Supporting Information

Insight into Eu redox and Pr³⁺ 5d emission in KSrPO₄ by VRBE scheme construction

Rongfu Zhou,^a Litian Lin,^a Chunmeng Liu,^a Pieter Dorenbos,^b Ye Tao,^c Yan Huang,^c Hongbin Liang^{a,*}

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and

Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.

^bFaculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The

Netherlands.

^cBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China.

*E-mail: cesbin@mail.sysu.edu.cn; Tel.: +86 20 84113695.

Ζ	Wyckoff	Х	у	Ζ	Site occupancy factor	Bep
	position					
K	4c	0.1651(3)	1/4	0.584(3)	1	1.3
Sr	4c	-0.0032(2)	1/4	0.198(1)	1	1.3
Р	4c	0.2336(4)	1/4	-0.075(8)	1	1.2
01	4c	0.295 (1)	1/4	0.070(9)	1	0.5
02	8d	0.282(5)	0.022(1)	0.833(9)	1	1.1
O3	4c	0.536(8)	1/4	0.589(7)	1	1.3

Table S1. Final refined structure parameters of KSrPO₄ compound^d.

^d KSrPO₄ belongs to orthorhombic with space group *Pnma* and *a* = 7.34706(4) Å, *b* = 5.55249(3) Å, *c* = 9.61716(6) Å, *V* = 392.325(4) Å³ as well as the goodness of fitting R_{wp} = 5.891%, R_p = 3.574%, R_B = 5.919%.

Table S2. The Sr-O distance of KSrPO₄ compound.

Bond	Length/ Å	Bond	Length/ Å
Sr-O1	2.512(7)	Sr-O2(×2)	2.577(6)
Sr-O1	2.681(8)	Sr-O3(×2)	2.978(2)

Sr-O2(×2)	2.560(5)	Sr-O3	2.767(7)
average	2.688(5)		

Fig. S1 Representative XRD patterns of Ce³⁺, Pr³⁺, Eu³⁺ and Eu²⁺ singly doped KSrPO₄ samples at RT.

Fig. S2 Highest-height normalized VUV-UV excitation (a, $\lambda_{em} = 332$ and 354 nm) and emission (b, $\lambda_{ex} = 200, 215, 235, 270$ and 300 nm) spectra of sample K_{1.001}Sr_{0.998}Ce_{0.001}PO₄ at 25 K.

Fig. S3 Luminescence decay curves of sample K_{1.001}Sr_{0.998}Ce_{0.001}PO₄ at RT.

Fig. S4 (a) Emission spectra and (b) decay curves of samples $K_{1+x}Sr_{1-2x}Ce_xPO_4$ (x = 0.001, 0.003, 0.009, 0.019 and 0.03) under 270 and 290 nm excitation, respectively.

Fig. S5 (a) Highest-intensity normalized excitation ($\lambda_{em} = 370 \text{ nm}$) and emission ($\lambda_{ex} = 290 \text{ nm}$) spectra of sample K_{1.001}Sr_{0.998}Ce_{0.001}PO₄ at different temperatures; (b) temperature-dependent integral intensities of spectral overlapping between normalized excitation and emission spectra shown in (a).

Fig. S6 Height-normalized VUV excitation ($\lambda_{em} = 269 \text{ nm}$) and emission spectra ($\lambda_{ex} = 203 \text{ nm}$) of samples $K_{1+x}Sr_{1-2x}Pr_xPO_4$ (x = 0.003, 0.007, 0.011) at 25 K; the inset shows magnified spectra ($\lambda_{ex} = 203 \text{ nm}$) in the 220-240 nm range.

Fig. S7 Integrated intensity-normalized excitation ($\lambda_{em} = 422 \text{ nm}$) and emission ($\lambda_{ex} = 325 \text{ nm}$) spectra of KSr_{1-x}Eu_xPO₄ (x = 0.001-0.015) samples as-prepared in CO ambiance.

Fig. S8 Emission spectra ($\lambda_{ex} = 272 \text{ nm}$) of representative KSr_{1-x}Eu_xPO₄ (x = 0.001, 0.009 and 0.015) samples synthesized in CO ambiance.