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Abstract

The development of the 
ow within a Semi-Solid Flow Battery (SSFB) is analyzed, modelled and
used to determine the electrical conductivity of the suspension in the SSFB. The 
ow is modelled
using the Lattice Boltzmann Method, after which data correlating the shear rate and the electrical
conductivity of the suspension is used to model the electrical conductivity throughout the SSFB. First
a Poiseuille 
ow is modelled in order to check whether the Lattice Boltzmann method is suitable for
the modelling of a developing 
ow. The results of the modelling of the Poiseuille 
ow indicate that,
due to an erroneously applied boundary condition, the 
ow development is inaccurately modelled near
the inlet of the 
ow cell. The developed 
ow away from the inlet is accurate and converges to the
analytical solution for a Poiseuille 
ow, con�rming that the Lattice Boltzmann Method is suitable for
modelling developing 
ows. The Lattice Boltzmann Method is then used to model the developing 
ow
of a non-Newtonian suspension. From the electrical conductivity of the non-Newtonian suspension
a electronic resistance pro�le along the length of the 
ow cell is determined, showing variance of
electronic resistance based on position within the 
ow cell. Using the variance of electronic resistance
it can be determined that the electronic resistance in the SSFB is path dependent. It can be concluded
from the determined electronic resistance pro�le and development pro�le that the development of the

ow within a Semi-Solid Flow Battery only signi�cantly a�ects the electronic resistance near the inlet
of the 
ow cell.
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1 Introduction

In today’s climate, with the dwindling of resources such as oil, coal, and natural gas, the transition
to sustainable energy sources is becoming increasingly important. In order to facilitate this switch the
storage of alternate energy is of importance, as the demand for energy and the moment of production
for sustainable energies often do not coincide. The storage of this energy in batteries seems like a
logical step, however, regular batteries are not considered an economically feasible solution to this energy
storage problem.[2] Redox Flow batteries are considered to be one of the few environmentally friendly,
and relatively cheap methods for storing large amounts of energy. [7] Flow batteries allow for large
amounts of energy to be stored for use at a later moment. An additional advantage of flow batteries
is that the energy can be stored in a separate location from where it has to be used, which allows for
areas that are not properly connected to an electrical grid to have access to sustainable energy. An issue
with RFB’s is that in their current state, they cannot store enough energy for the cost they incur, and
therefore improvements on RFB’s have to be made. [7] A Semi-Solid Flow Battery, as can be seen in
figure 1, is such an improvement on a Redox Flow Battery.

Figure 1: A schematic of a Semi-Solid Flow Battery. [2]

1.1 What is a Semi Solid Flow Battery

A Semi-Solid Flow Battery can be considered a combination between a regular lithium-ion battery and
a Redox flow battery. Unlike in a redox flow battery, the anode and cathode of a SSFB are suspensions
in which the electroactive materials are suspended in a liquid electrolyte.[2] The suspension allows for
significant more energy to be stored in the battery, making them a stark improvement upon the Redox
Flow Battery solutions. [6] These suspensions are stored in tanks, and combined with a carbon additive,
which allows for electron transport within the suspensions. These tanks can be removed from the battery
and transported to other locations, meaning that the battery can be charged in one location, and used
in another. The suspensions in the tanks are pumped through a flow cell, where they are separated by a
porous separator, through which only Lithium-ions can flow. The current in a semi-solid flow battery is
created through redox-reactions. These redox reactions provide the electrons and Li+ ions required for
a current to run through the flow cell. A generic redox-reaction looks as follows [1]:

ALi
charge����! ALi1�x + xLi+ + xe�(Cathode) (1)

xLi+ + xe� +B
charge����! BLix(Anode) (2)

When discharging these reactions reverse. The complete redox-reaction looks like

ALi+B
charge����! ALi1�x +BLix (3)

1



1.2 Problem Description

Since Semi-Solid flow batteries are a relatively new technology,not much is known about them. For this
research there are several aspects of the Semi-Solid Flow Battery that are of interest. First, the way the
flow profile of the suspension in the flow cell develops will be studied. A developing flow profile implies
varying speeds and shear rates, meaning it is important to understand the rheology of the suspension.
The electrical conductivity of the suspension in the SSFB is affected by shear rate, therefore the electrical
conductivity will be investigated.

1.3 Research question

The research question of this report is: How does the flow profile within the flow cell of a semi-solid flow
battery develop, and how does this affect the electrical conductivity?
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2 Theory

For this research there are several aspects of the Semi-Solid Flow Battery that are of interest. Firstly, it is
important to study the way the flow profile of the suspension in the flow cell develops. Since a developing
flow profile implies varying speeds and shear rates which the suspension experiences, it is important to
understand the rheology of the suspension. Another aspect to be considered is how the rheology of the
suspension affects the electrical conductivity in the SSFB.

2.1 The carbon additive of the suspension in the Semi-Solid Flow Battery

The carbon additive in the Semi-Solid Flow Battery is most commonly Ketjen Black (KB) [4] [5] [6].
This carbon additive is highly effective, as less than 1 vol% is needed to properly form conducting carbon
networks. Besides this the KB also functions as stabilizer, as it prevents the larger electroactive particles
in the suspension from separating from the suspension. [6] The KB changes the rheology of any solution
it is added to, as with 0:3� 0:6 vol% [6] the solution to which it is added will start showing strong shear
thinning behavior, a term explained in section 2.2. Ketjen Black forms conducting carbon networks by
forming agglomerates, a combination of several aggregates of KB. The size and electrical conductivity of
these formed agglomerates depend on the shear rate that the suspension is experiencing. In figure 2 a
relation between shear rate, viscosity and electrical conductivity can be seen.

Figure 2: A figure showing the viscosity and electrical conductivity of a solution with 0.021 wt% Ketjen
Black as a function of the shear rate the solution experiences. The solid line indicates the viscosity and

the dotted line indicates the electrical conductivity.[4]

In figure 2 it can be seen that large, dense carbon networks result in a high viscosity, but also in a high
electrical conductivity. This makes sense as these large carbon networks easily connect the electroactive
species with the current collector of the SSFB, but their size makes the suspension more viscous. When the
shear rate increases, the large carbon networks experience too much force to properly stay together, and
they break up into medium sized agglomerates. These medium sized agglomerates give the suspension a
lower viscosity, but also a much lower electrical conductivity. Apparently these medium sized agglomerates
do not properly connect the electroactive species to the current collector, apparent by them having the
lowest overall electrical conductivity. Another increase in shear rate will break up the agglomerates
even further, again decreasing the viscosity, but increasing the electrical conductivity of the suspension.
This means that small agglomerations of KB have an easier time connecting at higher shear rates and
higher speeds. At even higher shear rates the agglomerates break up into individual aggregates, further
decreasing the viscosity and increasing the electrical conductivity, as these aggregates seemingly connect
very easilly at these shear rates. At smaller size agglomerates the KB particles connect the electroactive
species to the current collector by colliding with other KB particles, creating a semblance of a network.
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It is apparent that at varying sizes of agglomerates, the electrical conductivity increases and decreases.

� High electrical conductivity - Low or high shear rates - Large agglomerates/Small or individual
agglomerates

� Low electrical conductivity - Medium shear rates - Medium agglomerates

This difference in electrical conductivity depending on shear rate means that the flow profile within the
Semi-Solid Flow Battery determines the electrical conductivity.

4



2.2 Rheology of the suspension in the Semi-Solid Flow Battery

The suspension in the Semi-Solid Flow Battery is a non-Newtonian 
uid [4], meaning that the viscosity (� )
of the suspension is dependent on the stress the suspension experiences. This means that the suspension
of the SSFB does not follow Newtons law for viscosity. Newton's law for viscosity states that:

� = � _
 (4)

Here � is the shear stress and _
 is the shear rate. The shear rate can be de�ned as [12]:

_
 =
@ui
@xj

+
@uj
@xi

(5)

In equation 5 i and j can take values of the coordinate system, so for Cartesian coordinates they can be
x, y and z. For non-Newtonian 
uids the viscosity is not considered constant, which means the viscosity
(� ) becomes the apparent viscosity (� ), which can be a function of the shear rate ( _
 ). For Powerlaw

uids the apparent viscosity can be de�ned as:

� ( _
 ) = k _
 n � 1 (6)

Equation 6 can be used to de�ne the shear stress for Powerlaw 
uids as follows

� = k _
 n � 1 _
 (7)

From equation 7 it becomes apparent that depending on hown is chosen, the shear stress becomes a
di�erent function of the shear rate. If n < 1, a powerlaw 
uid becomes a shear thinning 
uid, meaning
that the shear stress increases more slowly as the shear rate increases. On the other hand, ifn > 1, a
powerlaw 
uid becomes a shear thickening 
uid, meaning that the shear stress increases more rapidly as
the shear rate increases. Another way that the rheology of a 
uid can di�er from Newtonian 
uids is
that a 
uid can simply not 
ow until it experiences a certain shear stress. A 
uid like this is known as a
Bingham 
uid. The way the shear rate e�ects some of these 
uids can be seen in �gure 3.

Figure 3: The shear stress plotted as a function of the shear stress for several non-Newtonian 
uids,
with the bottom left being the origin of the x and y axis.[3]
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2.3 Modelling the velocity pro�le

In order to determine the developing velocity pro�le of the suspension in the SSFB, a suitable method
has to be selected. Initially rewriting the Navier-Stokes equation for a two dimensional cell could provide
a solution.

2.3.1 Navier-Stokes model

Starting with the complete Navier-Stokes equation:

@�vx
@t

= �
@

@x
(vx �v x ) �

@
@y

(vy �v x ) �
@
@z

(vz �v x ) +
@

@x
(�

@vx
@x

) +
@
@y

(�
@vx
@y

) +
@
@z

(�
@vx
@z

) �
@p
@x

+ �g x (8)

This can be simpli�ed with the conditions that the velocities in the y and z direction are constant,
meaning that @vy

@xj
= @vz

@xj
= 0. In addition, the situation is considered steady-state, giving @�vx

@t = 0. This
leads to the following equation.

0 = �
@

@x
(vx �v x ) +

@
@x

(�
@vx
@x

) +
@
@y

(�
@vx
@y

) �
@p
@x

+ �g x (9)

This equation could be simpli�ed further, in order to create a discretized Navier-Stokes equation with
which a developing velocity pro�le could be modeled. In order to properly discretize the equation another
assumption has to be made, namely@p

@x, the pressure drop, has to be considered as a constant. If this
assumption is not made, the equation would contain two variables, making it impossible to solve. The
pressure drop however does depend on the change in velocity, and should only be considered constant if
the velocity pro�le is fully developed and unchanging. This means that using the Navier-Stokes equation
as a basis for determining the developing velocity pro�le would result in a systematic error, therefore
another method should be considered.

2.3.2 Lattice Boltzmann Method

The Lattice Boltzmann Method is known to be capable of modelling incompressible Navier-Stokes equa-
tions, in the limit where density is a constant. [9] The Lattice Boltzmann Method divides the 
ow cell
into many lattice units, within which the particles have have direction vectors. A representation of a
lattice unit can be seen in �gure 4.

Figure 4: A simplistic representation of the lattice unit and the probability distributions f k
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The vectors denoted asf 0; f 1; :::; f 8 describe the distribution functions of the particles moving in the
directions ~c0;~c1; :::;~c8. Since the distribution functions f k describe all particles within the lattice unit,
the density of the particles within the lattice unit can be described as: [8]

� f k = � (10)

and the macroscopic 
ow velocity u = ( ux ; uy ) can be described as: [8]

� f k~ck = � u (11)

Since f k are variables, � is also variable, which is not physical behavior. The error caused by this
assumption is known as the compressibility error. With u de�ned as:

u =
�

ux

uy

�
(12)

The whole 
ow cell is described with these lattice units, and they are made to interact with one another.
When starting with modeling the 
ow within the cell, the system only has its boundary conditions
de�ned, and most lattice units experience change between each time step of the model. The equilibrium
distribution function f eq

k describes the distribution function when the system reaches its equilibrium.
The equilibrium distribution function is de�ned as [8]:

f eq
k = wk � [1 + 3(~ck u) +

9
2

(~ck u)2 �
3
2

u � u] (13)

Here wk and ck are respectively the weights and direction vectors of the particle distributions, which are
de�ned by Zou and He [8] as:

w0 =
4
9

; w1 = w3 = w5 = w7 =
1
9

; w2 = w4 = w6 = w8 =
1
36

The sum of these weights is one, which allows for the particle distributions to be de�ned asf k = wk � � .
The directions of the particle distributions ~c0;~c1; :::;~c8 are de�ned as:

~c0 =
�

0
0

�
;~c1 =

�
0
1

�
;~c2 =

�
1
1

�
;~c3 =

�
1
0

�
;~c4 =

�
1

� 1

�
;

~c5 =
�

0
� 1

�
;~c6 =

�
� 1
� 1

�
;~c7 =

�
� 1
0

�
;~c8 =

�
� 1
1

�

The distribution function f k can be related to f eq
k by the Bhatnagar-Gross-Krook approximation [11],

which looks as follows.

f k (x + ck � x; t + � t) = f k (x ; t) �
f k (x ; t) � f eq

k (x ; t)
�

(14)

The fraction in equation 14 is known as the collision operator of the Lattice Boltzmann Method. Here�
is the relaxation time, which controls how long it takes to reach the equilibrium state. This relaxation
time is a function of the apparent viscosity � . Another way the lattice units interact with one another is
through streaming, meaning that particle distributions move in the direction in which they point. This
means that f k (x; t ) = f k (x + ck � t; t + � t). To more clearly explain this an example will be shown of
how distribution function f 2 moves after 1 time step. At time t there is a distribution function f 2 at
location x = i and y = j . This distribution then streams, taking a time of dt. Sincef 2 has a direction of
~c2 = [1 ; 1], the streaming process looks as follows:

f t
2(i; j ) = f t + dt

2 (i + 1 ; j + 1) (15)

The collision and the streaming step describe how the lattice units interact with one another, and iterating
these steps provides a model of a developing stream in the 
ow cell. The boundary conditions of this
model will be discussed in section 3.1.
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3 Method

3.1 Modelling a Poiseuille 
ow

In order to check whether the Lattice Boltzman Method can properly model a 
ow pro�le of the suspen-
sion in the SSFB, �rst a basic Poiseuille 
ow is modeled. This means that the suspension is considered
to be a Newtonian 
uid.

In order to start building the model, �rst a process has to be established for how the model will function.
The �rst step in setting up the model is initializing the lattice and the particle distributions along with
determining what the boundary conditions of the system are.

3.1.1 Initial conditions

First, the 
ow cell and its contents have to be de�ned. In �gure 5 the initial conditions and constants
within the 
ow cell can be seen.

Figure 5: Schematic representation of the 
ow cell and the initial conditions

The schematic in �gure 5 describes the experimental set-up of the Semi Solid Flow Battery used by
Duduta et al [6] and a suspension with 20 wt% Lithium Titanium Oxide ( Li 4T i5O12, (LTO)) and 3 wt%
of Ketjen Black used by Madec et al [5]. The suspension 
ows in the x-direction, along the length of the

ow cell with a volumetric 
ow of 20 :1mL=min . From this 
ow rate and the dimensions of the 
ow cell,
the initial velocity can be determined, leading to a 
ow speed of ux = 0 :15m=s at the inlet of the 
ow
cell. Since the chosen solution is a non-Newtonian 
uid, it does not have a constant apparent viscosity.
In order to model a Poiseuille 
ow, an apparent viscosity can simply be chosen. For this model the lowest
possible apparent viscosity ofLi 4T i5O12 is chosen from �gure 7, meaning that � real = 1 :04e � 5Pa=s.
The reason the lowest possible� is chosen is because this gives the most stable model. [11]

Since the entire model needs to be expressed in Lattice Boltzmann units, a lattice has to be created.
This is simply done by de�ning the width and height of the 
ow cell in integers. For this particular
model they were de�ned as follows:widthsize = 40lbu and lengthsize = 75lbu. These sizes are selected
to create a resolution in the model that allows for the changing 
ow to be properly studied, whilst al-
lowing for the 
ow pro�le to be calculated relatively quickly. The width of the 
ow cell is fully de�ned,
however only the start of length is checked. This is done because in order to check the full length of the

ow cell, the length size would have to be de�ned aslengthsize = widthsize L

D � 2285, which requires
too much computing power. Having de�ned the lattice, the 
ow cell still needs to be �lled, as lattice
units with no particle distributions f k are considered empty. In order to �ll up the lattice, equation 10
is used, and the density of the 
uid is de�ned as the density at the outlet. The particle distributions are
de�ned as f k = wk � � , using the weights from section 2.3.2.

Having de�ned � in real units, it has to be de�ned in Lattice Boltzmann units. The lowest possible
� for which the model is stable in Lattice Boltzmann units is � lbm = 0 :001 [11], however, in order to
ensure the stability of the model, the lowest value of� possible is set to� lbm = 0 :033.
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Now only the initial velocity of the suspension has to be rewritten into Lattice Boltzmann units. In order
to properly do this, the Reynolds number is set to be equivalent between the real system and the Lattice
Boltzmann model. [13]

Rereal = Relbm (16)

ux;real D real

� real
=

ux;lbm D lbm

� lbm
(17)

Knowing all but one variable from equation 17, ux;lbm can be determined.

ux;lbm =
ux;real D real

� real

� lbm

D lbm
= 0 :017[lbu=lt] (18)

With all constants known in Lattice Boltzmann units, and a �lled lattice, the model can be properly
initiated.

3.1.2 Boundary conditions

All needed parameters to model the 
ow have been determined. As described in section 2.3.2, in order
to perform the collision step in the model, the equilibrium particle distributions have the be known. The
equilibrium particle distribution as de�ned in equation 13 can be determined with the known parameters,
so the collision step can be determined. The collision step as de�ned in equation 14 is rewritten in order
to determine the particle distribution after a time step. The particle distribution after the collision step
looks as follows:

f t �

i;j;k = f t
i;j;k �

1
� t

i;j
[f t

i;j;k � f eq;t
i;j;k ] (19)

All particle distributions in this equation are known, and therefore the collision step can be calculated.
The streaming step described in equation 15 can be de�ned for allf t +1

i;j;k

0

B
B
B
B
B
B
B
B
B
B
B
B
@

f i;j; 0

f i;j +1 ;1

f i +1 ;j +1 ;2

f i +1 ;j; 3

f i +1 ;j � 1;4

f i;j � 1;5

f i � 1;j � 1;6

f i � 1;j; 7

f i � 1;j +1 ;8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

t +1

=

0

B
B
B
B
B
B
B
B
B
B
B
B
@

f i;j; 0

f i;j; 1

f i;j; 2

f i;j; 3

f i;j; 4

f i;j; 5

f i;j; 6

f i;j; 7

f i;j; 8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

t �

(20)

Now it should be noted that after the streaming step, certain particle distributions have to be de�ned.
After streaming, at the top 
ow cell wall, particle distributions f 1; f 2 and f 8 are unde�ned, meaning that
they have to be de�ned di�erently. Using equations 10 and 11, the density and the particle distributions
f 1; f 2 and f 8 can be de�ned as:

� =
1

1 � uy
[f 0 + f 3 + f 7 + 2( f 4 + f 5 + f 6)] (21)

f 1 = f 5 +
2
3

�u y (22)

f 2 = f 6 �
1
2

(f 3 � f 7) +
1
2

�u x +
1
6

�u y (23)

f 8 = f 4 +
1
2

(f 3 � f 7) �
1
2

�u x +
1
6

�u y (24)

The derivations of these equations can be found in papers by Zou & He [8] or Alankar et al [10]. At the
bottom wall the equations for the unknown particle distributions can be found by rewriting equations
22, 23 and 24. Since the no slip condition exists on the walls of the 
ow cell, equations 22, 23 and 24
simplify, as ux = uy = 0.

9



At the inlet of the 
ow cell � , f 2, f 3 and f 4 are unknown. Once again, using equations 10 and 11 these
unknown values can be de�ned by the known values.

� inlet =
1

1 � ux;inlet
[f 0 + f 1 + f 5 + 2( f 6 + f 7 + f 8)] (25)

f 3 = f 7 +
2
3

� in ux (26)

f 2 = f 6 �
1
2

(f 3 � f 7) +
1
6

�u x (27)

f 4 = f 8 +
1
2

(f 3 � f 7) +
1
6

�u x (28)

In order to de�ne the unknown particle distributions at the outlet ( f 6, f 7 and f 8), �rst the velocity at
the outlet needs to be de�ned. The density � out at the outlet is known, allowing for the velocity ux to
be de�ned as:

ux;outlet = 1 �
f 0 + f 1 + f 5 + 2( f 2 + f 3 + f 4)

� out
(29)

Particle distributions f 6, f 7 and f 8 can be obtained from equations 26, 27 and 28, by rewriting� inlet as
� outlet and ux;inlet as ux;outlet .
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The only point left that has unde�ned values after the streaming step are the corner points of the 
ow
cell. Take the bottom node at the inlet for example, here onlyf 5, f 6 and f 7 are known. A bounce-back
condition makes it so that we can de�ne f 1 = f 5, f 3 = f 7 and f 2 = f 6. The remaining particle distribu-
tions can be de�ned asf 4 = f 8 = 1

2 [� � (f 0 + f 1 + f 2 + f 3 + f 5 + f 6 + f 7)]. The only problem with this �nal
de�nition is that � is not de�ned at the inlet corner nodes, therefore the density is taken to be equal to
the density of the adjacent lattice unit in the inlet. At the outlet corner nodes the unknown values can
be determined in a similar way. With all boundaries and initial values properly de�ned, the process by
which the model for a developing 
ow is made can be determined. The process can be seen in �gure 6. [10]

Figure 6: Flowchart showing the process of modelling a Poiseuille 
ow

11



3.2 Modeling a non-Newtonian 
ow

In order to model a non-Newtonian 
uid, the model described in section 3.1 has to be altered. A non-
Newtonian 
uid has a viscosity that is a function of the shear rate, namely � ( _
 ). Within the model
described in section 3.1 the only variable that changes is� since this is dependent on� . The apparent
viscosity � has now becomes a function of the shear rate, since� = � ( _
 )=� . The shear rate in 2D can be
de�ned as [12]:

_
 =

r
1
2

_
 ij _
 ji (30)

Here _
 ij is de�ned as:

_
 ij =
@ui
@j

+
@uj
@i

(31)

In equation 31 the subscripts i and j denote the coordinatesx and y, meaning that i and j take the
value of both of these coordinates. Sinceuy = 0 everywhere in the the 
ow cell, for the model, can be
simpli�ed to [12]:

_
 =

s

2
@ux
@x

2

+
@ux
@y

2

(32)

Now equation 32 has to be discretized, since the change in velocity can only be expressed as a di�erence
between the velocity of two points in the lattice, and cannot be de�ned as a continuous function. In order
to discretize the derivative of the velocity ux , the central di�erence method [15] is used.

@ux
@x

=
ux;i +1 ;j � ux;i � 1;j

2� x
(33)

@ux
@y

=
ux;i;j +1 � ux;i;j � 1

2� y
(34)

For points at the top wall and inlet the forward di�erence method in equation 35 is used.[15]

@ux
@x

=
ux;i +1 ;j � ux;i;j

� x
(35)

For points at the bottom wall and outlet the backward di�erence method in equation 36 is used.[15]

@ux
@x

=
ux;i;j � ux;i � 1;j

� x
(36)

For @ux
@y a similar procedure can be done. It has to be noted that �x = � y = 1 since x and y are de�ned

in Lattice Boltzmann units.
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Now that the shear rate can be determined from the model, the viscosity can be determined from the
relation between the shear rate and the viscosity in �gure 7.

Figure 7: Data correlating the viscosity � to the shear rate _
 [5].

The data for the suspension 20LTO2KB from �gure 7 is extrapolated using WebPlotDigitizer [14].
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Now that the viscosity can be determined from the model, the relaxation time � can be calculated via
� = (6 � + 1) =2. This new relaxation time is then used in calculating the collision step via equation 19.
The process to model a developing 
ow described in �gure 6 is adapted into the process shown in �gure
8.

Figure 8: Flowchart showing the process of modelling a Non-Newtonian 
ow pro�le
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3.3 Determining the electrical conductivity pro�le

In section 2.1 a relation between electrical conductivity and shear rate is described. This means that
with the model from section 3.2, a electrical conductivity pro�le at any point in the 
ow cell can be
determined, provided that a relation between electrical conductivity and shear rate exists for the 
uid
modelled. Figure 9 shows a relation between the shear rate and electrical conductivity of the 
uid mod-
elled in this paper.

Figure 9: Data correlating the electrical conductivity � to the shear rate 
 [5].

The data for the suspension 20LTO2KB from �gure 9 is extrapolated using WebPlotDigitizer [14]. From
the relation between the shear rate and electrical conductivity, electrical conductivity pro�les within the

ow cell can be created.

Knowing the electrical conductivity at all points in the 
ow cell means that the electronic resistance
of the path of an electron can be determined. electrical conductivity and electronic resistance relate to
one another via equation 37. [16]

R =
L

A� (y)
(37)

In this equation A is the size of the current collector in the 
ow cell. Equation 37 can be rewritten to
equation 38 if the assumption is made that an electron travels straight from the bottom of the 
ow cell
to the top. This is not physically correct, but does provide insight into how the electronic resistance
changes over the length of the 
ow cell.

Ry =
1
A

Z y

0

1
� (y)

dy0 (38)

Since in the model the electrical conductivity is a discrete, not continuous, function ofy (or x), the
integral in equation 38 has to be rewritten. In order to rewrite the integral, the left Riemann sum will
be used, which result in the following equation.

Ry =
1
A

� x� n � 1
0

1
� (a + n � � y)

(39)

Here � x = b� a
n , where b is the y-coordinate of the top wall of the 
ow cell, a is the y-coordinate of the

bottom wall of the 
ow cell, and n is the amount of values for the electrical conductivity, which is equal
to widthsize = 40. With equation 39 it can be shown how the electronic resistance of the suspension in
the 
ow cell changes over the length of the 
ow cell, assuming that the electron travels in a straight line
from the bottom of the 
ow cell wall to the top of the 
ow cell wall.

15



4 Results

4.1 Poiseuille Flow

In order to check whether the modelled 
ow is accurate, several things have to be checked. First it must
be checked that the modelled system has reached a stable state. Then it must be established that the 
ow
pro�le properly develops from the initial conditions set. This means that from the set initial conditions
the 
ow must continuously change until it reaches the state of a developed 
ow, meaning that sudden, or
unexpected changes in the 
ow pro�le developement have to be explained. Finally the most developed
pro�le in the simulation can be compared to the analytical solution for a developed 
ow, as these should
be similar.

4.1.1 Stability of the 
ow pro�le

In order to check how stable the 
ow pro�le is, the density in the middle of the inlet is measured. Since
the velocity at this point is determined in the initial conditions, the density is the only macroscopic
property that can vary. The inlet of the system needs feedback from the outlet of the system in order to
become properly stable.

The inlet of the system needs feedback from the outlet of the system in order to become properly
stable. From the boundary conditions set at the inlet of the 
ow cell, a wave propagates to the outlet,
where the wave is set to match the boundary conditions at the outlet. The arrival of the wave at the
outlet increases the values forf 2, f 3 and f 4, and the boundary condition at the outlet then decreases the
values for f 6, f 7 and f 8 in order to maintain a constant � . The particle distributions f 6, f 7 and f 8 then
travel back to the inlet, where they e�ect the particle distributions f 2, f 3 and f 4. This process repeats,
where particle distributions changed at one side of the 
ow cell travel to the other, causing changes in
the particle distributions there. Because of this the density at the center of the 
ow cell is expected to
behave like a harmonic oscillator.

In addition, this means that the system requires a minimum amount of time steps equal to twice the 
ow
cell length, since this is the minimal amount of time steps it takes for the inlet to receive feedback. The
development of density over time can be seen in �gure 10.

Figure 10: The development of the density in the inletx = 0 at y = 1
2 D

From �gure 10 it becomes apparent that the system reaches a fully stable state att = 15:000.
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