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Abstract

Conventional nuclear reactors can be a suitable solution to meet the increasing energy
demand. However there is a lot of skepticism about the associated disadvantages,
such as accessory radioactive waste and consequences of unsafe operation. Therefore
a more safe and efficient type of nuclear reactor is investigated nowadays, which is
the Molten Salt Reactor (MSR). The reason for these advantages is the fact that the
reactor operates at high temperatures and atmospheric pressure. But since this reactor
is relatively new and deals with salt mixtures as both fuel as well as a coolant it is
important to know all properties at any time. Therefore one would like to monitor the
properties such as density and viscosity constantly during performance. The latter is
investigated in this research. The main research question is: ’How does the viscous
behaviour and related attenuation by a powerlaw liquid (EAN) act for different high
range frequencies of ultrasonic shear waves?’

In order to be able to measure in high temperature conditions a set up has been created
which makes use of an ultrasonic waveguide. This setup is based on the research
of Cegla et al [1] and Mastromarino et al [2]. Shear waves are sent through a plate,
which is immersed into a fluid. After being reflected the waves are detected by a
transducer. The attenuation of the signal strength caused by viscous dissipation is
measured for different immersion depths of the plate into the fluid. For Newtonian
fluids the attenuation is strongly related to the strength of the signal, which can be
obtained by an exponential model. Besides, the viscosity can be calculated using the
attenuation. For non-Newtonian fluids the attenuation and viscosity are also strongly
related. This exponential dependence however does not hold anymore.

During the experiments on non-Newtonian fluids a powerlaw liquid named EAN (Ethyl
Ammonium Nitrate) was used. For this liquid the attenuation of the signal was measured
and another model to calculate the amplitude of the signal at different immersion
depths by Rohde [3], based on the consistency (K) and the flow index (n), was tested.
Using the data from Smith et al. [4], which already did some measurements on the
rheology of EAN, values for these parameters of EAN were found, n = 0.9822± 0.006
and K = 35.47± 1.05Nsnm−2. The value for K is accurate. However according to the
model by Rohde a very small change in n gives a very big difference in corresponding
amplitude of the signal. Due to the sensitivity for errors of n the obtained values for
both K and n are not used. Therefore another way to investigate on EAN is examined.

In this research the ratio between the signal strengths at a fixed immersion depth
for different frequencies is investigated instead for both water and EAN. The ratio
is interesting since it does only depend on α for a fixed value of z. From this point
the rheological behaviour of the fluid can be compared to water, since for water a
theoretical model is found. For calculating the ratio a reference frequency of 3.0MHz
is used. For water the ratio follows exponential functions, where the lowest immersion
depth gives the smallest change in ratio. For EAN a more parabolic trend is measured.
The measurements however were very sensitive to measurement uncertainties. Some
possible sources are the lack of cleaning the plate after each experiment, the sticking
of the plate at the faces of the small container, and the failures of the LABVIEW
program, which got stuck during some measurements. Also the level of the liquid inside
the container as well as the amplitude of waves were not always constant during the
measurements. These shortcomings and some small changes in the set up could cause
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a lot of disturbance.

In future work, EAN or other salt mixtures should be further investigated. Some things
which could help in making progress are using a larger container for EAN and a longer
plate for the measurements for more accurate results. Experimentally the temperature
dependency of EAN as well as the transmission by the transducer are important things
to elaborate on. Besides that developing a rheological model for EAN is also strongly
recommended.
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Chapter 1: Introduction

The global energy consumption has been growing fastly the last years and our needs still
ask for more and more. Nowadays the world energy consumption is 2-3% more than last
year [5]. This is a worrying development, since the greatest part of the energy production
is associated with lots of emitted CO2. In figure 1 is shown that approximately 80%
of all supplied electricity in 2017 is produced by sources as coal and oil [6]. The main
disadvantage of these products is that they are not renewable. Besides that, these fossil
fuels are very harmful and dangerous in heating up the planet, because of the included
emitted CO2. In order to provide ourselves with sufficient and sustainable energy in the
future green energy could be an outcome, since it is more durable and cleaner. Some
possible green options, such as wind energy, already occupy a certain part in our energy
supply. Others are upcoming, such as biofuels, hydro energy and solar energy. Nuclear
energy is another suitable alternative and already available from 1951 [7]. Despite the
potential of nuclear energy many people are sceptical about the dependency on nuclear
power after a few nuclear accidents in history, like in Chernobyl and Fukushima.

Figure 1: World energy production in 2017 [6]

Thermal neutron reactors, which is the most common type of nuclear reactor, produce
energy by fission of uranium atoms. The biggest advantage of nuclear energy is the
reliability compared to other types of ’CO2 neutral’ energy, for instance solar energy.
Besides that, a nuclear power plant produces large amounts of energy and the needed
raw materials are relatively cheap and widely available. However, on the other side, the
production of nuclear energy comes with fission products, which could be dangerous
and cause disastrous consequences. Secondly, the production of nuclear energy includes
radioactive waste. This waste has to be stored for a long time until it is not harmful
anymore. For these reasons people are very careful in using nuclear energy at such a
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large scale.

Nuclear reactors are optimized a lot over the years. Meanwhile there are four gen-
erations of nuclear reactors, from which only two generations are operational now.
Most reactors, which produce electricity, are second generation reactors. Some are
3rd generation reactors. However it is necessary to meet the question, which arises
nowadays, to provide ourselves a type of reactor which meets in covering the mentioned
disadvantages, like the production of radioactive waste and dangerous fission products.
Therefore the fourth generation reactors was designed and could be used to replace
the contemporary reactors to be safer and more efficient in the future. These designs
are made by the ’Generation IV International Forum (GIF)’. One of the criteria for
this generation of reactors is the need to be highly economical. In addition, they must
have enhanced safety, produce minimal waste and the system should be proliferation
resistant [8]. The fourth generation reactors consist of six types of reactors, which are
investigated all over the world. Some designs claim inherent safety, including the ability
for more safety in loss of coolant scenarios. Others are designed to ’burn’ waste from
current reactors. On the drawing board this sounds very hopeful, although none has
yet proven commercially viable. Three of the six designs are fast reactors and the other
three are thermal reactors. Examples are the VHTR (very high temperature reactor),
a supercritical water reactor and a lead-cooled fast reactor. Furthermore the molten
salt reactor (MSR) also is one of the six types of fission reactors and is investigated at
the TU Delft.

1.1 The MSR concept

The Molten Salt Reactor research started in the 1950s by Alvin Weinberg [9]. The first
molten salt reactor experiments were conducted by Oak Ridge National Laboratory.
At the moment the reactor is still in an experimental stage. The design was radical
for its time and offered many advantages worth a fresh look today, since the molten
salt mixture can be used both as fuel and as coolant in the reactor. This could make
sure the reactor produces more efficiently, because a larger difference in temperature in
a heat exchanger results in a higher Carnot thermal efficiency, and guarantees more
safety. To accomplish this there is and will still be invested a lot on this reactor design.

1.1.1 Reactor geometry

A Molten Salt Reactor is a controlled environment for a fission chain reaction to occur.
A schematic drawing of the reactor is illustrated in figure 2.

In figure 2 three different loops are shown. Relative to a Light Water Reactor (LWR)
there is an additional loop. The first loop includes the core, in which the fissile chain
reaction is generated. In conventional reactors fissile isotopes, like uranium 235, absorb
a neutron. This reaction results into fission products and a large amount of energy,
due to a small mass defect which appears as fission energy. In addition, more free
neutrons are generated that can be used to continue the chain reaction. A moderator is
usually employed to slow down the neutrons, so they are more likely to cause another
fission when they impact the fuel. In the case of Light Water Reactors solid fuel rods
contain the fissile material. In between those rods a certain amount of control rods are
inserted to control the fission chain reaction. Water surrounding the fuel acts as both
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Figure 2: Schematic drawing of the Molten Salt Reactor [10]

a moderator and a coolant. For a MSR a second loop is included. A heat exchanger
connects both loops. The coolant in the first loop is heated up and feeded to the
heat exchanger. The second loop is also filled with a liquid salt mixture. This loop
functions as a heat exchanger and will bring the heat to the third loop via a second
heat exchanger. The heat is used in the third loop for heating water to turn a steam
turbine to generate electricity. The additional second loop is inserted to separate the
steam from the core part of the reactor. In a molten salt reactor the core operates
differently. The primary coolant is a salt heated above its melting point, so it is a fluid.
Instead of fuel rods fissile material is now dissolved in the molten salt. The fuel salt
flows through channels in graphite blocks, which moderate the energy of the neutrons
to enhance the chain reactions.

A molten salt reactor can use a broad range of fuel and salt compositions. There are
even designs that do not need a moderator at all (fast reactors). Instead of uranium,
thorium is a favorite alternative fuel. This is because thorium fuel offers a number
of benefits. There is at least three times more thorium than uranium on the planet.
Besides that less waste is produced than the waste of uranium. Other benefits include
safety and efficiency. Replacing water as the coolant removes the possibility of steam
explosions and the generation of flammable hydrogen gas. Additionally, a freeze plug
can dump the fuel into tanks and stop the reaction. Because the MSR can operate
at higher temperatures their steam cycle generates electricity more efficiently. The
use of liquid fuel allows for real time waste processing and finally there is no need to
shut down the reactor for refueling. New fuel can be introduced to the system during
operation. On the other side, there are also some disadvantages for a MSR. Dissolved
fuel can easily come in contact with important equipment, such as pumps, which can
be affected. Besides that, there is a risk of corrosion.

1.1.2 Properties, fuel and reactions

For conventional reactors using U-235 the fission reaction is displayed in equation
(1.1) [11].

1
0n+235

92 U− > X + Y + b10n (1.1)
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Here 1
0n is a neutron with mass 1 u. X and Y are the fission products obtained by

the fission reaction and b is the number of neutrons released by the reaction. These
neutrons propagate the chain reaction. For the MSR the fuel is a point of attention,
since it has to meet the important function to be appropriate both as fuel and as
coolant. Therefore it will be essential to continuously monitor properties like density
and viscosity of the salt for different temperatures. The most commonly proposed
fuel salt mixture for the molten salt reactors is LiF − ThF4 − UF4 − PuF3. This is a
composition of Lithium, Thorium, Uranium and Plutonium fluorides. The melting point
of this fluoride salt is around 600 ◦C, while the MSR operates at a higher temperature of
approximately 700 ◦C and atmospheric pressure. Under these circumstances, especially
at high temperature it is hard to know the behaviour of these properties accurately,
since standard equipment to measure density and viscosity can not operate well at these
high temperatures. There are some practical shortcomings and difficulty of integration
in the system for measuring with conventional equipment. Next to that the salts could
be corrosive. So a setup using a transducer, which sent a wave throughout a plate into
a fluid, can be used. The time between generating and detecting the wave is measured.
From this the attenuation of the wave can be calculated, which is a measure for the
viscosity of the fluid. This method to measure viscosity uses ultrasonic shear waves.
The advantage is that the transducer does not make any contact with the liquid and
can therefore operate as usual as it is also less bothered by high temperatures. This
will give less trouble. This idea is already tested by Cegla et all [1] and his research is
published in 2005.

1.2 Development so far

Up till now a lot of research has been done on measuring properties as viscosity at high
temperatures [12]. Besides the research of Cegla et al described above more groups did
experiments on ultrasonic waveguide measurements. Below a few are described [1].

First of all, Vogt et al in 2004 published their research on material properties of viscous
liquids using ultrasonic guided waves. In this paper they presented a tool in the form
of a circular waveguide for measuring the dynamic viscosity as well as the longitudinal
bulk velocity (dynamic only takes translational molecular movement into account while
bulk reflects on both rotational and vibrational degrees of molecular freedom) . They
used a torsional wave in a rod, which is similar to a shear wave in a plate. The set
up of this experiment is shown in figure 3. Using different wave modes the material
properties can be determined accurately [13].

Figure 3: Schematic drawing of the set up used by Vogt et al [13]

Secondly, Rabani et al presented a useful probe for measuring viscosity of Newtonian
liquids in 2011. This probe satisfies some issues covered in the research, such as which
material the wave guide should have, what the dimensions should be and at what
frequency it should operate [14] [15].
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Then there is Kazys et al [16] who developed a method using ultrasonic waves to measure
viscosity of high viscous substances and non-Newtonian liquids. This research shows
which types of wave modes are appropriate and that viscosity is dependent on frequency
for high viscous fluids [16].

At last there is the the group of Smith et al, who published their work in 2006. In their
research the temperature dependency on the viscosity of five different non-Newtonian
fluids were investigated. Also the rheological behaviour of these fluids was investigated.
One of the measured fluids is Ethyl Ammonium Nitrate (EAN), which is a powerlaw
fluid, is further investigated in this research [4].

1.3 Research and goals

Since the molten salt reactor deals with non-Newtonian salt mixtures it is interesting
to have a closer look at the viscous behaviour of non-Newtonian fluids. In this research
steps will be taken in investigating these non-Newtonian fluids, EAN, in particular. The
set up described by Cegla [1] is used to have a further look at the ultrasonic waveguide
method in determination of the viscous behaviour. The main question of this research
is:

How does the viscous behaviour and related attenuation by a powerlaw liquid (EAN)
act for different high range frequencies of ultrasonic shear waves?

In order to investigate on this question the set up is used. In this set up a thin stainless
steel plate functions as a waveguide. At the top of the plate a transducer sends a wave
through the plate and is reflected at the bottom. A container with liquid is adjustable
to create different immersion depths in which the plate is immersed. By measuring
the amplitude of the wave the attenuation of the wave, which is closely linked to the
viscous behaviour of the fluid, can be calculated. In supporting the research of finding
the answer to the question above some additional subquestions are composed. The first
and the last question will both be performed on water and EAN.

1. What is the relation between the viscous behaviour and the immersion depth for
both Newtonian and non-Newtonian fluids?

2. Can the theoretical model for powerlaw liquids be simplified to a Newtonian
model for certain circumstances?

3. What value for K and n can be found from the theoretical powerlaw model and
the literature data from Smith et all [4]?

4. What is the ratio between the signal strength at different frequencies for a fixed
immersion depth?

To make sure all these questions can be answered it is necessary to delve into similar
literature, test the operation of the setup and analyze measurement results. In the next
chapter the theory behind different types of mechanics are explained. Thereafter in
chapter 3 the experimental method is presented and the set up is illustrated. In chapter
4 the most important results are stated and discussed. At last, in chapter 5 a conclusion
has been drawn and some recommendations for further research are proposed.
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Chapter 2: Theory

Before doing measurements on the ultrasonic waveguide it is important to understand
the theoretical background behind the experiment. This theory is split up into three
parts. The first interest is continuum mechanics, since this explains the kinetics and
dynamics of a continuum, which is a body of matter distributed continuously. Besides
that wave mechanics is explained. Here the physics behind waves and wavelike prop-
erties are discussed. Finally there is fluid mechanics to conclude, which actually is a
branch of continuum mechanics and covers mechanics and forces on different types of
fluids. Actually these three fields are strongly connected to each other.

2.1 Continuum mechanics

In real life almost every material consists of impurities and discontinuities. However in
continuum mechanics, materials are treated as continuous objects. This makes it easier
to look at properties of the system at a microscopic level. The experiment deals with
vibrations and elastic waves through a fluid and a solid plate. Some essential concepts
in understanding these topics and how this propagation works are stress and strain.

2.1.1 Stress and Strain

Stress and strain are two key concepts in speaking about elasticity and both are closely
related. Strain basically is the distortion of a homogeneous medium. The origin of
strain could be stress, which is an applied force. Stress, to start with, is the measure for
a force being exerted on a cross sectional area of the material. However this resulting
force is caused by internal collisions and intermolecular forces. This means that particles
in the material next to each other apply a force on each other. An example is the
various different inter atomic bonds in a molecule, such as covalent bonds or hydrogen
bridges.

Figure 4: 5 different types of stress, which could be subdivided into normal and shear stress [17].

Stress can be classified into different types, compression, tension, shear, bend and
torsion. For compression and tension the applied force is normal to the plane and
makes sure a body will stretch or compress. Shear and bend are forces applied on the
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body in transverse position. It can cause a material to rotate the surface. Torsion is
rotation around the longitudinal axis and can be decomposed into shear forces. So
basically stress comes down to two forms, normal stress and shear stress. In figure 4
the five ways of stress are shown.

Stress could be calculated using (2.1).

σ =
F

A
(2.1)

Hereby F is the force in N, A is the area in m2 and σ is the stress expressed in N/m2 [11].
Stress has both a magnitude and direction, this should mean it is a vector. However
stress is a tensor. Lets imagine a 2D square solid. Now one force is applied on the
left face of the square pointing to the left and another force on the right face pointing
to the right. These forces should be equal in order to prevent the body to accelerate
infinitely. This will make the square responses in elongating into a rectangle. But if
now the forces are applied to the upper and bottom face instead (same magnitude and
same direction) the response is different and would look like the figure bottom right in
illustration 5.

Figure 5: Above: normal forces lead to normal stress. Below: shear forces induce shear stress.
The blue arrows are the opposite internal forces. The distortions are called strain.

So this clarifies that not only magnitude and direction matter but also on which face
the force acts. This leads to a stress tensor. The stress tensor, which has the symbol
T and is called the Cauchy Stress tensor, defines the stress on a body in a certain
configuration. A 3D representation of the stress vector components is illustrated in
figure 6.

Both the normal stress and the shear stress can be expressed in a matrix (2.2) [19].

T
(n)
j =

σx τxy τxz
τyx σy τyz
τzx τyz σz

 (2.2)

The components on the diagonal represent the normal stress and the off-diagonal
elements give the shear stress. σx gives the stress normal to the y-z plane, while τxz
represents the shear stress parallel to the z-axis in the y-z plane. This will give nine
components. Although only six are unique, since the matrix is symmetric. Unequal
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Figure 6: A 3D representation of the stress vector components of the Cauchy Stress Tensor
T. [18]

stresses could cause infinite angular acceleration. So instead of a vector with three
components this tensor has nine elements. In (2.3) the equation to gain the stress
vector on a surface from the stress tensor is displayed.

σij = ni · T (n)
j (2.3)

Here σ is the stress vector and n is the normal vector of the surface. The stress vector
is very useful in calculating the total force due to the surface forces over an arbitrary
volume (of a fluid for example). Then the stress vector should be integrated over the
surface of the volume, see (2.4) [20].

Fs =

∫
S
σijdS =

∫
S
ni · T (n)

j dS (2.4)

Here the integral with the stress tensor over the volume is obtained. Furthermore this
could be changed into an integral using the divergence of the stress tensor, see (2.5).

∫
S
ni · T (n)

j dS =

∫
V
∇ · TdV (2.5)

The physical meaning of the divergence of a vector field tells in what extent stress flows
towards or away from a certain point on the surface of the volume.
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As mentioned before, because of these different types of stress a volume can be trans-
formed. This means that particles inside the material have changed their position
relative to each other. A measure of the amount of change is strain. Suppose a rod
of length l with a constant cross-sectional area A. This rod is stretched until it has a
length l+ ∆l by uniformly applied opposing forces. Now the strain of the rod is defined
as presented in (2.6) [11].

ε =
∆l

l0
(2.6)

Hereby ε is the strain, which is dimensionless. l0 is the original length of the rod in
meters and ∆l is the change in length relative to the original length also in meters.
Similar to stress the strain could also be in the normal direction or parallel to the face
of an element. The latter is called shear strain. So as well as for stress a tensor could
be defined for strain, which is the Cauchy Strain Tensor. This tensor is written in
(2.7) [19].

ε
(n)
j =

εxx εxy εxz
εyx εyy εyz
εzx εyz εzz

 (2.7)

Like the stress tensor the strain tensor is symmetric too. Besides that the diagonal
elements here also represent normal strain and the off diagonal elements the shear
strain. The components in the strain tensor matrix could be calculated using the the
formula (2.8).

εij =
1

2
(
dui
dx

+
duj
dy

) (2.8)

Here i and j stand for the components x,y and z and u is the displacement vector from
the original point to the new point. In gaining this formula the assumption is made
that non-linear terms can be neglected, because the gradients of the displacements are
very small. The whole derivation of (2.8) is given by [21].

2.1.2 Generalized Hooke’s law and moduli

Stress and strain are two closely related concepts, which are described mathematically
very similarly. There are some moduli that link stress and strain in a certain environment.
First of all the Young’s modulus. The Young modulus is a property which gives the
rigidity of a solid material. The higher this modulus, the less elastic the material
is. Very stiff materials could have a Young modulus of more than a thousand GPa
for instance. The modulus describes the response of a material to linear stress. The
equation is given in (2.9).

E =
σ

ε
(2.9)

Here E is the Young modulus in GPa, σ is the stress in N/m2 and ε is the strain, which
is dimensionless [22].
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For many materials stress and strain could graphically be related to each other in a
stress-strain curve. An example is illustrated in figure 7.

Figure 7: A stress-strain curve where some critical points are indicated. [23]

The linear dependence is shown in the first elastic part of the graph. Then from the
elastic limit plastic deformation will occur. The material is now deformed permanently.
So it will not return to its original length. This will happen when strain grow faster
than stress. Then at a certain point, when increasing the strain the stress will decrease.
At this point the material experience maximal tensile strength and then fractions occur.

Secondly there is Poisson’s ratio, which is a dimensionless number that compares
the transverse strain to the axial strain. This ratio tells how a material responds to
contraction and expansion. Most materials expand in one direction if it is contracted
in another direction because of preservation of volume of a material. In (2.10) the
equation for the ratio is given [22].

ν = −εtrans
εaxial

(2.10)

Here ν is the ratio and trans and εaxial are the transverse and axial strain respectively.
Theoretical possible values for the poisson factor lie between −1 ≤ ν ≤ 1

2 .

Besides that there is the shear modulus, which relates the shear strain and shear stress.
Usually it is expressed in GPa. The equation that describes the shear modulus is given
in (2.11) [22].

G =
τ

γ
(2.11)
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Here G is the shear modulus in GPa, τ is the shear stress and γ the shear strain acting
on the material.

At last, there is the Bulk modulus, which is a measure for the compressibility of a
material. The equation to calculate the Bulk modulus is given in (2.12) [22].

K = −V dP

dV
(2.12)

Here V is the volume of the material or fluid and P is the pressure acting on the volume.
Furthermore K is denotes as the Bulk modulus in GPa.

All these concepts describe a certain stress. To predict the deformations of a body
all these concepts should be taken into consideration. In the generalized Hooke’s law
all these contributions are considered [22]. In the following section the focus is shifted
towards wave mechanics, which explains different types of waves and propagation
through a solid or a fluid. Furthermore additional properties of the fluid could be
investigated using the wave equation.

2.2 Wave mechanics

In making a description about waves it is necessary to distinguish electromagnetic waves
from mechanical waves. Both types of waves are described as a travelling disturbance
and it transfers energy instead of matter, but only electromagnetic waves can travel
through vacuum. The velocity of both types of waves differ. Mechanical waves travel
less fast, while electromagnetic waves travel with the speed of light in a vacuum.
Mechanical waves are used very often in this research.

2.2.1 Types of waves

Mechanical waves come in three different forms, a longitudinal wave, a transverse wave
and surface waves.

Longitudinal waves are waves where the amplitude of the wave is parallel to the direction
in which the wave propagates the energy. Examples of longitudinal waves are sound
waves or pressure waves (P-waves). In both types of waves local compression and
extraction causes the propagation of the wave.

Transverse waves are waves where the amplitude of the wave is perpendicular to the
propagation of energy of the wave. An example of a transverse wave is light. An
important form of transverse waves is shear waves (S-waves). Shear waves could be
compared to flexural waves, which are a combination of longitudinal and transverse
waves. Both are described in a similar way, only physical properties differ. Flexural
waves could be attenuated much more than shear waves for example. This is caused by
the fact that shear waves propagates along the narrow side of the plate while flexural
waves displace the broad side of the plate. This means that the latter has to displace
more surface of the waveguide. Therefore it is attenuated stronger than shear waves.

Surface waves transfer the energy along the interface of different media. It has both
characteristics of longitudinal and transverse waves. An example of surface waves are
gravity waves. In figure 8 is shown that particles not just moving up and down or
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from right to left and the other way around, but move in small elliptical shapes. So
the movement of individual particles is a combination of longitudinal and transverse
movement [22].

Figure 8: The motion of a mechanical surface wave particle is elliptical. This means it is a
combination of longitudinal and transverse movement. [24]

2.2.2 Scholte wave

A special type of waves for this research is the Scholte wave. A Scholte wave is part of
the surface wave category and is a particular Stoneley-Scholte wave (which explains
solid-solid transitions) [1]. This wave propagates between a solid and a fluid, so a
half-space liquid and half-space elastic solid is required. The intensity of the wave
decays exponentially when it propagates away from the interface. Besides that, in
the liquid the amplitude of the wave does strongly depend on the frequency of the
wave. For higher frequencies it is harder for the wave to penetrate into the liquid. This
makes sure this type of wave is useful to measure properties of fluids using the high
frequency range. However for this research infinite half-space materials do not exist. So
to simulate this a plate is immersed into a fluid during this experiment. Under these
circumstances a quasi-Scholte wave occurs. This mode approaches the Scholte wave for
high frequencies.

2.2.3 The wave equation

Shear waves are very useful to determine the viscosity of a fluid. Viscosity is known
as a measure of how much a fluid can resist deformation by shear stress. Shear
waves are mechanical waves which induce shear on a material. Shear waves do not
propagate within fluids with zero viscosity. The shear wave is attenuated by a few
things. Important is the affection by the fluid flowing around the plate. The more
viscous the fluid, the more the shear wave is affected. The benefit over other types of
waves is that there is no longitudinal leakage. Although shear waves are a bit more
difficult to generate and detect. In this experiment a wave generator sends an acoustical
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wave through a transducer. This type of wave distributes energy by means of adiabatic
compression or decompression. The transducer then excites mechanical waves with
horizontal shear polarization through a plate (using the piezo-electric effect). The
acoustical wave equation has to be solved in order to gain more information about the
viscosity and the attenuation of the fluid. However the wave equation is different for
viscous and non-viscous fluids. The ’normal’ 3D wave equation of an acoustic wave is
given in (2.13) [22].

∂2p

∂x2
− 1

c2
∂2p

∂t2
= 0 (2.13)

Hereby p is the pressure field inside the medium, c is the speed of sound in m/s. c is
defined in (2.14)

c =

√
K

ρ0
(2.14)

where K is the bulk modulus in GPa and ρ0 is the density in kg/m3. For viscous fluids
the wave equation is given in (2.15).

∇2p− 1

c2
(
∂2p

∂t2
+

4µ

3ρ

∂∇2p

∂t
) (2.15)

An additional term, including the viscosity µ of the fluid, is obtained by the evaluated
Navier-Stokes equation. For both equations a solution for p could be derived by solving
the partial differential equations. First of all, equation (2.13) is solved using separation
of variables, which results in a sinusoidal plane wave function (2.16).

p(x, t) = p0e
±i(kx−ωt) (2.16)

Here p0 is the pressure at the initial conditions, ω is the angular frequency and k is the
wavenumber, which is defined as ω = kc. The derivation of the other partial differential
equation is more difficult but it will give a similar solution for p, only the dependence
on both ω and k change. The formula for k for example is turned into the complex
equation of the form (2.17), where α is the attenuation.

k = ±(β + iα) (2.17)

This α has the unit of m−1 and does depend on the viscosity of the fluid. For this
research the attenuation is given by (2.18).

α = − 1

2h
(
2ρfωη

ρsG
)
1
2 (2.18)

Here h is the immersion depth of the plate, ρf is the density of the fluid in kg/m3,
ρs is the density of the plate in kg/m3 and G is the shear modulus of the plate in
GPa [25]. Another more intuitive detailed derivation of the attenuation α of (2.18) using
a balance over the plate is given in Appendix A.
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2.2.4 Attenuation and viscosity determination

By looking back at equation (2.18) the only parameter that is unknown in order to
calculate the viscosity µ is the attenuation α. To find the attenuation a more in depth
analysis of the path of the wave is necessary. In fact the attenuation of the wave is
the relative decrease in amplitude. In figure 9 a schematic representation of a plate
immersed into a fluid is displayed.

Figure 9: Schematic representation of the plate immersed into the fluid using a waveguide
plate. [1]

The transducer propagates a wave downwards into the plate, it is reflected at the
bottom and measured back at the transducer. Along this path the wave is attenuated
in three different ways. Firstly by the plate itself, which affects the amplitude of the
wave exponentially. Secondly the transition at the interface between the solid of the
plate and the fluid. A certain part of the wave is transmitted, while another part is
reflected. At last the attenuation caused by the fluid, which for water for instance has
also an exponential decaying dependence [1]. In (2.19) the three influences are expressed
into an equation.

A1 = A0e
−αplate2lplateT 2e−αf2l1 (2.19)

Here lplate is the length of the solid, l1 is the length the wave travels inside the fluid,
αplate is the attenuation of the solid, T is the transmission coefficient and αf is the
attenuation of the fluid, which is the subject of interest. The lengths are doubled
because the wave travels back and forth trough the plate. For the same reason the
transmission coefficient is squared. The wave crosses the solid-fluid interface twice. In
(2.19) there are lot of parameters which are already measured, such as both l values
as well as both amplitudes. However αf is not the only unknown, so solving for this
parameter is difficult. This problem could be solved by setting up (2.20) for another
immersion depth.

A2 = A0e
−αplate2lplateT 2e−αf2l2 (2.20)

The term including the exponent of the plate is very small compared to the other terms
since the attenuation of the plate is very small. If both equations are now equated
these parameters will cancel out, written in (2.21).
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A1

e−αf2l1
=

A2

e−αf2l2
(2.21)

Now the αf is rewritten and evaluated by (2.22).

αf =
1

2(l2 − l1)
ln(

A1

A2
) (2.22)

So this means one should only measure the lengths and amplitudes at two different
immersion depths to calculate the attenuation of the fluid and with that the viscosity
of the fluid can be calculated using (2.18) [25].

2.3 Fluid mechanics

The last part of the theoretical section is covered by fluid mechanics, which explains the
physical behaviour of fluids if forces act on them. As already mentioned before, physics
becomes different in working with viscid or inviscid flows. The derivation in Appendix
A for example only holds for a special type of fluids. For this research therefore it is
necessary to distinguish two types of fluid: Newtonian and non-Newtonian fluids.

2.3.1 Newtonian model

Newtonian fluids are liquids where shear stress and viscosity are related linearly.
Furthermore the viscosity of Newtonian fluids does not change with the amount of shear
under constant temperature conditions. The most common examples of a Newtonian
fluids are air and water. Those fluids adhere to Newton’s law of viscosity, as could be
seen in (2.23).

φ′′py ,x = −µdvy
dx

(2.23)

Here φ′′py ,x is the flux of y-momentum, vy is the velocity of the y component and µ is

the viscosity of the fluid [26].

2.3.2 Powerlaw model

Then there are non-Newtonian fluids, which are more common than exception. They do
not obey Newton’s law of viscosity. There are a lot of different types of non-Newtonian
fluids with all their own so-called rheology, meaning the dependence of the shear stress
and the velocity gradient. One common type is the powerlaw liquid. Examples of
powerlaw liquids are cement or styling gel. They both obey the powerlaw, given in
(2.24).

τxy = −K | dvy
dx
|n−1 dvy

dx
= −K | dvy

dx
|n−1 γ̇ (2.24)

Hereby τxy is the shear stress, K is the consistency in Pasn, γ̇ is the shear rate and n
is the flow index. n is dimensionless. For n equals 1 the fluid is Newtonian. This is
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a special case. When n is smaller than 1 the liquid is called shear-thinning. For n is
bigger than 1 the fluid is called shear-thickening. For the latter the apparent viscosity,
which is defined in (2.25), increases at higher values of the shear rate.

µapp = K | dvy
dx
|n−1 (2.25)

In figure 10 the shear rate is related to the shear stress for different values of n. In this
experiment water as well as a powerlaw liquid is used and compared [26].

Figure 10: The shear stress for different values of shear rate. The blue line represents the
Newtonian model (n=1). [27]

In the following section the experimental setup and the used methods are described in
detail.
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Chapter 3: Experimental method

To achieve the research goals and answer the research question a set up is used. The
experiment follows the procedure of Cegla et all [2].This method is based on ultrasonic
waveguide. A schematic illustration of the whole set up is displayed in figure 11.

Figure 11: Schematic representation of the used setup [1]

A signal generator is used to generate a shear wave in the range from 2 − 5MHz.
After amplification it is sent to the transducer. It is an horizontal shear wave. The
transducer sends the wave into the wave guide and detects it after reflection. The
detected signal then goes to the oscilloscope, where the wave is displayed, as well as
the original generated wave. In between the wave passes a delimiter, which makes sure
the voltage entering the oscilloscope is maximal 1.0V . A photo of the used setup is
given in figure 12.

Figure 12: The used setup to determine the viscosity of a fluid. [2]
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3.1 Setup design

The wave pulse created by the waveform generator is a sinus. The pulse consists of
40 periods with a certain frequency, which is varied between 3.0MHz and 5.0MHz
for this experiment. After 30ms another pulse is generated. This time is necessary to
avoid interference between the wave pulses. Each wave pulse is deflected at the end
of the plate and returned towards the transducer to be detected. The used generator
is a RIGOL DG1032Z. After the signal is generated it passes an amplifier. This is
because the oscilloscope and the transducer deal with much greater input voltages.
The maximum input voltage of the oscilloscope is 200 Vpp. The signal generator can
output pulses with a voltage of an order of magnitude smaller. So therefore the signal
is amplified. However the amplifier is limited by an input signal of 2

√
2Vpp. For safety

reasons an input signal of 1Vpp is chosen. This voltage is amplified approximately 300
times. However this amplification will damage both the oscilloscope and the transducer.
For this reason the amplitude of the signal is decreased by a delimiter.

From the delimiter the wave is sent towards the transducer, which is coupled at a plate.
The transducer converts the acoustical or electrical wave into a mechanical shear wave.
This is done using the reversed piezoelectric effect. This means an outer electric field
either stretches or compresses the material. The mechanical shear wave then propagates
through a wave guide. The wave guide is a plate of stainless steel. The dimensions of
the plate are given in table 1 in the results section. The width of the plate is measured
using a caliper with accuracy 0.02mm. The length is measured by a ruler with accuracy
0.1mm and the thickness by a caliper with accuracy 0.002mm. The mass of the plate
is measured by a scale with an accuracy of 0.01gram. The size of the plate should
be optimized. It should be as long as possible to fit inside the setup, since the more
the plate could be immersed into the liquid the more measurements could be done.
Besides, the width should be at least larger than the width of the transducer and the
thickness should be small, because small plates attenuate more than thicker plates.
The plate is rigidly connected with the transducer in order to attenuate the wave as
little as possible. The couplant also should transmit shear waves. Therefore it may
have a high viscosity. The transducer should be connected perpendicularly to the plate.
The used transducer has a peak frequency of 3.7MHz. This means the Signal to Noise
Ratio (SNR) is the best for this frequency [21].

Another important issue is the attenuation of the wave by other stresses. It is good to
know that the wave, which propagates through the plate is quite centered along the
plate. This means affecting the plate in this region will attenuate the wave enormously,
while affecting the sides of the plate will hardly have any effect at all.

When the wave is reflected and detected by the transducer the mechanical attenuated
wave is converted back in a electrical or acoustical wave. The mechanical wave
makes sure positive and negative charges shift and cause an external electric field.
This electrical wave travels towards the oscilloscope. This is a Keysight InfiniiVision
DSOX2024A oscilloscope. The oscilloscope displays both the original generated signal
as well as the attenuated reflected wave signal. How the data is analyzed is discussed
in section 3.2.
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3.1.1 Properties of the liquids and the container

For this research the plate is immersed into a container filled with a fluid. Two different
containers and fluids are used. The dimensions of the containers are given in table 2 in
the results section.

The length, width and height of the containers are measured by a caliper with an
uncertainty of 0.02mm. The first container has a much bigger volume compared to
the other container. Inside the container a thermocouple is placed to measure the
temperature during the experiment. Viscosity does strongly depend on temperature.
The thermocouple is calibrated using ice water and boiling water.

The large container is used for the experiment with water. Water is a Newtonian
fluid. The attenuation derived in (2.18) in appendix A is also based on experiments
with a Newtonian fluid. Using this alpha an accurate exponential fit could be plotted
along the measurements. From this exponential fit the viscosity can be obtained. For
non-Newtonian fluids the derivation will result in an apparent viscosity. The actual
viscosity does depend on the shear rate. In this experiment the powerlaw fluid Ethyl
Ammonium Nitrate (EAN) is used. EAN is a shear thinning liquid. Because the actual
MSR deals with non-Newtonian salts EAN is used as a model fluid. A lot of properties
of EAN should still be investigated, such as the rheology of the fluid. EAN, which has
the formula C2H8N2O3, is colorless, has a molar mass of 108.1g/mol and a density of
1.261g/mL. Besides that, the fluid has some hazards [28], therefore goggles and gloves
are used during the measurements. Because EAN is a bit hazardous and expensive the
smaller container is used for these measurements.

3.2 Data analysis

Once the data is displayed at the oscilloscope the part of interest is the first reflection of
the wave. The data of this part could be converted into comma-separated values (csv)
files, where the measured voltages as well as some key parameters such as temperature
are saved. This is done by a LABVIEW script. In this script the amount of snapshots
or wavepulses is set as well as the time between these pulses or snapshots.

3.2.1 Labview program

For this research the common amount of measured snapshots is 256, where each consists
of a certain number of full periods. The number of periods does depend on the frequency
of the wave. The signal is measured for the following frequencies: 3.0, 3.5, 4.0, 4.5 and
5.0MHz.

In order to reduce noise in the signal of the amplitude of the measured snapshots, the
pulses are averaged after detection. This is done by taking the mean of all 256 pulses to
create a signal with a relatively stable amplitude and less noise. The background noise
is assumed to have a fixed variance and zero mean, so this will cancel out. Afterwards
the root-mean-square value of the wave is calculated to find a measure of the amplitude
of the wave. For a sine wave the RMS value is given by the amplitude divided by

√
2

(the noise is neglected). This last factor will cancel out in (2.22) due to the division
inside the logarithm. Therefore using the RMS value is a effective method during this
experiment. The actual definition of the RMS is given in (3.1) [29].
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Srms =

√∑M
m=1 S

2
i

M
(3.1)

Here S is the signal strength in volts and M is the total amount of measured data
points. m is given as the index of a certain data point.

Not all measured snapshots are good representations and some are not useful to
contribute to this average. These measured snapshots have to be taken out. Some
criteria are introduced to gain the most accurate results:

1. If the RMS value of the wave pulse is smaller than the RMS value of all snapshots
added up together, then the snapshot will be removed because the pulse is not
assigned as a complete reflected wave packet.

2. If the phase is completely reverted compared to the (average of the) other
snapshots it will be removed as well. Otherwise it will cancel out against the
other ’good’ snapshots. This will be checked by comparing the RMS value of a
certain part of the wave with the total averaged wave. If this difference is bigger
than a threshold number the snapshot is removed. Especially if the wave pulse
starts at a peak this is a valuable control, because the phase is harder to find at
this point due to noise around the peak.

The filtered incorrect snapshots are removed from the data and the other correct
snapshots are used to calculate the viscosity of the fluid.

3.2.2 Calibration

The LABVIEW script also regulates the immersion depth of the plate via a motor.
The motor makes sure the container lifts and goes down. Calibration is needed, since
for the big container the level of the fluid does not change significantly by immersing
the plate, while for the small container this effect has a major contribution. For the
calibration the assumption is made that the liquid level of EAN scales linearly with the
depth of the immersed plate.

The maximal change in immersion depth during the experiment is 50.0mm. For this rise
the motor takes 96000 steps. In the program the amount of motor turns is a common
measure to change the height of the plate. Each turn corresponds to 1600 steps (so the
total rise is 60 motor turns). For the big container each motor turn will make the plate
rise 0.833mm. Therefore the depth of the plate increases 5.0mm per 6 motor turns.
For the smaller container the level of the liquid rises a bit if the plate is immersed due
to less volume in the container. This gives an extra rise of 0.6mm for 49 motor turns.
For each mm the plate is immersed, it will be immersed an extra 0.0142mm because
of this volumetric rise. This means that per motor turn the extra rise of the liquid is
0.01224mm. For 50 motor turns the liquid level then is increased by 0.71mm. So for the
the small container each motor turn will make the plate rise 0.833+0.01224 = 0.845mm.

3.2.3 Viscosity determination

During the experiment 13 measurements are done at different immersion depths. These
points are equally spaced. A MATLAB program is used to gain the viscosity and
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attenuation of a Newtonian fluid using (2.18). For a Newtonian fluid the amplitude
attenuates exponentially. The RMS amplitude at these 13 points are measured. Using
these values the exponential function of (3.2) is fitted against the data points (the
derivation for this exponential is given in appendix A).

S(z) = ae−b(z−z0) (3.2)

In this formula a and b are the fit parameters. Those values will be optimized using
the measured data points. The constant a is the magnitude of the amplitude for a clear
dry plate. The constant b is the attenuation (αf = b

2) and is affected by the shear
modulus and the density for instance, see (2.18). The viscosity is calculated using this
parameter.

A value for the attenuation and the viscosity can also be determined using only two
different measured depths. Then (2.22) is used to calculate the value for α. However
this method is less accurate, since it is based on only two datapoints. Systematic errors
are then a lot harder to notice.

For powerlaw liquids the exponential from equation (3.2) is not valid anymore, since
the derivation from appendix A is based on Newtonian fluids. In order to determine
the attenuation of a powerlaw liquid (2.22) is used. Between each two measurements
the attenuation can be calculated using the signal strengths at these depths. With this
attenuation an apparent viscosity can be obtained. In section 4 a model by Rohde [20] is
given to calculate the attenuation of a powerlaw liquid with the corresponding amplitude
of the signal. This model depends on two parameters n and K, which are the flow
index and the consistency, respectively.

3.2.4 Uncertainty

The determined values for the viscosity will bring a certain uncertainty. The explicit
formula to calculate the viscosity is given in (3.3).

η =
2α2ρsGh

2

ρfω
(3.3)

All the parameters included have an uncertainty. This makes sure the error is propagated
as displayed in (3.4) [29].
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√
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ε(ω)

ω
)2 (3.4)

In this formula the error of the thickness of the plate is caused by the caliper, which
has an uncertainty of 0.002mm. The deviation of ω is given by the oscilloscope and is
0.1Hz. The error is then calculated by dividing the deviation of omega by omega. The
error in the density of the solid and the fluid are given in (3.5) and (3.6).

ε(ρs)

ρs
=

√
(
ε(l)

l
)2 + (

ε(h)

h
)2 + (

ε(w)

w
)2 + (

ε(ms)

ms
)2 (3.5)
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ε(ρf )

ρf
=

√
(
ε(V )

V
)2 + (

ε(mf )

mf
)2 (3.6)

Here the width has an uncertainty of 0.02mm and the height has an uncertainty of
0.1mm. In addition the uncertainty of the volume of the fluid is 0.04mL and the
uncertainty of both masses (the fluid and the plate) is 0.01g.

For the error in the shear modulus it is good to know that besides (2.11) the shear
modulus also has another definition which depends on the density ans the velocity.
This definition is given in (3.7).

G = v2sρs (3.7)

The velocity vs is defined as the path length divided by the travel time. The travel
path is defined as two times the length of the plate, while the time is measured by the
oscilloscope with uncertainty of 0.1 ms. This is the reading error at the scope. So the
error of the shear modulus is calculated by formula (3.8), using (3.9) and the fact that
the deviation in t is 0.1s.

ε(G)

G
=

√
(4
ε(vs)

vs
)2 + (

ε(ρs)

ρs
)2 (3.8)

ε(vs)

vs
=

√
(
ε(l)

l
)2 + (

ε(t)

t
)2 (3.9)

At last, the error in alpha is needed to gain the error in µ. This uncertainty is gained
from the MATLAB script. The error of the attenuation is obtained from 95% confidence
bounds of the obtained fit value for the attenuation [29].

In the next section the obtained results are illustrated and discussed.
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Chapter 4: Results and Discussion

In the previous sections the experimental setup and research goals are described. Below
the findings are presented, starting with the measurements of water based on the
Newtonian model. All results are processed by MATLAB. The dimensions of the used
parameters for both the plate and the containers are taken from table 1 and 2.

Table 1: The dimensions of the stailess steel plate.

Property Dimension

length l[mm] 203.5

width w[mm] 80.2

thickness d[mm] 0.202

mass m[g] 25.96

density ρs[kg/m
3] 7876

Shear modulus G[GPa] 74.86

Table 2: The dimensions of the used containers.

Property Big container(Water) Small container(EAN)

length l[mm] 119.8 110.6

width w[mm] 65.1 6.3

height h[mm] 109.0 81.4

maximal volume V [mL] 850.1 56.7

Besides that, for EAN the density of 1261 kg/m3 is used and for water the formula
(4.1) below is used to calculate the density [30].

ρf =
A

B1+(1− T
C
)D

(4.1)

Here the values of A,B,C and D are 99.3974; 0.310729; 513.18 and 0.305143 respec-
tively. T is the temperature in K. The temperature is measured constantly during the
experiment by the thermo couple.

4.1 Newtonian fluids

Each measured csv file consists of the important measured parameters, such as temper-
ature and density, as well as 256 snapshots of the wave. All those voltages are saved in
this file. In figure 13 only one snapshot is shown.

This snapshot has a pre-entered frequency of 4.0 MHz. The amplitude is quite stable,
however there is still some noise. This could be seen at the peaks of the sine wave. For
this frequency the pulse, which is a complete wave packet, consists of approximately 20
periods. For higher frequencies this should be more and for lower frequencies it should
be less.
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Figure 13: A single snapshot measured at a frequency of 4.0 MHz

4.1.1 Attenuation and Viscosity

In order to visualize the attenuation of the RMS value of these measured snapshots
it is necessary to calculate the RMS values for different immersion depths. Then an
exponential is fitted and optimized in order to match the data best. For a measurement
using a wave of 4.0 MHz and the big container filled with water the data points and
exponential fit are shown below in figure 14.

From figure 14 it becomes clear that the exponential fit looks very linear. This is caused
by the fact that only the very first small part of the exponential is displayed. So if
one needs a wider range it is necessary to extend the plate for example. This makes
sure a more immersion depths could be investigated, resulting in more accurate and
spreading outcomes. Another option to gain a wider range of measurements is to use a
more viscous fluid instead of water. Because the exponential decays faster it becomes
clear the data points are more spread along the curve.

By looking at more curves at different frequencies it is remarkable that the first data
point often deviates from the other data points (like in figure 14). This could be
caused by the fact that the level of the plate is not calibrated very well. The plate, for
instance, hangs a very small distance above the liquid interface. This makes sure the
first immersion depth becomes a bit smaller (since the plate first has to cover a very
small distance through the air until it is submerged in the liquid) then the expected
value for z. This would result in a little smaller calculated viscosity. So it causes a
small systematic error and therefore these points are taken out in this research. The
uncertainties of the data points are given in figure 14. These are calculated by equation
(4.2) [29].
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Figure 14: The RMS values in V for different immersion depths in mm with standard
deviation. The blue line is the fitted exponential with parameters a = 3.012 ± 0.227 V and
b = −1.737± 0.073 m−1. For the fit the first data point is not taken into account.

σN−1 =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (4.2)

Here N is the amount of snapshots, i is the index of a given snapshot, xi is the RMS
value of the i-th snapshot and x̄ is the mean of the RMS values of all snapshots. The
order of magnitude of the error is approximately 0.001V . The uncertainty in the fit
parameters are calculated by MATLAB. The errors for a and b, as defined in equation
(3.2) (using z0 = 0), are 0.227 and 0.073 respectively. From figure 14 it becomes clear
that the amplitude decreases if the immersion depth increases. This is not surprising
since the wave experiences more resistance from the water surrounding the plate. The
value of α is given by the b value of the fit, in this case α = −1.737± 0.227 m−1. Given
this value the viscosity, calculated, using (3.3), becomes η = 1.4419 ± 0.0883 mPa
s. Actually only two data points and signal strengths are necessary to calculate the
attenuation (see equation (2.22)) , but using more data clearly gives a more accurate
result. If someone determines the attenuation and viscosity between all subsequent
data points the result will give a lot of fluctuations between the determined values for
the viscosity. This is because a small change in signal strength, caused by noise or
a disturbance in the setup, will results in big changes in the measured viscosity. All
measurements for water at different frequencies including the calculated attenuation
and viscosity, using the fit and the calculation based on (2.18) and (2.22) (where the
first and last measurement are used to get the biggest change in immersion depth), are
given in table 4 and 5 in Appendix B (here the first data point is taken into account).

If all measured values for the viscosity are averaged for the different frequencies a graph
could be made, which is illustrated in figure 15.
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Figure 15: The viscosity at different frequencies. The error bars are included. The red line
represents the literature value of the viscosity of water at 18 ◦ C. This is 1.0526 mPas. [31]

In the figure the uncertainties are displayed as well as a red line representing the
literature from IAPWS 2008 [31]. This line is based on a temperature of 18 ◦ C. This
is a flat line, since the viscosity of water should not change for different frequencies.
However the viscosity does depend on temperature. This is illustrated in figure 16.

In figure 16 the temperature is set on the x-axis and the viscosity on the y-axis. The
red line has a small slope now. The literature data is based on IAPWS 2008 [31]. Here
is stated that the viscosity will be less for high temperature. However the opposite is
shown in figure 16. For the experiments both the blue and purple data points increase
at higher temperatures. A possible reason is the fact that the plate was not dry before
the start of a measurement. This causes the viscosity to be higher than expected. The
uncertainty of the values of the viscosity is calculated by (3.4). One should expect the
lowest uncertainty near the peak frequency, which is 3.7 MHz, since the power loss of
the signal from the transducer is here the lowest [21]. However this is not visible in figure
15. An uncleaned wet plate could as well be a possible reason to cause this effect. The
fact that during the first measurements the plate was not cleaned after each experiment
affects the measurements a lot. It means that the plate is covered with residual fluid.
This has a large effect on the following experiment as well on powerlaw fluids, since
only this small layer of fluid still can attenuate the wave. By doing the experiments on
EAN the plate is cleaned after each measurement. So the effect should be less.
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Figure 16: The viscosity at different temperatures for several frequencies. The error bars are
included. The blue points are calculated using all depths with (2.18) and the purple points
using the first and last depth (formula (2.22)) The red line represents the literature value of
the viscosity of water. [31]

4.2 Powerlaw fluids

In the MSR a molten salt is used, which is a non-Newtonian fluid. The behaviour of
the viscosity of EAN, which is a powerlaw fluid, is investigated in this research. The
rheology of a powerlaw fluid is given in (4.3) [26].

τxy = −K | dvy
dx
|n−1 dvy

dx
= −µeγ̇ (4.3)

Here µe = K | dvydx |
n−1 and γ̇ =

dvy
dx . Compared to a Newtonian fluid another parameter

K, the consistency, has appeared. Besides that, often an effective or apparent viscosity
is defined as in (4.3). This is not constant and depends on the shear rate γ̇, which is
defined in (4.3). For this experiment the shear rate at the solid-liquid interface is given
in (4.4)

˙γ0,N =
B(z)

√
2

δ
cos(kz − ωt− π

4
) (4.4)

where δ = (2η/ρfω)1/2 is the so-called viscous skin depth. The order of magnitude is a
few micrometers.

As powerlaw liquid EAN was chosen because it was immediately available. Besides
that it has some properties in common with water, forming hydrogen bonding networks
and micelles for instance. In addition a few literature data was available regarding
rheology and it has some preferred properties, such as being liquid at room temperature.



28

However there are some disadvantages. EAN is hazardous and has safety consequences,
like skin and eye irritation. Another drawback is that the actual rheology of EAN
is unknown. Although the behaviour is tested and for a frequency of 4.0 MHz the
graph of the signal strength at different immersion depths is shown in figure 17. The
uncertainty of the data points are calculated using (4.2). All measurements for EAN
at different frequencies including the calculated attenuation and viscosity, using the
Newtonian fit (3.2) and the calculation based on (2.18) and (2.22) (where the first and
last measurement are used to get the biggest change in immersion depth), are given in
table 6 and 7 in Appendix B.

Figure 17: The RMS values of EAN in V for different immersion depths in mm with standard
deviation.

By looking at the figure some remarkable things come up. First of all the trend of the
data points. The signal obviously attenuates faster than the measurement of water at
the same frequency in figure 14. At the same time it is usual for all other measured
frequencies. So this indicates EAN has a higher apparent viscosity than water. This is
also expected [32]. Secondly, the data points are not properly monotonically declining
anymore. This happens to occur more often for EAN. Sometimes even at a higher
immersion depth a better signal strength is measured. This should be an error, since
more surrounded liquid means less measured signal. Thirdly, the exponential fit is left
out. Since EAN is not Newtonian anymore the exponential model is not valid anymore.
If the exponential fit is used even though a different value for the effective viscosity
will be found. Since the powerlaw model consists of two parameters, n and K, another
analytical model should be found. A relation between the amplitude of the signal and
the immersion depth of the plate for a powerlaw fluid is given in (4.5) [3].

B(z) = (B1−n
0 + 2(1− n)αn(z − z0))

1
1−n (4.5)

Here B(z) is the amplitude in V (which depends on immersion depth z), B0 is the
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initial signal strength at z = 0. n is the flow index parameter and αn is given by (4.6).

αn = − 1

2d
2
√

2P3(n)(
2ωnρnfK

2−n
n

ρsG
)
1
2 (4.6)

Here d is the width of the plate in m, K is the other parameter named consistency and
P3(n) is defined as (4.7).

P3(n) ≡ −0.00630863n3 + 0.0399466n2 − 0.129211n+ 0.448619 (4.7)

4.2.1 Approach 1: Limit dz → 0

Since this model has one more parameter to fit there is a reason to find out if this
more complex model falls back to the Newtonian model for very small differences in
immersion depth. So (4.5) is compared to the exponential solution of (4.8) if z = z0+dz,
with dz very small:

E(z) = E0e
−α(z−z0) (4.8)

Therefore both equations are Taylor expanded around z0 following (4.9) (for the
Newtonian model the amplitude B’s are replaced by E’s).

B(z0 + dz) ≈ B(z0) +
dB

dz
|z0 dz (4.9)

Evaluating this expansion for both models gives (4.10) and (4.11).

B(z0 + dz) ≈ B(z0) + αnB(z0)
n (Power − law) (4.10)

E(z0 + dz) ≈ E(z0)− αnE(z0) (Newtonian) (4.11)

Both equations look quite similar. The sign is a matter of convention. In the Newtonian
model α is defined positive, while for the powerlaw model a negative α is used. The
only actual difference is the additional power of n at the right side of (4.10). So for
n = 1 both formulas are equivalent. This seems logical since n = 1 gives the Newtonian
model. Despite that for values of n that does not equal 1 the assumption is not valid
anymore. This means the exponent can not be used for powerlaw liquids for small steps
in z.

In short (4.5) has to be used to model the attenuation of a powerlaw liquid. Instead of
one parameter both K and n should be investigated. This makes it a lot harder since
both parameters has to be determined very accurate according to the model from (4.5).
Small differences in n for example will result in very large differences in B(z). Smith et
al [4] already did some research on the rheology of EAN. A relation was found between
the shear rate and the viscosity. A digitized version (using WebPlotDesigner)of this
finding is shown in 18. Moreover a fit of the model in (4.12) is plotted to find the best
corresponding values for the parameters K and n.
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τxy = −K(
dvy
dx

)n (4.12)

Figure 18: A digitalized plot of the literature data of Smith et al [4], including a red line
which represents the model of (4.12). The fitted values are K = 35.47 ± 1.05Nsnm−2 and
n = 0.9822± 0.006

By looking at the graph the viscosity is not constant. It drops if the shear rate becomes
larger, although very slowly. There is an uncertainty in the position of the points. This
is due to the fact that the points had to be digitized. However the red line gives the
following values for n and K, n = 0.9822±0.006 and K = 35.47±1.05Nsnm−2. However
by extrapolate K from the Smith et al graph the value becomes K = 34.0957Nsnm−2,
filling in n = 0 reduces the equation (4.12) to K. Remarkable is the difference in their
uncertainties. This means the value of K can be determined quite precisely by the
literature plot. On the contrary, n is more sensitive to errors. Suppose n1 = 0.99 and
n2 = 0.98. For n1 the power in (4.5) becomes 100 while for n2 it is 50. So a very small
difference in n would result into a very large error in the amplitude of the signal. For
this reason it is not useful to built on these determined values for EAN. This means
another method to look at the behaviour of EAN should be investigated.

4.2.2 Approach 2: Ratio’s

This method is based on the ratio between different measured signal strengths to
investigate on the rheological behaviour of a fluid. Because the relation between the
viscosity of EAN and the frequency is unknown a possible alternative is to look at a
fixed depth for different values of the frequency. If one examines the ratio between
those frequencies the only parameter is α since z is fixed. The value for α can be
determined for both Newtonian and power law liquids. Now the ratio could be a useful
measure in comparing the rheological behaviour of these two types of fluids, because
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both function in the denominator and numerator should be the same for one type of
liquid at different frequencies.

First the analytical solution for the Newtonian model is calculated. For the derivation
two decaying exponentials are used, namely v1e

−α1z and v2e
−α2z. (z has no subscript

since they are equal) The ratio P is determined in (4.13).

P =
v1e
−α1z

v2e−α2z
=
v1
v2
e−(α1−α2)z (4.13)

This could be rewritten into (4.14).

P = φe
− z

2h
(
ηρf
ρsG

)
1
2 [ω

1
2
1 −ω

1
2
2 ]

= φec[ω
1
2
ref−ω

1
2 ] (4.14)

Here φ = v1
v2

(in theory v1 should be equal to v2 because they both indicate the initial
amplitude of the signal, which should be the same at each measured frequency), ωref
or ω1 is a chosen reference frequency and ω2 or ω, which is bigger than ωref , is a
changeable frequency. Furthermore, c is defined as c = z

2h(
ηρf
ρsG

)1/2. This means if
ω = ωref the ratio P = φ = v1

v2
. For higher values of ω the ratio is also given by an

exponent for a Newtonian liquid. The used η in (4.14) is based on the measured values
at these depths (the viscosity is determined at z = 0, 12.5, 25.0, 37.5 and 50.0 mm).
The values for the viscosity are determined by the ratio between the signal strength at
a certain depth and the strength of the measured data point before (using (2.22)).

In figure 19 the ratio curves of water for different frequencies at four immersion depths
are shown. Each data point is calculated by dividing the signal strength at the indicated
frequency by the signal strength of the reference frequency, all for a fixed depth. For
this graph the reference frequency is 3.0MHz and the ratio is multiplied by 1

φ = v2
v1

to normalize the curve. The values for v1 and v2 are the coefficients a from (3.2) for
the concerned frequencies. The uncertainties as well as the expected exponential fit
functions are also added into the diagram.

By looking at figure 19 one should see that most data points agree with the fitted
exponentials. As expected the graph of the smallest immersion depth would be on
top and the graph with the biggest immersion depth at the bottom, since the latter
attenuates the most. The uncertainties are based on the errors of coefficient φ, calculated
by the uncertainties of v1 and v2. These are determined by the fit in MATLAB (error
in fit parameter a). The errorbars are also based on the errors of ω and the uncertainty
of the coefficient C. The formula to calculate the latter is given in (4.15).

ε(C) =
√
ε(z)2 + ε(d)2 + 0.5ε(ρf )2 + 0.5ε(ρs)2 + 0.5ε(G)2 + 0.5ε(η)2 (4.15)

Here the error of C ε(C) = σ(C)
C and the error of z is determined by the concerned

deviation, which is 0.1mm. The final equation for the error of the ratio P is given in
(4.16) [29].

ε(P )

P
=

√
(
ε(φ)

φ
)2 + (ωε(C))2 + (Cε(ω))2 (4.16)
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Figure 19: The ratio of the attenuation of water between different frequencies for fixed
immersion depths including errorbars. The reference frequency is 3.0 MHz. The coloured lines
are the fitted exponentials, following aebx. The uncertainties in a and b are given in table 3.

This formula is gained by some special error propagation. The whole deviation of (4.16)
is given in Appendix C [29].

By looking at the uncertainties in figure 19 one should expect the smallest error of
the ratio to be at the peak frequency around 3.7MHz [21], since signal should be the
strongest compared to the included noise. However this effect is not clear in the figure.
This can be caused by inaccurate measurements with an infected plate or disturbances,
such as small movements of the components of the set up, during the experiment.
Another source could be the fact that often the wave had to be regenerated because of
an error message in the LABVIEW program. The new wave pulse could of course differ
a little from the initial pulse, in phase for example. The errorbars are also relatively
large. This could again be caused by the already ’contaminated’ plate.

The uncertainty in the fitted parameters of the exponentials are given in table 3.

Table 3: Fitted parameters of the ratio graph 19, using aebz with their uncertainties.

z[mm] 12.5 25.0 37.5 50.0

a 2.361± 0.924 10.97± 6.29 34.25± 21.54 73.77± 73.03

b −0.02974± 0.1036 −0.7992± 0.1685 −1.182± 0.1943 −1.43± 0.312

A promising thing is that for calculating a ratio no typical function, such as an
exponential for Newtonian fluids, is needed (see (4.17)). This means that the ratio is
given by the signal strength at the frequency of interest divided by the signal strength
at the reference frequency. The signal strength depends on the fixed immersion depth,
the rheology and the frequency. By normalizing this fraction of signal strengths the
ratio between the searched functions is obtained, see (4.17).
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P =
v1
v2

S(z2, rheology, ω)

S(z1, rheology, ω)
=
f(z2, rheology, ω)

f(z1, rheology, ω)
(4.17)

Here v1
v2

is the normalizing factor. Since both functions f have the same form, because
the measurement is done with the same fluid and same immersion depth, a similar
graph as for water can be made. This graph is illustrated in figure 20.

Figure 20: The ratio of the attenuation of EAN between different frequencies for fixed
immersion depths including errorbars. The reference frequency is 3.0 MHz.

By looking at the curves in figure 20 the datapoints are oriented very differently
compared to water. Some remarkable things could be noticed. Firstly, the trend of
the graphs look a bit parabolic. This is logical, since for the peak frequency around
3.7MHz the signal strength compared with the included uncertainty should be larger
than for other frequencies. Another thing to notice is the fact that for the frequencies
3.5, 4.0 and 4.5 MHz the ratio increases if the depth increases. This indicates that the
effect of being attenuated becomes the best visible around the peak frequency. For 5.0
MHz the order is reversed. This is not correct. This and other possible errors could
be causes by some things. A possible reason could be the fact that the plate in the
small container often sticked against the walls of the container. Because of the smaller
container the plate was only a few millimetres away from the sides and the tension of
the fluid ensures the plate to stick to the container. Besides that, the amount of fluid
inside the container varies a lot, because the fluid sticks onto the plate for instance.
Secondly, the model is left out in this graph. An important thing is that v1 and v2
now are not obtained by the fitted parameter a from the exponential, but by the signal
strength without the plate immersed into the fluid instead. So an extra measurement
at z = 0 for all frequencies has too be done. Finally the uncertainty in the graph. Here
the error of the ratio is determined by (4.2), using the RMS values in MATLAB.

In the next section the conclusions of this research are drawn.
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Chapter 5: Conclusion

In this research the goal was to investigate on the viscosity determination of non-
Newtonian fluids for the MSR. A number of interesting findings have been made. Using
an ultrasonic waveguide and shear waves gave a lot of advantages to investigate on
the attenuation caused by the fluid. In the introduction some research questions were
introduced. Regarding these questions some conclusions could be made.

First of all, the waveguide method was used to determine the viscosity of water, which
is a Newtonian fluid. Around the peak frequency at 4.0MHz a value of 1.4419± 0.0883
mPas was found. Although all values lie above the literature value of 1.0526 mPas at
18◦ C [31]. A major disturbance of the measurements on water was the fact that the
plate is not cleaned after each measurement. So therefore the plate was still infected
with a small layer of water. This affects the next measurement significantly. Therefore
the calculated values for the viscosity are higher than expected.

The main interest was looking at a non-Newtonian fluid, because the used salts in
the reactor are non-Newtonian too. The type investigated during this research is
the powerlaw fluid named EAN. For EAN the signal clearly attenuates faster than
for water, so this implies it has a higher viscosity than water. However a simple
exponential model does not hold anymore. Because a power law fluid model consists
of two parameter n and K. Using Smith at all the values for n and K were found,
resulting in K = 35.47± 1.05Nsnm−2 and n = 0.9822± 0.006. The value for K is quite
well determined and reliable, however despite the small error for n it is not useful. The
matter is that for a very small change in n the amplitude in the model will change
significantly. Also for very small changes in the immersion depth one can not fall back
on the exponential model, since an extra power of n appears in this limit case. So
another method, where the ratio of the signal strength at a fixed immersion depth was
measured, has been investigated.

For Newtonian fluids the ratio will also follow an exponential. This is clearly found
by the measurements. The higher the depth, the stronger the attenuation of the ratio.
For EAN the ratio between the signal strengths is normalized and the data points
showed a parabolic trend, the peak is located approximately at the peak frequency of
the transducer.

The measurements on EAN were plagued by a number of errors. Some automatic
shutdowns of the LABVIEW program forces to set up a new wave pulse multiple
times during a measurement. Besides that during the experiment a lot of fluid sticked
to the plate. This made sure the amount of liquid and the level was not constant.
At last for the small container the plate also sticked against the faces of the con-
tainer and does not hang freely inside the container. All these things, including some
small disturbances and changes in the set up, had a strong impact on the measurements.
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5.1 Further research recommendations

In order to get a better insight in the behaviour of non-Newtonian liquids, EAN in this
case, some subjects are useful to elaborate on:

• A larger container should be used to avoid sticking against the sides of the
container. Another advantage is that the error of changing level of the fluid is
smaller, since the sticked liquid picked up by the plate is percentage less.

• A longer plate should be used in order to measure a wider range of immersion
depths. This gives more inside in the attenuation of EAN, since now only the
very first part of the attenuation is measured.

• One should investigate on a rheological model for EAN. This gives the opportunity
to know how the fluid behaves for different shear rates. Then also a accurate
value for K and n could be found . If a method could be found how the τ0 can
be filtered from the measurements one can determine the rheology.

• More research should be done on the temperature dependency for EAN. By
looking at the viscosity also a wider range of frequencies should be investigated
to get a better view on the small decrease in viscosity for a higher shear rate.

• It is also useful to get into the transmission of the signal from the transducer into
the plate, since this strongly affects the attenuation of the wave.
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Appendix A: Determination attenuation coefficient for New-

tonian fluids [3]

In this section a derivation of (2.18) is provided by using a balance over a small volume
of the plate between z and z + dz. This balance is based on the power inside this
volume element. First of all the dimensions of a small volume element of the plate are
given in figure 21.

Figure 21: The dimensions used for the balance in the derivation of α for Newtonian fluids.

To simplify the calculation the plate is assumed to be very thin. This causes the loose
of power at the sides of the plate to be negligible because h << W . So the shaded
faces are the only parts that contribute to the balance. Furthermore the balance is
assumed to exist under steady state conditions. In (A.1) the balance is given.

Pz(z, t)− Pz+dz(z, t)− 2τ0(z, t)v0(z, t)Wdz = 0 (A.1)

Here Pz is the incoming power at z = z and Pz +dz is the outgoing power at z = z+dz.
The losses at the two side faces give a negative contribution of both −τ0v0A, where
A = Wdz. By taking dz very small the equation simplifies to a differential equation,
see (A.2) and (A.3).

Pz(z, t)− Pz+dz(z, t)
dz

= −2τ0(z, t)v0(z, t)W (A.2)

dPz
dz

= −2τ0v0W (A.3)

Because the plate does not move as a whole, but first the upper volume layer, than the
layer below and so on. Therefore the power is averaged over a period T = 2π/ω. This
will result in the following integral in (A.4) and (A.5).

1

T

∫ T

0

dPz
dz

dt =
d

dz

1

T

∫ T

0
Pzdt =

dP̃z(z)

dz
(A.4)
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dP̃z(z)

dz
=
−2W

T

∫ T

0
τ0v0dt (A.5)

In order to analyze the integral the velocity as well as the shear stress should be known.
The velocity of the wave is a function of x, z and t and is given by (A.6).

v(x, z, t) = B(z)e
x√
2ν cos(kz − ωt+ x

√
ω

2ν
) (A.6)

Here B(z) is the amplitude of the wave at a certain value of z and ν = η/ρf is the
kinematic viscosity. At x = 0 the equation becomes (A.7).

v0(z, t) = B(z)cos(kz − ωt) (A.7)

The shear stress for Newtonian fluids is given by (A.8) [26].

τxy = −ηdvx
dy

(A.8)

Combining (A.7) and (A.8) gives the shear stress at x = 0, see (A.9), which only
depends on z and t. Here ν = η

ρf
is used.

τ0(z, t) = −
√
ηB2(z)ωρf

2
(cos(kz − ωt) + sin(kz − ωt)) (A.9)

Rewriting (A.9) using the sum formulas gives (A.10).

τ0(z, t) = −(ηB2(z)ωρf )1/2sin(kz − ωt− π

4
) (A.10)

Now (A.5) is filled using (A.10) and (A.7), which results in (A.11)

dP̃z(z)

dz
=
−2W

T
B2(z)(ηρfω)1/2

∫ T

0
sin(kz − ωt− π

4
)cos(kz − ωt)dt (A.11)

For evaluating the integral (A.11) the integrant is rewritten using Simpson’s formulas
and the double angle formula [3], see (A.12)

dP̃z(z)

dz
=
−2W

T
B2(z)(ηρfω)1/2

∫ T

0
(−
√

2

4
+

1

4
sin(kz − ωt− π

4
)cos(kz − ωt− π

4
))dt

(A.12)

Evaluating the integral and using the periodicity over 2π of the sinus the equation
becomes independent of time. So the sinus as well as the period of the wave cancel out.
In (A.13) the final result is displayed.
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dP̃z(z)

dz
= −W

2
(2ηρfω)1/2B2(z) (A.13)

In [3] a formula is derived where the amplitude can be rewritten into the average power.
The formula is given in (A.14).

P̃z(z) =
1

2
ρshWc(B(z))2 (A.14)

Combining (A.13), (A.14) (in a rewritten form) and c = ( Gρs )1/2 the differential equation
could be rewritten into (A.15).

dP̃z(z)

dz
= −1

h
(
2ηρfω

ρsG
)1/2P̃z(z) (A.15)

The solution of this differential equation is given by (A.16)

P̃z(z) = P0e
−2αz (A.16)

where α is given by (A.17)

α = − 1

2h
(
2ηρfω

ρsG
)1/2 (A.17)

For (A.16) holds that the factor 2 in the exponent is caused by the fact that power is
proportional to the amplitude squared. By taking the derivative the extra factor is
added.
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Appendix C: Error propagation for the ratio P

For Newtonian fluids the ratio P could be calculated mathematically since the attenua-
tion of the signal strength follows a decaying exponential. Therefore the ratio P also is
an exponential function. The derivation is given in the results section. The ratio is
shortly given in (C.1).

P = φecω (C.1)

Here φ, c and ω all have a certain error. In order to determine the error of the ratio
these have to be propagated according to the formula above. The error P is calculated
using (C.2).

ε(P ) = P (φ+ ε(φ), c+ ε(c), ω + ε(ω))− P (φ, c, ω) (C.2)

A Taylor expansion is used to elaborate on the first term, see (C.3).

P (φ+ ε(φ), c+ ε(c), ω + ε(ω)) = P (φ, c, ω) +
dP

dφ
ε(φ) +

dP

dc
ε(c) +

dP

dω
ε(ω) (C.3)

By filling in (C.3) in (C.2) the result becomes (C.4).

ε(P ) =
dP

dφ
ε(φ) +

dP

dc
ε(c) +

dP

dω
ε(ω) (C.4)

Now the derivative can be obtained using (C.1). This comes down to (C.5).

ε(P ) = ecωε(φ) + φωecωε(c) + φcecωε(ω) (C.5)

This can be rewritten as (C.6).

ε(P )

P
=
ε(φ)

φ
+ ωε(c) + cε(ω) (C.6)

Mostly the conventional way of writing the error is the quadratic formulation, which is
given in (C.7) [29].

ε(P )

P
=

√
(
ε(φ)

φ
)2 + (ωε(c))2 + (cε(ω))2 (C.7)
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