduction

Until the discovery of coexistence of superconductivity and ferromagnetism in UGe2

[1], only superconducting compounds exhibiting anti ferromagnetic order had been

*Parts of this Section have been published in Physical Review B 71 (2005) 174417.
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known such as DyMo6S8, GdMo6S8, and TbMo6S8 [119, 120, 121]. Later on, coexis-
tence of antiferromagnetism and superconductivity was also found in heavy fermion
compounds, of which CeIn3, CePd2Si2, and UPd2Al3 [122, 123, 124] form several
examples. In these cases, superconductivity and antiferromagnetism appear simul-
taneously because the Cooper pairs are insensitive to the internal fields arising from
the antiferromagnetic ordering, since the superconducting coherence length ξsc is
much larger than the periodicity of the static antiferromagnetic-ordered structure.
However, in a ferromagnetic structure it is expected that the internal fields do not
cancel out on the scale of ξsc and therefore influence the Cooper pairs. That ferro-
magnetic order excludes superconductivity is nicely demonstrated in ErRh4B4 [5, 6]
and HoMo6S8 [7], where standard BCS singlet-type superconductivity is suppressed
when ferromagnetic order sets in. Alternatively, if one would consider unconven-
tional spin-triplet superconductivity mediated by ferromagnetic spin fluctuations,
the pairing is relatively insensitive to a local magnetic field and can, therefore, coex-
ist with ferromagnetic order. When the ferromagnetic domain size d is much smaller
than the superconducting coherence length ξsc, one effectively also has no internal
magnetic field acting on the Cooper pairs.

The superconducting coherence length ξsc for UGe2 is estimated [1, 125] to be
130− 200 Å. Interestingly, Nishioka et al. [117, 118] predicted the domain size d to
be of the order of 40 Å. The model leading to this prediction will be discussed briefly.
The starting point was the observation of jumps in the (macroscopic) magnetization
at regular intervals of applied magnetic field H (parallel to the easy axis a) and
temperatures below 1 K, instead of a continuous M −H curve. The discrete nature
of the magnetization occurring only at low temperatures, led the authors to the idea
of a quantum-mechanical effect.

The anisotropy and Zeeman energies for a single domain can be written as [126]

E =
(
K1 + K2 sin2 φ

)
sin2 θ − M0H (1 − cos θ) , (4.1)

where K1 and K2 are anisotropy constants per unit volume, θ and φ denote angles
for the direction of M and M0 indicates the magnitude of M. Equation 4.1 is
illustrated in Fig. 4.3 for different values of H. The potential barrier has a height
U . The corresponding Hamiltonian per domain with volume V is [126]

H = −d1J
2
‖ + d2J

2
⊥ + geffμBJ‖H. (4.2)

Here geff is an effective g factor and J‖ (J⊥) is the component of the total angular
momentum of the domain parallel (perpendicular) to the a axis. Although the d2

term plays a crucial role in generating quantum transitions between two energy
minima, it can be neglected when calculating the energy eigenvalues because the
anisotropy within the plane perpendicular to the a axis is very small. The energy
levels are displayed in Fig. 4.3. Furthermore, K1 = d1J (J + 1) /V and J = N j,
where N is the number of spins contained in the domain with volume V and j is the
single ion total angular momentum. K1 can be approximated by K1 ≈ d1J

2/V =
d1 (N2j2) / (Nv) = d1Nj2/v where v = 60 Å3/U is the volume per U atom.
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Figure 4.3: Illustration of the model describing field-tuned resonant tunneling between
quantum spin states. The horizontal axis is θ, the angle of the magnetization from the easy
axis. (a) At a magnetic field high enough to obtain magnetic saturation, every domain
is assumed to be in the ground state of the left-hand minimum at θ = 0 (parallel to
the field). (b) When H = 0, the two energy minima at θ = 0 and π are degenerate.
(c) As the magnetic field is increased, in direction opposite to (a), a tunneling of several
magnetic domains from the metastable state in the left to the first excited state in the
right occurs at a well-defined value of magnetic field. (d) After ∼ 5 times, most of the
domains have tunneled from the left to the right and thus there will be no more jump in
the magnetization. Figure taken from Nishioka et al., Ref. [117].

The energy level of the ground state on the left coincides with the nth excited
level on the right when the condition H = n (d1/geffμB) is satisfied. When at these
particular fields a resonance occurs and the tunneling probability is, as a result,
strongly enhanced, sharp and large jumps will be observed in the magnetization
at equidistant values of H. With an estimate for the anisotropy constant K1 =
100 T × 1.4 μB/60 Å3 (a field in excess of 100 T is needed to align the magnetic
moments of 1.4 μB [108, 117]), with the U 5f 2 configuration (geff = 4/5 and j = 4),
and with steps occurring about every 0.03 T (depending on pressure), it is found
that N ≈ 1000. This leads to an estimated ferromagnetic domain size d of the order
of 40 Å. The derived values of U ≈ 104 K and ΔE ≈ 10 K seem to be consistent
with the starting point of the model: discrete quantum effects only observed at
low temperatures, where ΔE 
 kBT . The authors indicate that for conventional
domain sizes of the order of 104 Å, the tunneling probability would be too small for
macroscopic quantum resonances to occur, since the energy barrier U is proportional
to N2: U � d1J

2 = d1j
2N2.
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Since d would be several times smaller than ξsc, it was proposed that the ferro-
magnetism can be canceled out on the scale of the coherence length of the Cooper
pairs. A boundary such as a ferromagnetic domain wall may in general distort the
Cooper pair wave function. With a small domain size, one has a relatively large
number of domain walls, resulting in spatially inhomogeneous superconductivity.

In this Section, three-dimensional neutron depolarization (3DND) measurements
are reported. They are performed on single-crystalline UGe2 at ambient pressure
between 2 and 80 K. The principal aim was to determine the ferromagnetic domain
size d in UGe2 and compare the value to the ferromagnetic domain size of 40 Å
estimated by Nishioka et al. [117] as explained above. Since the neutron is a
very sensitive probe to local magnetic fields, neutron depolarization is an excellent
technique to measure the average domain size and the domain-wall width.

4.2.2 Experimental

The measurements were performed on the poly axis neutron depolarization analyzer
(PANDA) at the Interfaculty Reactor Institute (IRI) of the Delft University of Tech-
nology. A description of the instrument and the 3DND technique can be found in
Sec. 2.3. The neutron wave length used was 2.03 Å which corresponds to a velocity
of 1949 m/s.

The neutron depolarization measurements on UGe2 were performed on a single-
crystalline sample with dimensions 4.0 × 0.440 × 3.0 mm3 along the a, b, and c
axes respectively. The b axis was oriented along the transmitted neutron beam
(x) with a transmission length L and the easy axis for magnetization a along the
vertical axis (z) within the plate of the sample. The crystal has been grown from
a polycrystalline ingot using a Czochralski tri-arc technique. No subsequent heat
treatment was given to the crystal. The illuminated area was a rectangle with
dimensions y × z = 1 × 2 mm2 centered at the middle of the sample.

The measurements in zero field were performed during a temperature sweep from
2 K up to 80 K and down to 2 K with a low sweep rate of 10 K/hr. The measurements
in nonzero field (4 and 8 mT) were done during a similar temperature sweep with a
sweep rate of 25 K/hr. The sample was first zero-field cooled, whereafter the field
was switched on at the start of the measurements. The subsequent measurements
were performed during heating and cooling in a constant field.

4.2.3 Three-dimensional neutron depolarization

The neutron depolarization (ND) technique is based on the loss of polarization of a
polarized neutron beam after transmission through a (ferro)magnetic sample. Each
neutron undergoes only a series of consecutive rotations on its passage through the
(ferro)magnetic domains in the sample. It is important to note that the beam cross
section covers a huge number of domains, which results in an averaging over the
magnetic structure of the whole illuminated sample volume. This averaging causes a
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loss of polarization, which is related to the mean domain size and the mean direction
cosines of the domains. The rotation of the polarization during transmission probes
the average magnetization.

In a ND experiment, a 3 × 3 depolarization matrix D expresses the relation
between the polarization vector P0 before and P1 after transmission through the
sample according to [29, 30, 31]

P1 = D P0. (4.3)

A monochromator M selects a fixed neutron wave length of 2.03 Å which corresponds
to a velocity of 1949 m/s. The polarization of the monochromatic neutron beam
is created and analyzed by magnetic multilayer polarization mirrors. In order to
obtain the complete matrix D, one polarization rotator is placed before the sample
and another one right after the sample. Each rotator provides the possibility to
turn the polarization vector parallel or antiparallel to the coordinate axes x, y,
and z. The resultant neutron intensity is finally detected by a 3He detector. The
polarization rotators enable the measurement of any matrix element Dij with the
aid of the intensity of the unpolarized beam IS

IS =
Iij + I−i,j

2
, (4.4)

where Iij is the intensity for P0 along i and P1 along j. The matrix element Dij is
then calculated according to

Dij =
1

P0

IS − Iij

IS

, (4.5)

where P0 is the degree of polarization in the absence of a sample. In the present
case, P0 = 0.965, which is experimentally determined.

Now the correlation matrix αij is introduced as [29, 30, 31]

αij =

〈∫ L

0

dx′ΔBi(x, y, z)ΔBj(x
′, y, z)

〉
, (4.6)

where ΔB(r) = B(r) − 〈B〉 is the variation of the magnetic induction and angular
brackets denote the spatial average over the sample volume. The integral is taken
over the neutron transmission length L through the sample. Assuming αij ≡ 0 for
i �= j, the correlation function ξ is defined as

ξ =
∑

i

αii. (4.7)

With these quantities it can be shown that if there is no macroscopic magnetization
(〈B〉 = 0) the depolarization matrix is diagonal and under the assumption that
αij ≡ 0 for i �= j given by [29, 30, 31]

Dii = e−
γ2

v2 L{ξ−αii} i = x, y, z, (4.8)
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where γ = 1.83 × 108 s−1T−1 is the gyromagnetic ratio of the neutron and v =
1949 m/s the neutron velocity.

The phenomenon that for magnetically isotropic media the depolarization de-
pends on the orientation of the polarization vector with respect to the propagation
direction of the neutron beam, is known as intrinsic anisotropy. The origin of this
intrinsic anisotropy is that the line integral of the demagnetization fields around
magnetized volumes in the sample along the neutron trajectory is not isotropic due
to ∇·B = 0. In the following it will be assumed that the demagnetization fields are
negligible for needle-shaped magnetic domains.

When the sample shows a net magnetization, the polarization vector will rotate in
a plane perpendicular to the magnetization direction. If the sample shape gives rise
to macroscopic stray fields, the rotation angle φ is related to the net magnetization
〈M〉 by

φ = η
γ

v
Lμ0〈M〉 = η

γ

v
Lμ0MS〈m〉, (4.9)

where η is a geometrically factor given in Eq. 4.51 in the Appendix for a rectangular-
shaped sample and 〈m〉 = M/MS the reduced sample magnetization in terms of
the saturation magnetization MS = MS(T ). If the mean magnetic induction 〈B〉
in the sample is oriented along the z axis, the depolarization matrix is, for φ 

(γ/v)2 |αxx − αyy|L/2 (the weak damping limit), given by [29, 30, 31]

Dxx = Dyy = e−
γ2

v2 L{ξ−αxx+αyy
2 } cos φ,

Dxy = −Dyx = e−
γ2

v2 L{ξ−αxx+αyy
2 } sin φ,

Dzz = e−
γ2

v2 L{ξ−αzz},

Dxz = Dzx = Dzy = Dyz = 0.

(4.10)

With the net magnetization along the z axis, the rotation angle φ of the beam
polarization is obtained from the measurements by

φ = arctan

(
Dxy − Dyx

Dxx + Dyy

)
(4.11)

and ξ is calculated with
ξ = −v2 ln {det D} /2γ2L. (4.12)

As mentioned earlier, ND provides information about the mean-square direction
cosines of the magnetic induction vector in the (ferro)magnetic domains. These are
directly given by the quantities γi = αii/ξ (i = x, y, z), and can be estimated from
the measurements by

γi = 1 − 2 ln {Dii} / ln {det D} . (4.13)

This equation is only valid for those directions that show no net rotation of the
beam polarization.
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Figure 4.4: The diagonal elements of the measured depolarization matrix D for increasing
and decreasing temperature for UGe2. All other elements of the depolarization matrix are
zero within the experimental uncertainty. For Dxx and Dyy the experimental uncertainty
is within the symbol size.

4.2.4 Results

Measurements in zero field

In Fig. 4.4 the diagonal elements of the depolarization matrix are shown for UGe2

measured in zero magnetic field. All off-diagonal elements are zero within the ex-
perimental uncertainty in the studied temperature range. The measurements for
increasing temperature are qualitatively the same as those for decreasing tempera-
ture, as expected.

The Curie temperature of TC = 52 K is clearly indicated in Fig. 4.4 by the kink
in Dxx and Dyy. Note that Dxx ≡ Dyy below TC indicates that there is no intrinsic
anisotropy and hence that the magnetic domains produce virtually no stray fields.
Furthermore, Dzz ≈ 1 indicates that all moments are oriented along the a axis.

Measurements in small field

In Fig. 4.5 the determinant of the depolarization matrix detD and the rotation
angle φ are shown after passage through the sample for measurements in fields of,
respectively, 4 and 8 mT (after zero-field cooling). The data of φ have been corrected
by subtracting the mean value above TC, since this rotation is merely due to the
applied field.

At low temperatures the magnetic fields (applied after zero-field cooling) are
too small to fully align the magnetic domains. Therefore, the measurements for
increasing and decreasing temperature do not yield the same results. Whereas for
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Figure 4.5: The determinant of the measured depolarization matrix detD and the rota-
tion angle φ of the beam polarization after passage through the sample of UGe2 in 4 and
8 mT for increasing and decreasing temperature.

increasing temperature the rotation shows an increase, for decreasing temperature
the data represent a monotonous magnetization curve, as expected for a field-cooled
ferromagnet. Close to TC there is no difference between field cooling or field warming.

Figure 4.5 shows that, below TX, the depolarization for 4 mT is at the same
level as for 0 mT. Above TX, however, extra depolarization occurs. This means
the system gets more inhomogeneous, i.e., the domains grow and the magnetic
correlation length increases (ξ in Eq. 4.10), leading to extra depolarization. Close to
TC the depolarization disappears because the magnetic moment decreases sharply.
For decreasing temperature the determinant has the same shape as in the case of
0 mT. At 8 mT the determinant is already reduced below TX, indicating larger
domains.

Again, the Curie temperature of TC = 52 K is clearly indicated by the kink in
det D and φ. Also note the abrupt increase in φ around TX ≈ 20 K. Evidently the
system passes, with increasing temperature, from a strongly polarized phase to a
weakly polarized phase, as reported earlier [109].

4.2.5 Discussion

Model

The measurements confirm that UGe2 is a highly anisotropic uniaxial ferromagnet.
Furthermore, the magnetic domains are long compared to their (average) width,
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because Dxx ≡ Dyy indicates relatively weak stray fields produced by the magnetic
domains. This allows the assumption B(r) = μ0M(r) inside the domains. In order
to analyze the data a model is considered where the sample is split into N long
needles along the a axis with a fixed width Δ and a magnetic induction BS = μ0MS

along the a axis. With N↑ (N↓) the number of domains with a magnetic induction
pointing upward (downward), the reduced macroscopic magnetization of the sample,
pointing along the z direction, can be defined as

〈mz〉 =
N↑ − N↓
N↑ + N↓

=
〈Bz〉
BS

. (4.14)

Each needle will have magnetic induction ↑ or ↓ with probability p↑ = (1 + 〈mz〉)/2
and p↓ = (1 − 〈mz〉)/2, respectively. The polarized neutron beam traversing the
sample will therefore see a binomial distribution of ↑ and ↓, which results in a
depolarization matrix D with elements

Dxx = Dyy = e−
γ2

v2

B2
SL

2
Δ(1−〈mz〉2) cos

(
γBSL

v
〈mz〉

)
,

Dxy = −Dyx = e−
γ2

v2

B2
SL

2
Δ(1−〈mz〉2) sin

(
γBSL

v
〈mz〉

)
,

Dzz = 1, (4.15)

and all other elements equal to 0. (Note that, since the macroscopic stray fields
have not been taken into account, the angle φ = γBSL〈mz〉/v should be corrected
by the factor of η (Eq. 4.9 and Eq. 4.51 in the Appendix) before calculating 〈mz〉 in
Eq. 4.15.)

Within this binomial distribution model it is easy to show that for the case
〈mz〉 = 0 the average ferromagnetic domain size d is equal to 2Δ. Given a domain
wall (i.e., two adjacent needles with an opposite magnetic induction), the proba-
bility of forming a domain of n needles is

(
1
2

)n
and the average is calculated by∑∞

n=1 n
(

1
2

)n
= 2. When a field is applied, one has to distinguish between a domain

(with size d↑) in which the magnetic induction is parallel to the field and a domain
(with size d↓) with opposite induction. The probability of forming a domain of size
n is pn−1

↑ p↓ = pn−1
↑ (1 − p↑), which leads to d↑/Δ = 1/(1 − p↑) = 2/(1 − 〈mz〉).

Similarly, d↓/Δ = 2/(1 + 〈mz〉).
In order to estimate the domain-wall thickness δ it is assumed that mz changes

sinusoidally from +1 to −1 over a distance δ in the form of a Bloch wall. The
consequence is that Dzz is slightly less than 1 in the ordered state. For such a
domain wall it is straightforward to show that the domain-wall thickness δ can be
estimated by the mean square direction cosine along z

γz = 〈m2
z〉 = 1 − 1

2

(
δ

Δ

)
, (4.16)

which can be determined experimentally by Eq. 4.13.
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Figure 4.6: Calculated values of the reduced macroscopic magnetization 〈mz〉 and the
average ferromagnetic domain sizes with magnetic induction parallel (d↑) or antiparallel
(d↓) to the applied magnetic field of 4 and 8 mT in UGe2 for increasing and decreasing
temperature, respectively.

For the values of BS needed in Eq. 4.15, the experimental magnetic moment of
Ref. [114] is used, which is converted to magnetic induction, remembering there are
four formula units per unit cell. For the value of η in Eq. 4.9, η = 0.6 is used.

From Fig. 4.4 it is clear that the data for increasing and decreasing temperature
give slightly different results for the ferromagnetic domain size d in zero magnetic
field. The values found for d = 2Δ are 5.1(2) μm when cooling down slowly and
4.4(1) μm when heating up after fast cooling. Both values are independent of tem-
perature. These values indicate the domain size perpendicular to the a axis (along
the b axis). Along the a axis it is assumed that the domain size is much larger.

The magnetic domain-wall thickness δ divided by the magnetic domain size d =
2Δ is calculated with Eq. 4.16 from the experimental data in Fig. 4.4 and amounts
to δ/d = 0.047(23), independent of temperature. This gives δ = 0.22 μm. The size
of the domain-wall thickness is thus found to be only a minor fraction of the domain
size.

Analysis of the data in a small magnetic field (Fig. 4.5) with Eq. 4.15 gives
the results shown in Fig. 4.6 and Table 4.1. For 4 mT and increasing temperature
(after zero field cooling), the reduced magnetization 〈mz〉 remains equal to 0 up
to TX ≈ 20 K. As a consequence d↓ is equal to d↑ and of the same order of the
zero-field values. Above TX, however, the system gets magnetically soft and 〈mz〉
starts to increase linearly toward 0.7. Domain walls are expelled above TX, since
d↑ increases much faster than d↓. (Note the logarithmic vertical scale.) Although
d↑ gets of the order of 100 μm, d↓ only reaches 25 μm. When the domains grow
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Table 4.1: Ferromagnetic domain sizes in UGe2 for increasing temperature after zero-field
cooling (ZFC) and decreasing temperature in field (FC). The sizes of the domains with
magnetization parallel to the applied magnetic field is denoted by d↑ and the domains with
antiparallel magnetization by d↓. Below TX the domain sizes are temperature independent.
Above TX the domains grow. The values shown are at a few Kelvin below TC.

μ0H Temperature d↑ (μm) d↓ (μm) d↑ (μm) d↓ (μm)
(mT) incr./decr. T < TX T < TX T ≈ TC T ≈ TC

0 ZFC, incr. 4.4(1) 4.4(1) 4.4(1) 4.4(1)
0 FC, decr. 5.1(2) 5.1(2) 5.1(2) 5.1(2)
4 ZFC, incr. 3.9(1) 3.8(1) 100(20) 25(5)
4 FC, decr. 46.4(8) 9.5(2) 55(10) 13(2)
8 ZFC, incr. 17.9(2) 11.4(1) 85(20) 13(2)
8 FC, decr. 45(5) 8.2(1) 55(10) 15(5)

in width, at a certain moment it is no longer allowed to assume B(r) = μ0M(r)
because stray fields produced by the domains have to be taken into account. The
model, therefore, is no longer appropriate close to TC.

For field cooling in 4 mT, the system has 〈mz〉 = 0.668(1) for the whole temper-
ature range below TC. The values of the domain size are shown in table 4.1.

When after zero-field cooling a field of 8 mT is turned on, the sample does get a
macroscopic magnetization, in contrast to the case of 4 mT. Up to TX ≈ 20 K the
reduced magnetization 〈mz〉 = 0.221(2) is independent of temperature. Then 〈mz〉
starts to increase up to 0.718(3) around 30 K and is constant afterwards up to TC.
When cooling down in 8 mT, 〈mz〉 = 0.708(1) over the whole temperature range
below TC.

For field warming after zero-field cooling, the calculation of the domain sizes
yields unexpected temperature dependencies of the domain sizes above TX. As can
be seen in Fig. 4.6, according to the model the domain sizes grow above TX to
decrease in size again at higher temperature. Clearly there is another source of
depolarization, not accounted for by the model. Since the field is strong enough to
overcome the pinning energy (at least partly) of the magnetic domains to crystals
defects, additional depolarization arises from an inhomogeneous magnetic domain
structure.

If the domain width becomes relatively large compared to its length, stray fields
become important and the simple model assuming B(r) = μ0M(r) is no longer
valid. Calculation of the mean-square direction cosine γz along the z direction with
Eq. 4.13, indeed shows a decrease from unity above TX, indicating that the magnetic
induction B is not along the a axis throughout the sample. The model can of course
be improved if no longer a length/width ratio of infinity (no stray fields) is assumed
for the domains. The simple model together with the present measurements, how-
ever, do show that the magnetic domain sizes in zero field are a few micrometers and
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that by applying small fields the domains grow. The measurements in this Section
therefore indicate that the domain sizes in UGe2 at ambient pressure and down to
2 K are certainly larger than the 40 Å predicted by Nishioka et al. [117, 118].

In Fig. 4.4 it is shown that Dzz is less than unity below TC. This can be caused
by the domain walls, but can also be accounted for by a misalignment. A simple
calculation shows that a misalignment of 8◦ would fully account for the values of Dzz

below TC. The stated value of δ = 0.22 μm [or δ/d = 0.047(23)] should therefore be
regarded as an upper limit.

From the above considerations it is concluded that the domain structure of UGe2

behaves like in a conventional ferromagnet. The magnetic domain size largely ex-
ceeds the superconducting coherence ξsc length of the Cooper pair. The magnetic
domain boundaries can therefore only give secondary effects on the superconducting
order.

Comparison with Theoretical Predictions

Several interesting predictions have been made about the magnetic domain struc-
ture within the superconducting phase of superconducting ferromagnets. According
to Sonin [127] there is no equilibrium domain structure when the sample is in its
Meissner state (H < Hc1) and in the spontaneous vortex phase (Hc1 < H < Hc2) the
period of the domain structure would exceed the period found in the case that the
sample were non-superconducting under the same experimental conditions. How-
ever, calculations by Fauré and Buzdin [128] lead to contradicting conclusions. They
demonstrated that a domain structure is fully compatible with the Meissner state.
It was also shown that the domain structure in the superconducting phase is always
more dense than in the normal state, the density depending on the domain size d,
the domain wall thickness δ, and the London penetration depth λ(0) at T = 0 K.
Moreover, it was shown that the evolution of the domain size with temperature is
non-monotonous for triplet pairing superconductivity, in contrast to the monoto-
nous shrinkage of the domain size for singlet pairing superconductivity. Further
discussions can be found in Refs. [129, 130].

For the present study, the main question is whether a shrinking or growing of the
ferromagnetic domains in the superconducting phase of UGe2 (and URhGe and UIr)
can be observed experimentally. The equilibrium domain size is inversely propor-
tional to the saturation magnetization BS: d ≈

√
l/BS(T ), were l is the length of the

sample along the domains [131]. Despite of the temperature dependence of BS(T ),
the data presented in this Section strongly indicate a temperature independent mag-
netic domain structure. This observation can be attributed to the pinning of domain
walls to impurities, dislocations, and other crystal imperfections. If this pinning is
strong enough, it could prevent the domains to shrink or grow when the material is
cooled. One could, however, try to use a simple trick to reach equilibrium magnetic
state in a sample. By applying a damped, slowly oscillating external magnetic field
along the easy axis, the equilibrium state could to be approached.
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The PANDA, the instrument on which the 3DND measurements were performed
(see Sec. 2.3) is not designed for measurements at dilution temperatures or at high
pressures. However, it would be interesting enough to perform similar measure-
ments on URhGe (superconducting at ambient pressure) at a neutron instrument
which does have the needed features (polarizer/analyzer and dilution cryostat). If
successful, the measurements have the possibility to distinguish between singlet and
triplet pairing superconductivity [128].

4.2.6 Conclusions

The ferromagnetic domain sizes of UGe2 were studied by means of three-dimensional
neutron depolarization at ambient pressure. It is concluded that the existence of
field-tuned resonant tunneling between spin quantum states [117, 118] is highly un-
likely. The requirement of this model is a ferromagnetic domain size of 40 Å, whereas
the measurements presented in this Section indicate a size a factor of 1000 larger.
The observed jumps in the magnetization should be attributed to a Barkhausen
effect as discussed by Lhotel et al. [132, 133]. The superconductivity, therefore,
exists within a single ferromagnetic domain. The domain walls are not expected
to strongly affect the bulk Cooper pair wave function, as suggested by Nishioka et
al. [117, 118], since the domain-wall size is less than a few percent of the average
domain size.

4.3 Muon Spin Rotation and Relaxation

4.3.1 Introduction

When superconductivity sets in at low temperature, conduction electrons condense
into Cooper pairs. In the reported ferromagnetic superconductors, the electronic
pairing mechanism needed for superconductivity is believed to be magnetic in ori-
gin. It is therefore important to investigate the magnetic properties of UGe2 and
specifically of its conduction electrons.

Several theoretical studies have been performed to explain the coexistence of
superconductivity and ferromagnetism. Most studies use the itinerant nature of
the ferromagnetism as a starting point. These have indeed shown the possibility
of (spin-triplet) superconductivity in a ferromagnetic material [89, 90, 91, 92]. In
these studies the electrons forming the Cooper pairs are also responsible for the
strong ferromagnetism, which can be explained by the spin-triplet nature of the
superconductivity. Other studies [100, 101], however, have shown that spin-singlet
superconductivity is still feasible under the constraint that conducting electrons
involved in the superconductivity and localized electrons involved in the ferromag-
netic order belong to different subsets of 5f electrons. The pairing mechanism is
then based on the interaction of electron spins via localized magnetic moments.
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In order to determine which pairing mechanism is most probable, it is impor-
tant to quantify the magnetic properties of the conduction electrons. As muons
localize in interstitial sites and are very sensitive to magnetic fields whatever their
origin (localized or itinerant magnetic moments), the muon spin rotation or relax-
ation technique (μSR) yields information on the itinerant electrons and associated
magnetism.

4.3.2 Experimental

Two different samples were used in the μSR study of UGe2. A new single-crystalline
sample of UGe2 has been grown from a polycrystalline ingot using a Czochralski tri-
arc technique. Afterwards it was annealed at 800 ◦C for one week. For the high
pressure measurements a cylinder with a diameter of 5 mm and a length of 18 mm
was cut from the single crystal. The crystal was oriented in such a way, that the
initial muon polarization Sμ(0) was perpendicular to the easy magnetic axis, the
a axis. For measurements at ambient pressure a sphere with a diameter of 4.5 mm
was cut from the cylinder. This sphere was used to measure the muon Knight shift.
The applied field Bext = 0.6000 T was perpendicular to the initial muon polarization
Sμ(0). For the two angular scans the sphere was rotated around the b or c axis at
65 K. For the three temperature scans in the range 65 K to room temperature, Bext

was parallel to the a, b, and c, respectively. Further, the sphere was used to measure
the critical dynamics of UGe2 at ambient pressure on the GPS spectrometer in PSI.
This first sample will be referred to as “sample A” in the rest of this Chapter.

The second sample is identical to the one used in the previous Section on three-
dimensional neutron depolarization and in Ref. [134]. Here the critical dynamics
of UGe2 were studied at ambient pressure on the EMU spectrometer at ISIS. The
crystal has been grown from a polycrystalline ingot using a Czochralski tri-arc tech-
nique. No subsequent heat treatment was given to the crystal. This second sample
will be referred to as “sample B” in the rest of this Chapter.

For the measurements under pressure a pressure cell was used, made of non-
magnetic copper-beryllium (Cu-Be 25 1/2HT). In Fig. 4.7 an overview of the pres-
sure cell is shown. Since teflon gives a quite large μSR signal [135], the sample could
not simple be put in a teflon cup. Therefore a different design was made by D. An-
dreica [135]. The teflon cup is still used (in combination with a gasket) in order to
prevent leakage of the pressure liquid, but it is kept away from the sample space.
In this way, the number of materials giving a background signal is reduced to one,
namely the Cu-Be pressure cell. The muons stopped in the cell give a background
signal which is well described by the Kubo-Toyabe function

PKT(ΔG, t) =
1

3
+

2

3

(
1 − Δ2

Gt2
)
exp

(
−1

2
Δ2

Gt2
)

. (4.17)

This function has its origin in static magnetic fields with a Gaussian field distribution
with a width of ΔG/γμ. The static magnetic field comes from the nuclear magnetic
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Figure 4.7: Overview of the pressure cell used for the muon experiments under pressure.
Different parts of the cell are indicated in the figure. For details, see the main text and
Ref. [135].

moments of 63Cu, 65Cu, and 9Be. Below 40 K, ΔG is temperature independent
and equal to 0.345 (2) μs−1. Above 40 K there is a decrease to 0.333 (3) μs−1 at
100 K due to muon diffusion, while above 100 K a fit with Eq. 4.17 is no longer
correct. The pressure was applied with the help of a manual hydraulic press. The
pressure transmitting medium was a 1:1 mixture of n-pentane and isoamyl alcohol.
For further details on the pressure cell, see Ref. [135].

The pressure is determined by measuring the a.c. susceptibility χac as a function
of temperature of a piece of lead which is at the bottom of the pressure cell. χac shows
a sharp drop as soon as the lead gets superconducting. Here the superconducting
transition temperature Ts, which determines the pressure P by the formula Ts =
7.2 − 0.364 × P [136] with P in GPa, is defined as the midpoint of this drop. An
example is shown in Fig. 4.8. Here it is estimated that P = 0.92 GPa. Measurements
of critical dynamics have been performed at this pressure.

The μSR measurements described in this Section have been performed on the
General Purpose Surface-Muon (GPS) and General Purpose Decay-Channel (GPD)
spectrometers at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. GPS
uses surface muons, obtained from pions decaying at rest near the surface of the
production target. The beam is fully polarized and monochromatic, with a kinetic
energy of 4.1 MeV. Due to this small energy, the beam has a stopping range of
around 160 − 200 mg/cm2. The GPD is a high-energy muon beam line. Muons are
generated in bunches at a rate given by the frequency of the accelerator (50.64 MHz
at PSI). Although the bunch structure is smeared out during the transport of the
beam to the sample, it is still visible in the μSR spectra as an oscillating accidental
background. In the analysis of the spectra additional oscillating terms are required,
with frequencies equal to the accelerator frequency and higher harmonics. The
penetration depth of this type of beam is larger than that of the surface beam and
should therefore be used when studying samples within pressure cells.
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Figure 4.8: The pressure inside the pressure cell is determined by measuring the a.c.
susceptibility of a piece of lead at the bottom of the pressure cell, just below the sample.
See the main text for details. From this measurement P ≈ 0.92 GPa is found.

4.3.3 Results

Ambient pressure: Knight shift measurements on GPS

The muon frequencies νμ induced by an external magnetic field Bext = 0.6000 T
were measured above the Curie temperature (TC ≈ 52 K) as a function of the
temperature T and the sample rotation angle φ on the GPS spectrometer. The
measured frequencies differ from νBG = (γμ/2π)Bext = 81.32 MHz where γμ =
851.62 Mrad s−1T−1 is the gyromagnetic ratio of the muon. The muon Knight
shift K

K =
νμ − νBG

νBG

(4.18)

follows from Kμ in Eq. 2.27 by assuming that Bext ‖ Bloc, with Bloc the local mag-
netic field at the muon site. The principles of muon Knight shift measurements are
discussed in Sec. 2.2.5. The initial muon polarization Sμ(0) is rotated perpendicular
to the longitudinal magnetic field Bext (see Fig. 2.2).

Two angular scans have been performed along the b or c axis. For the choice
of the temperature T > TC a compromise had to be made between maximization
of the Knight shift (closer to TC) and minimization of the depolarization rate λX

of the induced muon frequencies νμ (away from TC). A temperature of T = 55 K
turned out to yield spectra with the best quality. A few Fourier transforms of the
spectra recorded during the angular scan around the c axis are shown in Fig. 4.9
as an example. Three frequencies are observed in the Fourier transforms. The
background signal at νBG is indicated by the vertical dashed line. The two other
signals come from muons stopped in the UGe2 sample and show a strong angular
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Figure 4.9: Examples of Fourier transforms of recorded μSR spectra. The angular
dependence of the muon frequencies was measured at 55 K by rotating a sphere of single-
crystalline UGe2 around the c axis in a field of Bext = 0.6 T perpendicular to the rotation
axis. In turn, the initial muon spin polarization Sμ(0) was perpendicular to both the mag-
netic field and the rotation axis. Three frequencies are observed in the Fourier transforms.
The background signal at νBG = 81.39 MHz is indicated by a dashed line. The other two
signals come from muons stopped in the sample and show a strong angular dependence.
For φ = 240◦, the signal of the lower component is mixed with the background signal.
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Table 4.2: Fitted values for ν0,i and Δνi in Eq. 4.20.

rotation around rotation around
b axis c axis

i = 1 i = 2 i = 1 i = 2

ν0,i (MHz) 81.36 (2) 81.51 (4) 81.24 (3) 81.57 (4)

Δνi (MHz) -0.58 (4) 5.77 (6) -0.44 (5) 5.72 (6)

dependence. This points to two muon stopping sites in UGe2, as confirmed by the
measurements of spontaneous muon frequencies below TC in zero magnetic field.

Since three frequencies are observed for all the spectra, the asymmetry a0P
exp
Z (t)

as a function of time t could be analyzed as a sum of three components:

a0P
exp
X (t) =

3∑
i=1

ai exp(−λX,it) cos (2πνit − φ) . (4.19)

The ratio of the asymmetries ai is equal to the ratio of the number of muons stopped
at site i. λX,i is the depolarization rate of frequency νi and φ accounts for the angle
between Sμ(0) and the detector. One frequency accounts for the background, due
to muons stopped e.g. in the sample holder, and is close to νBG = γ/2πBext =
81.32 MHz. The stray fields of the magnetized sample as well as a different value
for Bext can slightly shift this background. In the experiments νBG = 81.39 MHz
was found, which corresponds to a field of 0.6005 T at the muon site. The two other
frequencies are signals coming from muons stopped in the sample.

In Fig. 4.10 the measured muon frequencies are shown as a function of the ro-
tation angle φ around the b or c axis. The background signal shows no angular
dependence. The two other signals are 180◦ out of phase. The first signal shows a
relatively small and negative frequency shift, whereas the second one is large and
positive. As demonstrated by the full curves in Fig. 4.10, the angular dependence
of these two signals can be described very well by the function

νi = ν0,i + Δνi cos2 (φ − φ0) (4.20)

where φ0 depends on the orientation of the spherically shaped sample when inserted
into the cryostat. The values for the parameters ν0,i and Δνi can be found in
Table 4.2. It should be mentioned that, for both angular scans, the values for the
asymmetry a1 is always somewhat larger than those for a2 (0.12 vs. 0.10).

In addition to the angular scans, temperature scans have been performed with
Bext parallel to the a, b, and c axes. In the upper figure of Fig. 4.11 the Knight
shift K = (νμ − νBG)/νBG, measured with Bext ‖ a, is presented as a function of
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Figure 4.10: Angular dependence of the muon frequencies at 55 K. A sphere of single-
crystalline UGe2 was rotated around the b and c axis (upper and lower picture, respec-
tively) in a field of Bext = 0.6 T perpendicular to the rotation axis. In turn, the initial
muon spin polarization Sμ(0) was perpendicular to both the magnetic field and the rota-
tion axis. The full lines are fits to Eq. 4.20. The error bars of the frequencies are within
the symbol size. The background signal at νBG = 81.39 MHz is shown as well and fit to a
straight line.
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the bulk susceptibility χa (a Clogston-Jaccarino plot) for reasons explained below
Eq. 2.28. Here the temperature T is an implicit parameter. The susceptibility has
been measured on the same spherically shaped sample as the Knight shift measure-
ments have been performed on, at the same temperatures and in an applied field of
0.6 T parallel to the a axis. The data have been corrected for the demagnetization
field. As in the case of the angular scans, the asymmetry a1 for the negative Knight
shift is slightly larger than a2 for the positive Knight shift, which indicates a larger
muon population (55 %) for the first muon site than for the second one (45 %).

The full lines represent linear fits to the data. It is seen that for both signals the
data are very well described by this linear relation, as predicted by Eq. 2.28. The
first signal is described by Ka

1 = −0.062 (1) χa − 0.00080 (3) and the second one by
Ka

2 = 0.591 (4) χa + 0.0010 (2).
In the lower two figures of Fig. 4.11 the Knight shifts, measured with Bext ‖ b

or Bext ‖ c, are presented as a function of the bulk susceptibilities χb and χc,
respectively, for varying temperature. The susceptibility has been measured on
the same spherically shaped sample as the Knight shift measurements have been
performed on, at the same temperatures and in an applied field of 0.6 T parallel to
the b axis or c axis. The data have been corrected for the demagnetization field.
Comparing the asymmetries of the two signals per direction of Bext, it is possible to
identify which curves stem from one muon site and which from the other. As in all
previous cases the asymmetry a1 for the negative Knight shift is slightly larger than
a2 for the positive Knight shift, indicating a larger fraction of the muons coming to
rest at the first muon site than at the second.

Comparing the horizontal (χi) and vertical (Knight shift) scales in Fig. 4.11, it
is clearly seen that there is a two orders of magnitude difference between the values
for Bext ‖ b and Bext ‖ c on the one hand and Bext ‖ a on the other hand. The small
values for Bext ‖ b and Bext ‖ c make it difficult to obtain an accurate determination
of the Knight shift.

The sharp drop of the Knight shift for Bext ‖ b for low values of χb probably
indicates the start of muon diffusion. This happens at temperatures T > 66 K. For
Bext ‖ c it is less clear at which temperature the muon starts to diffuse. It is assumed
that for both directions of Bext the muon starts to diffuse through the sample at the
same temperature. Therefore, the data points for T > 66 K should not be taken into
account when fitting the data. In Fig. 4.11 the linear fits are shown. For Bext ‖ b it is
found that Kb

1 = 0.074 (21)χb−0.00066 (7) and Kb
2 = 0.081 (17)χb+0.00061 (2). For

Bext ‖ c, Kc
1 = −0.080 (37)χc − 0.00207 (1) and Kc

2 = −0.040 (25)χc + 0.00174 (4)
is obtained. The larger error bars for Kc

i than for Kb
i is caused by the difference in

the amount of data points that could be used in the fit.
Since the muon is assumed to start diffusing for T > 66 K, it would be expected

to observe a deviation from the linear relation between the Knight shift K and the
susceptibility χ for B ‖ a, as for the cases B ‖ b and B ‖ c. In the upper panel
of Fig. 4.11, the three data points per curve with the smallest χa were measured at
a temperature T > 66 K. In contrast to B ‖ b, c, no deviation is observed from a
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Figure 4.11: Clogston-Jaccarino plot of the muon Knight shift for Bext ‖ i (where
i = a,b, c) as a function of the magnetic susceptibility χ. The muon Knight shift Ki is
plotted versus the bulk susceptibility χi with the temperature T as an implicit parameter.
Both quantities were measured in a magnetic field of Bext = 0.6 T and on the same
spherically shaped sample and for each direction of Bext at the same temperatures.
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linear relation. Including or excluding these data points in the fits does no change
the linear equations found above.

High pressure: spontaneous frequencies νμ and depolarization rates λX

The spontaneous frequencies νμ below TC and the associated depolarization rates λX

were measured in zero magnetic field as a function of temperature T at several pres-
sures P . The sample was oriented in such a way, that the initial muon polarization
Sμ(0) was perpendicular to the a axis. As explained in Sec. 4.3.2 for measurements
that are performed on the GPD spectrometer, two oscillating background signals
were present in N(t), the number of detected positrons at time t. N(t) can there-
fore be written as (see also Eq. 2.5)

N(t) = N0

{
e−t/τμ

[
1 + a0P

exp
X (t)

]
+ fbg

[
1 +

2∑
i=1

fi cos(2πνbg,it − φ)
]}

+ b (4.21)

where τμ is the muon life time (Table 2.1), νbg,1 = 50.64 MHz, νbg,2 = 101.28 MHz
(higher harmonic), and b is a time independent background. Besides the two in-
strumental background signals νbg,1 and νbg,1, a Kubo-Toyabe function PKT(ΔG, t)
(Eq. 4.17) accounting for the signal from the pressure cell was observed. The UGe2

sample itself gave two spontaneous frequencies ν1 and ν2 with associated depolar-
ization rates λX,1 and λX,2, in accordance with the Knight shift measurements.
Therefore, a0P

exp
Z (t) could be written and analyzed as a sum of three components:

a0P
exp
X (t) =

2∑
i=1

ai exp(−λX,it) cos (2πνit − φ) + a3PKT(ΔG, t). (4.22)

The ratio of the asymmetries ai, i = 1 . . . 3, is equal to the ratio of the number of
muons responsible for signal i. a3 is roughly 3/4 of a0. a1 and a2 are roughly equal,
although it should be mentioned that a1 is slightly but significantly larger than a2

(55 % vs. 45 %), for all measured temperatures and pressures. This indicates that
the first muon site is more populated by muons than the second site. This was
also the case for the Knight shift measurements. Therefore, different signals can be
associated with either of the two muon sites.

In Fig. 4.12 the two measured muon frequencies νi and associated depolarization
rates λX,i are shown as a function of temperature for several pressures up to 1 GPa.
The frequency curves resemble magnetization data under pressure [114]. In this
Section the Curie temperature TC(P ) is defined as the temperature at which the
spontaneous frequencies disappear. Below TC, ν1 and ν2 increase monotonously, to
reach a saturation level at low temperatures. At higher pressures it is seen that
there is a kink in the curve. The temperature at which this kink occurs, is named
TX . The values of TC and TX are in good agreement with the values known from
literature [114]. At low temperatures, the saturation level of ν2 is strongly dependent
on pressure, whereas ν1 remarkably shows no significant pressure dependence.
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Figure 4.12: The two spontaneous frequencies ν1 and ν2 and associated depolarization
rates λX,1 and λX,2 as a function of temperature and different pressures in UGe2. The
asymmetry for the first signal (a1) is slightly larger than for the second (a2), for all
temperatures and pressures. The frequency ν2 shows a much larger pressure dependence
than ν1. At higher pressures a peak in λX occurs below TC.
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The depolarization rates λX,1 and λX,2 show for all pressures a large increase as
TC is approached. Note the logarithmic vertical scales. The curves for 0 GPa look
rather conventional: λX,i decreases with decreasing temperature. However, as the
pressure is increased, a peak starts to develop at the temperature TX at which a
kink in the frequency curve occurs. This development of a peak is particularly clear
in λX,2, but less clear in λX,1. For 1.0 GPa, however, the peak is evident for both
depolarization rates. It should also be noticed that the curves of λX,1 and λX,2 shift
to higher values as pressure increases. In Sec. 4.3.5 the origin of the peak will be
discussed further.

Ambient and high pressure: critical fluctuations

In this Section the data obtained in the critical regime, close to TC, are discussed. Re-
member two samples were used in the study of the critical dynamics (see Sec. 4.3.2).
Data at ambient pressure, recorded at the EMU spectrometer of the ISIS facility
on sample B, were already published elsewhere by Yaouanc et al. [134]. The data
measured in the pressure cell at ambient pressure on the GPD spectrometer at PSI
on sample A and presented in this thesis, yielded qualitatively very similar results,
although there were some quantitative differences. Therefore, sample A was remea-
sured on GPS at ambient pressure. This was done to check whether the quantitative
difference stems from the fact that measurements were performed on different instru-
ments (EMU ↔ GPD) with different, probably not perfectly described backgrounds,
or from the fact that sample B used in Ref. [134] was not the same as sample A,
the sample newly grown for the μSR measurements described in this thesis. It is
important to understand what the origin is for this quantitative difference, in order
to reliably compare the ambient and high pressure data obtained in the pressure cell
at GPD. For completeness all results, including those published in Ref. [134], will
be discussed here.

Measurements on EMU

The EMU data [134] at ambient pressure are discussed first. All the recorded spectra
of the asymmetry a0P

exp
Z (t) as a function of time t could be analyzed as a sum of

two components:
a0P

exp
Z (t) = asPZ(t) + abg. (4.23)

PZ(t) and P exp
Z (t) are functions normalized to unity for t = 0. The first component

describes the μSR signal from the sample and the second accounts for the muons
contributing to the background, that were stopped in e.g. the sample holder. At
the time of the measurements, the fly-past mode was not yet available, leading to
relatively high backgrounds. This second component is time independent. In zero
field and for the two orientations of Sμ(0) relative to the easy magnetic axis a, PZ(t)
is well described by an exponential function PZ(t) = exp(−λZt), where λZ measures
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Figure 4.13: Examples of μSR spectra recorded in zero field and in longitudinal magnetic
fields at T = 52.59 (2) K (above TC = 52.49 (2) K) for Sμ(0) ⊥ a. The solid lines are fits
to Eq. 4.23. Note the field dependence of PZ(t) for small fields. The figure is taken from
Ref. [134].

the spin-lattice relaxation rate at the muon site. In non-zero field, PZ(t) can be best
described by PZ(t) = PZ(ΔLor, νf , t). Here it is assumed that the distribution of Bloc

is squared Lorentzian [137]. ΔLor characterizes the width of the field distribution
and νf denotes the fluctuation rate of the magnetic field. Examples of the spectra
in zero and non-zero field are presented in Fig. 4.13.

The temperature dependence of λZ(T ) in zero field is shown in Fig. 4.14. For both
geometries, λZ(T ) shows a maximum at TC, which is due to the critical slowing down
of the spin dynamics. The Curie temperature TC was defined as the temperature
at which the spontaneous frequencies disappear. This gave TC = 52.49 (2) K. The
anisotropy between the μSR signal for the two orientations is very weak, unlike the
strong anisotropy of the bulk magnetization in UGe2. The solid and dashed lines in
the inserts are fits to the dipolar Heisenberg model in Eq. 4.32 to be discussed in
Sec. 4.3.4. Note that for magnetic fields as small as 2 mT the depolarization almost
completely vanishes (see Fig 4.13). For large magnetic moments of 1.4 μB in the
case of UGe2, this is totally unexpected. For such large moments it is expected that
the fluctuation energy is much larger than the magnetic energy corresponding to an
applied field of 2 mT.

Measurements on GPD

The measurements of the critical paramagnetic spin dynamics at high pressure were
performed on the GPD spectrometer at P = 0.95 (2) GPa. The pressure was chosen
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Figure 4.14: The spin lattice relaxation rate λZ versus temperature T for Sμ(0) ⊥ a and
Sμ(0) ‖ a at ambient pressure in zero magnetic field. The measurements were performed on
the EMU spectrometer at the ISIS facility. A very sharp strong increase in λZ is observed
at TC = 52.49 (2) K. The inserts display λZ versus reduced temperature τ = (T −TC)/TC.
The solid and dashed lines are the results of fits to the model discussed in Sec. 4.3.4.
Figure taken from Ref. [134].

to be below 1.2 GPa because the paramagnetic to ferromagnetic phase transition
in UGe2 changes around this pressure from second to first order [116]. Since the
theory used in Sec. 4.3.4 to analyze the critical data is only valid for second order
phase transitions, it was required to be certain to stay below the transition point
where the order changes. Unfortunately, only the Sμ(0) ⊥ a orientation could be
measured in the pressure cell. This prevented a determination of the anisotropy in
λZ(T ) at high pressures.

In Fig. 4.15 experimental data are shown at 0.95 (2) GPa for different tempera-
tures. All the recorded spectra of the asymmetry a0P

exp
Z (t) as a function of time t,
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Figure 4.15: Examples of μSR spectra for Sμ(0) ⊥ a at 0.95 (2) GPa in zero field
for T = 39.03 (1) K and T = 36.511 (6) K. With TC = 36.48 (1) K these temperatures
correspond to reduced temperatures of τ = (T − TC) /TC = 0.0700 (4) (open symbols)
and 0.0007 (3) (solid symbols), respectively. The solid lines are fits to Eq. 4.24. The
dashed line shows the background arising from the pressure cell.

recorded under a pressure of 0.95 (2) GPa above TC, could be analyzed as a sum of
two components:

a0P
exp
Z (t) = a1 exp (−λZt) + a2PKT(ΔG, t). (4.24)

Here PKT(ΔG, t) is the Kubo-Toyabe function given by Eq. 4.17 and accounts for
the background arising from the pressure cell. The second term stems from the
UGe2 sample, where λZ measures the spin-lattice relaxation rate at the muon site.
For the fit λZ was free and the other parameters fixed to a1 = -0.073, a2 = -0.183,
ΔG = 0.345 μs−1 for the first detector (not shown) and a1 = 0.070, a2 = 0.189, ΔG

= 0.345 μs−1 for the second detector (shown). The ratio of a1 and a2 is equal to
the ratio of the number of muons stopped in the sample and in the pressure cell.
The upper solid line in Fig. 4.15 is a fit the data measured at a temperature far
above TC with τ = (T − TC) /TC = 0.0700 (4) and the lower solid line is a fit to data
recorded close to TC with τ = 0.0007 (3). The dashed line shows the temperature
independent background a2PKT(ΔG, t).

In Fig. 4.16 the temperature dependence of λZ(T ) is displayed. λZ(T ) is mea-
sured at ambient pressure (in the pressure cell) and at 0.95 (2) GPa, both in zero
field. For both pressures, λZ(T ) exhibits a maximum at TC. This is due to the criti-
cal slowing down of the spin dynamics. As before, TC was defined as the temperature
at which the spontaneous frequencies, which appear below TC, disappear. At am-
bient pressure TC = 52.16 (1) K is obtained and TC = 36.48 (1) K at 0.95 (2) GPa.
The solid lines in the lower plot of Fig. 4.16 are again fits to the dipolar Heisenberg
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Figure 4.16: (Upper frame) The spin lattice relaxation rate λZ versus temperature for
ambient pressure and a pressure of 0.95 (2) GPa in zero magnetic field and small fields.
In zero field there is a strong increase in relaxation rate just above TC = 52.16 (1) K
at ambient pressure and just above TC = 36.48 (1) K at 0.95 (2) GPa. It is also shown
that for a field as small as 5 mT the relaxation rate drops remarkably for both pressures.
(Lower frame) The spin lattice relaxation rate λZ as a function of the reduced temperature
τ = (T − TC) /TC for ambient pressure and a pressure of 0.95 (2) GPa in zero magnetic
field. The solid lines are fits to the model discussed in Sec. 4.3.4.
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model in Eq. 4.32 (see Sec. 4.3.4). The observed plateau for 0.95 (2) GPa is broader
than for 0 GPa.

The GPD spectra in small magnetic fields could be satisfactorily described by
the same model as for zero field (Eq. 4.24), i.e the sum of a Kubo-Toyabe function
accounting for the muons stopped in the pressure cell and an exponential function
accounting for the muons stopped in the UGe2 sample. The qualitative result is
that the relaxation rate is already quenched for very small magnetic fields. This is
shown for both pressures in the upper plot of Fig. 4.16. A mere 5 mT is enough to
suppress the relaxation rate.

Note the similarity between the insets of Fig. 4.14 and the lower plot of Fig. 4.16.
Both figures show clearly a saturation of λZ close to TC.

Measurements on GPS

The cylindrical sample A (used for the high pressure measurements of the spon-
taneous frequencies on GPD) was reshaped into a sphere of 4.5 mm diameter for
the Knight shift measurements as well as for the measurements on GPS of the crit-
ical dynamics. For both sample A and B, the recorded spectra of the asymmetry
a0P

exp
Z (t) as a function of time t could be analyzed as a sum of two components, as

indicated in Eq. 4.23. The signal from the UGe2 sample could be described by an
exponential function.

The temperature dependence of λZ(T ) in zero field, in the case of Sμ(0) ‖ a,
is shown in Fig. 4.17 for both sample A and B. For both samples λZ(T ) shows a
maximum at TC, which is due to the critical slowing down of the spin dynamics. The
Curie temperature TC was defined as the temperature at which λZ(T ) is maximum.
This gave TC = 52.20 (1) for sample A and TC = 52.27 (1) for sample B. It is clearly
seen that sample A shows a sharper transition than sample B. This may indicate
a higher sample quality, although it is surprising that TC is slightly lower, which
suggests the opposite.

The lower figure in Fig. 4.17 shows a plot of λZ(T ) versus the reduced temper-
ature τ = (T − TC)/TC. The solid lines are fits to the dipolar Heisenberg model
of Eq. 4.32 (see Sec. 4.3.4). The transition for sample B is indeed broader than
for sample A, as noted earlier. Since both samples are measured on the same in-
strument, the difference cannot originate from a wrongly modeled background or
from a difference in thermometry. Although the critical dynamics is qualitatively
reproducible, quantitatively there is a sample dependence.

The temperature dependence of λZ(T ) in zero field is shown in Fig. 4.18 for
Sμ(0) ⊥ a. Sample A was measured at GPD and at GPS. In the upper plot of
the figure it is seen that these results do not coincide perfectly. Since it is the same
sample, this effect should be considered instrument related. At GPD the background
was large (about 50 % of the total asymmetry) because of the pressure cell. At GPS
the background is much lower.
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Figure 4.17: (Upper frame) The spin lattice relaxation rate λZ as a function of tem-
perature for sample A and sample B in zero magnetic field. There is a strong increase
in relaxation rate when TC is approached. Sample A shows a sharper transition than
sample B. (Lower frame) The spin lattice relaxation rate λZ versus reduced temperature
τ = (T − TC) /TC for sample A and sample B, in zero magnetic field. The solid lines are
fits to the model discussed in Sec. 4.3.4.
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Figure 4.18: (Upper frame) The spin lattice relaxation rate λZ versus temperature for
sample A, measured on GPD and GPS, and sample B, measured on EMU, in zero magnetic
field. There is a strong increase in relaxation rate when TC is approached. Sample A
shows a sharper transition than sample B. Measuring sample A on GPD or GPS yields
slightly different results. (Lower frame) The spin lattice relaxation rate λZ versus reduced
temperature τ = (T − TC) /TC for samples A and B, in zero magnetic field. The solid
lines are the results of fits to the model discussed in Sec. 4.3.4.
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In the lower plot of Fig. 4.18 λZ(T ) is shown as a function of the reduced temper-
ature τ . Here it is seen that the transition for sample B is indeed broader than for
sample A. The solid lines are again fits to the dipolar Heisenberg model in Eq. 4.32.

In summary, it has been shown for both directions of Sμ(0) that at ambient
pressure there is a large qualitative similarity between the temperature dependencies
of λZ(T ) for sample A used in this thesis and sample B used in Ref. [134]. Measuring
the same sample A at different instruments yields slightly different results. In the
next Section the influence of the sample and instrument dependencies on the data
analysis will be investigated. In spite of the sample and instrument dependencies
of the results on the critical dynamics in UGe2, the comparison between ambient
pressure and a pressure of 0.95 (2) GPa should be considered reliable, since here it
concerns a single experiment on the same sample at the same instrument for different
pressures.

4.3.4 Analysis

Ambient pressure: Knight shift

According to Eq. 2.28 the relation between the muon Knight shift K i and the atomic
susceptibility χi, with i = {a,b, c}, is given by

Ki =

[
Cii (q = 0) −N ii +

(
rμH

4π

)]
χi + APχP. (4.25)

Here C(q = 0) is the tensor that couples the U magnetic moments m to the magnetic
field B′

dip + BL (Eq. 2.24) at the muon site. N ii is the demagnetization factor which
depends on the shape of the sample and the orientation of the external field Bext

with respect to the sample. Because a spherically shaped sample of UGe2 was used
during the experiments, N ii = 1/3 for all measurements. The experimental values
found in Sec. 4.3.3 for dKi/dχi for both muon sites are summarized in Table 4.3.
The last term in Eq. 4.25, the Pauli contribution, plays no role in the analysis. The
first signal has a slightly larger asymmetry than the second one.

The coupling tensor C(q = 0) has the special property that it has a trace equal
to unity. Assuming the contact term rμH/(4π) to be isotropic the following relation
holds: ∑

i

dKi

dχi

= 3
rμH

4π
. (4.26)

With this equation, the contact coupling term (rμH/4π) is calculated and the di-
agonal elements of the coupling tensor C(q = 0) can be determined. They are
presented in Table 4.3 for both signals. (rμH/4π) is negative for the first signal, but
positive for the second. A positive contact term is unusual. In e.g DyNi5 [138] and
in Fe and Ni [27] it is negative. The values of C(q = 0) should be compared to the
calculated ones in order to be able to determine the muon sites.
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Table 4.3: Experimental coupling parameters for the two muon sites in UGe2. The
contact term rμH/(4π) is assumed to be isotropic.

i a b c

dKi/dχi -0.062 (1) 0.074 (21) -0.080 (37)

signal 1 rμH

4π
-0.023 (14) -0.023 (14) -0.023 (14)

Cii 0.294 (14) 0.430 (25) 0.276 (40)

dKi/dχi 0.591 (4) 0.081 (17) -0.040 (25)

signal 2 rμH

4π
0.211 (10) 0.211 (10) 0.211 (10)

Cii 0.713 (11) 0.203 (20) 0.082 (27)

In UGe2 several interstitial positions with a high symmetry are available. These
are the best candidates for muon stopping sites. Table 4.4 contains the coupling
tensors C (q = 0) for several candidate muon sites, calculated with Eq. 2.22. The
dipolar interaction is very anisotropic and therefore the coupling tensor has a very
strong muon-site dependence. It is clearly seen, that the experimental coupling
tensor for the first signal show good agreement with the calculated tensor for the
site 2b.

Even better agreement could possibly be accomplished by assuming a slightly
non-isotropic contact term. This possibility has been addressed in Ref. [139] for
several compounds, as well as the temperature dependence of (rμH/4π). The tem-
perature dependence of the contact term in UGe2 below TC will be discussed shortly.
Other possibilities will not be discussed any further in this thesis.

Unfortunately, the second signal is not in agreement with any of the high-
symmetric interstitial positions. In order to find the second muon site, a systematic
scan through the UGe2 unit cell is required. The corresponding coupling tensor
should be diagonal as well, which can be seen from the angular scans. The full
angular dependence of Ki for the rotation of the external field Bext in the a − c
plane can be written, with N ii = 1/3, as [140]

Ki(φ) =

{(
Caa − 1

3
+

rμH

4π

)
χa −

(
Ccc − 1

3
+

rμH

4π

)
χc

}
cos2 φ

+

(
Ccc − 1

3
+

rμH

4π

)
χc +

1

2
(χa + χc) Cac sin 2φ (4.27)

where φ is the angle between Bext and the a-axis. For the rotation of Bext in the
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Table 4.4: Calculated dipolar coupling tensors C (q = 0) at several candidate stopping
sites for the muon in UGe2. The basis for the tensor is equal to the basis of the crystallo-
graphic unit cell.

Site Coupling tensor
C (q = 0)

2b (0,1
2
,0)

⎛
⎝0.251 0 0

0 0.453 0
0 0 0.296

⎞
⎠

2d (1
2
,0,1

2
)

⎛
⎝−0.635 0 0

0 2.308 0
0 0 −0.672

⎞
⎠

4e (1
4
,1
4
,0) (3

4
,1
4
,0)

⎛
⎝ 0.020 ±0.320 0
±0.320 0.194 0

0 0 0.785

⎞
⎠

4f (1
4
,1
4
,1
2
) (3

4
,1
4
,1
2
)

⎛
⎝ 0.285 ±1.570 0
±1.570 1.758 0

0 0 −1.043

⎞
⎠

4i (0,0.1539,0)

⎛
⎝−0.677 0 0

0 −0.712 0
0 0 2.390

⎞
⎠

4j (1
2
,0.1922,1

2
)

⎛
⎝1.615 0 0

0 0.197 0
0 0 −0.813

⎞
⎠

a − b plane it is written as

Ki(φ) =

{(
Caa − 1

3
+

rμH

4π

)
χa −

(
Cbb − 1

3
+

rμH

4π

)
χb

}
cos2 φ

+

(
Cbb − 1

3
+

rμH

4π

)
χb +

1

2
(χa + χb) Cab sin 2φ (4.28)

The maximum frequency shift was observed when Bext was parallel to the a-axis (see
also Fig. 4.10). Comparison with the above equations leads to the conclusion that
Cab and Cac should be zero, or at least quite small. This is supported by the fact
that the spontaneous frequencies below TC show a full asymmetry for Sμ(0) ⊥ a,
whereas no oscillations are observed for Sμ(0) ‖ a.

Spontaneous frequencies νμ

The experimentally observed values for rμH/4π and C(q = 0) can be used to calcu-
late the expected spontaneous frequencies at low temperatures. For a ferromagnet
in zero external field, the magnetic field at the muon site (Eq. 2.21) is generally
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Figure 4.19: Normalized muon frequencies (see Fig. 4.12) averaged over the two ob-
served muon sites (filled symbols) and normalized magnetization (open symbols, taken
from Ref. [114]) versus temperature. The data have been normalized to the lowest tem-
perature measured. The figure illustrates the empirical relation in Eq. 4.31. The lines
simple link the symbols.

calculated by

Bα
loc =

μ0

v

∑
β

[
Cαβ(q = 0) +

(
rμH

4π

)
δαβ

]
mβ (4.29)

where δαβ is the Kronecker delta and m the moment on the magnetic ions. Since
for UGe2 the U magnetic moments [107] as well as the local field at the two muon
sites (see above) are along the a axis this equation reduces to

Ba
loc =

μ0

v

[
Caa(q = 0) +

(
rμH

4π

)]
ma. (4.30)

Inserting the values for dKa/dχa = Caa − 1
3

+ (rμH/4π) from Table 4.3 and thus
assuming that the contact term rμH/4π remains constant below TC, yields ν1 =
9.68 (4) MHz and ν2 = 32.97 (14) MHz for m = 1.4 μB/U. A comparison with the
measured values, ν1 = 8.526 (5) MHz and ν2 = 49.036 (10) MHz (see Fig. 4.12),
shows that there is some discrepancy. This problem can be solved by assuming a
temperature dependent contact term. The other term, Caa(q = 0) is independent of
temperature. It turns out that both signals need, in absolute value, a larger contact
term at lower temperatures than at higher temperatures.

In Fig. 4.19 a remarkable scaling of the muon frequencies presented in Fig. 4.12 is
shown. The frequencies have been normalized with respect to the lowest temperature
measured and compared to the normalized magnetization [114]. For this scaling the
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empirical relation

M(T )

M(0)
=

1

a1 + a2

(
a1 ·

ν1(T )

ν1(T = 0)
+ a2 ·

ν2(T )

ν2(T = 0)

)
(4.31)

holds for pressures up to 1.0 GPa. Here a1 and a2 are the asymmetries of the
respective frequencies. The population distribution between the two muon sites is
about 55 %-45 %.

According to Eq. 4.30, together with νμ = (γμ/2π)Ba
loc, the normalized muon

frequencies νi should coincide with the normalized magnetization if and only if
the contact term rμH/(4π) is temperature independent (assuming Caa(q = 0) is
temperature independent). The experiments show they do not coincide. This can
be seen from the fact that the frequencies ν1 and ν2 (Fig. 4.12) are not proportional to
each other. However, Fig. 4.19 and Eq. 4.31 show that the average of the normalized
frequencies does coincide with the normalized magnetization. Inserting Eq. 4.30
into Eq. 4.31, it is clear that the contact terms for both muon sites are intimately

related. To quantify this relation, it can be assumed that, for T < TC,
(

rμH

4π

)
is

described by the sum of a constant term and a temperature dependent term Δi(T ),

i.e.
(

rμH

4π

)
i
(T ) = const. + Δi(T ). Here the value of const. is taken from Table 4.3

for T > TC and therefore, as an approximation, Δi(T ) ≈ 0 for T > TC. No further
assumptions are made about the exact temperature dependence of Δi(T ). Using
Eq. 4.30 and Table 4.3 for the values of Caa(q = 0), it follows from Eq. 4.31 and
νμ = (γμ/2π)Ba

loc that Δ2(T )/Δ1(T ) = −5.8, which is independent of temperature.

This is consistent with
(

rμH

4π

)
2
/
(

rμH

4π

)
1

= −9.2 (5.9) (see Table 4.3).

From Eq. 4.30 it is clear why the first signal in Fig. 4.12 shows a much smaller
pressure dependence than the second signal at low temperatures. From magnetiza-
tion data [114] it is known that the saturation magnetic moment hardly changes with
pressure up to 1.2 GPa. Therefore, any pressure dependence of the muon frequencies

at low temperatures should come from 1
v

(
Caa(q = 0) +

(
rμH

4π

))
. Remember that

Caa(q = 0) has two contributions, see Eq. 2.24. The first contribution is the Lorentz
field BL which originates from the uranium magnetic moments outside the Lorentz
sphere. These magnetic moments are treated as a continuous magnetization with
the Lorentz sphere as a non-magnetic cavity. The second contribution is the dipo-
lar field B′

dip which is a sum of dipolar fields from the uranium magnetic moments
within the Lorentz sphere. The volume v can be assumed constant in pressure.
With an estimated value for the compressibility κ = 0.01 GPa−1, the volume change

is about 1% up to 1 GPa. For the first signal, Caa(q = 0) +
(

rμH

4π

)
= 0.271 (1) is

close to 1
3

(the contribution of the Lorentz field) for the first signal. However, for the

second signal, Caa(q = 0) +
(

rμH

4π

)
= 0.924 (4) is much larger than 1

3
. This means

that the contribution B′
dip to Caa(q = 0) and the contact term

(
rμH

4π

)
is small for

the first signal and large for the second. This implies that any pressure dependence
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in B′
dip or in

(
rμH

4π

)
will have a much larger influence on the muon frequency ν2 than

on ν1. It should be noted that the pressure dependence of B′
dip is probably caused

by a relative displacement of the atoms under pressure [110].

Critical fluctuations at ambient pressure and at 0.95 (2) GPa

The theory of critical phenomena used to explain the data presented in Figs. 4.14,
4.16, 4.17, and 4.18 has been developed by Yaouanc et al. [27] and applies to μSR
measurements of the spin-lattice relaxation rate λZ(T ) in the vicinity of TC. In the
next two paragraphs a few features of this theory will be discussed.

The theory concerns continuous phase transitions, i.e. second order transitions.
As the critical temperature is approached, the fluctuations tend to slow down. This
slowing down process is expected to manifest itself in λZ(T ), which probes the dy-
namics, by a maximum at the ordering temperature. Although dipolar interactions
between magnetic ions are usually very weak relative to the Heisenberg interaction,
they gain importance near TC. This can easily be seen when one considers that
dipolar interactions are long-range in nature. In the critical regime only long wave-
length interactions (small q) are of importance. The Hamiltonian of the system is
a sum of the Heisenberg and dipole interactions. The temperature dependence of
λZ(T ) in the critical regime has been derived by static and dynamic scaling laws
from the mode coupling theory [27, 141, 142]. The model predicts

λZ = W
[
aLIL(φ) + aT IT (φ)

]
. (4.32)

Here L and T refer to the orientation (longitudinal or transversal) of the fluctua-
tion mode relative to its wave vector q. W is a non-universal constant. IL,T are
scaling functions (shown in Fig. 4.20), which in turn depend on the wave vector
dependent susceptibilities χL,T (q) and fluctuation rates ΓL,T (q). They account for
the longitudinal and transversal fluctuations. The temperature dependence follows
through φ = tan−1 (qDξ). Here ξ = ξ0 (|T − TC| /TC)−ν is the correlation length and
qD the dipolar wave vector, which determines the relative strength of the dipolar
and exchange interactions. For three-dimensional Heisenberg interactions the crit-
ical exponent amounts to ν � 0.69. The weighting factors aL and aT depend only
on the characteristics of the dipole and hyperfine fields at the muon site and in fact
determine the sensitivity to longitudinal or transversal fluctuation modes. It should
be stressed that when the measurements show a saturation in λZ(T ), mostly longi-
tudinal fluctuations play a dominant role in λZ [142]. In that case mainly modes
with q ≈ qD are probed.

It is now shown how the dipolar wave vector qD, the magnetic moment μ, and
the magnetic correlation length ξ0 = ξ(T = 2TC) can be determined from the
experiment. For a given muon site, the experimental value of W is known. The
theoretical value of W is obtained from mode coupling theory [27]:

W =
4π

3P
γ2

μ�

√
μ0kBTC

q
3/2
D

2μ
(4.33)
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Figure 4.20: The two functions IL,T (φ) versus 1/ tan(φ) = 1/(qDξ). The functions IL(φ)
and IT (φ) account for the contributions of the fluctuations, longitudinal and transverse
to the wave vector q, respectively, to the muon spin-lattice relaxation. qD is the dipolar
wave vector and ξ the correlation length. Only ξ depends on temperature. Figure taken
from Ref. [143].

where P = 5.1326, kB the Boltzmann constant, and μ is the magnetic moment.
From the same theory the fluctuation rate is predicted to be �Γ(q) = Ωq5/2 where
Ω is given in Ref. [27]. In the case mainly longitudinal fluctuations are probed in
the experiment, the observed dynamics is largely driven by fluctuations around qD

[142]. Then the fluctuation rate νf can be written as:

νf � Γ(qD) =
P

2π2�

√
μ0kBTC (2μ) q

3/2
D . (4.34)

Now qD and μ are calculated by

qD =

(
3π

2γ2
μμ0kBTC

· Wνf

)1/3

and μ =

(
8π3

�
2γ2

μ

12P 2
· νf

W

)1/2

(4.35)

From the calculated value of qD and the measured value of qDξ0, which determines
the width of the plateau for the longitudinal fluctuations, ξ0 is determined. For the
value of ξ0 in the case of T > TC, the symbol ξ+

0 will be used, and ξ−0 for T < TC.
The data of the relaxation rate λZ as a function of reduced temperature τ in

Figs. 4.14, 4.16, 4.17, and 4.18 have been fitted to Eq. 4.32. These fits are shown
in the figures as well. The extracted experimental parameters, the products qDξ+

0 ,
qDξ−0 , WaL, and WaT , are summarized in Table 4.5. The reason for measuring
both samples A and B also on GPS, was to explain the difference in fitting values
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at ambient pressure for Sμ(0) ⊥ a (qDξ+
0 = 0.021 (2) versus qDξ+

0 = 0.0052 (7)).
Several conclusions can be drawn from Table 4.5. First of all there is a dependence
on instrument. This follows from the fact that for sample B (Sμ(0) ‖ a) the values
of qDξ+

0 and qDξ−0 are about three times smaller on GPS than on EMU. Also sample
A shows slightly different results on GPD and on GPS. Second of all, there is a
sample dependence. Looking at the measurements on GPS (Sμ(0) ‖ a) sample B
has a larger qDξ+

0 than sample A.
Similar conclusions can be drawn for the weighting factor WaL and WaT . For

the Sμ(0) ‖ a orientation, the values for WaL seem to be in agreement with each
other. For Sμ(0) ⊥ a the difference is larger. Measuring the sample A at GPD (in
the pressure cell) yields larger values for WaL than at GPS. Sample B on EMU has
an even lower value. Unfortunately, this sample B was not measured at GPS. In
general, however, WaT is much smaller than WaL. Because of the small values for
WaT and the limited number of data points, it was difficult to get precise values.

In addition to the zero-field measurements, small longitudinal fields have been
applied at fixed temperature, i.e. parallel to Sμ(0). The relaxation rate λZ for
sample B, measured on EMU, was almost completely suppressed for fields as small
2 mT [134]. For sample A, measured at GPD, the relaxation rate was suppressed
for 5 mT at both ambient pressure and at 0.95 (2) GPa (see Fig. 4.16). According
to Eq. 2.20 the relaxation rate λZ in an external longitudinal magnetic field Bext is
described by

λZ(Bext) =
2Δ2νf

(γμBext)
2 + ν2

f

=
2Δ2τc

1 + γ2
μB

2
ext τ 2

c

(4.36)

Here Δ is the width of the field distribution at the muon site, νf = 1/τc the
fluctuation rate of the fluctuating magnetic field with a correlation time τc, and
γμ = 851.62 Mrad s−1T−1 the gyromagnetic ratio of the muon. For zero field this
expression reduces to λZ(0) = 2Δ2τc. With Eq. 4.36 and the field dependence of
λZ(0), as shown in Fig. 4.16, an estimate of the fluctuation rate νf can be made. In
Table 4.5 the field dependencies have been assumed independent of instrument.

Now before analyzing the data further, first the main features of the data in the
vicinity of TC will be summarized.

1. UGe2 is known to be a very anisotropic magnetic compound [108]. This is also
seen from both the angular scans and the temperature scans in the Knight
shift measurements. A magnetic field parallel to the a axis induces a large
Knight shift, whereas a field perpendicular to a induces a very small Knight
shift. This is illustrated in the Clogston-Jaccarino plots for the magnetic
susceptibilities χi. However, the dependence of the relaxation rate λZ(T ) in
the critical regime shows very weak anisotropy for the orientation of Sμ(0)
with respect to a. For both orientations, the values of WaL differ only by a
factor of 2. This is shown for sample B on EMU and sample A on GPS. μSR
is generally very sensitive to the anisotropy of magnetic fluctuations, as was
nicely demonstrated in NdRh2Si2 [144].
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2. The measurements in applied magnetic field show that the relaxation rate
λZ(B) in the critical regime is suppressed by a magnetic field in the order of
2 - 5 mT. Susceptibility data shows that a magnetic field of 5 mT induces a
magnetic moment of less than 0.01 μB/U. Therefore it is hard to imagine that
the fluctuations of the full U moments, which have a saturation magnetization
of 1.4 μB/U at low temperatures, are suppressed by a field of 5 mT. Moreover,
a suppression in a field of 5 mT yields a correlation time of τc ≈ 0.4 μs−1. This
can be considered to be quasi-static and does not reflect the expected rate for
the large magnetic moments on the U atoms.

3. Since according to Eq. 4.36 the value of λZ in zero field is given by λZ =
2Δ2/νf , it follows that Δ ≈ 0.3 mT at the muon site. This indicates a very
small distribution in local magnetic fields at the muon site.

Based on these observations it is proposed that in these experiments the muon
spin is relaxed by the polarization of the conduction electrons. It is expected that
this polarization is much less anisotropic than localized magnetic moments. Because
of the strong electronic correlations in UGe2 (reflected by the large value of the
Sommerfeld coefficient γ in the specific heat) these magnetic fluctuations are slow.
Moreover, this assumption could account for the small value of Δ observed.

So far only values for the products WaL and WaT were presented. In order to
estimate a value for W appearing in Eq. 4.35, estimates for aL and aT should be
made. Theoretically, they are given by [27]

aL = 1
2

[
(1 − px)

2 + (1 − py)
2
]

aT = p2
x + p2

y Sμ(0) ‖ z (4.37)

with pα = Cαα(q = 0)+rμH/(4π). For the two muon sites (Table 4.3) with different
orientations of Sμ(0) this would give values of the ratio aL/aT in the range of 0.2 to
4.0. However, experimentally only aL 
 aT is observed for all orientations of Sμ(0)
(see Table 4.5).

In the expression for pα the term Cαα(q = 0) accounts for the fluctuations due
to the localized magnetic moments [27]. However, when the muon only probes the
itinerant part of the fluctuating magnetization, this term should be omitted and
only the contact term rμH/(4π) remains. With the data in Table 4.3 aL = 1.05 and
aT = 0.001 is obtained for the first muon site, and aL = 0.62 and aT = 0.089 for the
second muon site. Since both muon sites have nearly equal population, the first site
being slightly more populated than the second, the weighted average is aL = 0.85
and aT = 0.04, with a ratio of aL/aT = 21, which is close to the ratio obtained by
the data in Table 4.5 considering the uncertainty in the determination of aT .

Now, using Eq. 4.35, the values for the magnetic moment μ, which depolarizes the
muon spin, the dipolar wave vector qD and the correlation lengths ξ+

0 and ξ−0 of the
fluctuations can be calculated. They are shown in Table 4.5. Clearly, despite of all
the sample and instrument dependencies, the overall picture is that the magnitude
of the fluctuating polarization, that depolarizes the muon spin, is μ = 0.02 (1) μB.
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The correlation lengths ξ+
0 and ξ−0 of the magnetic fluctuations is of the order of

a lattice spacing for sample A, but several times larger for sample B. However,
here also instrument dependence plays a role. The dipolar wave vector is about
qD = 0.0010 Å−1 for sample B, but about qD = 0.0022 Å−1 for sample A.

The main results are given by the pressure experiments on sample A. These
results at ambient pressure and at 0.95 (2) GPa are not sample or instrument de-
pendent because they were measured under identical conditions. The values for
μ show that the polarization may be slightly reduced. The same applies for the
dipolar wave vector qD. The main difference, leading to different critical dynam-
ics (see Fig. 4.16) is the enhancement of the correlation length ξ+

0 of the magnetic
fluctuations.

4.3.5 Discussion

High pressure: spontaneous frequencies νμ and depolarization rates λX

By consideration of classical Larmor precession, as in Chapter 2, it can be under-
stood that the muon spin is not sensitive to parallel magnetic field fluctuations and
therefore only magnetic excitations are probed which are perpendicular to the muon
spin. For Sμ(0) ‖ Bloc, where Bloc is the local magnetic field at the muon site and
Bloc ‖ a (with a the easy magnetic axis) in the case of UGe2, only excitations along
the b and c axis are probed. This includes spin waves and magnetic fluctuations.
This depolarization is called the spin-lattice relaxation λZ . For Sμ(0) ⊥ a, the
depolarization is due to magnetic excitations along a × Sμ(0) and the a axis, and
in addition due to the loss of Larmor phase coherence because of static magnetic
inhomogeneity (crystal defects, domain structures, etc.). This is called the trans-
verse depolarization λX . Unfortunately, because of the orientation of the a axis with
respect to the cylindrical shape of the sample, it was only possible to measure λX .

The measurements in Fig. 4.12 show the development of a peak in λX,i around
TX which can in principle be attributed to three different cases. First, some extra
inhomogeneity like a small spin reorientation or a charge and spin density wave [145,
146] can cause the muon spin polarization to decrease. Second, a change in the spin
wave spectrum, facilitating the excitation of spin waves, can be responsible. Finally,
a slowing down of the fluctuations, similar to a paramagnetic-to-ferromagnetic-state
transition is possible.

Extra inhomogeneity can be ruled out on the basis of neutron scattering exper-
iments. Extensive neutron studies [147] have shown no sign of static order due to
a charge and spin density wave. It has also been shown [116] that reorientation of
the magnetic moments when crossing the transition at TX at 1.2 GPa, is unlikely.
Measurements of the phonon spectrum [148] indicate no special feature around TX .
Moreover, the μSR spectra can all be fitted by the exponentially damped oscilla-
tions of Eq. 4.22. If static inhomogeneities would be present, then the damping
would rather be Gaussian in nature. These findings point in the direction of extra
depolarization by magnetic fluctuations or spin waves.
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A change in the spin wave spectrum at TX that facilitates the excitations could
lead to an increase in λX , but should be considered highly improbable. Although
perhaps theoretically possible, no experimental report has suggested this exotic pos-
sibility up to date. It has been shown that the anomaly shows the usual features
of a phase transition [115]. The strong resemblance of the peak in λX at TX with
the peak at TC (e.g. Fig. 4.17) also points in this direction. From here on it will be
considered a phase transition. It should however be stressed that only measurements
of λZ (i.e. Sμ(0) ‖ a) can unambiguously demonstrate that at high pressures extra
spin dynamics develop that are normally associated with a phase transition, since
λZ is not sensitive to inhomogeneity of the magnetic moments.

When TC is approached from high temperatures, the paramagnetic fluctuations
tend to slow down. In μSR, the relaxation rate λZ can be described by λZ = 2Δ2τc,
where Δ is the width of the field distribution at the muon site and τc is the correlation
time of the fluctuations. Therefore, λZ increases for T ↓ TC. For UGe2 this is
demonstrated in Fig. 4.16 at ambient pressure and at P = 0.95 (2) GPa. Below TC,
λX is measured for the orientation of Sμ(0) perpendicular to a. λX decreases at
temperatures below TC because less fluctuations (i.e. spin waves) are excited at low
temperatures.

The slowing down of the magnetic moments as T ↓ TC has also been shown by
inelastic neutron scattering [149]. In this study Γq was measured for several q values
around TC. For each (fixed value of) q there was a minimum in Γq(T ) as a function
of temperature at T = TC. Because τ−1

c (q) ∝ Γq, the link between μSR and inelastic
neutron scattering is roughly indicated by the relation λZ(T ) ∝ Γ−1(T ) with Γ some
average of Γq over q. A minimum in Γ(T ) therefore corresponds to a maximum in
λZ(T ). Unfortunately, no neutron study around TX could be found in literature for
high pressures.

The present μSR data were in fact performed around TX and at high pressure.
As TX is approached from high temperatures, λX ≈ Γ−1(T ) increases, indicating a
slowing down of the spin dynamics, as discussed above. (At the moment, however,
this remains somewhat speculative since only λZ can prove this slowing down un-
ambiguously.) If so, this means that a minimum in Γ(T ) at T = TX would be found,
just like at ambient pressure around TC. As suggested in Ref. [149], and theoreti-
cally supported by numerical calculations [150], a decrease of Γ (∝ λ−1

X ) enhances
the superconducting transition temperature Tsc. The transition at TX vanishes at
the same pressure as where Tsc is maximum and therefore it seems likely that the ob-
served slowing down of the magnetic fluctuations could play a role in the formation
of Cooper pairs.

High pressure: critical fluctuations

All the data in the critical regime of UGe2 unambiguously show that the spin-
lattice relaxation rate λZ(T ) increases as TC is approached from above, but does not
diverge. This is explained by taking into account the dipolar interactions between
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the magnetic moments and by assuming that the muon spin is only relaxed by
fluctuations that are longitudinal to their wave vector q [27]. The reason why
hardly any transversely polarized fluctuations are detected by the muon, is given
in the paragraph below Eq. 4.37. The assumption that the muon only probes the
itinerant part of the magnetic fluctuations, automatically leads to aL 
 aT . A
consequence of the high sensitivity to especially longitudinal fluctuations is that the
muon spin is for the greater part relaxed by fluctuation modes with q ≈ qD [142],
where qD is the dipolar wave vector and determines the relative strength of the
dipolar and exchange interactions in the system. From the measurements it follows
that qD ≈ 0.002 Å−1. The μSR technique probes fluctuations with very small q
values, that are largely inaccessible to (neutron) scattering techniques.

A fully consistent analysis of the experimental critical dynamics is obtained by
assuming an itinerant nature of the magnetism that relaxes the muon spin. It ex-
plains the low anisotropy in the data for different directions of Sμ(0). From the
calculations a small effective moment of μ ≈ 0.02 (1) μB follows, which is consistent
with the quasi-static nature as observed from measurements in magnetic field. Fi-
nally, it explains why at ambient as well as at high pressures λZ can be described
satisfactorily by the Heisenberg model with dipolar interactions, whereas UGe2 is
an Ising system.

The anisotropy of λZ for different directions of Sμ(0) can be explained by a
possible anisotropy of the contact coupling term rμH/(4π). See Sec. 4.3.4 for a dis-
cussion. Recently it has been acknowledged for several compounds that the contact
term is indeed anisotropic [139].

The μSR result that the polarization of the conduction electrons in UGe2 is as
small as μ ∼ 0.02 (1) μB at ambient pressure as well as at high pressure, is sup-
ported by polarized neutron experiments. Since this is a diffraction technique, the
polarization of the delocalized electrons can not be determined directly. Delocalized
states possess a form factor that falls rapidly to zero by about 0.1 Å−1 in (sin θ)/λ
and thus are hard to observe in a neutron experiment. The polarization of these
states can, however, be determined by the difference between the uranium moment
deduced from bulk measurements and the moment derived from the form factor
measurements (localized states). For UGe2, at ambient pressure [107] an inverse
Fourier technique shows that the magnetization distribution is concentrated at the
U sites. Also, the diffuse magnetic contribution is estimated to be ≈ 0.05 (3) μB/U,
which is small compared to the ordered magnetic moment of ≈ 1.4 μB/U. This
means that the polarization of the conduction electrons in UGe2 should be small.
For UPd2Al3 [151] it was found that 0.140 (4) μB is localized at each U atom with
a diffuse part of 0.020 (4) μB. This implies that 12 % of the total magnetization
is delocalized. In U2Co2Sn [152] a localized magnetic moment of 0.118 (3) μB was
obtained and a delocalized part of 0.021 (4) μB. Thus 15 % is diffuse. With a diffuse
part of about only 1 %, UGe2 contrasts these two compounds, but is comparable to
e.g. USb0.8Te0.2 [153] and in agreement with previous μSR results [134].

The data therefore suggest that UGe2 is a dual system where itinerant magnetism
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coexists with localized 5f magnetism. Within this model the weakly anisotropic
magnetic fluctuations probed by μSR arise from the small polarization of the con-
duction electrons. The large anisotropy of the bulk magnetization arises from the
localized 5f states. No depolarization due to these states is detected in the present
μSR experiments. This can be understood from a simple estimation of fluctuation
rate νf ≈ kBTC/�, which leads to a fluctuation rate of the order of THz instead of
the observed MHz. The relaxation rate λZ corresponding to such a large fluctuation
rate is too small to be observed because of strong motional narrowing. In contrast,
URhGe, with a Curie temperature 4 to 5 times smaller than UGe2 (depending on
pressure) is a compound in which a relaxation of both localized and delocalized
states is observed. A thorough discussion of URhGe follows in Chapter 5.

Returning to the polarized neutron experiments, at high pressures and low tem-
peratures (1.2 GPa [116] and 1.4 GPa [154]) it is found that both C2 (the ratio
between the orbital and total uranium magnetic moment) and RL (the ratio be-
tween the orbital and spin moment) are almost the same as at ambient pressure.
Although the measured RL is reduced compared to the value for free U3+ or U4+

ions, indicating a certain degree of delocalization of the 5f electrons, it should be
concluded that also at higher pressures the magnetic moments are mainly localized,
with a small itinerant polarization.

The idea of a system of two more or less separated magnetic subsets has been
presented in literature before. Several techniques, among which μSR, have shown
anomalous behavior in UPd2Al3 [124, 155, 156, 157, 158], UCu5 [159], and USb [160],
which was attributed to two different types of magnetism.

If in UGe2 indeed localized magnetism coexists together with itinerant 5f states
with small polarization, as strongly suggested by the μSR data presented in this
Chapter and supported by polarized neutron scattering, this has implications for
the nature of the Cooper pairs in the superconducting state. Assuming an itin-
erant nature of the ferromagnetism, theoretical studies have shown the possibility
of spin-triplet superconductivity [89, 90, 91, 92]. In this case the electrons form-
ing the Cooper pairs are also responsible for the strong ferromagnetism. Other
studies [100, 101], however, have shown that spin-singlet superconductivity is still
feasible under the constraint that conducting electrons involved in the superconduc-
tivity and localized electrons involved in the ferromagnetic order belong to different
subsets of 5f electrons. The pairing mechanism is then based on the interaction
of electron spins via localized magnetic moments. The μSR data presented in this
Chapter suggest the latter case of Cooper pairs of itinerant electrons with small po-
larization in a frame of magnetic U ions. Whether the Abrikosov-Suhl mechanism
is indeed the true pairing mechanism or not, can not be concluded from the present
data. However, the other theoretical models [89, 90, 91, 92] seem to contradict the
present results.
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4.3.6 Conclusions

The results from the data in the critical regime, presented in this Chapter, suggest a
coexistence of two subsystems with localized 5f states responsible for the magnetic
ordering and delocalized states responsible for the superconducting properties. It is
likely that electrons do not participate in both phenomena simultaneously, but are
separated either in real space and/or in reciprocal space, i.e. different parts of the
Fermi surface.

The depolarization of the spontaneous frequencies exhibit a peak at temperature
TX . It is shown that the peak could possibly develop because of the slowing down
of magnetic fluctuations. As the transition at TX vanishes at the same pressure as
where Tsc is maximum, it is likely that the observed slowing down of the magnetic
fluctuations plays an important role in the formation of Cooper pairs. The μSR data
show that it seems likely that the observed slowing down of the magnetic fluctuations
could play a role in the formation of Cooper pairs.

Appendix: Effect of stray fields induced by a homo-

geneously magnetized sample on 3D neutron depo-

larization measurements

In this appendix the magnetic induction B, generated by a uniformly magnetized
sample with length l, width w, and thickness t (see Fig. 4.21), will be calculated.
Moreover, analytical expressions will be given for the line integrals of B along the
path of a neutron. The center of the sample is taken as the origin of the reference
frame.

The starting point of the calculations is the Biot-Savart law

B(x, y, z) =
μ0

4π

∫
S

(M × n) × r

r3
dS +

μ0

4π

∫
τ

(∇× M) × r

r3
dτ, (4.38)

where μ0 = 4π×10−7 H/m, M is the magnetization, n the unit vector perpendicular
to the surface S of the sample, r the vector pointing from the surface S to the point
(x, y, z), and τ the volume of the sample. Since the sample has a homogeneous
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Figure 4.21: Schematic layout of a homogeneously magnetized rectangular sample.

magnetization, the second term vanishes and, with m = M/M ,

B =
μ0M

4π

∫
S

(m × n) × r

r3
dS. (4.39)

is obtained.
A straightforward but tedious calculation shows that

Bx = −μ0M

4π

∑
ε1,ε2,ε3=±1

ε1ε2ε3 ln [S − (2y + ε2w)]

By = −μ0M

4π

∑
ε1,ε2,ε3=±1

ε1ε2ε3 ln [S − (2x + ε1t)] (4.40)

Bz =
μ0M

4π

∑
ε1,ε2,ε3=±1

ε1ε2ε3 arctan

(
2z + ε3l

(2x + ε1t) (2y + ε2w)
S
)

,

where

S =

√
(2x + ε1t)

2 + (2y + ε2w)2 + (2z + ε3l)
2. (4.41)

The rotation of the polarization of a neutron beam depends on the line in-
tegral of the magnetic field along the neutron path. From the Larmor equation
d
dt
P(t) = γP(t) × B(t), or equivalently d

dx
P(x) = (γ/v)P(x) × B(x) where γ =

1.83 × 108 s−1T−1 the gyromagnetic ratio of the neutron and v its velocity, the
general solution

P(x, y, z) =

{
exp

(
γ

v

∫ x

−∞
B(x′, y, z)dx′

)}
P(−∞, y, z) (4.42)

is obtained, where the magnetic-field tensor B is defined as

B(x, y, z) =

⎛
⎝ 0 Bz −By

−Bz 0 Bx

By −Bx 0

⎞
⎠ (x, y, z). (4.43)
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Thus, in order to calculate the rotation of the neutron-beam polarization because
of a homogeneously magnetized sample, the following line integrals are required

X(y, z) =

∫ ∞

−∞
Bx(x

′, y, z)dx′ = 0

Y (y, z) =

∫ ∞

−∞
By(x

′, y, z)dx′ =

−tμ0M

4π

∑
ε2,ε3

ε2ε3 ln
(
(2y + ε2w)2 + (2z + ε3l)

2)

Z(y, z) =

∫ ∞

−∞
Bz(x

′, y, z)dx′ =

tμ0M

2π

∑
ε2,ε3

ε2ε3 arctan

(
2z + ε3l

2y + ε2w

)

(4.44)

For completeness the line integrals in the case that the neutron beam is along
the z direction are given:

X ′(x, y) =

∫ ∞

−∞
Bx(x, y, z′)dz′ = 0

Y ′(x, y) =

∫ ∞

−∞
By(x, y, z′)dz′ = 0

Z ′(x, y) =

∫ ∞

−∞
Bz(x, y, z′)dz′ = μ0M l. (4.45)

From Eq. 4.42 and the above line integrals it is obtained for the final polarization

that P(∞, y, z) = D(y, z) × P(−∞, y, z) with

D(y, z) =
1

Σ

⎛
⎜⎜⎝

Σ cos a
√

Σ Z
√

Σ sin a
√

Σ −Y
√

Σ sin a
√

Σ

−Z
√

Σ sin a
√

Σ Z2 cos a
√

Σ + Y 2 Y Z
(
1 − cos a

√
Σ
)

Y
√

Σ sin a
√

Σ Y Z
(
1 − cos a

√
Σ
)

Y 2 cos a
√

Σ + Z2

⎞
⎟⎟⎠ , (4.46)

where Σ(y, z) = Y 2(y, z) + Z2(y, z) and a = γ/v.
Now Eq. 4.46 relates the initial polarization to the final polarization for a beam

passing through the sample at (y, z). For a neutron beam with finite cross section,

the matrix D should be integrated over the beam cross section. If the integration is
symmetric relative to the origin, then one can make use of the fact that

By(ε1x, ε2y, ε3z) = ε2ε3 By(x, y, z), (4.47)

where ε1, ε2, ε3 = ±1. This means that By(x, y, z) and, therefore, Y (y, z) are an-
tisymmetric with respect to y and z. Therefore, from Eq. 4.46, one only has to
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integrate the matrix

1

Σ

⎛
⎝ Σ cos a

√
Σ Z

√
Σ sin a

√
Σ 0

−Z
√

Σ sin a
√

Σ Z2 cos a
√

Σ + Y 2 0

0 0 Y 2 cos a
√

Σ + Z2

⎞
⎠ (4.48)

over the cross section of the neutron beam.
An infinitely narrow neutron beam passing exactly through the middle of the

sample will only have its polarization rotated by Bz(x, 0, 0) since Bx(x, 0, 0) and
By(x, 0, 0) vanish. As long as Y 2(y, z) is small compared to Z2(y, z), which is valid
if (y, z) is sufficiently far from the edges, Eq. 4.48 is a pure rotation matrix.

It is now possible to calculate the magnetization of the sample from the measured
rotation angle (Eq. 4.11). If no stray fields were present, the rotation angle would be
given by tμ0Mγ/v. However, the stray fields reduce the rotation angle to γ/vZ(y, z)
with Z(y, z) given in Eq. 4.44. Therefore the geometrical factor η can be defined as

φ = ημ0Mtγ/v, (4.49)

where η(y, z) is given by

η(y, z) =
1

2π

∑
ε2,ε3

ε2ε3 arctan

(
2z + ε3l

2y + ε2w

)
. (4.50)

Since η(0, 0) is a saddle point (η(0, z) has a local maximum and η(y, 0) a local
minimum), an average over the cross section of the neutron beam, centered around
the middle of the sample, will yield a result very close to the value of η(0, 0), which
is given by

η =
2

π
arctan

(
l

w

)
. (4.51)
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CHAPTER 5

URhGe

5.1 Introduction

he second uranium based compound discovered to show super-
conductivity within its ferromagnetic state is the ternary intermetal-
lic URhGe [2]. It crystallizes in the orthorhombic TiNiSi-type struc-
ture with space group Pnma [161, 162]. The unit cell, with dimensions
a = 6.87 Å, b = 4.33 Å, and c = 7.51 Å, contains four formula units.
The structure is shown in Fig. 5.1. The U, Rh, and Ge atoms each

occupy 4c positions (x, 1
4
, z), with distinct parameters x and z. The U atoms are

arranged in zig-zag chains of nearest neighbors in the a direction. The nearest neigh-
bor distance of the uranium atoms is equal to dU−U ≈ 3.44 Å [163], which compares
well with the Hill limit of 3.5 Å [49]. However, the shortest U-Rh and U-Ge distance
dU−Rh ≈ 2.99 Å and dU−Rh ≈ 2.94 Å suggest that the hybridization between the
uranium atom and the ligands plays an important role in the delocalization of U 5f
states. Theoretical work [164, 165] has supported this hypothesis.

Neutron diffraction experiments on single-crystalline URhGe [2, 163, 166] re-
vealed a collinear ferromagnetic order below TC = 9.6 K with ordered U moments of
0.35 - 0.42 μB along the c axis. No component of the ordered moment was observed
along the a axis, which acts as the hard magnetic direction for the magnetiza-
tion. In addition to the neutron-diffraction experiments, the ferromagnetic order in
single-crystalline URhGe was studied by specific-heat, magnetization, and electrical
resistivity [163, 167], which showed a sizeable influence of applied magnetic fields on
the ferromagnetic order and on the ferromagnetic spin fluctuations in the b−c plane.
In the low-temperature limit, the specific heat is characterized by the electronic con-
tribution of the ferromagnetic spin fluctuations with a moderately enhanced linear
term of γ = 164 mJ/mol K2. The magnetic properties of single-crystalline URhGe
are in good agreement with the results from earlier measurements on polycrystalline
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Figure 5.1: The orthorhombic crystallographic structure of URhGe. Uranium atoms are
black, rhodium atoms light gray, and germanium atoms dark gray. The uranium nearest
neighbors are connected. The unit cell, containing four formula units, is indicated as well.

and powder samples [168, 162, 169, 170, 171, 172], which have been reviewed by
Sechovský and Havela [161]. Recently, band-structure calculations were performed
by Divǐs and co-workers [164] and Shick [165] to study the origin of the magnetic
order in URhGe. These calculations suggest a substantial hybridization between
the U-5f and Rh-4d states and a relatively small uranium magnetic moment of
0.3 μB originating from a partial cancelation of the spin and orbital components.
The calculated moments are in good agreement with the measured values.

URhGe has attracted much attention because of the unusual coexistence of super-
conductivity (Tc =0.25 K) and ferromagnetism (TC =9.5 K) [2]. From the beginning
it was believed that ferromagnetic spin fluctuations, which are strongly enhanced
near a quantum critical point, are the “glue” between the electrons forming a Cooper
pair. Indeed, field induced superconductivity was found [173] at the magnetic field
at which a spin reorientation takes place (12 T), inducing new fluctuations.

In this Chapter two techniques are used, namely dilatometry and muon spin re-
laxation (μSR), to study the ferromagnetic order in URhGe. Pressure-dependent ex-
periments on UGe2 and UIr suggest that in these systems superconductivity emerges
near a ferromagnetic quantum critical point. One may therefore expect that ferro-
magnetic order in URhGe is also very sensitive to pressure. The volume dependence
of several electronic quantities can be determined by thermal expansion measure-
ments at ambient pressure. When superconductivity sets in at low temperature,
conduction electrons condense into Cooper pairs. It is therefore of interest to inves-
tigate the magnetic properties of URhGe and specifically of the conduction electrons
in detail. Muons are very sensitive magnetic probes and thus have the potentiality
to yield information on the question whether the magnetism found in URhGe is of
a localized or an itinerant nature.
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5.2 Dilatometry*

5.2.1 Introduction

In this Section thermal expansion measurements of single-crystalline URhGe in the
temperature range from T = 2 to 200 K are reported. The principal aim was to
determine the pressure dependence of the ferromagnetic transition temperature TC.
For a second-order phase transition, the uniaxial pressure dependence of TC (at am-
bient pressure) can be determined with the Ehrenfest relation from the anomalies in
the specific heat and the linear coefficient of thermal expansion. The initial pressure
dependence may give an estimate of the critical pressure needed to suppress the
ferromagnetic order and reach the quantum critical point at TC = 0 K. In addition,
the electronic Grüneisen parameter, which characterizes the volume dependence of
the ferromagnetic spin fluctuations at low temperatures, has been determined.

5.2.2 Experimental

The dilatometry experiments were performed on a single-crystalline URhGe sample
with dimensions a × b × c = 2.4 × 5.0 × 2.4 mm3. The sample was cut from the
material used in earlier specific-heat measurements performed by Hagmusa and co-
workers [167]. The crystal has been grown from a stoichiometric melt of at least
99.95 % pure materials by means of the Czochralski technique in a tri-arc furnace
with a continuous gettered Ar atmosphere. No subsequent heat treatment was given
to the crystal. Due to the relatively high residual resistivity at low temperatures
no superconductivity was observed in this particular crystal [163]. The coefficient
of linear thermal expansion α(T ) = (1/L)(dL/dT ) was measured using a sensitive
parallel-plate capacitance dilatometer [34] along the orthorhombic a, b, and c axes.
From these measurements the volume expansion αv = αa +αb +αc was determined.

5.2.3 Results

In Fig. 5.2 the coefficient of linear thermal expansion α along the a, b, and c axis
of single-crystalline URhGe is shown as a function of temperature in the range
from T = 2 to 200 K. The temperature dependence of the volume expansion αv =
αa + αb + αc is shown for comparison (notice the figure shows αv/3). At high
temperatures the thermal expansion is governed by the phonon contribution for
all three orientations. Around a temperature of 25 K a remarkable crossing of the
curves for the thermal expansion along the a, b, and c axis is observed. This crossing
is a clear sign for the development of an additional contribution from ferromagnetic
spin fluctuations at low temperatures. It is interesting to note that this additional
contribution from ferromagnetic spin fluctuations mainly affects the anisotropy of
the thermal expansion in the b − c plane, which acts as the easy plane for the

*Parts of this Section have been published in Physical Review B 67 (2003) 144407.
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Figure 5.2: The coefficients of linear thermal expansion α of URhGe as a function of
temperature T along the orthorhombic a, b, and c axis. For comparison the volume
expansion divided by a factor 3 (αv/3) is also shown. The high-temperature behavior is
governed by the phonon contribution, while the anomaly at TC = 9.7 K reflects the onset
of ferromagnetic order.

magnetization. At TC = 9.7 K the ferromagnetic order sets in and a peak in the
coefficient of linear thermal expansion is observed for all three directions.

The low-temperature behavior of the coefficients of linear thermal expansion
along the a, b, and c axis is shown in more detail in Fig. 5.3. The observed steps in
the coefficients of linear thermal expansion have the same sign but different sizes for
the three orthorhombic axes of single-crystalline URhGe. The values of the steps
are listed in Table 5.1. In Fig. 5.4 the low-temperature volume expansion divided
by temperature (αv/T ) is shown as a function of temperature and compared with
the specific heat divided by temperature (c/T ) measured on a sample prepared from
the same single-crystalline batch [167].

5.2.4 Discussion

The temperature dependence of the thermal expansion at high temperatures is gov-
erned by the phonon contribution and closely resembles a Debye curve. The esti-
mated Debye temperature of θD ≈ 200 K is in good agreement with the specific heat
data [163, 167]. At low temperatures the Debye curve for the phonon contribution
is expected to show a T 3 temperature dependence. Below T = 30 K the thermal



5.2 Dilatometry 101

Figure 5.3: The coefficients of linear thermal expansion α of URhGe as a function of
temperature T along the orthorhombic a, b, and c axis at low temperatures. The anomaly
at TC = 9.7 K reflects the onset of ferromagnetic order. The large linear term at low
temperatures is due to spin fluctuations.
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Figure 5.4: The volume expansion divided by temperature (αv/T ) of URhGe as a func-
tion of temperature T at low temperatures. For comparison the specific heat divided by
temperature (c/T ) of a sample prepared from the same single-crystalline batch is shown
[167]. The bottom frame shows the effective Grüneisen parameter Γeff , determined from
the experimental data of the volume expansion and the specific heat (see main text).
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Table 5.1: Step anomalies in the coefficients of linear thermal expansion of single-
crystalline URhGe along the orthorhombic a, b, and c axis. The corresponding pressure
dependence of the Curie temperature, dTC/dp, was deduced from the Ehrenfest relation
(see text).

Δα dTC/dp
(10−6 K−1) (K/kbar)

a axis 3.4(1) 0.052(3)
b axis 1.7(1) 0.026(2)
c axis 2.7(1) 0.041(2)
volume 7.8(2) 0.119(6)

expansion along the a axis shows a clear deviation of this behavior, which is even
more pronounced along the b axis. This deviation indicates the development of an
additional contribution due to ferromagnetic spin fluctuations. This additional con-
tribution was also observed in the specific heat measurements and described in terms
of an enhanced electronic contribution [163]. In the ferromagnetically ordered state
below TC = 9.7 K, the temperature dependence of the volume expansion closely
resembles that of the specific heat, as shown in Fig. 5.4. In line with the analysis
of the specific heat measurements [163], three different contributions to the thermal
expansion can be identified in the ferromagnetically ordered state, namely, contribu-
tions due to phonons, ferromagnetic spin waves, and ferromagnetic spin fluctuations.
As discussed, the phonon contribution shows a T 3 power-law behavior at low tem-
peratures. The ferromagnetic spin-wave contribution is expected to obey a T 3/2

power-law behavior, while the ferromagnetic spin fluctuations lead to an enhanced
linear term at low temperatures. Both the phonon and spin-wave contributions to
the volume expansion divided by temperature (αv/T ) [and the specific heat divided
by temperature (c/T )] vanish at low temperatures and, as a consequence, the ex-
trapolated value of αv/T = 5.8 (2) × 10−7 K−2 at T = 0 K is solely due to the
contribution of the ferromagnetic spin fluctuations.

In order to determine the uniaxial and hydrostatic pressure dependence of the
ferromagnetic transition temperature, the Ehrenfest relation can be applied. For
a second-order phase transition, the uniaxial pressure dependence of the transition
temperature is directly related to the step anomalies in the coefficient of linear
thermal expansion and the specific heat by the Ehrenfest relation

dTC

dpi

=
VmΔαi

Δ (c/T )
, (5.1)

where the index i refers to the orthorhombic axis, Vm = 3.36 × 10−5 m3/mol is
the molar volume, and Δ (c/T ) = 0.22 (1) J/mol K2 is the anomaly in the specific
heat divided by temperature [163]. By applying this relation to the experimental
step anomalies in the coefficients of linear thermal expansion, the uniaxial pressure
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dependence of TC along the a, b, and c axis is obtained. The calculated values are
listed in Table 5.1. The hydrostatic pressure dependence of TC can be obtained by
inserting the volume expansion for the coefficient of linear expansion in Eq. 5.1, or
by summing the three contributions of the uniaxial pressure dependence. The differ-
ent pressure dependencies of TC as listed in Table 5.1 are all positive. This strongly
suggests that the ferromagnetic order cannot be suppressed by moderate mechanical
hydrostatic or uniaxial pressures, like in the case of UGe2 and UIr. Instead a negative
uniaxial pressure is needed to suppress TC for all crystallographic directions. Using
a simple linear extrapolation of the initial pressure dependence calculated from the
Ehrenfest relation, a negative critical hydrostatic pressure of pcr ≈ −8.0 GPa is
obtained. It is important to note that this value should be regarded as an upper
bound for the negative critical pressure as the pressure dependence of TC is expected
to show significant non-linear corrections to the initial pressure dependence at am-
bient pressure. A negative critical pressure of the order of pcr ≈ −8.0 GPa might be
achieved by suitable chemical substitutions. A detailed study on which substitution
is appropriate in tuning TC to 0 K, is presented in Chapter 6.

In order to characterize the volume dependence of the electron correlations,
the effective Grüneisen parameter of URhGe has been calculated. The thermal
Grüneisen parameter ΓT is defined as

ΓT = −d ln T ∗

d ln V
(5.2)

where T ∗ is a characteristic temperature that reflects the dominant energy scale of
the system. The effective thermal Grüneisen parameter Γeff can be calculated from
the measured temperature-dependent volume expansion αv(T ) and specific heat c(T )
by [86]

Γeff(T ) =
Vm αv(T )

κ c(T )
, (5.3)

where κ = -(1/V )(dV/dp) is the isothermal compressibility. As the compressibility
of URhGe is unknown an estimated value κ = 0.8 Mbar−1 is used. Experimen-
tal values for the compressibility of other UTX compounds vary from κ = 0.6 to
1.0 Mbar−1 [174]. In Fig. 5.4 the effective Grüneisen parameter Γeff , calculated
from the experimental volume expansion and the reported specific heat [167], is
shown as a function of temperature. At high temperatures the effective Grüneisen
parameter shows a small constant value of Γph = 2 and describes the volume depen-
dence of the characteristic energy scale for the phonons. Below 30 K the effective
Grüneisen parameter rapidly increases and reaches a value of Γeff ≈ 14 just above
TC. Below TC a slow increase of the effective Grüneisen parameter is observed for
decreasing temperatures. In the low-temperature limit Γeff corresponds to the en-
hanced electronic Grüneisen parameter Γsf = d ln γ/d ln V ≈ 14 of the ferromagnetic
spin fluctuations. The corresponding relative pressure dependence of the electronic
specific heat amounts to d ln γ/dp = −κΓsf ≈ −11 Mbar−1.

The relation between the magnetic order and the spin fluctuations can be studied
by comparing the volume dependence of the energy scales for the ferromagnetic order
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Figure 5.5: Temperature versus pressure phase diagram of URhGe. The lines are guides
to the eyes. The Curie temperature TC increases monotonically up to 14.0 GPa and the
superconducting transition temperature Ts decreases continuously and vanishes around
3.0 GPa. (Figure taken from Ref. [176].)

(TC) and the ferromagnetic spin fluctuations (Tsf). It turns out that the Grüneisen
parameter for the ferromagnetic order ΓF = −d ln TC/d ln V = (1/κTC)(dTC/dp) ≈
16 is of the same order of magnitude and has the same sign as the Grüneisen parame-
ter for the ferromagnetic spin fluctuations Γsf = −d ln Tsf/d ln V = d ln γ/d ln V ≈
14. This last equation holds because γ ∝ N(EF) ∝ T−1

sf . The situation here is
in strong contrast to pressure-induced antiferromagnetic superconductors such as
CePd2Si2 [175], where the antiferromagnetic order competes with the spin fluctua-
tions with an opposite scaling behavior with volume. It can therefore be expected
that the spin-mediated superconductivity of URhGe exists over a wide pressure
range. This in contrast to the situation in the ferromagnetic superconductor UGe2 [1]
and UIr [3], where superconductivity is only observed in a small pressure region close
to the critical pressure where the ferromagnetic order is suppressed.

Comparison with other measurements

F. Hardy et al. have succeeded in growing a single crystal of URhGe which is
superconducting at low temperatures [176, 177]. The temperature versus pressure
phase diagram is shown in Fig. 5.5. The observed Curie temperature TC increases
linearly up to 14.0 GPa with an estimated slope of dTC/dp ≈ 0.065 K kbar−1. This
is roughly comparable to the value of 0.119 K kbar−1 estimated from the dilatometry
measurements presented in this Section. The difference can originate from errors in
the determination of the values of Δα and Δc/T . Another possibility is that this
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value only represents the slope of TC versus p for p = 0 GPa. It might be possible
that at low pressures TC is not perfectly linear with p.

In Fig. 5.5 the superconducting transition temperature Ts is shown as well. It
is seen that Ts vanishes at an estimated pressure of p = 3.0 GPa. In comparison
with UGe2, in which compound the superconductivity is only found between 1.0 and
1.6 GPa, or with UIr, with 2.6-2.7 GPa as superconducting pressure region, this is
a very broad pressure range, especially because the diagram is expected to extend
below p = 0 to negative pressures. This is consistent with the fact that ΓF and Γsf

are equal in sign and have the same order of magnitude.
Further comparison can be made between the dilatometry data and the mea-

surement of Hardy [176, 177].The coefficient A in the electrical resistivity ρ(T ) =
ρ0 + AT 2 was measured as well as a function of pressure [178]. Since A ∝ m∗2 and
γ ∝ m∗, where m∗ is the enhanced effective mass of the heavy quasiparticles, an
estimation can be made for d ln γ/dp. The reduction of A with pressure results in
Δm∗/m∗ = −0.23 for Δp = 2.0 GPa. This gives d ln γ/dp = −13 Mbar−1 which
compares well with a value of -11 Mbar−1 as estimated from our thermal expansion
measurements.

5.2.5 Conclusions

Thermal expansion measurements on a single-crystalline sample of the itinerant
ferromagnet URhGe have been performed. Below the ferromagnetic ordering tem-
perature of TC = 9.7 K an increase in the coefficient of linear thermal expansion was
observed along all three orthorhombic axes. The uniaxial pressure dependence of the
ferromagnetic transition temperature was determined by the Ehrenfest relation from
the anomalies in the coefficients of linear thermal expansion and the specific heat.
Positive values of dTC/dp are found for all principal axes. Consequently, the hydro-
static pressure dependence is also positive and amounts to dTC/dp = 0.119 K/kbar.
This positive pressure dependence contrasts the behavior reported for UGe2 and
UIr. In addition, the effective Grüneisen parameter was determined. The resulting
low-temperature behavior points to an enhanced volume dependence of the ferro-
magnetic spin fluctuations at low temperatures and an equal volume scaling of the
energy scales for the ferromagnetic order and the ferromagnetic spin fluctuations.

5.3 Muon Spin Rotation and Relaxation

5.3.1 Introduction

When superconductivity sets in at low temperature, the conduction electrons con-
dense into Cooper pairs. In ferromagnetic superconductors, the pairing mechanism
of the conduction electrons needed for superconductivity is believed to be magnetic
in origin. It is therefore of utmost importance to investigate the magnetic properties
of URhGe and specifically of its conduction electrons.
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Several theoretical studies have been performed to explain the coexistence of
superconductivity and ferromagnetism. Most studies consider an itinerant nature of
the ferromagnetism as a starting point and indeed have shown the possibility of su-
perconductivity in a ferromagnetic material. See e.g. Refs. [89, 90, 91, 92]. In these
cases the electrons forming the Cooper pairs are also responsible for the ferromag-
netism, which can be explained by the spin-triplet nature of the superconductivity.
Other studies [100, 101], however, have shown that spin-singlet superconductivity
is still feasible under the constraint that conducting electrons involved in the su-
perconductivity and localized electrons involved in the ferromagnetic order belong
to different subsets of 5f electrons. The pairing mechanism is then based on the
interaction of electron spins via localized magnetic moments.

In order to determine which type of pairing is most probable, it is important
to quantify the magnetic properties of the conduction electrons. These are difficult
to be measured directly by diffraction techniques, since the magnetic scattering
due to the polarization of delocalized electrons will only be significant at small Q.
However, as muons localize at interstitial sites and are very sensitive to magnetic
fields whatever their origin (localized or itinerant magnetic moments), the muon spin
rotation or relaxation technique (μSR) does have the possibility to yield information
on the itinerant electrons and associated magnetism.

5.3.2 Experimental

A single-crystalline sample of URhGe with a diameter of 5 mm and a length of 2.5 cm
has been grown from a polycrystalline ingot using a Czochralski tri-arc technique.
The ingot was prepared by arc melting the constituents U, Rh, (all 3N purity)
and Ge (5N) under a high-purity argon atmosphere. No subsequent heat treatment
was given to the single crystal. The single-crystalline nature was checked by X-ray
Laue diffraction. The single-phase nature of the crystal was checked by electron
probe micro-analysis (EPMA) which showed no sign of impurity phases within the
resolution, except for a small amount of uranium oxide (less than 1 volume %).

For the experiments two samples with a different orientation were cut from the
single crystal. The first sample consisted out of platelets with the a axis perpendicu-
lar to the platelet. In the second sample the c axis was perpendicular to the platelet.
The initial muon polarization Sμ(0) was directed perpendicular to the platelets of
the samples. A total surface area with a diameter of about 2 cm of sample was re-
alized by wrapping several platelets next to one another in an aluminium foil. The
thickness of the platelets was 0.3 mm.

The experiments were performed at the EMU spectrometer of the ISIS facil-
ity at the Rutherford Appleton Laboratory in the United Kingdom. The fly-past
mode [179] was used to reduce background. In this mode, the muons which do not
hit the sample, fly past and do not contribute to the signal. However, some muons
are stopped in the walls of the cryostat and these cause a small, but observable,
well-defined background. A blue Oxford Instruments cryostat was used for tem-
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peratures above 2 K, whereas at lower temperatures a 3He cryostat was used. The
measurements were performed in the temperature range from 0.5 to 300 K and in
magnetic fields up to 0.45 T, oriented parallel to Sμ(0).

5.3.3 Results

The first step in the study of the critical spin dynamics of compounds is an accurate
determination of the Curie temperature TC. In the sample for which the initial muon
polarization Sμ(0) was parallel to the hard magnetic axis (a) and perpendicular to
the easy magnetic axis (c), the full asymmetry for the wiggles in the signal was
found, resulting from a spontaneous muon spin precession. Defining TC as the
temperature at which the wiggles disappear, TC = 9.51 (6) K is obtained. This
value is consistent with the maximum of the relaxation rate for the second sample,
in which Sμ(0) ‖ c. Since the spontaneous muon precession has the full asymmetry
for Sμ(0) ‖ a, whereas no precession is observed for Sμ(0) ‖ c, it can be concluded
that the local field Bloc at the muon site is parallel to the easy magnetic axis c: i.e.
Bloc ‖ c.

Examples of the measured spectra during a field scan in the paramagnetic state
of URhGe are given in the upper panel of Fig. 5.6. All the spectra of the asymmetry
a0P

exp
Z (t) as a function of time t, taken in the paramagnetic state (and for Sμ(0) ‖ c

also in the ferromagnetic state), could be analyzed as a sum of two components:

a0P
exp
Z (t) = a1 exp(−λZt) + a2P

KT
Z (t, ΔKT, Bext). (5.4)

Here P exp
Z (t) and PKT

Z (t, ΔKT, Bext) are functions which are normalized to unity
for t = 0. The first component in Eq. 5.4 describes the μSR signal from the
sample where λZ measures the spin-lattice relaxation rate at the muon site. The
second term accounts for the muons stopped in the background, e.g., the cryostat
walls. It can be modeled by a time and field dependent static Kubo-Toyabe function
PKT

Z (t, ΔKT, Bext) where ΔKT is the width of the static magnetic field distribution at
the muon site and Bext the external magnetic field. For each sample, the asymmetry
a2 and ΔKT were fixed to appropriate and temperature independent values. These
values were obtained by iteratively searching for those values of a2 and ΔKT which
gave on average the best fits for all temperatures. Since the fly-past mode was used,
low background asymmetries with maximum of a2 = 0.01 were found.

In the lower panel of Fig. 5.6 a decomposition into the two components of Eq. 5.4
is given for the fit to the data measured in 0 mT. The Kubo-Toyabe function is
small compared to the exponential function. For t > 5 μs the exponential function
is almost indistinguishable from the total fit function.

In Fig. 5.7 the temperature dependence of the spin-lattice relaxation rate λZ in
the paramagnetic state of URhGe is displayed. It is measured in zero field with
Sμ(0) parallel to the hard magnetic axis a. Above T ∼ 100 K the relaxation is tem-
perature independent. The decrease at temperatures above 200 K can be attributed
to muon diffusion. Below T ∼ 100 K the relaxation λZ(T ) starts to increase. Two
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Figure 5.6: (Upper panel) Examples of μSR spectra a0P
exp
Z (t) as a function of time t

recorded at ISIS. The figure shows spectra taken at different values of the applied magnetic
field in the paramagnetic state of URhGe (TC = 9.51 (6) K). The initial muon polarization
Sμ(0) as well as the external magnetic field Bext were oriented parallel to the a axis. The
solid lines are fits to Eq. 5.4. For 0, 0.47, and 10 mT it is found that λZ = 0.0171 (5),
0.0094 (5), and 0.0045 (5) μs−1, respectively. The background Kubo-Toyabe function was
assumed constant with parameters a2 = 0.0100 and ΔKT = 0.300 μs−1. The effect of Bext

on the Kubo-Toyabe function was taken into account. For the sake of clarity, the curve
for 0.47 mT is shifted upwards by of 0.01. (Lower panel) Decomposition of the fit to the
0 mT data into the two components of Eq. 5.4.
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Figure 5.7: Temperature dependence of the muon relaxation rate λZ in the paramagnetic
state of URhGe (TC = 9.51 K). The initial muon polarization Sμ(0) was oriented parallel
to the a axis. Above T ∼ 100 K λZ is constant. The decrease above 200 K is attributed to
muon diffusion. Below T ∼ 100 K the depolarization increases in two steps. Between 100 K
and 11.5 K λZ increases relatively slowly with decreasing temperature. Between 11.5 K
and TC = 9.51 K a very sharp increase is observed. The dashed line below T = 100 K is
a guide to the eye. Above T = 100 K, the line has a constant value.

temperature regions can be distinguished. Between 100 and 11.5 K λZ(T ) increases
relatively slowly with decreasing temperature, followed by a very sharp increase be-
tween 11.5 and TC = 9.51 (6) K. A zoom of λZ(T ) below 100 K is shown in Fig. 5.8
as a function of the reduced temperature τ = (T − TC)/TC. Note the logarithmic
scales. Here it is seen that below T = 11.5 K (τ = 0.2) a second term in λZ(T )
develops. The dashed line is a guide to the eye.

In order to study the anisotropy in URhGe, it is necessary to measure the tem-
perature dependence of λZ in zero field for Sμ(0) parallel to the easy axis for magne-
tization, Sμ(0) ‖ c, as well. In Fig. 5.9 λZ(T ) is displayed for the temperature range
from 0.4 to 300 K. Note the logarithmic temperature scale. Above T ∼ 15 K the re-
laxation rate is temperature independent. As in the previous paragraph, the decrease
at higher temperatures (T > 200 K) can be attributed to muon diffusion. Below
T ∼ 15 K the relaxation increases and shows a maximum at TC = 9.51 (6) K. This
maximum is a factor 2 lower than the maximum for Sμ(0) ‖ a. For Sμ(0) ‖ a two
temperature regions of increasing λZ could clearly be distinguished. Here, however,
the situation is less clear. Below TC the relaxation shows a monotonous decrease
with decreasing temperature down to 0.6 K. At the lowest temperatures, however,
λZ(T ) seems to increase below T = 0.5 K.

Also shown in Fig. 5.9 is the specific heat divided by temperature, C/T , of a piece
of the μSR sample, measured in zero field between 3 and 20 K. A transition temper-
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Figure 5.8: The dependence of the muon relaxation rate λZ on the reduced temperature
τ = (T −TC)/TC in the paramagnetic state of URhGe (TC = 9.51 (6) K). The initial muon
polarization Sμ(0) was oriented parallel to the a axis. The dashed line is a guide to the
eye.

ature of TC = 9.52 K is observed. Linear extrapolation of C/T to zero temperature
yields an enhanced linear electronic specific heat term of γ = 160 mJ/mol·K2. These
results are in good agreement with previously published data [163, 167], confirming
the quality of the sample.

In order to further characterize the spin-lattice relaxation, longitudinal field mea-
surements were performed at a fixed temperature close to TC for the two orientations
of Sμ(0) relative to easy magnetic axis c. These measurements give information on
the frequency scale and magnitude of the fluctuations.

In Fig. 5.10 the field dependence of the relaxation rate λZ in the paramagnetic
state of URhGe is shown for the case that the initial muon polarization Sμ(0) as
well as the external magnetic field Bext were parallel to the a axis. The temperature
was equal to T = 9.693 (5) K. The relaxation rate λZ(Bext) is field dependent at
extremely small external fields Bext. Within 1 mT λZ(Bext) has reduced to about
1/3 of its value in zero field. In the insert in Fig. 5.10 a zoom is given for small
fields. Once λZ(Bext) has dropped sharply, it is very weakly dependent on the field.

Figure 5.11 shows the dependence of the relaxation rate λZ(Bext) on the external
longitudinal magnetic field Bext parallel to the c axis in the paramagnetic state of
URhGe. The temperature was equal to T = 10.46 (1) K. Just like in the previous
case λZ(Bext) shows a sharp decrease to about 1/3 of its initial value for very small
fields. For higher fields λZ(Bext) continues to decrease, but at a lower rate. For fields
of 10 mT and above the relaxation is λZ(Bext) = 0 μs−1 within the uncertainty.
The insert shows that for the whole field range up to 450 mT, λZ(Bext) = 0 μs−1

is obtained within the uncertainty. This is in contrast to the case for Sμ(0) ‖ a
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Figure 5.9: (Above) Muon relaxation rate λZ versus temperature T . The initial muon
polarization Sμ(0) was oriented parallel to the c axis. Note the logarithmic scale. Above
T ∼ 15 K the relaxation rate is constant. The decrease at higher temperatures (T > 200 K)
can be attributed to muon diffusion. Below T ∼ 15 K the relaxation increases and shows
a maximum at TC = 9.51 (6) K. The solid line below TC is a fit to Eq. 5.6. (Below)
Specific heat measured on the same sample. A sharp peak occurs at the same transition
temperature as in the μSR data.

(Fig. 5.10) where a non-zero relaxation is measured up to 450 mT.

5.3.4 Analysis

Magnetic Field Scans

In order to analyze the data in longitudinal field of Figs. 5.10 and 5.11, a comparison
with Nuclear Magnetic Resonance (NMR) is made. For this technique it can be
shown that the 1/T1 relaxation rate (equal to λZ in μSR) is proportional to the
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Figure 5.10: Field dependence of the muon relaxation rate λZ in the paramagnetic state
of URhGe (TC = 9.51 K). The initial muon polarization Sμ(0) as well as the external
magnetic field Bext were parallel to the hard magnetic a axis. The solid line is a fit to the
sum of two Lorentzian functions (Eq. 5.5). See the main text for the extracted parameters.
The insert shows a zoom at low fields.

Figure 5.11: Field dependence of the muon relaxation rate λZ in the paramagnetic state
of URhGe (TC = 9.51 K). The initial muon polarization Sμ(0) as well as the external
magnetic field Bext were parallel to the easy magnetic c axis. The solid line is a fit to the
sum of two Lorentzian functions (Eq. 5.5). See the main text for the extracted parameters.
The insert shows the whole field range. For fields of 10 mT and above λZ = 0 μs−1 is
obtained within the uncertainty.
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Table 5.2: Fit parameters, as extracted from a fit of the muon data to Eq. 5.5. Listed are
the field width Δ and the relaxation time τ of the fluctuating field at the muon site in the
paramagnetic state of URhGe, close to TC = 9.51 (6) K, for the two different directions
of the initial muon polarization Sμ(0). The parameters of the first Lorentzian differ by a
factor 2.5 for the two directions, whereas the second Lorentzian is much more anisotropic.

Sμ(0) ‖ a Sμ(0) ‖ c

Δ (mT) τ (μs) Δ (mT) τ (μs)

1st Lor. 0.048 (3) 3.5 (3) 0.021 (2) 9.0 (1.4)

2nd Lor. 1.2 (2) 0.0022 (6) 0.068 (13) 0.36 (10)

time average of the square of the local field multiplied by the spectral density of
the field fluctuations at a certain frequency ω. The spectral density has the form of
J(ω, τc) = τc

1+ω2τ2
c

where τc is the correlation time of the fluctuations [180, 181].

In fact this model is a special case of the more general formula in Eq. 5.7 (to
be discussed in the next Section) without imposing ωμ = 0. With the assumption
that the spectral density is Lorentzian, the q integration can be decoupled from
the ωμ = γμBext dependence and the same result as for NMR (explained above) is
obtained.

The data in Figs. 5.10 and 5.11 suggest there are two independent relaxation
channels. The first contribution can be suppressed in longitudinal fields smaller
than 1 mT for both directions of Sμ(0) with respect to the easy magnetic axis c,
whereas the second contribution can be suppressed in fields which are significantly
higher. Further, the second contribution strongly depends on the orientation of the
field. Therefore, a fit is made to a model of two independent relaxation processes.
Each is due to magnetic field fluctuations with a correlation time τi and a time
averaged square of the local magnetic field Δ2

i . The formula for this model is

λZ(Bext) =
2∑

i=1

2 γ2
μΔ2

i τi

1 + (γμBext)2τ 2
i

(5.5)

where γμ = 851.6 Mrad s−1T−1 is the gyromagnetic ratio of the muon.
The extracted values for the field distribution width Δi at the muon site and the

relaxation time τi of the fluctuating field are shown in Table 5.2 for the two different
directions of Sμ(0) in the paramagnetic state of URhGe. When the parameters of
the first Lorentzian are compared for the two geometries, it is seen that Δ and τ
differ by a factor 2.5. The second Lorentzian however is much more anisotropic.
While Δa

2 and Δc
2 differ by a factor of 18, the ratio between τ c

2 and τa
2 amounts

to 160.
Comparing the two Lorentzian functions per geometry, it is seen that the cor-

relation time for the first component is much larger than for the second one. For
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Sμ(0) ‖ a, τa
1 is of the order of μs, whereas τa

2 is in the ns regime. For Sμ(0) ‖ c the
difference is smaller but still amounts to a factor 25. Looking at the field distribu-
tion width Δ, it is seen that Δa

2 is 25 times larger than Δa
1 and that Δc

2 is about 3
times larger than Δc

1.

Spin-lattice relaxation in the ferromagnetically ordered state

The spin-lattice relaxation λZ(T ) below TC for Sμ(0) ‖ c (Fig. 5.9) can be fitted in
the temperature region 0.6 to 8 K to the empirical logarithmic function

λZ = a + b ln

(
T

TC

)
. (5.6)

The fit yields a = 0.00357 (22) μs−1 and b = 0.00082 (8) μs−1 for TC = 9.51 (6) K
and is shown in Fig 5.9. In the next Section the spin-lattice relaxation λZ(T ) below
TC will be discussed in more detail.

5.3.5 Discussion

In the previous Section two different types of magnetic field fluctuations at the muon
site have been identified, through the signature of their relaxation processes. One
type is nearly isotropic, has long relaxation times, and causes small fluctuations in
the local magnetic field at the muon site, whereas the other type is highly anisotropic,
has short relaxation times, and causes much larger magnetic field fluctuations.

Measurements of the magnetic susceptibility and specific heat in field [163] in-
dicate that the magnetic order in URhGe is almost of an easy-plane type, i.e., the
anisotropy between the b-c plane and the a axis is large, whereas the anisotropy
between the b and c axes is small. It should however be noted that the sponta-
neous magnetic moment below TC is along the c axis. Also, for URhGe the local
magnetic field Bloc at the muon site is parallel to the c axis. With Sμ(0) ‖ Bloc ‖ c,
the magnetic excitations along the a and b axes are probed and for Sμ(0) ‖ a the
magnetic excitations along the b and c axes are measured. This can be understood
by the consideration of classical Larmor precession, as in Chapter 2: the muon spin
is not sensitive to parallel magnetic field fluctuations. It is therefore expected that
λZ(Bext) also shows the anisotropy between the a and c axis. That μSR is capable
of measuring the anisotropy of critical magnetic fluctuations, if present, is nicely
shown in the rare-earth compound NdRh2Si2 [144], a uniaxial antiferromagnet. The
values of λZ(T ) for Sμ(0) parallel and perpendicular to the easy axis, differ by a
factor 100 in the critical regime above TC. In Table 5.2 the anisotropy of URhGe is
found for the second Lorentzian. For the system it is much more difficult to excite
a fluctuation along a than along c, giving rise to longer correlation times τ and
smaller field distribution widths Δ for Sμ(0) ‖ c. Although some anisotropy is also
observed for by the first Lorentzian in Table 5.2, it is far too small to account for the
macroscopically observed anisotropic behavior. The two components are therefore
expected to have a different origin.
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The present results can be compared to the proposed models, described in the
Introduction. It can be assumed that the ferromagnetism is itinerant in nature [89,
90, 91, 92], or localized [100, 101]. Here it is shown that the latter model is able
to explain the μSR data presented in this Chapter. The existence of two subsets of
U 5f magnetism is assumed. The first subset is composed of an itinerant electron
density with a small, quasi-static, and slowly fluctuating polarization. The second
subset consists of an electron density localized at the U atoms, resulting in large,
anisotropic, and fast fluctuating magnetic moments.

A justification of this model is given by the relaxation times in Table 5.2. There
are several indications that itinerant magnetic moments fluctuate slower than local-
ized ones. The fluctuation rate for itinerant moments with ferromagnetic correlations
is given, in lowest order, by Γ(q) ∝ q [182], or by Γ(q) ∝ q5/2 [27] when dipolar
interactions are taken into account close to TC. When mainly longitudinal fluctua-
tions are probed by the muon, Γ(q) is essentially probed at qD [142]. (Comparing
Fig. 5.8 with Fig. 4.20 shows that this is in fact the case for URhGe.) Since the
dipolar interactions in itinerant systems is smaller than in localized systems [142],
qD is smaller for itinerant systems than for localized systems. Γ(q) is a growing
function of q which leads to a smaller value of Γ(q) for itinerant systems than for
localized systems. That Γ(q) is a growing function of q, is nicely demonstrated by
quasi-elastic neutron scattering for UGe2 [149]. These measurements show unam-
biguously a growing Γ(q) with increasing q. With τ ∝ Γ−1(q) it follows that the
longer the relaxation time, the more itinerant the magnetism behaves. A heuristic
argument for URhGe, in which large electronic correlations are present as indicated
by the large linear electronic term γ in the specific heat, is that correlations tend to
slow down the spin dynamics at low temperatures. The large differences in the width
Δ of the fluctuating field at the muon site (Table 5.2) indicate a large difference in
polarization of the two components. Furthermore, the large anisotropy is expected
for localized moments due to the strongly anisotropic hybridization, whereas band
structures are usually less anisotropic.

Zwicknagl et al. [183, 184] have developed a theory for the electronic excitations
in UPt3, assuming the localization of two of the 5f electrons and the delocalization
of the remaining 5f electrons. With this dual ansatz the authors could reproduce the
de Haas-van Alphen data on UPt3 and UPd2Al3. Furthermore, LDA calculations
show that the hopping matrix elements for different 5f orbitals vary, leading to
a difference in behavior for the 5f electrons in the system. For UPd2Al3 various
techniques, including photoemission, inelastic neutron scattering, and μSR, indicate
the same dual nature of 5f electrons [156, 157, 158, 185]. Of course, the dual model
should allow for a rather natural description of heavy-fermion superconductivity
coexisting with 5f magnetism. This has indeed been shown to be the case for
UPt3 [183]. The mass enhancements of the quasiparticles are shown to follow from
the local exchange interaction of the delocalized 5f electrons with localized 5f 2

configurations. The data on URhGe, presented in this Chapter, fit well into this
picture.
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The present results can be compared to the magnetic form factor of URhGe.
These measurements were performed by Prokeš et al. using polarized neutron scat-
tering at 2 K in a field of 6 T [186]. The recorded flipping ratios could be fitted to the
ordered moment μ multiplied by the magnetic form factor f(Q) = [〈j0〉 + C2 〈j2〉]
where C2 is related to the ratio of the spin and orbital contribution to the magnetic
moment, and 〈jn〉 are averages of the spherical Bessel functions jn(Qr) over the
squared radial wave-functions for the unpaired electrons in the atom. Within the
dipolar approximation the magnetic form factor agrees well with the theoretical 5f
form factors for free U3+ and U4+ ions. Because of the strong similarity between
the form factor of both ions it was not possible to distinguish them within error
bars. Moreover, a magnetic moment of 0.41 (1) μB/U was found. This value is
fully consistent with magnetic bulk measurements. In summary, polarized neutron
measurements indicate that the magnetic moments are localized on the U sites and
that a complementary itinerant magnetic moment falls within the uncertainty of the
determination of μ.

If indeed localized magnetism coexists together with itinerant 5f states with a
small polarization, as strongly suggested by the μSR data presented in this Chapter
and supported by polarized neutron scattering, this has implications for the nature
of the Cooper pairs in the superconducting state. Assuming an itinerant nature of
the ferromagnetism, theoretical studies have shown the possibility of spin-triplet su-
perconductivity [89, 90, 91, 92]. In this case the electrons forming the Cooper pairs
are also responsible for the strong ferromagnetism. Other studies by Abrikosov
and Suhl [100, 101], however, have shown that spin-singlet superconductivity is still
feasible under the constraint that conducting electrons involved in the superconduc-
tivity and localized electrons involved in the ferromagnetic order belong to different
subsets of 5f electrons. The pairing mechanism is then based on the interaction
of electron spins via localized magnetic moments. The μSR data presented in this
Chapter suggest the latter case of Cooper pairs formed by itinerant electrons coupled
by the spin fluctuations of the magnetic U ions.

Measurements of the upper critical field for magnetic fields along the three crys-
tallographic axes for a superconducting single crystal of URhGe [177] suggest the
existence of odd-parity, spin triplet superconductivity. This observation would rule
out the mechanism of Abrikosov and Suhl [100, 101]. However, the μSR measure-
ments presented in this Section show that it is improbable that the ferromagnetism
below TC is carried by the same electrons as those forming the Cooper pairs. Further
theoretical studies are needed to clarify this apparent discrepancy.

A similar μSR study on UGe2 at ambient pressure [134] and at 0.95 GPa (Chap-
ter 4) shows the same picture as for URhGe. The relaxation rate λZ just above TC

is suppressed in very small magnetic fields. However, the localized component is not
observed, probably because the fluctuations are too fast (motional narrowing limit).
Again, polarized neutron scattering indicates that almost all the magnetism is local-
ized at the U atoms. As mentioned earlier, also UPt3 and UPd2Al3 are thought to
show a coexistence of localized magnetism and itinerant 5f states. The conclusion
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drawn in this Chapter might therefore be more general than for URhGe alone.

Spin-lattice relaxation at high temperatures

For a paramagnetic system the static wave vector dependent susceptibility χQ0(q),
where Q0 is the wave vector of the magnetic structure, is a key quantity. Note that
for a ferromagnet Q0 ≡ 0. For temperatures much higher than TC, χQ0(q) becomes
wave vector independent (i.e. the pair-correlations are negligible) and shows Curie-
Weiss behavior (χ ∝ (T − θCW)−1). In the same limit the linewidth Γ(q) of the
paramagnetic fluctuations becomes temperature independent [187] for ferromagnets.
Since [143]

λZ ∝
∫ ∑

β,γ

Aβγ(q) Λβγ(q, ωμ = 0)
d3q

(2π)3
, (5.7)

where Aβγ are constants accounting for the coupling between the muon spin and
the spins of the sample and since Λβγ corresponds to:

Λαα(q, ωμ = 0) ∝ kBT
χαα(q)

Γα(q)
, (5.8)

it is easily seen that λZ becomes temperature independent for T 
 θCW for lo-
calized as well as for itinerant systems. Note that antiferromagnets maintain the
temperature dependence of Γ(q) and that λZ ∝ T 1/2 for T 
 TN [143, 188].

If the exchange interaction would play an important role at higher temperatures,
λZ(T ) would not be temperature independent [143]. For instance, when mainly
antiferromagnetic fluctuations drive the relaxation, λZ(T ) would increase at high
temperatures. If crystal electric field (CEF) effects play a role (i.e. higher CEF en-
ergy levels start to get involved in the excitations relaxing the muon spin), λZ would
show a significant drop at higher temperatures [189]. (For experimental examples on
muon relaxation rates in systems with CEFs, see Ref. [190].) Therefore, the constant
λZ at temperatures up to 200 K indicates that for T 
 TC the spin-correlations are
negligible and that the higher CEF levels are above 200 K. It is most likely that the
drop in λZ at 200 K is due to muon diffusion, because the decrease occurs at the
same temperatures for both directions of Sμ(0).

Spin-lattice relaxation in the ferromagnetically ordered state

In Section 5.3.4 it has been shown that λZ(T ) can be fitted to a logarithmic function
below TC. A priori, two possible sources of relaxation contribute to λZ : magnons
(spin wave excitations of the ordered part of the magnetic moment) and magnetic
fluctuations (unordered part of the magnetic moments). For magnons with a simple
ferromagnetic dispersion relation �ωq = Dmq2+Δ, where Dm is the magnon stiffness
constant and Δ the anisotropy energy, it can be shown that [191]

λZ ∝ T 2 ln

(
kBT

Δ

)
. (5.9)



5.3 Muon Spin Rotation and Relaxation 119

This equation is only valid for ferromagnets with small anisotropy, i.e. Δ � kBT .
The T 2 ln T behavior is nicely demonstrated for the rare-earth compound GdNi5 [18].
Clearly, for URhGe λZ(T ) does not show this T 2 ln(T ) behavior. The contribution
of the magnetic fluctuations should be further investigated in order to explain the
empirical λZ(T ) = a + b ln(T/TC) behavior, e.g. by magnetic field scan in the
ferromagnetic state. At this stage, a mathematical derivation of this behavior and
the contribution of magnetic spin fluctuations to λZ(T ) is unknown.

Extrapolation of the fit to Eq. 5.6 in Fig. 5.9 to λZ = 0 yields a temperature of
T = 0.12 K. This would implicate that temperatures lower than 0.12 K correspond to
energies too small to excite magnetic fluctuations. This may indicate the existence
of a gap in the fluctuation spectrum

Spin-lattice relaxation at the lowest temperature

In Fig. 5.9 it is seen that below 0.6 K the relaxation λZ(T ) increases with decreas-
ing temperature. The limited number of data points showing this trend prohibits
drawing strong conclusions. Clearly, more research is needed to provide a starting
point of understanding the spin dynamics in URhGe at the lowest temperatures.

Assuming the increase is not an artefact, e.g., a change in background due to the
3He cryostat, the result could be very interesting. Below Ts ∼ 0.3 K superconduc-
tivity sets in [2]. The glue between the electrons forming Cooper pairs, is thought
to be ferromagnetic fluctuations. It is therefore necessary that λZ �= 0, which is
shown by the data. Possibly, the increase of λZ(T ) with decreasing temperature
could even enhance the attractive forces that bind electrons into a pair, since the
fluctuations get larger. This conjecture and the confirmation of the upturn of λ(T )
can be verified by additional experiments at temperatures below 0.3 K.

5.3.6 Conclusions

In this Section μSR data on URhGe have been presented. Field scans in the para-
magnetic state clearly show two different magnetic contributions, which can be iden-
tified as localized and itinerant magnetism. This fact strongly suggests that the 5f
electrons responsible for both magnetic order and superconductivity do not par-
ticipate in both phenomena simultaneously but are separated either in real space
and/or in reciprocal space, i.e. different parts of the Fermi surface.
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CHAPTER 6

URh1−xRuxGe

6.1 Introduction

ecently, URhGe has attracted significant attention because ferro-
magnetism (Curie temperature TC = 9.5 K) and superconductivity
(Ts = 0.25 K) were found to coexist at ambient pressure [2]. The su-
perconducting state is believed to have its origin in the proximity to a
ferromagnetic instability: near the quantum critical point (QCP) en-
hanced ferromagnetic spin fluctuations would mediate spin-parallel

Cooper pairing. The QCP is reached when TC is tuned to TC = 0. That magnetic
fluctuations play an important role, is indicated by the field-induced superconduc-
tivity found in URhGe for a magnetic field of 12 T along the b-axis [173]. At this field
a spin reorientation takes place and magnetic fluctuations reappear. It is therefore
of interest to establish how far URhGe is from the QCP and to study these fluctua-
tions in the vicinity of the QCP. In the vicinity of this point the Fermi liquid theory
breaks down and new physics is expected to manifest itself (non-Fermi liquid physics
(NFL)). An enhanced Sommerfeld coefficient (linear term in the electronic specific
heat) of γ = 160 mJ/mol K2 and a small ordered magnetic moment of ∼ 0.4 μB/U-
atom indicate that URhGe is close to a quantum phase transition. In the group
of UTGe compounds, with T a transition metal, URhGe is surrounded by para-
magnetic compounds (UCoGe and URuGe) and magnetically ordered compounds
(UIrGe and UPdGe) [161].

Unlike UGe2 [1] and UIr [3], neither hydrostatic pressure (up to 13.0 GPa) nor
uniaxial pressure is effective in tuning URhGe to a quantum critical point, as pres-
sure enhances TC [192, 176]. TC can be reduced by appropriate chemical substi-
tutions, but it is clear that these substitutions reduce the mean free path of the
electrons and thereby destroy the superconductivity. However, the magnetic fluc-
tuation spectrum is generally less sensitive to the crystal quality. Chemical substi-
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tution leads to a loss of translational symmetry, but this does not necessarily in-
hibit quantum critical behavior, as demonstrated in, e.g., the substitutional system
CeCu6−xAux [53]. This opens up the possibility to study a ferromagnetic quantum
critical point in chemically substituted URhGe. For other examples of materials that
exhibit non-Fermi liquid behavior induced by chemical substitution, see Ref. [193].

In principle, one has the choice of substituting any of the three elements U,
Rh, or Ge by another element. U is the only magnetic ion in the compound and
substituting U by, e.g., Th, would result in a decrease in the number of magnetic 5f
ions in the system. One would rather like to alter TC in a way which has the same
underlying mechanism as external pressure, namely tuning the lattice parameters
and the f -ligand hybridization (either the f -d or f -p hybridization). This is achieved
by substituting Rh (f -d) or Ge (f -p).

The choice of elements to substitute on the Rh site with the aim to reduce TC

is limited [161, 172]. UPdGe is a ferromagnet with TC = 30 K and therefore the
substitution of Rh by Pd is not expected to decrease TC. UNiGe, UPtGe, and
UIrGe are antiferromagnets. It has been shown by Chevalier et al. [171] that in
the URh1−xIrxGe series a sudden transition occurs from a ferromagnetic to an an-
tiferromagnetic ground state near x = 0.45 − 0.50. Introducing T = Ni, Pt, or
Ir is therefore expected to introduce competing antiferromagnetic correlations in
U(Rh,T )Ge. UFeGe is not isostructural to URhGe, unlike the aforementioned com-
pounds. A structural transition is therefore expected at a certain Fe concentration.
Since URuGe and UCoGe are both paramagnetic and isostructural to URhGe, it
was decided to investigate the effect of substituting Rh by Ru and Co.

A similar screening can be made for substitution on the Ge site. URhSi and
URhSn have TC = 9.5 K and TC = 16.5 K, respectively. Chemical substitution of
Ge for Si or Sn is not expected to decrease TC. A few samples were prepared to
check this expectation for URhGe1−xSix.

It should be noted that chemical substitution of Rh and Ge by Co or Si, re-
spectively, is isoelectronic. Hence there will only be an effect because of the size
difference. In the case of substitution of Rh by Ru, however, there is also a change
in valence changes since Ru has one electron less than Rh. In this case both size
and valence will influence the hybridization.

A comparison of the lattice parameters a, b, and c and the unit-cell volume V
for the systems of interest is made in table 6.1. The UTSi and UTGe compounds
were first reported to crystallize in the CeCu2 crystal structure (space group Imma)
in which U occupies the Ce position and T and Si or Ge are randomly distributed
over the Cu sites. Later, a careful analysis of neutron and X-ray diffraction data
however indicated the TiNiSi structure (space group Pnma) [161, 162]. The TiNiSi
structure is the ordered variant of the CeCu2 structure where T and Si or Ge occupy
inequivalent positions. To enable a straightforward comparison of lattice constants
measured by different authors the TiNiSi notation will be used in table 6.1, i.e., a
and b are interchanged with respect to the CeCu2 notation.

URhGe has the largest unit-cell volume V , followed by URuGe and URhSi.
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Table 6.1: Lattice parameters a, b, c, unit-cell volume V , and some magnetic proper-
ties of URhGe, URuGe, UCoGe, and URhSi. The lattice parameters are determined at
room temperature, except in Ref. [194], where they were determined at 80 K. The TiNiSi
structure notation is used, i.e. a and b are interchanged with respect to the notation in
the CeCu2 structure. See the main text for details. γ is the coefficient of the electronic
specific heat, TC the Curie temperature, and μS the ordered magnetic uranium moment.
WTDP stands for weakly temperature dependent paramagnet and PM for paramagnet.

Ref. a b c V γ TC μS

(Å) (Å) (Å) (Å3) (mJ/mol·K2) (K) (μB)

URhGe [2] 9.5 0.42
[161] 6.898 4.340 7.536 225.61
[167] 164 9.6
[195] 6.876 4.333 7.513 223.84
[163] 6.875 4.331 7.508 223.56 155 9.6 0.35

URuGe [172] 6.678 4.359 7.539 219.46 WTDP -
[170] 35 WTDP -
[196] 6.687 4.343 7.559 219.53 WTDP -

UCoGe [172] 6.843 4.205 7.227 207.96 PM -
[170] 65 PM -
[197] 6.852 4.208 7.226 208.34 46 ?

URhSi [194] 6.986 4.113 7.427 213.40 180.9 9.5
[196] 7.023 4.121 7.458 215.85 9.5 0.11
[162] 7.002 4.121 7.451 215.00 0.50

UCoGe has by far the smallest V . Chemical substitution of Rh by Ru mainly affects
the a-axis, whereas substitution by Co affects the b and, primarily, the c-axis. With
the introduction of Si the a-axis increases and the b- and c-axes decrease.

Some magnetic properties are listed in table 6.1 as well. URhGe and URhSi have
the same Curie temperature of 9.5 K. URuGe is a weakly temperature dependent
paramagnet. Measurements down to 1.2 K suggest that UCoGe is a paramagnet as
well, although Canepa et al. [197] reported TC = 46 K, deduced from resistivity data.
Magnetization measurements at low temperatures in fields up to 35 T, suggest that
UCoGe is relatively close to ferromagnetic order, because data taken on a powder
sample show, compared to other paramagnetic systems like URuGe, a relatively
large field-induced magnetic moment (0.58 μB/f.u. at 35 T) [170]. URhGe and
URhSi have relatively high γ values, whereas UCoGe and URuGe have moderate
ones.

In this paper, dc magnetization measurements performed on the three series
URh1−xRuxGe, URh1−xCoxGe, and URhGe1−xSix are reported. It was found that
substitution by Co leads to an increase of TC up to TC = 20 K for x = 0.60, beyond
which TC drops to 0 for x close to 1. Samples in which Ge is chemically substituted
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by Si did not show any change in TC up to x = 0.20. The U(Rh,Ru)Ge system,
however, does show a complete suppression of the ferromagnetism for low x. After
an initial increase, TC decreases linearly and vanishes at a critical Ru concentration
of xcr ≈ 0.38, suggesting a quantum critical point. The U(Rh,Ru)Ge system is
investigated further by electrical resistivity, X-ray powder diffraction, specific heat,
and magnetization under hydrostatic pressure to study the role of the f -ligand
hybridization in decreasing TC and to look for possible non-Fermi liquid behavior
as the quantum critical point is approached. A brief preliminary account of these
results was reported in Ref. [198].

6.2 Experimental

Polycrystalline samples of U(Rh,Ru)Ge, U(Rh,Co)Ge, and URh(Ge,Si) with Ru,
Co, and Si concentrations x of 0.0 ≤ x ≤ 1.0 were prepared by arc melting the
constituents U, Rh, Ru, Co (all 3N purity) and Ge (5N) under a high-purity argon
atmosphere. Each sample was melted several times and turned over after each melt
to improve the homogeneity. The as-cast buttons were wrapped in Ta foil and put
in quartz ampoules together with a uranium getter. After evacuating and sealing
the quartz ampoules, the samples were annealed for ten days at 875 ◦C. The single-
phase nature of the samples was checked by electron probe micro-analysis (EPMA)
and by X-ray powder diffraction. The X-ray diffraction patterns and the EPMA
measurements showed no signs of impurity phases within the resolution of less than
5 vol.% and 2 vol.%, respectively.

The dc magnetization at ambient pressure was measured in a MPMS XL-5 Quan-
tum Design SQUID magnetometer. Temperature scans were performed between 1.8
and 20 K in a field of 0.01 T and between 2 and 300 K in a field of 1 T. In both cases
the samples were zero-field cooled. Field scans of the magnetization were made in
fields up to 5.5 T at several temperatures.

Magnetization measurements at a pressure of 0.43 GPa were performed using an
Oxford Instruments MagLab vibrating sample magnetometer (VSM). The pressure
clamp cell was made of Cu alloyed with Be. Temperature scans were made in fields
of 0.01 T and 1 T. Magnetic field scans were performed in fields up to 12 T at sev-
eral temperatures. The pressure was determined by measuring the superconducting
transition temperature Ts of a piece of lead inside the pressure cell (Ts = 7.2 K at
ambient pressure). The pressure transmitting medium was a mixture of methanol
and ethanol (1 : 4).

Electrical resistivity, ρ(T ), measurements were performed using a standard four
probe ac technique in zero field from 2 to 300 K in a MagLab system of Oxford
Instruments.

X-ray diffraction measurements at room temperature were performed using a
Bruker D3 Advance X-ray diffractometer with Cu-Kα radiation. Powders made from
the polycrystalline samples were covered by Kapton foil to prevent contamination.
Rietveld analysis of the diffraction data was performed using the GSAS program [38].
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Figure 6.1: Temperature dependence of the dc magnetization of URh1−xRuxGe for vari-
ous values of x. The samples were zero-field cooled and measured in a field of 0.01 T. The
lower part of the figure shows the derivative of the magnetization. Note that the x = 0.10
sample has a higher TC than the pure URhGe sample.

The specific heat Cp(T ) was measured using the semi-adiabatic method in com-
bination with a mechanical heat switch in a 3He cryostat. The mass of the samples
amounted to 3 - 4 grams.

6.3 Results

6.3.1 Magnetization at ambient pressure

The influence of the chemical substitution of Rh by Ru on the Curie temperature
TC was studied by dc magnetization M(T ) at ambient pressure. The results are
shown in Fig. 6.1. Also shown, in the lower part of the figure, is the derivative
dM(T )/dT . TC is defined as the temperature at which dM(T )/dT has a minimum.
The magnetization was measured after zero-field cooling in a small field of 0.01 T,
because a larger field will move the inflection point (dM(T )/dT )min to higher tem-
peratures [163] and bias the determination of TC. On the other hand, a small field
of 0.01 T will most probably not significantly expel the magnetic domains when the
sample is zero-field cooled.

In addition to M(T ), the magnetization as a function of magnetic field M(B) has
been measured up to 5.5 T at several fixed temperatures. From these measurements
Arrott plots are derived. In Fig. 6.2 the results for x = 0.25 are shown as an
example. The Curie temperatures deduced from the Arrott plots agree very well
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Figure 6.2: Arrott plots (M2 versus μ0H/M) of the magnetization of URh1−xRuxGe
with x = 0.25 measured between T = 2 and 14 K. The isotherm through the origin
determines TC = 6 K.

with the temperature at which (dM(T )/dT )0.01T is minimum.
It is clearly seen in Fig. 6.1 that the pure URhGe compound has a TC of about

9.6 K, in accordance with the literature value [2]. When Rh is chemically substituted
with a small amount of Ru, TC of URh1−xRuxGe shifts upwards to 10.4 K for
x = 0.10. Subsequently, there is a monotonic decrease of the Curie temperature for
increasing x. At x = 0.15, TC has reached roughly the same value as for x = 0. For
the samples with x = 0.35, 0.375, 0.40, and 0.60 no transition was observed in the
measured temperature range (T > 1.8 K). However, the Arrott plots (not shown)
clearly indicate a paramagnetic ground state for x = 0.40 and 0.60, whereas they
do suggest ferromagnetism for x = 0.35 below TC ≈ 1.3 K. This is estimated by
extrapolating the points of intersection of the Arrott isotherms for temperatures
above T = 1.8 K with the horizontal μ0H/M axis.

Figure 6.1 indicates that for increasing Ru concentrations the transition broad-
ens. The peak in (dM(T )/dT ) looses height but gains in width, indicating an in-
crease in disorder caused by chemical substitution. X-ray measurements (Sec. 6.3.3)
clearly indicate a single-phase structure. A variation in the local Ru concentration
x can therefore only exist on an atomic scale. A higher annealing temperature could
possibly sharpen the transition.

In Fig. 6.3 the temperature dependence of the reciprocal susceptibilities is shown
for the URh1−xRuxGe series. The susceptibility is measured in a field of 1 T. The
temperature dependence of the reciprocal susceptibility of metallic compounds nor-
mally exhibits deviations from the linear Curie-Weiss behavior, which can be ac-
counted for by fitting the data to the modified Curie-Weiss (MCW) law χ(T ) =
C/(T − θ)+χ0, where χ0 represents a temperature-independent contribution. How-
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Figure 6.3: Inverse susceptibility 1/χ of URh1−xRuxGe as a function of temperature in
a field of 1 T for different values of x.

ever, in polycrystalline samples of materials with strongly anisotropic magnetic prop-
erties pronounced deviations from the MCW behavior are often observed. Therefore,
no attempt was made to model the susceptibility with the MCW law. Note that
for single crystals of URhGe the susceptibility does follow a MCW behavior with
θ ≈ TC, as demonstrated in Ref. [2] for the easy-axis susceptibility.

In Fig. 6.4 the magnetization measured in 0.01 T as a function of temperature
is shown for the URh1−xCoxGe series. The Curie temperatures as deduced from
(dM(T )/dT )min agree with those deduced from Arrott plots. Figure 6.5 shows the
results for x = 0.60 as an example. TC increases monotonically up to 20 K for
x = 0.60. For higher values of x, TC decreases and vanishes somewhere between
x = 0.90 and x = 1.0.

As in the case of Ru-substitution the transition broadens, probably due to the
variation on the atomic scale of the Rh and Co concentrations. If this is the case, one
expects an equal width of the dM/dT peak at TC for two compounds symmetric
with respect to x = 0.50, since compounds with this substitution concentration
have the highest degree of disorder. In fact, after vertical scaling and horizontal
translation the peaks for x = 0.40 and x = 0.60 are indeed identical. The decrease
of the measured magnetization is probably caused by a smaller ordered magnetic
moment. Susceptibility measurements in 1 T (see Fig. 6.6) indicate a smaller ordered
magnetic moment for x = 0.60 than for x = 0.40.

In Fig. 6.7 the magnetization measured in 0.01 T as a function of temperature
is shown for the URhGe1−xSix series. The Curie temperatures as deduced from
(dM(T )/dT )min agree with those deduced from the Arrott plots. Figure 6.8 shows
the Arrott plots for x = 0.20. TC remains constant up to x = 0.20. The transition
seems to be slightly broadened for x = 0.20, compared to x = 0, as in the case of
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Figure 6.4: Temperature dependence of the dc magnetization of URh1−xCoxGe for vari-
ous values of x. The samples were zero-field cooled and measured in a field of 0.01 T. The
lower part of the figure shows the derivative of the magnetization.

Figure 6.5: Arrott plots (M2 versus μ0H/M) of the magnetization of URh1−xCoxGe
with x = 0.60 measured between T = 4 and 22.5 K. The isotherm through the origin
determines TC = 20 K.
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Figure 6.6: Inverse susceptibility 1/χ of URh1−xCoxGe as a function of temperature in
a field of 1 T for different values of x.

substitution of Rh by Ru. However, the peak in dM/dT for x = 0.20 is also higher
than for x = 0. Vertical scaling shows that the peaks are in fact equally sharp.
Here the same is true as for substitution by Co. The ordered magnetic moment at
2 K in 1 T (Fig. 6.9) for x = 0.20 is larger than for x = 0. In summary, chemical
substitution of Ge by Si up to x = 0.20 tends to enhance the ordered magnetic
moment, but does not significantly change TC. Note that this seems to indicate that
in table 6.1 the value of μs taken from Ref. [162] is more reliable than the value
reported in Ref. [196].

6.3.2 Electrical resistivity

The URh1−xRuxGe series is further investigated by measuring the temperature de-
pendence of the electrical resistivity ρ(T ). In Fig. 6.10 the low-temperature ρ(T )
is shown for URhGe. Also shown is the derivative dρ/dT . The Curie temperature
TC is defined as the intercept of the linear fits above and below TC. For URhGe
TC = 9.4 K is obtained, in agreement with the magnetization results. Some authors
define TC differently, i.e. as the inflection point of the sharp increase in dρ/dT
around TC, yielding a slightly higher value for TC. The absolute values of ρ(T ) re-
ported here are somewhat smaller than the ones found by Tran and Troć [168] for
polycrystals, but somewhat larger than reported by Prokeš et al. for a single crys-
tal [163]. The residual resistance ratio (RRR) for the URhGe sample is 6, whereas
for all the measured chemically substituted samples RRR ≈ 2 is obtained.

In Fig. 6.11 the temperature dependence of the electrical resistivity ρ(T ) for
U(Rh,Ru)Ge is shown. In the high-temperature region ρ(T ) increases with de-
creasing temperature. At lower temperatures, the increase gradually changes to
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Figure 6.7: Temperature dependence of the dc magnetization of URhGe1−xSix for various
values of x. The samples were zero-field cooled and measured in a field of 0.01 T. The
lower part of the figure shows the derivative of the magnetization.

Figure 6.8: Arrott plots (M2 versus μ0H/M) of the magnetization of URhGe1−xSix with
x = 0.20 measured between T = 2 and 14 K. The isotherm through the origin determines
TC = 9.5 K.
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Figure 6.9: Inverse susceptibility 1/χ of URhGe1−xSix as a function of temperature in a
field of 1 T for different values of x.

Figure 6.10: Low temperature part of the electrical resistivity ρ(T ) of URhGe and the
derivative dρ/dT . The construction to determine TC is shown.

a decrease, for different concentrations x at different temperatures, leading to a
broad maximum. For URhGe it is seen that at TC there is a sharp drop, caused
by a decrease in spin-disorder scattering. For x > 0, the transition becomes less
pronounced, in agreement with the magnetization data. Arrows indicate the Curie
temperatures determined as mentioned above. For x ≥ 0.35 no transition was found
in the measured temperature range.

Below TC, ρ(T ) follows the behavior ρ0 + AT n. In table 6.2, values found for
ρ0, A, and n are listed for a few samples. The fitting region is 2 K < T < 6.5 K.
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Figure 6.11: Temperature dependence of the electrical resistivity ρ measured on
URh1−xRuxGe for various values of x. The Curie temperatures determined from the
magnetization data are indicated by an arrow.

Since the parameters have been determined over a rather small T interval, the
values are not very precise. However, it is possible to look for trends. The residual
resistivity ρ0 increases with increasing x reflecting the atomic disorder caused by
the Ru substitution. The exponent n also increases with increasing x, and attains
values close to the Fermi-liquid value n = 2. Above the critical concentration an
almost linear temperature dependence of ρ(T ) is found with n = 1.19. A similar
behavior is reported for UIr [199]. In order to investigate the full x-dependence of

Table 6.2: Obtained fitting values of the low-temperature electrical resistivity to the
expression ρ = ρ0 + ATn for a few samples. The fitted temperature range is 2 K < T <
6.5 K. Since the parameters have been determined over a rather small T interval, the
values are not very precise.

x = 0 x = 0.10 x = 0.15 x = 0.20 x = 0.60

ρ0 (μΩ cm) 76.5 368.1 299.8 416.5 472.5
A (μΩ cm/Kn) 6.9 1.85 0.90 0.51 3.36

n 1.94 2.10 2.18 2.41 1.19
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Figure 6.12: Lattice parameters a (•), b (�), and c (�) of URh1−xRuxGe as a function
of the Ru concentration x determined by X-ray powder diffraction at room temperature.
The lines are fits to the data. It is clearly seen that substitution of Rh by Ru mainly
affects the a-axis, whereas the b-axis can be considered to be constant.

n, experiments at lower temperatures (T < 2 K) are obviously required.

6.3.3 X-ray powder diffraction

Since URhGe and URuGe are isostructural but do not have the same unit-cell di-
mensions (the unit-cell volume of URuGe is slightly smaller), it is interesting to
compare the volume effect of Rh substitution by Ru and of external pressure. Espe-
cially the x = 0.10 sample could give valuable information about the nature of the
mechanism leading to the observed increase of TC. For this purpose X-ray powder
diffraction measurements have been performed at room temperature on some of the
samples.

The X-ray data confirm the orthorhombic Pnma structure of URhGe and show
the same structure for URh1−xRuxGe for all x > 0 measured. The deduced lat-
tice parameters are shown in Fig. 6.12. No secondary phase was observed within
experimental uncertainty. Note that the relative scales on the left-hand side as
well as on the right-hand side in Fig. 6.12 are equal. It is clear that the a-axis
is by far most affected by the substitution of Rh by Ru. The c-axis shows a
slight increase with increasing x, whereas the b-axis remains practically constant.
A linear fit describes the data well and shows that the lattice parameters of the
URh1−xRuxGe series follow Vegard’s law [200]. The a-axis can be described by
a = (6.887 (3) − 0.217 (8) · x) Å, the b-axis by b = (4.334 (1) − 0.010 (3) · x) Å, and
the c-axis by c = (7.513 (2)+0.031 (5)·x) Å. This leads to a unit-cell volume which is
linear in x well within experimental uncertainty: V = (224.25 (13)−6.66 (34) ·x) Å3.
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The value for URhGe (x = 0) agrees with literature (table 6.1). The extrapolated
value for URuGe, V = 217.59 Å3 for x = 1, is slightly smaller than found in table 6.1,
but compares well with literature values as well.

Although substituting Rh by Ru mainly affects the a-axis, the reduction of the
number of d-electrons and the substitution by a slightly smaller atom also affects the
hybridization and thereby the magnetic properties. This will be further elaborated
on in the discussion (Sec. 6.4).

Concerning the TC maximum around x = 0.10. As can be seen in Fig. 6.12, the
lattice parameters of URh1−xRuxGe show no special feature around x = 0.10 within
the experimental error. Likewise, the X-ray data do not show any anomaly in the
lattice parameters in the region around x = xcr = 0.38.

6.3.4 Specific heat

In the investigation of enhanced magnetic correlations as a quantum critical point
is approached, knowledge of the linear electronic specific heat coefficient at low
temperatures, γ, is essential. In Fig. 6.13 the temperature dependence of the specific
heat divided by temperature (Cp/T ) in zero field is shown for a few characteristic
samples of the URh1−xRuxGe series. Note the logarithmic temperature axis.

For temperatures above ∼ 20 K, the curves coincide. In this region, the specific
heat is dominated by the phonon contribution. Fits to the equation C/T = γ +β T 2

for temperatures between T = 15 and 22 K lead to β = 0.60 (1) mJ/mol K4 for
all values of x. From this value of β a Debye temperature θD of about 210 K is
obtained, in accordance with the value obtained by Prokeš et al. [163]. Values for
γ range from 115 (3) mJ/mol K2 for x = 0 to 91 (3) mJ/mol K2 for x = 0.50. The
fit has been restricted to temperatures below 22 K because above this temperature
the C/T curves start to deviate from the T 2 dependence. For temperatures up to
40 K (the highest temperature measured) no indication of crystal field effects was
observed.

Below ∼ 15 K short-range magnetic correlations start to play a role. At lower
temperatures, a pronounced peak is observed, indicating the ferromagnetic transi-
tion. For x = 0, a Curie temperature of 9.5 K is obtained. The compound with
x = 0.10 has a slightly higher TC. For x > 0.10, TC drops. For x = 0.38 and 0.50,
no peak is observed down to the lowest temperature. The deduced Curie tempera-
tures are consistent with the magnetization and electrical resistivity data. Also, the
transition broadens, as it has been shown before for magnetization and resistivity
data.

Note that the temperature dependence of the magnetic specific heat for 0 < T <
TC changes from character in the case of chemical substitution. For URhGe it is
found that Cp = γT + AT 3/2, where the second term (a power law) corresponds to
the contribution of ferromagnetic spin waves [65]. For finite x the spin-wave term
becomes exponential, indicating the opening of a gap in the spin-wave excitation
spectrum [65]. A detailed analysis will be published elsewhere [201].
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Figure 6.13: Specific heat divided by temperature (C/T ) of URh1−xRuxGe as a function
of temperature for various values of x. Note the logarithmic horizontal scale. The solid
line is a fit to C/T = −b ln (T/T0).

The most interesting information is found at the lowest temperatures. For pure
URhGe, a linear electronic coefficient of γ = 167 mJ/mol K2 is found, consistent
with literature (see table 6.1). As x is increased, γ decreases. For x = 0.10, γ =
136 mJ/mol K2; for x = 0.15, γ = 127 mJ/mol K2; for x = 0.20, γ = 136 mJ/mol K2;
for x = 0.50, γ = 181 mJ/mol K2. The compound with the concentration x =
0.38 shows non-Fermi-liquid behavior. This confirms that xcr = 0.38 is the critical
concentration as deduced previously from the magnetization measurements. A linear
dependence of C/T on ln T is found in the temperature region between 0.57 K and
2 K: C/T = −b ln (T/T0) with b = 0.061 J/mol K2 and T0 = 46 K.

6.3.5 Magnetization under pressure

The purpose of measuring magnetization under pressure on compounds with one
element substituted for another, is twofold. First of all, one may obtain the pres-
sure dependence of TC for the chemically substituted compound. This value can
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Figure 6.14: Arrott plots (M2 versus μ0H/M) of the magnetization of URh1−xRuxGe
with x = 0.325 measured between T = 1.88 and 5.0 K at a pressure of p = 0.43 GPa. The
extrapolated isotherm through the origin determines TC = 2.8 K.

be compared to the (hydrostatic) pressure dependence of the pure compound. Sec-
ondly, the data might separate the two contributions leading to the change in TC:
the hybridization dependence on volume and on the number of electrons in the d-
band. Combined concentration/pressure experiments have been carried out on, e.g.,
CeCu6−xAux [53].

A pressure of 0.43 GPa was applied to URh0.675Ru0.325Ge which is close to the
quantum critical point, with TC = 2.8 K at ambient pressure (see figure below).
In Fig. 6.14 the Arrott plot is shown, constructed from the magnetization measure-
ments M(T ). Although field sweeps were performed up to 12 T, here only the (most
interesting) low-field part is shown. The data have been corrected for the contribu-
tion of the Cu-Be pressure cell. Unfortunately the curves do not continue down to
μ0H/M = 0, because for low fields the measurements were disturbed by the signal
of the piece of lead used for the pressure determination.

Linear extrapolation of the curves to lower values of μ0H/M unmistakably shows
that the T = 2.6 K curve intersects the M2 axis, the T = 3.0 K curve the μ0H/M
axis, and the T = 2.8 K curve passes through the origin (within uncertainty),
indicating that TC = 2.8 K. This value is the same as for ambient pressure. It
is remarkable that a pressure of 0.43 GPa does not alter the Curie temperature,
especially since the compound is close to a quantum phase transition. In Ref. [176]
it is shown that dTC/dp ≈ 0.065 K/kbar for URhGe, when fitting TC(p) with a
linear function over the whole pressure range up to 14.0 GPa, whereas dTC/dp =
0.119 (6) K/kbar is found by dilatometry as the pressure dependence for p → 0 [192].
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A pressure of 0.43 GPa would thus lead to an enhancement ΔTC in the range 0.28−
0.51 K in URhGe. However, ΔTC is essentially negligible for URh0.675Ru0.325Ge.
The apparent strong dTC/dp dependence on Ru substitution should be checked for
other values of x.

In addition it should be mentioned that in a field of 1 T and at 2.5 K (the
lowest temperature measured in 1 T) a moment of M = 0.065 μB/f.u. is found at
p = 0.43 GPa. This can be compared to the larger value of M = 0.078 μB/f.u.
observed in the same field at ambient pressure.

6.4 Analysis and Discussion

Ru substitution

The main results for the Ru-substitution are reported in Fig. 6.15a, where the Curie
temperature TC of the URh1−xRuxGe series is shown as a function of Ru concen-
tration x, deduced from the magnetization and electrical-resistivity measurements.
The values of TC obtained by both techniques are equal within the experimental
error and coincide with specific-heat results.

For the pure URhGe sample TC = 9.5 K is found, in agreement with the literature
value [2]. Remarkably, when substituting small amounts of Rh by Ru, the Curie
temperature shows an initial increase up to 10.5 K for x = 0.10. At higher Ru
concentrations TC is reduced and a linear decrease with a slope of −0.43 K/at.% Ru
is observed from x = 0.20 onwards. For samples with x = 0.35, 0.375, 0.40, and 0.60
no ferromagnetism was detected in the measured temperature interval (T > 1.8 K).
The Arrott plots clearly indicate a paramagnetic ground state for x = 0.40 and 0.60.
Extrapolation of the Arrott plots for the x = 0.35 sample suggest that TC ≈ 1.3 K
(indicated in the figure by a filled square). This is consistent with the linear decrease
of TC. A linear extrapolation of TC(x) leads to a critical concentration for the
suppression of ferromagnetic order xcr ≈ 0.38. This is confirmed by the non-Fermi-
liquid behavior observed in the specific heat for x = 0.38 (Fig. 6.13).

In Fig. 6.15b the Ru concentration dependence x of the specific heat divided by
temperature, C/T , at 0.6 K is shown as well as the literature value of the Sommer-
feld coefficient γ for URuGe (see table 6.1). Clearly there is a minimum at x = 0.15.
This is consistent with the initial increase of TC. At x = 0.38, C/T (0.6 K) is twice
as high as for x = 0.15, followed by a decrease up to x = 0.50. This indicates
that as the critical concentration is approached, magnetic correlations tend to be-
come stronger. (Note that while the data do suggest a maximum of C/T near the
quantum critical point, the exact form is speculative at this point.) In fact, rhe
low-temperature part for x = 0.38 can be fitted to the non-Fermi-liquid function
C/T = −b ln (T/T0) with T0 = 46 K. This is exactly the function predicted by Mil-
lis [82] for a three dimensional ferromagnet at the quantum critical point. Here T0

is the spin-fluctuation temperature, i.e. a measure of the strength of the magnetic
interactions. Specific-heat measurements on U(Rh,Ru)Ge compounds with x close
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Figure 6.15: (a) Curie temperature TC as a function of the Ru concentration x in
URh1−xRuxGe as determined by magnetization (squares) and electrical resistivity (cir-
cles). The solid square is determined by extrapolation of Arrott plots (see main text).
The solid line serves a guide to the eye. The critical Ru concentration for the suppres-
sion of ferromagnetic order is xcr ≈ 0.38. (b) Specific heat divided by temperature, C/T ,
at 0.6 K, as a function of Ru concentration x. The literature value of γ for URuGe is
also indicated. (c) Magnetic moment M at 2 K in a field of 1 T as a function of Ru
concentration x.
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to the critical value should yield important information about the evolution from
Fermi-liquid to non-Fermi-liquid behavior.

In Fig. 6.15c the magnetization at 2 K in a field of 1 T is shown as a function
of Ru concentration x. Clearly it has a similar dependence on x as TC, as expected.
First an increase of M is observed, followed by a decrease for x > 0.10. Around xcr

a little hump is present in M(2 K, 1 T, x). It might be possible that this hump is
the signature of the critical point in fact being first order. For ZrZn2 a first order
transition is signalled at the critical pressure by a jump in the Curie temperature TC

as well as in the magnetization M with increasing pressure p [61]. A similar anomaly
in the magnetization M is observed for UGe2 [114]. Unfortunately, the number of
data points in the vicinity of xcr is too limited to draw definite conclusions on the
nature of the transition at the critical point for URh1−xRuxGe at this stage.

The suppression of magnetism in 4f -electron metals close to an electronic insta-
bility is often discussed in terms of a simple Doniach picture [48], i.e., the compe-
tition between the on-site Kondo interaction and inter-site RKKY interaction. The
control parameter - the exchange interaction J - increases with increasing hybridiza-
tion. For weak hybridization, i.e. low Kondo temperature, the RKKY interaction is
favored, while a large J favors the nonmagnetic Kondo-singlet ground state. Hence
the generic TC(p) passes over a maximum as observed, e.g., for the pressure depen-
dence of TC in ferromagnetic CeAg [202]. This might be the case for URhGe as
pressure enhances TC [192, 176]. On the other hand, more sophisticated models,
like the one proposed by Sheng and Cooper [203] obtain an increase of the mag-
netic ordering temperature with pressure for compounds like UTe by incorporating
the change in the f -density spectral distribution under pressure in LMTO band-
structure calculations. Such a model could in principle also explain the increase of
TC in URhGe under pressure and the initial increase of TC in U(Rh,Ru)Ge. How-
ever, similar band-structure calculations for URhGe have not been performed yet,
but would be highly desirable.

The decrease of TC beyond x = 0.10 is likely to be attributed to the effect of
emptying the d-band, since Ru has one electron less than Rh. In a simple model,
extracting electrons from the d-band of the “electron sea” gives the opportunity
to the U f -electrons to fill the holes thus created in the d-band. This results in
a strengthening of the f -d hybridization, which in turn leads to a larger exchange
parameter J , favoring the Kondo interaction. Apparently, this effect dominates the
volume effect for x > 0.10. Disorder is expected to play a secondary role because
TC of URh1−xCoxGe samples with similar disorder gradually increases up to 20 K
for x = 0.60.

For x > 0.20 the Curie temperature TC shows a linear dependence on the control
parameter, the Ru concentration x: TC ∼ |x − xc|. In the magnetic phase diagram
proposed by Millis [82] the magnetic ordering temperature for itinerant fermion sys-
tems varies as TM ∼ |δ − δc|z/(d+z−2), with δ some control parameter driving the
magnetic-to-nonmagnetic transition (e.g., pressure, magnetic field, chemical substi-
tution concentration), δc the critical value of the control parameter, d the dimension
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of the system, and z the dynamic critical exponent (z = 2 for antiferromagnets and
z = 3 for ferromagnets). In the present case (d = 3) TC ∼ |x− xc|3/4 would thus be
expected, in contrast with the observed TC ∼ |x−xc|. A possible explanation could
be that the critical region does not extend all the way to x = 0.20. In this study
TC might not have been determined accurately and close enough to xcr. An alterna-
tive explanation might be that the effective dimension for the magnetic correlations
is reduced from d = 3 to d = 2. This idea is supported by the strong magnetic
anisotropy that essentially confines the magnetic moment to the b − c plane. How-
ever, the theoretical model then does not predict a logarithmic difference of C/T ,
as observed (Fig. 6.13), but a power law (C/T ∼ T−1/3).

It is interesting to compare the volume effect due to substitution by Ru and
due to pressure in URhGe. URhGe and URuGe are isostructural, the unit-cell
volume of URuGe being slightly smaller. X-ray powder diffraction data on some
of the samples show that the lattice parameters of the URh1−xRuxGe series follow
Vegard’s law (see Sec. 6.3.3). With an estimated isothermal compressibility κ =
−V −1(dV/dp) of 0.8 Mbar−1 [192], 10 at.% substitution of Rh by Ru (x = 0.10)
corresponds to a pressure of 0.37 GPa. With dTC/dp = 0.065 K/kbar [176] this
pressure results in a small increase of TC to 9.8 K, while TC ∼ 10.5 K for 10 at.%
Ru substitution would suggest a much larger dTC/dp ≈ 0.24 K/kbar, if attributed
solely to a volume effect. The divergence may arise because the unit-cell reduction
upon Ru substitution is strongly anisotropic and dominated by the decrease of the
lattice parameter a, whereas hydrostatic pressure is expected to give a much more
isotropic unit-cell reduction. Since uniaxial pressure along any direction enhances
TC [192], hydrostatic pressure will enhance TC even more. This can be seen from
the fact that, in first approximation, dTC/dpi ≈ (1/3) dTC/dp.

Furthermore, the effect of external pressure with the shrinkage of the a-axis due
to Ru-substitution, a change of volume, affects the overlap of f - and d-orbitals, and
therefore, leads to a change in energy of the f -band. The number of electrons in the
system is however constant, and therefore − in a rigid-band picture − also the Fermi
level. The change in Curie temperature is determined by the change in proximity
of the f -band to the Fermi level. In the case of Ru substitution, on the other hand,
the cause is the removal of electrons from the d-band. U f -electrons are able to fill
the space of the so created holes. This enhances the f -d hybridization and TC is
affected. The Fermi level is lowered and approaches the f -band. As a side effect, a
reduction in unit-cell volume is observed.

Hydrostatic pressure of 0.43 GPa on URh0.675Ru0.325Ge does not affect TC as
shown in Sec. 6.3.5, but does lower the magnetization in 1 T at low temperatures.
This reduction could be explained by an increased delocalization of the electrons.
This would however normally decrease TC. For URhGe pressure along any of the
three crystallographic axes enhances TC [192]. In URh0.675Ru0.325Ge the a-axis is
much smaller than for URhGe, whereas the b- and c-axes are comparable. Possibly
the uniaxial pressure dependence along the a-axis changes sign with increasing Ru
concentration x. The x = 0.325 compound would be at the crossover between a
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positive and a negative uniaxial pressure dependence of TC. It would be interesting
to measure other concentrations and at higher pressures.

The URh1−xRuxGe series deserves further investigation by measurements at
lower temperatures and other Ru concentrations x in order to prove that the ob-
served non-Fermi-liquid (NFL) behavior at xcr = 0.38 is an effect of the proximity
to a zero-temperature phase transition, and not due to disorder, like proposed in the
Kondo disorder model [80] and the Griffiths phase model [85]. In the Kondo disorder
model a distribution of Kondo temperatures TK can arise if a Kondo-lattice material
has significant disorder. Around each magnetic impurity, antiferromagnetically cou-
pled to the conduction electrons, the Kondo effect will occur at different values of
TK. Averaging over such a distribution can produce thermodynamic and transport
properties with NFL-like dependencies. In the Griffiths phase model the presence of
disorder is considered to lead to the coexistence of a metallic paramagnetic phase and
a granular magnetic phase. In the paramagnetic phase the moments are quenched
by the Kondo interaction, giving rise to FL behavior, while the magnetic phase is
dominated by the RKKY interaction giving rise to ordered regions.

Co and Si substitution

The main results from the Co and Si substitution study are reported in Fig. 6.16a,
where the Curie temperature TC of the URh1−xCoxGe and URhGe1−xSix series are
shown as a function of Co and Si concentration x, deduced from the magnetization
measurements. In Fig. 6.15b the magnetization at 2 K in a field of 1 T is shown.

Substituting Rh by Co in URhGe increases TC considerably to a maximum of
20 K at x = 0.60. The Co concentration xcr for which TC = 0 is close to 1. Hence
UCoGe is close to a magnetic instability, easily reachable by substituting a few at.%
Co by Rh. Although Canepa et al. [197] found a magnetic transition around 46 K
for UCoGe, the results presented here are in accordance with other studies [172, 170]
for temperatures down to 1.2 K and indicate no ferromagnetic order.

The number of d-electrons remains constant when substituting Rh by Co. Hence,
any change in TC should be an effect of a volume change. Assuming the lattice
parameters of URh1−xCoxGe to follow Vegard’s law, x = 0.60 corresponds to a
pressure of 5.4 GPa (with κ = 0.8 Mbar−1). With dTC/dp = 0.065 K/kbar [176]
this pressure results in a small increase of ΔTC = 3.5 K. Chemical substitution
mainly affects the c-axis and the b-axis to a lesser extent, whereas the a-axis is
hardly influenced. This is very different from hydrostatic pressure.

For the URhGe1−xSix series TC does not vary up to x = 0.20 although there are
significant changes in length for the a-, b-, and c-axes. It is however interesting that
the magnetic moment at 2 K in 1 T is enhanced by 25 % for x = 0.20. This is an
indication of the localization of magnetic moments, due to changes in hybridization.



142 URh1−xRuxGe

Figure 6.16: (Above) Curie temperature TC as a function of the Co and Si concentration x
in URh1−xCoxGe and URhGe1−xSix as determined by magnetization measurements. The
solid lines serve a guide to the eye. The critical Co concentration xcr for the suppression
of ferromagnetic order is close to 1. Si doping on the Ge site does not affect TC. (Below)
Magnetic moment M at 2 K in a field of 1 T as a function of Co and Si concentration x.
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6.5 Conclusions

In summary, the evolution of ferromagnetism in URhGe, in which atoms were substi-
tuted by Ru, Co, and Si, have been investigated. For substitution by Ru, TC initially
increases, which is attributed to a volume effect. For x > 0.10, TC decreases, which
suggests that emptying the d-band governs the hybridization phenomena. Ferro-
magnetism is completely suppressed for xcr ≈ 0.38. At this critical concentration
non-Fermi-liquid (NFL) behavior is observed in the specific heat. At low temper-
atures it is found that the specific heat can be described by C/T ∼ − ln T . For
substitution by Co, TC increases up to 20 K for x = 0.60 and ferromagnetism is
suppressed for x close to 1. This means that UCoGe is close to a quantum critical
phase transition and provides a good candidate to study a ferromagnetic quantum
critical point. Finally, substituting Ge by Si is found not to affect TC up to x = 0.20.



144



CHAPTER 7

UIr

7.1 Introduction

he first report of the existence of UIr was made in 1968
when it was found that UIr melts congruently at 1743 K [204]. It took
nearly another twenty years to appear in literature again. Whereas
UPt was studied rather well, little attention was paid to UIr. In 1987
Dommann et al. even wrote [205]: “Our motivation for preparing UIr
was the hope to find a non-trivial superconductor and we were rather

disappointed by the discovery of its ferromagnetism.” Besides the determination of
its crystal structure and magnetic structure [205, 206, 207] only electrical resistivity
at ambient pressure was reported by Brändle et al. [208], while Ōnuki et al. [209]
mentioned that the electrical resistivity, thermoelectric power, Hall coefficient, mag-
netic susceptibility, and magnetization resemble the data for URh. Here the story
of UIr ends for about ten years.

After the study of UIr by electrical resistivity under pressure and specific heat at
ambient pressure [210], the non-trivial superconductivity Dommann et al. had been
looking for in UIr was finally found in the year 2004. After UGe2 [1] and URhGe [2],
UIr is the third uranium based compound to show coexistence of ferromagnetism
and superconductivity [3]. Just like in UGe2, the coexistence in UIr occurs within a
limited pressure range (2.6-2.7 GPa), which is the critical pressure region in which
the Curie temperature TC is tuned to zero. With the coexistence of ferromagnetism
and superconductivity UIr belongs to a class of materials, which exhibit unconven-
tional ground state properties close to a quantum critical point. In this class of
materials UIr even holds a special place because it is a system in which the crystal
structure lacks inversion symmetry.

UIr crystallizes in the monoclinic PbBi-type structure (space group P21) without
inversion symmetry. The unit cell, with dimensions a = 5.62 Å, b = 10.59 Å, and
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Figure 7.1: The monoclinic crystallographic structure of UIr. The uranium atoms are
indicated in black and iridium atoms in gray. The figure shows the unit cell of UIr
containing eight formula units.

c = 5.60 Å (α = 90◦, β = 98.9◦, γ = 90◦), contains eight formula units with
four inequivalent U and Ir sites [205]. The unit cell is shown in Fig. 7.1. UIr
is a ferromagnet with a Curie temperature of TC = 46 K at ambient pressure.
Magnetization measurements on a single crystal [211] revealed that the easy axis is
parallel to [1 0 1] and that the anisotropy with the hard axes [1 0 1] and [0 1 0] is large.
Along the easy direction, the average saturated moment is equal to 0.5 μB/U-atom.
The coefficient of the linear electronic specific heat c/T = 50 mJ/mol K2 indicates
a moderate enhancement of the electron correlations at ambient pressure.

The pressure dependence of the ferromagnetic transition temperature was mea-
sured by magnetization and electrical resistivity [3]. As shown in Fig. 7.2, TC is con-
tinuously suppressed for increasing pressures until the magnetic structure collapses
at a pressure of about 1.7 GPa and again around 2.1 GPa into a new ferromag-
netic structure with a higher TC. For even higher pressures the ferromagnetic order
is finally completely suppressed at a critical pressure of about 2.6-2.7 GPa. The
saturated moment deduced from the magnetization measurements shows a strong
reduction in the ordered moment at the transition from the low-pressure ordered
structure to the high-pressure ordered moment. Close to the critical pressure su-
perconductivity can be found below Tsc = 0.14 K with an upper critical field of
μ0Hc2(0) = 26 mT.

The first compound found to have a coexistence of magnetic order, supercon-
ductivity, and a lack of crystallographic inversion symmetry is CePt3Si [213]. An-
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Figure 7.2: Magnetic phase diagram of UIr. (a) Pressure dependence of the Curie
temperatures TC1, TC2, and TC3 and superconducting transition temperature Tsc. The
phase boundaries are determined by resistivity, magnetization, and ac-susceptibility. (b)
Pressure dependence of the ordered along the [1 0 1] direction. In the FM2 and FM3 phases
the ordered moment is less than 0.05 μB/U. The figure is taken from Ref. [212].

tiferromagnetism sets in at TN = 2.2 K and superconductivity at Tc = 0.75 K. The
lack of inversion symmetry in the crystal is believed to exclude spin-triplet pairing,
since in the absence of inversion symmetry the necessary set of degenerate electron
states cannot be provided for this type of pairing [214]. However, a high value for
the upper critical field μ0Hc2(0) seems to exclude spin-singlet pairing [213]. It was
proposed that a triplet-pairing state is still possible because the absence of the mir-
ror z → −z would yield a Rashba-type spin-orbit coupling [215]. Later it was shown
that the antisymmetric spin-orbit coupling, which is present due to the lack of in-
version symmetry in CePt3Si, leads to a lifting of the degeneracy in a special form
which influences the Cooper pairing is such a way that the classification in even and
odd parity or spin singlet and triplet state is obsolete [216]. The superconducting
state may be viewed as a superposition of an s-wave and p-wave state which yields
a particular gap form with accidental line nodes.
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UIr, on the other hand, is a ferromagnet and it is thought that superconductivity
therefore cannot be of a spin-singlet type due to the absence of a degeneracy between
|k, ↑> and |−k, ↓> states. An inversion symmetry guarantees [214] the degeneracy
of |k, ↑> and | − k, ↑> states, which is essential for spin-triplet pairing. UIr is very
interesting, since the lack of inversion symmetry prohibits this degeneracy and as
a result spin-triplet pairing, while the ferromagnetism is thought to prohibit spin-
singlet pairing.

As shown in Fig. 7.2 there are three ferromagnetic phases separated by tran-
sitions in the pressure range from 1.7 to 2.1 GPa. The superconductivity can be
associated with the quantum critical point of the third phase. Akazawa et al. [199]
discusses the possibility of a structural transition from the monoclinic P21 structure
to a structure with inversion symmetry in addition to the magnetic transition. Since
the temperature dependence of the electrical resistivity ρ(T ) is continuous and since
a structural change to the space group which is closest already requires huge dis-
placements of atom positions, it is likely that UIr keeps lacking inversion symmetry
up to 3.1 GPa. The transitions at high pressure are expected to be magnetic rather
than structural transitions.

In this Chapter several ambient pressure measurements on single-crystalline sam-
ples of UIr are reported. The first experiment consisted of measuring the magne-
tization in magnetic fields up to 52 T, to search for a field-induced metamagnetic
transition in UIr. Secondly, specific heat measurements down to 3 K in fields up
to 14 T are discussed. Finally, thermal expansion and magnetostriction data are
presented.

7.2 Magnetization in High Magnetic Fields*

7.2.1 Introduction

Since UIr is close to a quantum critical point it is interesting to investigate the
magnetic interactions at play. A metamagnetic transition is a transition from one
magnetic state to another by the application of a magnetic field μ0H. In com-
pounds with a strong competition between the Kondo effect and the RKKY inter-
action (see Chapter 3), so-called strongly correlated systems characterized by an
enhanced linear electronic specific heat coefficient, the ordered magnetic moment is
small and is accompanied by large magnetic fluctuations. These fluctuations can be
suppressed by a magnetic field leading to a metamagnetic transition. Such a tran-
sition characterizes the electronic interactions. Two examples of compounds with a
metamagnetic transition are UPt3 [217, 218] with a transition at a field of 21 T and
URu2Si2 [219, 220, 221, 222] with several transitions around 35 T.

Magnetization measurements [211] show a small ordered magnetic moment of
0.5 μB/U-atom in 0 T and about 0.58 μB/U-atom in 7 T along the easy axis. These

*Parts of this Section have been submitted to Journal of Magnetism and Magnetic Materials.
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Figure 7.3: High-field magnetization M of single-crystalline UIr in a pulsed magnetic
field μ0H up to 52 T along the [1 0 1], [1 0 1], and [0 1 0] directions at 4.2 K.

values are much smaller than the 3.6 μB/U-atom for free U-atoms. Up to 7 T no
metamagnetism was observed. De Haas-van Alphen measurements up to 17 T [223]
have shown no special features either. High magnetic fields are therefore required
in the search for a metamagnetic transition.

7.2.2 Experimental

A single-crystalline sample of UIr was grown by the Czochralski technique in a tri-arc
furnace. No subsequent heat treatment was applied to the crystal. From this crystal
a cube with dimensions 1×1×1 mm3 and a mass of 13.2 mg was cut along the [1 0 1],
[1 0 1], and [0 1 0] axes of the monoclinic crystal structure. It was possible to cut a
cube since the [1 0 1] and [1 0 1] directions are almost perpendicular (see Sec. 7.4.4).
High field magnetization measurements up to a field of 52 T were performed at 4.2 K
at the pulsed field facility LNCMP in Toulouse. After each magnetic pulse, the
background was measured under the same experimental conditions by removing the
sample out of the pick-up coil. Initial tests were performed in continuous magnetic
fields up to 30 T at the magnet facility HFML in Nijmegen.

7.2.3 Results

In Fig. 7.3 the high field magnetization at a temperature of T = 4.2 K in UIr is
shown for pulsed magnetic fields along the [1 0 1], [1 0 1], and [0 1 0] directions. In
agreement with the low field magnetization measurements in fields up to 7 T [211],
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a linear increase in the magnetization is observed for the [0 1 0] direction and a
weak spin rotation followed by a linear increase in the magnetization for the [1 0 1]
direction. Along the [1 0 1] direction, which is the easy axis for the magnetization,
a sharp increase in magnetization is observed in low applied magnetic fields. This
jump in magnetization of 0.5 μB/U-atom is caused by a domain repopulation of
the ferromagnetic domains. For increasing magnetic fields the magnetization slowly
increases. Up to the maximum applied field of 52 T no field-induced metamagnetic
transition, related to a quenching of the magnetic interactions, is observed. The
field dependence of the magnetization M(H) is accurately described by an empirical
exponential function of the form

M(H) = M(0) + ΔM
(
1 − e−μ0H/B0

)
(7.1)

with values of M(0) = 0.5101 (2) μB/U-atom, ΔM = 0.440 (1) μB/U-atom, and
B0 = 42.6 (2) T. The fit is indistinguishable from the data points.

7.2.4 Discussion

The estimated high magnetic field moment M(H = ∞) = M(0) + ΔM ≈ 1 μB/U-
atom is significantly smaller than the free uranium 5f 2 (3.58 μB) or 5f 3 (3.62 μB)
moments. High temperature susceptibility measurements on polycrystalline sam-
ples [205] showed Curie-Weiss behavior for temperatures between room tempera-
ture and 1200 K with an effective moment of 3.61 μB/U-atom and an unusually
large antiferromagnetic Curie-Weiss temperature of θCW = −430 K. High temper-
ature magnetization measurements on a single crystal [211] indicated an effective
moment of 3.57 μB/U-atom and antiferromagnetic Curie-Weiss temperatures rang-
ing from −300 to −1000 K depending on the orientation. The deviations from
the Curie-Weiss behavior observed below a temperature of about 500 K signals a
level splitting caused by crystalline electric field (CEF) effects, which is responsible
for the strong magnetocrystalline anisotropy. At low temperatures only the lowest
CEF level is occupied. This could explain the strongly reduced magnetic moment
of ≈ 1 μB/U-atom.

The interaction field B0 = 42.6 (2) T, characteristic for the increase in magneti-
zation along the easy axis, probes a magnetic interaction of the order of MB0/kB ≈
29 K, which is somewhat smaller than the ferromagnetic ordering temperature of
TC = 46 K.

7.2.5 Conclusions

No sign of a field-induced metamagnetic transition was found in UIr for fields up
to 52 T. For high magnetic fields the magnetic moment saturates at a value of
≈ 1 μB/U-atom. This is strongly reduced compares to ≈ 3.6 μB/U-atom for free U
atoms. The field dependence of the magnetization is characterized by an interaction
field of B0 = 42.6 (2) T. The probed magnetic interactions are of the order of 29 K.
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7.3 Specific Heat

7.3.1 Introduction

In the investigation of enhanced magnetic correlations in the neighborhood of a
quantum critical point, knowledge of the specific heat is essential. In particular the
linear specific heat coefficient γ at low temperatures gives direct information about
the effective mass enhancement of the correlated electrons. A (moderate) heavy-
fermion compound can often be tuned to a quantum critical point by applying
pressure. In some cases this can also be achieved by applying high magnetic fields.
The study of correlated systems in magnetic fields opens up a new dimension in the
(magnetic) phase diagram. A suppression of the magnetic order, i.e. a lowering of
the magnetic ordering temperature, or a suppression of e.g. the non-Fermi-liquid
state into a Fermi-liquid state of a compound belong to the possibilities. In this
Section a study of the specific heat of UIr in magnetic fields up to 14 T parallel to
the easy axis for magnetization and in the temperature range from 3 to 300 K is
reported.

7.3.2 Experimental

For the specific heat measurements the same single-crystalline batch of UIr was used
as for the high-magnetic field measurements discussed in the previous Section. The
batch was grown by the Czochralski technique in a tri-arc furnace. No subsequent
heat treatment was applied to the crystal. From this crystal a plate with dimensions
roughly 2.5 × 2.5 × 0.5 mm3 and a mass of 66.4 mg was cut with the [1 0 1] axes
perpendicular to the plane. Specific heat measurements in fields up to 14 T were
performed in the temperature range 3 − 300 K on a commercially available Physi-
cal Property Measurement Systems (PPMS) of Quantum Design at the Institut für
Festkörperphysik (IFP) of the Forschungszentrum Karlsruhe (FZK). The measure-
ments were performed by the heat relaxation method. Heat capacity was obtained
by fitting a heat relaxation curve recorded after a heat pulse caused a temperature
increase of approximately 2 %. The heat capacity of the addenda (Apiezon N grease)
had been measured in a separate run without the sample, and was subtracted from
the data. For further details, see Ref. [37].

7.3.3 Results and Discussion

In Fig. 7.4 the temperature dependence of the specific heat divided by temperature
(c/T ) is shown in magnetic fields of 0, 2, 5, and 14 T. The insert shows a zoom of
the data near the maximum in c/T . The zero-field data are in good quantitative
agreements with previous measurements on polycrystalline UIr [210]. In zero field,
a jump in the specific heat is observed at the ferromagnetic transition temperature
TC = 45.0 (2) K. This jump has a height of 34.3 (2) mJ/mol K2 and is obtained by the
equal-entropy method. Unfortunately, the specific heat in this temperature region
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Figure 7.4: Specific heat c of UIr divided by temperature T (c/T ) as a function of
temperature for fields up to 14 T in the temperature range of from 3 to 300 K. The inset
shows a zoom of c/T near the maximum.

is dominated by the phonon contribution. However, from the insert the effect of a
magnetic field is clear. The sharp peak in zero field is considerably broadened and
shifted to higher temperature. Measurements in fields smaller than 1 T (not shown)
indicate that the peak is already broadened for relatively small fields of 0.1 T.

The data at temperatures below 12 K can be fitted to c/T = γ + βT 2, where γ
is the electronic specific heat coefficient and β = 12π4rR/(5θ3

D) the coefficient for
the phonon contribution, with r = 2 the number of atoms per formula unit, R the
universal gas constant, and θD is the Debye temperature. The data can be fitted
satisfactorily for all magnetic fields with γ = 46 (1) mJ/mol K2 and θD = 181 K.
These values compare well with the values γ = 40 mJ/mol K2 and θD = 173 K found
in Ref. [210] for a polycrystal. Figure 7.4 clearly shows that a magnetic field of 14 T
only causes a broadening of the peak at TC.

Bauer et al. [210] have measured besides UIr also a polycrystal of ThIr to ap-
proximate the phonon contribution to c/T for UIr. In contrast to e.g. CePd2Si2,
for which compound the c/T curve coincides with the c/T curve for LaPd2Si2 at
temperatures above ≈ 25 K [224], the c/T values for UIr and ThIr keep differing
about 38.5 mJ/mol K2 up to at least 75 K. Since the specific heat data for UIr in
magnetic fields up to 14 T remain the same as for 0 T, the same conclusions can
be drawn with respect to ThIr. If γ remains constant up to 70 K in zero field, the
Kondo temperature TK can be estimated to be at least 70 K. A rough estimation
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through kBTK = μBB∗, where kB is the Boltzmann constant and B∗ as magnetic
field characterizing the magnetic interactions, shows that B∗ ≈ 100 T. This is con-
sistent with the result that γ is constant in fields up to 14 T. It also explains the
absence of a field-induced metamagnetic transition in the magnetization measured
in fields up to 52 T (see Sec. 7.2).

7.4 Thermal Expansion and Magnetostriction

7.4.1 Introduction

Thermal expansion is a fundamental thermodynamic property and is closely tied
to the specific heat. It probes how the entropy of the system responds to volume
changes and thus yields pressure dependencies of several thermodynamic properties.
A big advantage of thermal expansion is that it probes the anisotropy in a system,
since it can be measured along different directions. Remarkable uniaxial pressure
dependencies of the Néel temperature TN have been found for e.g. CeCu6−xAux [225]
and CePd2Si2 [175]. In addition, comparison of the thermal expansion data with
specific heat measurements gives the so-called Grüneisen parameter. It is a measure
for the volume dependence of the dominant energy scale at a certain temperature.

In this Section thermal expansion and magnetostriction measurements on single-
crystalline UIr are reported. The uniaxial pressure dependencies of the Curie tem-
perature TC at zero pressure have been determined.

The considerations in the Appendix of this Chapter show that with very high
accuracy the [1 0 1], [1 0 1], and [0 1 0] directions can be used as an orthogonal basis
of the unit cell of UIr. Therefore the linear volume thermal expansion coefficient αV

is simply a sum of the three coefficients αi, with i equal to one of the three directions
[1 0 1], [1 0 1], or [0 1 0].

7.4.2 Experimental

High-precision measurements of the variation in the sample length L as a function
of temperature T or as a function of magnetic field B have been performed on
single-crystalline samples. The samples were prepared from the same batch as the
samples for magnetization in high magnetic fields (Sec. 7.2) and for specific heat
(Sec. 7.3). The batch was grown by the Czochralski technique in a tri-arc furnace.
No subsequent heat treatment was applied to the crystal. From this crystal samples
were cut with lengths of 1.287 mm for [1 0 1], 2.10 mm for [1 0 1], and 3.68 mm for
[0 1 0]. Thermal expansion measurements in 0 and 5 T, applied along the easy axis
for magnetization, have been performed in the temperature range from 5 to 250 K.
The thermal expansion along [1 0 1], [1 0 1], and [0 1 0] was measured as a function
of temperature T . In addition, magnetostriction measurements were performed at
4, 45, and 150 K for magnetic fields between -10 and 10 T. Again the dilatation
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was measured along [1 0 1], [1 0 1], and [0 1 0] with the magnetic applied parallel to
[1 0 1].

The data have been collected using a home-built measuring cell at the Insti-
tut für Festkörperphysik (IFP) of the Forschungszentrum Karlsruhe (FZK). The
measurements are based on the parallel-plate capacitance method. For the thermal
expansion experiments the temperature was slowly raised at a reproducible rate of
20 mK/s over the whole temperature range. Averages are made every 0.1 K. The
coefficient of thermal expansion α is calculated by α = (1/L)(dL/dT ). For further
details, see Sec. 2.4.2.

7.4.3 Results

Thermal expansion

In Fig. 7.5 the coefficient of linear thermal expansion α along the [1 0 1], [1 0 1], and
[0 1 0] directions of single-crystalline UIr is shown as a function of temperature T in
the range from 5 to 250 K. The temperature dependence of the volume expansion
αv = α[1 0 1] + α[1 0 1] + α[0 1 0] is shown for comparison (notice the figure shows αv/3).
See Sec. 7.4.4 for a justification of this formula. At high temperatures the thermal
expansion is governed by the phonon contribution for all three orientations. For
zero field the ferromagnetic order sets in at TC = 45.0 K and a sharp negative peak
in the coefficient of linear thermal expansion is observed for all three directions. For
5 T the transition is considerably broadened. However, far below and far above TC

the curves for 0 and for 5 T coincide for a given direction. For all directions and
both magnetic fields, the thermal expansion extrapolates to 0 K−1 as temperature
goes to 0 K, as expected.

In the zero field case the data show some remarkable results below TC. Firstly,
the easy axis for the magnetization [1 0 1] behaves qualitatively different than the
[1 0 1] and [0 1 0] directions. Whereas the latter two are positive for temperatures
lower than a certain temperature below TC, the former remains negative below TC.
Secondly, all three directions pass below TC through a maximum (or minimum).
This is different than for URhGe (see Fig. 5.3), where αi decreases monotonously
towards 0 K−1 with decreasing temperature. In 5 T a large shoulder is present in
the data, indicating that this feature is not suppressed in a magnetic field up to 5 T.

The observed steps in the coefficients of linear thermal expansion have the same
sign but different sizes for the three directions. The values of the steps are listed in
Table 7.1.

Magnetostriction

In Figs. 7.6, 7.7, and 7.8 the coefficient of magnetostriction λ = (1/L)dL/dB is
shown for fields between -10 and 10 T applied along the [1 0 1] direction. The
expansion is measured along the [1 0 1], [1 0 1], and [0 1 0] directions, respectively,
for 4, 45, and 150 K. Basically all the figures show qualitatively the seem features.
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Figure 7.5: The coefficients of linear thermal expansion α of UIr as a function of temper-
ature T along the [1 0 1], [1 0 1], and [0 1 0] directions in zero magnetic field (upper frame)
and in an applied field of 5 T (lower frame). For comparison the volume expansion divided
by a factor 3 (αv/3) is also shown.
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Table 7.1: Step anomalies in the coefficients of linear thermal expansion of single-
crystalline UIr along the [1 0 1], [1 0 1], and [0 1 0] directions. The corresponding pressure
dependence of the Curie temperature, dTC/dp, was deduced from the Ehrenfest relation
(see text).

Δα dTC/dp
(10−6 K−1) (K/kbar)

[1 0 1] -3.0(3) -0.22(2)
[1 0 1] -14(1) -1.10(8)
[0 1 0] -7.6(5) -0.55(4)

volume -24.6(1.2) -1.87(9)

Figure 7.6: The magnetostriction coefficient λ = (1/L)dL/dB of UIr for applied magnetic
fields B between -10 and 10 T at various temperatures. The magnetic field was applied
parallel to [1 0 1] direction and the dilatation was measured along the [1 0 1].
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Figure 7.7: The magnetostriction coefficient λ = (1/L)dL/dB of UIr for applied magnetic
fields B between -10 and 10 T at various temperatures. The magnetic field was applied
parallel to [1 0 1] direction and the dilatation was measured along the [1 0 1].

Figure 7.8: The magnetostriction coefficient λ = (1/L)dL/dB of UIr for applied magnetic
fields B between -10 and 10 T at various temperatures. The magnetic field was applied
parallel to [1 0 1] direction and the dilatation was measured along the [0 1 0].
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At 150 K the magnetostriction effect is small, as expected since UIr is far in the
paramagnetic regime. At 45 K λ decreases quite rapidly because of the broadening
of the ferromagnetic transition at this temperature. At 4 K the magnetostriction
coefficient has a step around 0 T and increases slowly afterwards. The big difference
between the figures is the scale. By applying a magnetic field along the [1 0 1]
direction, the largest magnetostriction occurs in the [1 0 1] direction, followed by
[0 1 0]. It should be noted that all value for λ are positive for positive fields and
negative for negative fields. This means that the crystal always expands when
applying a magnetic field.

7.4.4 Discussion and Conclusions

In order to determine the uniaxial pressure dependence of the ferromagnetic transi-
tion temperature, the Ehrenfest relation can be applied. For a second-order phase
transition, the uniaxial pressure dependence of the transition temperature is directly
related to the step anomalies in the coefficient of linear thermal expansion and the
specific heat by the Ehrenfest relation

dTC

dpi

=
VmΔαi

Δ (c/T )
, (7.2)

where the index i refers to the [1 0 1], [1 0 1], or [0 1 0] directions, Vm = 2.48 ×
10−5 m3/mol is the molar volume, and Δ (c/T ) = 0.0343 (2) J/mol K2 is the anom-
aly in the specific heat divided by temperature (Sec. 7.3). By applying this relation
to the experimental step anomalies in the coefficients of linear thermal expansion,
the uniaxial pressure dependence of TC along the [1 0 1], [1 0 1], and [0 1 0] directions
is obtained. The calculated values are listed in Table 7.1. The hydrostatic pressure
dependence of TC can be obtained by inserting the volume expansion for the coef-
ficient of linear expansion in Eq. 7.2, or by summing the three contributions of the
uniaxial pressure dependence. The different pressure dependencies of TC as listed in
Table 7.1 are all negative. This means that uniaxial pressure along any of the three
measured directions will lower TC. It is clear from the Table that for hydrostatic
pressure, the component along [1 0 1] accounts for more than half of the reduction
of TC.

The calculated hydrostatic pressure dependence of dTC/dp = −1.87 (9) K/kbar
can be compared to the directly measured values. From Ref. [210] dTC/dp =
−1.1 K/kbar is estimated and from Ref. [199] dTC/dp = −1.5 K/kbar. The thermal
expansion data yield a comparably high value. The difference can only partly be
explained by the uncertainty in the determination of the step in α.

The shoulder in the data below TC is remarkable. For URhGe (Sec. 5.2) αi

below TC goes to 0 K−1 monotonously. However, for UGe2 an unusual temperature
dependence of αi was found as well [226]. For UGe2 an anomaly below TC at ambient
pressure was only seen in the thermal expansion. At high pressures, a transition was
seen as well in magnetization and resistivity (see Refs. in Chapter 4). Because of its
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very high sensitivity, thermal expansion was able to show this additional transition
at ambient pressure. The shoulder in the data for UIr can indicate the existence of a
- so far unknown - energy scale which competes with the magnetic order appearing at
TC = 45 K. This competition leads to a hump in α around 30 K. The data therefore
suggest the existence of an additional energy scale with T ∗ ≈ 30 K, competing with
the energy scale for magnetic order TC = 45 K. Possibly it is the signature of TC2

in Fig. 7.2 that may extrapolate to 30 K at p = 0 GPa. In any case it is interesting
to note that the magnetization in fields up to 52 T (Sec. 7.2) showed a magnetic
interaction of ≈ 29 K.

Through the thermodynamic Maxwell relation

λi =
1

Li

dLi

dB
= −dM

dpi

(7.3)

with i equal to [1 0 1], [1 0 1] and [0 1 0], the magnetostriction data show that the
application of pressure along any direction decreases the magnetization. This is
consistent with Fig. 7.2 for hydrostatic pressure.

Appendix: Geometrical Considerations of Mono-

clinic Unit Cells

Crystals belonging to a monoclinic space group consist of unit cells having three
axes (a, b, and c) of unequal lengths of which b is perpendicular to a and c, but a
and c are not perpendicular to each other. The angle between a and c is denoted
β. According to the monoclinic symmetry, all the parameters a, b, c, and β vary
with temperature. In first instance it is therefore necessary to perform at least
four different measurements in order to find the temperature dependence of all four
parameters. Here the influence of β(T ) on the coefficients of linear thermal expansion
α along the [1 0 1] and [1 0 1] directions is investigated.

In Fig. 7.9 the basal plane of a unit cell of UIr is shown. The b axis is perpendic-
ular to the plane. The angle δ between the two diagonals [1 0 1] and [1 0 1] is given
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Figure 7.9: Basal plane of the monoclinic unit cell of UIr.

by

cos δ =
a2 − c2{

(a2 + c2)2 − (2ac cos β)2} 1
2

. (7.4)

The two diagonals are perpendicular if and only if a = c. Furthermore, δ is temper-
ature dependent, since a, c, and β are temperature dependent.

Let X be the unit cell volume, the basal plane area, or any axis length in the
monoclinic crystal, depending on a set of parameters p1, p2, . . . pN . The general
formula

αX (p1, p2, . . . , pn) =
1

|X|
∑

i

pi
∂|X|
∂pi

αpi
(7.5)

is useful in determining the linear thermal expansion coefficient αX .
The exact volume of the unit cell is Vex = abc sin β. If δ (Fig. 7.9) is close to 90◦,

then V can be approximated by

Vapprox =
1

2
b
∣∣∣[101]

∣∣∣ · ∣∣∣[101
] ∣∣∣ =

1

2
b
{(

a2 + c2
)2 − (2ac cos β)2

} 1
2
. (7.6)

Shortly it will be shown that for the particular case of UIr this approximation will
yield an αV which is accurate within 0.6 %. With Eq. 7.5 the following expressions
are obtained:

αVex = αa + αb + αc − αβ
π

180
β tan (β − 90◦) , (7.7a)

αVapprox = αa
2a2 (a2 − c2 cos 2β)

(a2 + c2)2 − (2ac cos β)2 + αb + αc
2c2 (c2 − a2 cos 2β)

(a2 + c2)2 − (2ac cos β)2

+ αβ
π

180

2 β a2c2 sin 2β

(a2 + c2)2 − (2ac cos β)2 .

(7.7b)
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Table 7.2: Lattice parameters and angle β as determined by neutron scattering. Data
taken from A. Dommann et al. [205].

T (K) a (Å) b (Å) c (Å) β (deg) V (Å3)

16 5.605 (3) 10.552 (3) 5.576 (3) 99.12 (2)◦ 325.6 (4)

55 5.604 (4) 10.550 (4) 5.573 (4) 99.12( 3)◦ 325.3 (5)

293 5.620 (3) 10.590 (3) 5.598 (3) 98.93 (3)◦ 329.1 (5)

Here αβ is defined as αβ = (1/β) dβ/dT .
The coefficients of linear thermal expansion for the two diagonals, with lengths∣∣∣ [10 ± 1]

∣∣∣ = {a2 + c2 ± 2ac cos β}
1
2 are calculated to be

α(10±1) = a
a ± c cos β

a2 + c2 ± 2ac cos β
αa + c

c ± a cos β

a2 + c2 ± 2ac cos β
αc

∓ π

180
β

ac sin β

a2 + c2 ± 2ac cos β
αβ.

(7.8)

It is easily checked that

α(101) + α(101) = αVapprox − αb. (7.9)

The lattice parameters as well as the angle β for UIr were determined by neutron
scattering [205] and are shown in Table 7.2 at several temperatures. These values
enable an estimation of how well αVex is approximated by αVapprox . Filling in the
numbers yields

αVex = αa + αb + αc − 0.2713 · αβ

αVapprox = αa + αb + αc − 0.2713 · αβ + 0.00402 · (αa − αc)

}
at T = 293 K,

(7.10a)

αVex = αa + αb + αc − 0.2777 · αβ

αVapprox = αa + αb + αc − 0.2777 · αβ + 0.00569 · (αa − αc)

}
at T = 55 K.

(7.10b)
This shows that Eq. 7.9 is indeed a very good approximation to Vex for the particular
case of UIr.
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Summary

nconventional ground state properties are found in the strongly
correlated systems of UGe2, URhGe, and UIr. These compounds
belong to a class of materials in which two phenomena - long thought
to be mutually exclusive - appear simultaneously. UGe2 was the first
of these three compounds to attract considerable attention because
of the emergence of superconductivity well within the ferromagnetic

state, followed by URhGe. UIr is special since its crystallographic structure lacks
inversion symmetry.

The coexistence of ferromagnetism and superconductivity in the vicinity of a
ferromagnetic quantum critical point, is the main motivation that the related com-
pounds are investigated thoroughly. The fact that magnetic fluctuations are en-
hanced near a quantum critical point, just where superconductivity is found, strongly
suggests that the attractive force between the electrons forming the Cooper pair,
originates from the magnetic fluctuations. This thesis has the intention to contribute
to the understanding of the role of ferromagnetism and ferromagnetic spin fluctua-
tions in their coexistence with superconductivity, by employing several techniques.

Chapter 4: UGe2

The ferromagnetic domain sizes of UGe2 were studied by means of three-dimensional
neutron depolarization at ambient pressure. It is concluded that the existence of
field-tuned resonant tunneling between spin quantum states [117, 118] is highly un-
likely. The requirement of this model is a ferromagnetic domain size of 40 Å, whereas
the neutron depolarization measurements indicate a size a factor of 1000 larger. The
superconductivity, therefore, exists within a single ferromagnetic domain. The do-
main walls are not expected to strongly affect the bulk Cooper pair wave function,
as suggested by Nishioka et al. [117, 118], since the domain-wall size is less than a
few percent of the average domain size.

The μSR data taken in the critical regime of UGe2 suggest a coexistence of
two subsystems with localized 5f states responsible for the magnetic ordering and
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delocalized states responsible for the superconducting properties. It is likely that
electrons do not participate in both phenomena simultaneously, but are separated
either in real space and/or in reciprocal space, i.e. different parts of the Fermi
surface. This seems to contradict theoretical models [89, 90, 91, 92] in which the
superconductivity and the ferromagnetism are assumed to be carried by the same
electrons.

The depolarization of the spontaneous frequencies exhibit a peak at temperature
TX . It is shown that the peak could possibly develop because of the slowing down
of magnetic fluctuations. This could play a role in the formation of Cooper pairs.

Chapter 5: URhGe
Thermal expansion measurements on a single-crystalline sample of the itinerant
ferromagnet URhGe show that below the ferromagnetic ordering temperature of
TC = 9.7 K the coefficient of linear thermal expansion increases along all three
orthorhombic axes. The uniaxial pressure dependence of the ferromagnetic transi-
tion temperature was determined by the Ehrenfest relation from the anomalies in
the coefficients of linear thermal expansion and the specific heat. Positive values
of dTC/dp are found for all principal axes. Consequently, the hydrostatic pressure
dependence is also positive and amounts to dTC/dp = 0.119 K/kbar. This positive
pressure dependence contrasts the behavior reported for UGe2 and UIr. In addition,
the effective Grüneisen parameter was determined. The resulting low-temperature
behavior points to an enhanced volume dependence of the ferromagnetic spin fluc-
tuations at low temperatures and an equal volume scaling of the energy scales for
the ferromagnetic order and the ferromagnetic spin fluctuations.

μSR measurements on URhGe have been performed by recording the spin-lattice
relaxation λZ as a function of externally applied magnetic field Bext for two direc-
tions of the initial muon spin Sμ(0). Since both Sμ(0) ‖ c and Sμ(0) ⊥ c, with c
the easy axis for the magnetization, the anisotropy of the spin dynamics could be
measured. The magnetic field scans in the paramagnetic state, close to TC, clearly
show two different magnetic contributions, which can be identified as localized and
itinerant magnetism. This fact strongly suggests that the 5f electrons responsible
for both magnetic order and superconductivity do not participate in both phenom-
ena simultaneously but are separated either in real space and/or in reciprocal space,
i.e. different parts of the Fermi surface.

Chapter 6: URh1−xRuxGe
Since ferromagnetism in URhGe cannot be suppressed by applying external pressure
(Ref. [176] and Sec. 5.2) the evolution of ferromagnetism in URhGe has been inves-
tigated by chemical substitution. In this study Rh atoms were substituted by Ru
and Co whereas Ge made place for Si. For substitution by Ru, TC was found to ini-
tially increase for increasing values of x in URh1−xRuxGe. This was attributed to a
volume effect. For x > 0.10, TC decreases, which suggests that emptying the d-band
governs the hybridization phenomena. Ferromagnetism is completely suppressed for
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xcr ≈ 0.38. At this critical concentration non-Fermi-liquid (NFL) behavior was ob-
served in the specific heat. At low temperatures it was found that the specific heat
can be described by C/T ∼ − ln T . For substitution by Co, TC increases up to 20 K
for x = 0.60 and ferromagnetism is suppressed for x close to 1. This means that
UCoGe is close to a quantum critical phase transition and provides a good candidate
to study a ferromagnetic quantum critical point. Finally, substituting Ge by Si was
found not to affect TC up to x = 0.20.

Chapter 7: UIr
No sign of a metamagnetic transition was found in UIr for pulsed fields up to 52 T.
For high magnetic fields the magnetic moment saturates at a value of ≈ 1 μB/U-
atom. This is strongly reduced compares to ≈ 3.6 μB/U-atom for free U atoms,
possibly by crystalline electric fields. The field dependence of the magnetization
is characterized by an interaction field of B0 = 42.6 (2) T. The probed magnetic
interactions are therefore of the order of 29 K.

Fits of the low-temperature specific heat data in fields up to 14 T show that the
parameters at play remain constant. The data can be fitted satisfactorily for all
magnetic fields with γ = 46 (1) mJ/mol K2 and θD = 181 K. Therefore it was clearly
shown that application of a magnetic field of 14 T has little influence on the specific
heat (and thus the magnetic correlations) except for a broadening of the peak at
TC.

Thermal expansion data showed that uniaxial pressure along any direction in
UIr will lower TC. For hydrostatic pressure, the component along [1 0 1] accounts
for more than half of the reduction of TC. A remarkable shoulder is present in the
curves of the linear thermal expansion coefficient α around T ∗ ≈ 30 K. It can be
explained by the existence of an energy scale which competes with the magnetic
order appearing at TC = 45 K. This competition leads to a hump in α around
30 K. It is at this moment unclear whether there is a connection with the magnetic
interactions which where probed in the high-magnetic field measurements.
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Samenvatting

nconventionele eigenschappen van de grondtoestand worden
aangetroffen in de sterk gecorreleerde systemen UGe2, URhGe en
UIr. Deze verbindingen behoren tot een klasse materialen waarin
twee verschijnselen - die lang gedacht werden elkaar uit te sluiten -
tegelijkertijd optreden. UGe2 was de eerste van deze drie verbindin-
gen die aanzienlijke aandacht genoot vanwege het optreden van su-

pergeleiding, diep in de ferromagnetische toestand, gevolgd door URhGe. UIr is
speciaal omdat de kristallografische structuur inversie symmetrie ontbeert.

Het tegelijkertijd bestaan van ferromagnetisme en supergeleiding in de buurt van
een ferromangetisch quantum kritisch punt, is de belangrijkste motivatie waarom de
betreffende verbindingen zo intensief worden bestudeerd. Het feit dat magnetische
fluctuaties versterkt zijn in de buurt van een quantum kritisch punt, precies waar
supergeleiding wordt gevonden, suggereert sterk dat de aantrekkende kracht tussen
de electronen die het Cooper paar vormen, zijn oorsprong heeft in de magnetische
fluctuaties. Dit proefschrift heeft de intentie door middel van enkele meettechnieken
een bijdrage te leveren aan het begrijpen van de rol van ferromagnetisme en ferro-
magnetische spin fluctuaties in hun coëxistencie met supergeleiding.

Hoofdstuk 4: UGe2

De ferromagnetische domein groottes van UGe2 werd bestudeerd door middel van
drie-dimensionale neutronen depolarisatie bij kamerdruk. De conclusie is dat het
bestaan van resonante tunneling, door een magnetisch veld gëınduceerd, tussen spin
quantum toestanden [117, 118] hoogst onwaarschijnlijk is. De voorwaarde voor dit
model is en ferromagnetische domein grootte van 40 Å, terwijl de neutronen depo-
larisatiemetingen wijzen op een grootte die duizend keer groter is. De supergeleiding
bestaat daarom binnen één enkel ferromagnetisch domein.

De domeinwanden worden niet verwacht een groot effect te hebben op de bulk
Cooper paar golffuncties, zoals gesuggereerd door Nishioka et al. [117, 118], terwijl
de breedte van de domeinwand minder is dan enkele procenten van de gemiddelde
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domeingrootte.
De μSR data die in het kritische temperatuurgebied van UGe2 zijn gemeten,

suggereren een coëxistentie van twee subsystemen met gelocaliseerde 5f toestanden,
verantwoordelijk voor de magnetische ordening, en gedelocaliseerde toestanden, ve-
rantwoordelijk voor de supergeleidende eigenschappen. Het is waarschijnlijk dat
electronen niet deelnemen in beide fenomenen tegelijkertijd, maar gesepareerd zijn
in reële ruimte en/of in reciproke ruimte, dat wil zeggen verschillende delen van het
Fermi oppervlak. Dit lijkt in strijd met theoretische model [89, 90, 91, 92] waarin
de supergeleiding en het ferromagnetisme verondersteld worden te worden gedragen
door dezelfde electronen.

De depolarisatie van de spontane frequencies vertonen een piek bij temperatuur
TX . Er wordt uiteengezet dat de piek zou kunnen ontstaan door het langzamer
worden van magnetische fluctuaties. Dit zou een rol kunnen spelen in de formatie
van Cooper paren.

Hoofdstuk 5: URhGe
Metingen van de thermische uitzettingen aan een éénkristal van de itinerante ferro-
magneet URhGe laten zien dat onder de ferromagnetische ordeningstemperatuur van
TC = 9.7 K de coefficiënt van de lineaire thermische uitzetting toeneemt langs alle
drie de orthorhombische assen. De uniaxiale drukafhankelijk van de ferromagnetis-
che overgangstemperatuur werd bepaald door de Ehrenfest relatie van de anomaliën
in de coefficiënt van de lineaire thermische uitzetting en de soortelijke warmte. Posi-
tieve waarden van dTC/dp werden gevonden langs alle principale assen. Daarom is
de hydrostatische drukafhankelijk ook positief en bedraagt dTC/dp = 0.119 K/kbar.
Deze positieve drukafhankelijk is anders dan het gedrag voor UGe2 en UIr. Ook is de
effective Grüneisen parameter bepaald. Het resulterende lage temperatuur gedrag
duidt op een versterkte volume afhankelijk van de ferromagnetische spin fluctuaties
bij lage temperaturen en een even grote volume schaling van de energieschalen voor
de ferromagnetische ordening en de ferromagnetische spin fluctuaties.

μSR metingen aan URhGe zijn uitgevoerd door het bepalen van de spin-kristal
relaxatie λZ als functie van het externe aangelegde magnetische veld Bext voor
twee richtingen van de initiële muon spin Sμ(0). Aangezien zowel Sμ(0) ‖ c als
Sμ(0) ⊥ c, met c de makkelijke as voor de magnetisatie, kon de anisotropie van de
spindynamica worden gemeten. De magnetische veld scans in de paramagnetische
toestand, dicht bij TC, laten duidelijk twee verschillende magnetische contributies
zien, die gëıdentificeerd kunnen worden als gelocaliseerd en itinerant magnetisme.
Dit feit suggereert sterk dat de 5f niet deelnemen aan beide fenomenen tegelijker-
tijd, maar gesepareerd zijn in reële ruimte en/of in reciproke ruimte, dat wil zeggen
verschillende delen van het Fermi oppervlak. Dit lijkt in strijd met theoretische
model [89, 90, 91, 92] waarin de supergeleiding en het ferromagnetisme veronder-
steld worden te worden gedragen door dezelfde electronen.
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Hoofdstuk 6: URh1−xRuxGe
Aangezien het ferromagnetisme in URhGe niet onderdrukt kan worden door externe
druk aan te leggen (Ref. [176] en Sec. 5.2), is de evolutie van ferromagnetisme in
URhGe onderzocht door chemische substitutie. In dit onderzoek zijn Rh atomen
gesubstitueerd door Ru en Co terwijl Ge plaats maakte voor Si. Bij de substitutie
van Ru is gevonden dat TC in het begin hoger werd met toenemende waarden van
x in URh1−xRuxGe. Dit werd toebedeeld aan een volume effect. Voor x > 0.10,
neemt TC af, wat suggereert dat het leegmaken van de d-band de hybridisatie fenome-
nen domineert. Ferromagnetisme wordt volledig onderdrukt voor xcr ≈ 0.38. Bij
deze kritische concentratie wordt non-Fermi-liquid (NFL) gedrag geobserveerd in de
soortelijke warmte. Bij lage temperaturen werd gevonden dat de soortelijke warmte
beschreven kan worden door C/T ∼ − ln T . Voor substitutie door Co neemt TC toe
tot aan 20 K voor x = 0.60 en ferromagnetisme wordt onderdrukt voor waarden van
x dicht bij 1. Dit betekent dat UCoGe dicht bij een quantum kritische fase overgang
is en verschaft een goede kandidaat om een ferromagnetisch quantum kritisch punt
te bestuderen. Tot slot, substitutie van Ge door Si had geen effect op TC tot aan
x = 0.20.

Hoofdstuk 7: UIr
Geen teken van een metamagnetische overgang is gevonden in UIr voor gepulste
velden tot aan 52 T. Voor hoge magnetische velden satureert het magnetische mo-
ment bij een waarden van ≈ 1 μB/U-atoom. Dit is sterk gereduceerd vergeleken met
≈ 3.6 μB/U-atoom voor vrije U atomen, waarschijnlijk vanwege kristallijne elec-
trische velden. De veld afhankelijkheid van de magnetisatie wordt gekarakteriseerd
door een interactie veld van B0 = 42.6 (2) T. The waargenomen magnetische velden
zijn daarom van de orde van 29 K.

Een fit van soortelijke warmte data bij lage temperaturen in magnetische velden
tot aan 14 T laat zien dat de parameters die een rol spelen, constant blijven. De
data kunnen naar tevredenheid worden gefit voor alle magnetische velden met γ =
46 (1) mJ/mol K2 en θD = 181 K. Daarom is het duidelijk dat het aanleggen van
een magnetisch veld van 14 T weinig effect heeft op de soortelijk warmte (en dus de
magnetische correlaties) afgezien van een verbreding van de piek bij TC.

Thermische uitzetting data laten zien dat uniaxiale druk langs welke richting
dan ook de temperatuur TC in UIr verlaagt. Voor hydrostatische druk neemt de
component langs [1 0 1] meer dan de helft van de reductie van TC voor zijn reken-
ing. Een opmerkelijke schouder is aanwezig in de curves van de lineaire thermische
uitzettingscoefficiënt α rondom T ∗ ≈ 30 K. Dit kan verklaard worden door het
bestaan van een energieschaal die in competitie is met de magnetische ordening
die bij TC = 45 K te voorschijn komt. Deze competitie leidt tot een schouder in
α rondom 30 K. Het is op dit moment niet duidelijk of er een verband is met de
magnetische interacties die waargenomen zijn in de hoge magnetische veld metingen.
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[18] P. Dalmas de Réotier and A. Yaouanc, J. Phys.: Condens. Matter 9 (1997) 9113

[19] A. Schenck and F. N. Gygax, Handbook of Magnetic Materials, volume 9, p. 60, Ed. K. H.
J. Buschow, North-Holland, Amsterdam (1995)

[20] A. Amato, Rev. Mod. Phys. 69 (1997) 1119

[21] J. Chappert, Muons and Pions in Materials Research, Chap. 3, Ed. J. Chappert and R. I.
Grynszpan, Elsevier, Amsterdam (1984)

[22] R. Kubo and T. Toyabe, Magnetic Resonance and Relaxation, p. 810, North-Holland,
Amsterdam (1967)

[23] R. S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo, Phys. Rev.
B 20 (1979) 850
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[162] V. H. Tran, R. Troć, and G. André, J. Magn. Magn. Mater. 186 (1998) 81
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[167] I. H. Hagmusa, K. Prokeš, Y. Echizen, T. Takabatake, T. Fujita, J. C. P. Klaasse, E. Brück,
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(2003) 1473

[187] S. W. Lovesey, Theory of neutron scattering from condensed matter, volume 2, Oxford
University Press, Oxford (1984)
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R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 73 (2004) 3129

[200] L. Vegard, Z. Phys. 5 (1921) 17

[201] N. T. Huy et al., in preparation

[202] A. Eiling and J. S. Schilling, Phys. Rev. Lett. 46 (1981) 364

[203] Q. G. Sheng and B. R. Cooper, J. Appl. Phys. 75 (1985) 7035

[204] J. J. Park and L. R. Mullen, J. Res. NBS 72A (1968) 19

[205] A. Dommann, F. Hulliger, and T. Siegrist, J. Magn. Magn. Mat. 67 (1987) 323

[206] T. Siegrist, Y. Le Page, V. Gramlich, W. Petter, A. Dommann, and F. Hulliger, J. Less-
Common Metals 125 (1987) 167

[207] P. H. Frings, C. Vettier, A. Dommann, F. Hulliger, and A. Menovsky, Physica B 156-157
(1989) 832
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niveau 5.

Tijdens zijn studie was Serdar bijlesleraar wiskunde, natuurkunde en scheikunde
voor leerlingen van het Gymnasium Haganum te Den Haag. Tevens bekleedde hij de
functies van algemeen bestuurslid, secretaris en ten slotte voorzitter van het Zuid-
Hollands Symfonie Orkest. Met dit orkest heeft hij op 24 april 2004 als solist het
derde pianoconcert van Beethoven uitgevoerd.

Thans is Serdar werkzaam bij Hewitt Associates als actuarieel medewerker. In
het kader hiervan studeert hij naast zijn werk Actuariële Wetenschappen aan de
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