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Abstract

99Molybdenum is a vital medical isotope that enables 30 million patients each year being diag-
nosed with severe diseases in an early stage. Since the five main producing nuclear reactors are
aging, increased downtime due to maintenance has led to worldwide 99Molybdenum shortages in
2009-2010. In the search for a new production design, researchers from the Reactor Institute Delft
(RID) have been investigating a new method to produce the isotope. Prior to testing in the Hoger
Onderwijs Reactor (HOR), numerical simulations form the basis for its development.

The 99Molybdenum Producing Mini Loop (MPML) is the most recent research design of the RID.
It consists of a heat exchanger and a closed loop that is placed next to the core of the HOR. The
loop contains a solution of uranyl nitrate in water. The solution flows due to natural convection.
Exposure of the loop to a neutron flux provokes a fission reaction, from which 99Molybdenum
is formed and heat is generated. The uranyl nitrate concentration determines the amount of
99Molybdenum that is produced and is preferably as high as possible. In order to prevent high
pressure buildup, the maximum temperature in the system is required to remain below 90◦C. The
setup is surrounded by water at 40◦C.

Dresen [2019] investigated the feasibility of the MPML through a mathematical simulation in Mat-
lab. Steady state temperatures were calculated for varying concentrations and cooling conditions.
These were acquired by solving steady state internal energy balances and a momentum balance.
The results predicted that a concentration of 236 g/L could be obtained by inserting a coolant
mass flow of 0.7 kg/s at a coolant inlet temperature of 5◦C.

The aim of this thesis was to investigate feasibility and safety aspects of the loop. Mistakes made
by Dresen [2019] were corrected and the stationary simulation was extended to solving a transient
model containing less simplifications. Important extensions to the computation included heat flow
in vertical parts of the loop, heat exchange with the surrounding water, the inclination angle of the
near-horizontal parts and gamma radiation exposure to the entire loop wall. Moreover, the design
was adjusted to be suitable for placement in the HOR. Using the extended simulation, various
emergency cases were investigated.

Correcting the stationary Matlab simulation and extending the model in Python produced promis-
ing feasibility results. By correcting the Matlab simulation and including heat exchange with the
surrounding water in the model, steady state temperatures were derived to be significantly lower
than predicted by Dresen [2019]. Moreover, it was discovered that inclusion of the two vertical
nodes in the simulation is necessary to unveil a temperature peak that occurs during the initial
flow development. This temperature peak was found to be lower when simulating gamma radiation
exposure in the tube wall instead of in the fluid, including heat exchange with the surrounding
water and including the inclination angle of the near-horizontal nodes in the simulation. Besides,
it was shown that gamma radiation shielding and a variation of the length of the side of the MPML
do not affect the feasibility. Lastly, it was derived that the inclination angle forces the flow into
either clockwise or anti-clockwise direction.

At a maximum possible uranyl nitrate concentration 310 g/L and a coolant mass flow 0.01 kg/s at
10◦C, the maximum steady state temperature and peak temperature were respectively predicted
to be 47.1◦C and 53.5◦C. Applying the extended model to different emergency cases showed that
temperatures remain safely below 90◦C even in the extreme conditions of a defect cooling pump,
stopped heat flow to the surrounding water or an increased reactor power. Should the first two
emergency cases occur simultaneously, heat production must be terminated within 100 seconds.
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1 Introduction

1.1 99Molybdenum

One of the fundamental revolutions of the past centuries in medical treatment has been medical
imaging. Tens of millions of patients yearly benefit from non-invasive diagnostic imaging techniques
in order to safely identify critical conditions in an early stage. Common applications include heart
diseases and cancer. The resulting diagnose supports important decision making in the choice of
treatment. Today, 80% of worldwide diagnostic nuclear medical imaging is based on the medical
isotope Technetium-99m (Ahmad [2011]). The latter is a decay product of 99Molybdenum. With
short half-lives of respectively 6 and 66 hours, these isotopes decay quickly and require daily
production.

Despite its vital importance, the worldwide supply of 99Molybdenum isotopes largely relies on five
nuclear reactors in Belgium, the Netherlands, France, South Africa and Canada. In these reactors,
99Molybdenum is obtained as a fission product by irradiating uranium-235 targets with neutrons.
This first step of the extensive production process is time consuming and capital intensive, since the
separate targets require individual processing. In this time, valuable isotopes have already started
decaying. Besides the disadvantage of the batch process, the production facilities are nearing 50
years of age and experience increased downtime due to maintenance. In 2009-2010, shortages up to
70% of worldwide demand disrupted the supply chain. The Nuclear Energy Agency has since been
determined to safeguard future production of 99Molybdenum by developing new, more efficient
production methods (nuc [2021]).

1.2 Previous design of the 99Mo loop

In the search for a new 99Molybdenum production design, the Reactor Institute Delft (RID) has
been investigating the feasibility of a loop-type setup containing an aqueous solution of uranium.
Before testing the design in the 2MW research reactor - the Hoger Onderwijs Reactor (HOR) -
numerical analyses are aimed to determine the optimal design. Ideally, the design is a continuously
circulating system that has a small volume (0.5L) and is not driven by a pump. The pump omitting
requirement is to circumvent the high risk of heat accumulation in the emergency case of a defect
pump. A small volume is required to mitigate effects in the case of an emergency and the continuous
aspect is more efficient than the current batch process.

Numerical research by Elgin [2014], Huisman [2016] and Pothoven [2016] showed feasible results
for the pump-driven, U-shaped tube as depicted in figure 1-1: an aqueous solution of uranyl nitrate
flows through the tube and is exposed to a neutron flux from the reactor core next to the tube.
The researchers deduced that a high uranyl nitrate concentration is preferable in order to maximize
99Molybdenum production. High concentrations also establish more heat production by fission,
however, which requires an effective cooling system. For a concentration of 27.6 g/L temperatures
remained safely under the boiling temperature of the solution. Ideally, the concentration should
become 310 g/L, which is the maximum concentration that allows for effective 99Molybdenum
extraction.

Pendse [2018] upgraded the design by closing the loop and removing the pump, as depicted in
figure 1-2. The loop was driven by natural convection. Moreover, an upgraded cooling system
allowed for uranyl nitrate concentrations up to 310 g/L while keeping safe temperatures. There
was, however, one disadvantage: the volume was 5 liters.
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Figure 1-1: U-shaped research loop designed by Elgin [2014], Huisman [2016] and Pothoven [2016].

Figure 1-2: Previous design of the 99Mo loop as investigated by Pendse [2018].

1.3 New research loop

The 99Molybdenum Producing Mini Loop (MPML) is a small loop with a maximum volume of 0.5
liters that is driven by natural convection. It consists of four connected, circular tubes containing
a uranyl nitrate solution. The two near-horizontal nodes are placed at a 2◦ inclination angle. A
sketch is given in figure 1-3. The lower tube is exposed to a neutron flux, where fission produces
heat. Since the upper tube is cooled by a concentric heat exchanger, temperature and density
differences in vertical direction cause the solution to flow by natural convection.

Dresen [2019] numerically determined steady state temperatures at varying concentrations and
cooling conditions by simulating a simplified model. Stationary internal energy balances and a
momentum balance were solved in Matlab. Results predicted that a concentration of 236 g/L
could be obtained by inserting a coolant mass flow of 0.7 kg/s at an inlet temperature of 5◦C.
Since this coolant mass flow is too high to be obtained in practise, the simulation is evaluated and
extended in this research to investigate the feasibility. Moreover, safety aspects in emergency cases
are inquired.

2



Figure 1-3: New research loop design: the 99Molybdenum Producing Mini Loop. The lower tube
is exposed to neutron flux and the upper tube is cooled by a concentric heat exchanger. Natural
convection thrives the flow.

1.4 Goals

The aim of this research is to numerically investigate the feasibility and safety of the 99Molybdenum
Producing Mini Loop. The feasibility is defined as the extent to which a high uranyl nitrate
concentration allows for natural convection and temperatures below T<90◦C. Safety simulations
are defined as those involving emergency cases. The research questions of this thesis are the
following:

1. Extending the simplified stationary simulation to a transient model, to what extent does
incorporation of the following aspects affect the feasibility predictions for the 99Molybdenum
Producing Mini Loop?

(a) Inclusion of the two vertical nodes in the simulation.

(b) Gamma radiation exposure in the tube wall instead of in the fluid.

(c) Heat exchange with the surrounding water.

(d) The inclination angle of the near-horizontal nodes.

(e) Positive and negative flow directions.

(f) Gamma radiation exposure in the non-fission nodes.

(g) Adjusted size for placement inside the DLDR.

The above adjustments to the model of Dresen [2019] are from here on referred to as exten-
sions ranging from a to g.

2. Applying the extended simulation, how do the following emergency cases affect the safety of
the MPML?

(a) A defect cooling pump causes the cooling to solely rely on heat flow to the surrounding
water.

(b) An empty DLDR causes the cooling to solely rely on the heat exchanger.

(c) A defect cooling pump and an empty DLDR cause accumulation of heat in the loop.

(d) An increased neutron flux causes heat production by fission to rise.

3



1.5 Research approach

The research consists of two parts: extending the simulation of Dresen [2019] and using the ex-
tended simulation to inquire safety aspects.

In order to answer research question 1a-g, a simplified model is developed in which all extensions
1a-g are omitted. The results of this transient simulation are compared to the stationary simula-
tion of Dresen [2019] as a benchmark. Subsequently the model is extended step by step in order to
explore the effect of every single extension. For this part, isothermal initial conditions are applied.
The resulting model including all the extensions 1a-g is referred to as the extended or optimized
model.

To investigate emergency cases, steady state conditions obtained from the optimized model are
applied as initials conditions to the optimized model.
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2 Modeling approach

Below the definitions for the model are outlined, followed by an outline of the parameters, variables,
equations, initial conditions and boundary conditions. Moreover, a short summary is given on the
approach to answer the different research questions numerically.

2.1 Nodes

The MPML as analyzed by Dresen [2019] was divided into three grid points or nodes A,B and C.
In this research, two additional nodes D and E are incorporated, as depicted in figure 2-4. Node
A is exposed to a neutron flux from the reactor core and node B functions as the inner tube of a
heat exchanger, surrounded by node C: nodes B and C together form a heat exchanger.

The four nodes inside the loop in the direction of the flow are respectively nodes A,D,B and E.
These are from here on referred to as j = A,D,B or E. The property Vj for instance refers to
the volume of a loop node, which is equal for all the loop nodes j. In contrast, the index i is used
when referring to all the nodes including node C: i = A,D,B,E or C.

Figure 2-4: Five nodes A,B,C,D and E.

2.2 Definitions for temperature and heat transfer coefficients

Within every node the temperature is considered to be spatially constant. The outflow temperature
equals the node temperature, as shown in 2-5. Time dependent densities are calculated using
these temperatures inserted in equation (12). In the outer part of the heat exchanger, the inlet
temperature is constant and the outlet temperature is transient. The temperature profile in node
C is assumed to be linear.

Heat transfer from a fluid in a tube to the outside of the tube meets three heat resistances, defined
by their heat transfer coefficients. In this research, the heat transfer coefficient from the flow within
a tube to the tube is denoted by h1; the heat transfer coefficient of the tube itself is denoted by
h2; and the heat transfer coefficient between the tube and the surrounding is denoted by h3.

5



Figure 2-5: Temperature definitions in five nodes.

Figure 2-6: Representation of heat transfer coefficients for heat exchange through a tube wall. The
heat transfer coefficients of the material inside the tube, the tube itself and the material outside
the tube are denoted by h1, h2 and h3 respectively.
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2.3 Parameters, variables, equations and conditions

The simulation is defined by six parameters, ten variables, ten differential equations, two boundary
conditions and ten initial conditions.

Parameters and variables

Directly controllable quantities are named parameters. Ten time-dependent quantities or dependent
variables follow from the simulation. The parameters and variables are outlined in figure 2-7 and
table 1.

Type Name Symbol Description

Parameters:
independent

Coolant inlet
temperature

Tin,C (◦C)

A low coolant inlet temperature increases
the cooling power of the heat exchanger,
allowing for higher uranyl nitrate
concentrations.

Coolant mass
flow

φm,C (kg/s)
A high coolant mass flow also increases
the cooling power.

Uranyl nitrate
concentration

c (g/L)

The concentration c determines the heat
production by fission in node A as well
as the molybdenum production. It is
desired to be as high as possible.

Node length l (m)

The length of the side of
the MPML is equal to the length
of a node, which is equal
for all nodes. This length must
be adjusted in order to
fit inside the DLDR.

Inclination angle α (◦)

The inclination angle of the near-
horizontal nodes affects the flow
direction and confines the length l to fit
inside the DLDR.

Shielding
transmission
factor

stf

Gamma radiation may be shielded
completely or partially from nodes
D,C and E. The gamma radiation
heat production in these tube walls
is multiplied by a shielding
transmission factor between 0 and 1.

Variables:
dependent

Node
temperatures

TA(t), TD(t), TB(t),
TE(t), Tout,C(t) (◦C)

The temperature of the uranyl nitrate
solution in the five nodes A,D,B,E
and C.

Wall
temperatures

Tw,A(t), Tw,D(t),
Tw,C(t), Tw,E(t) (◦C)

The temperature of the walls surrounding
the nodes adjacent to the DLDR water.

Average
velocity

〈v(t)〉
The uranyl nitrate solution velocity
averaged over the loop: it is constant in space
but varying in time.

Table 1: Parameters and variables

Differential equations

In total, ten first order differential equations are numerically solved: one for every variable. For ev-
ery temperature there is a transient internal energy balance dT...

dt = ... and the transient momentum

7



Figure 2-7: The parameters and variables as outlined in table 1

balance for the velocity d〈v(t)〉
dt = ....

Boundary conditions

Two boundary conditions are needed for the simulation. The first is the water temperature of the
surroundings T∞ = 40◦C. The second is a restriction for the heat exchanger: if the loop velocity
is directed anti-clockwise (v > 0), then the heat exchanger is counter current. Given that the
inlet temperature of the coolant is lower than the inlet temperature of the heated node, then the
outlet coolant temperature must be lower than the inlet node temperature. If the loop velocity
is directed clockwise (v < 0), the heat exchanger is co-current. The constraint becomes that the
outlet coolant temperature must be lower than the outlet node temperature:

Tout,C <

{
TD v > 0
TB v < 0

(1)

The reason for this constraint originates in the heat exchanger (equation (34)): if the temperature
difference decreases, heat flow also decreases until the temperature difference and the heat flow
disappear. It is further noted that the above constraint theoretically only applies to the case
that gamma radiation and heat exchange with the surrounding water are absent from node C. In
practise, these two terms only slightly affect the node C temperature, however, and the constraint
still holds.

8



Initial conditions

Ten initial conditions are needed for the variables. In this research two sets of initial conditions
are relevant. The first defines the isothermal situation in which the reactor was inactive until t=0:
temperatures are equal to the pool temperature and the velocity is zero. The second set of initial
conditions describes the steady state conditions that were obtained from the simulation starting
from the first set of initial conditions.

2.4 Numerical research

All research questions 1a-g consist of adding and removing the relevant terms from the internal
energy balances over the nodes and the tube walls. The following adjustments are made in order
to evaluate emergency cases:

• The steady state results of the optimized model are used as initial conditions.

• To simulate the effects of a defect cooling pump in questions 2a and 2c, the cooling mass
flow is set to φm,C = 10−20 kg/s. Node C does not function as a heat exchanger anymore.
Therefore, the boundary condition (1) does not apply and the heat exchanger equation (34)
is replaced with ordinary flow of heat (equation (28)).

• To simulate an empty DLDR in question 2b, heat exchange between the wall and the sur-
rounding is omitted.

• An increased neutron and gamma flux in question 2d are simply found by multiplying the
neutron flux φn and the gamma radiation heating u by a factor larger than 1.

9



3 Design of the MPML

3.1 Placement in the HOR

For research purposes, the MPML is placed inside the horizontal DLDR tube in the Hoger Onder-
wijs Reactor (HOR) at the Reactor Institute Delft (RID), as depicted in figures 3-8 and 3-9. The
DLDR is surrounded by a water pool at constant temperature T = 40◦C and the DLDR itself is
also filled with water. The only heat resistance between the DLDR water and the pool water is
an aluminium tube, which conducts heat significantly better than water1. Therefore, the DLDR
water is assumed to be at constant temperature T = 40◦C as well.

The DLDR water flows at low speed φV = 10−5 m3/s through the DLDR and through an external
tube system in which contamination is removed. In this research, however, the DLDR water is
simulated as if it is standing still: φV = 0 m3/s.

Experiments in the HOR generally require at least two safe barriers between the radioactive mate-
rial and the pool. From personal communications with A. Winkelman (2021) it has been determined
that the MPML loop and the DLDR together comply with this constraint, if the first is robustly
built. In a later stadium, an extra safety tube could be added between the loop and the DLDR.

Figure 3-8: Representation of the DLDR setup next to the reactor core in the HOR. The red tube
is the DLDR, next to the square black reactor core. It is surrounded by a water pool at T = 40◦C.
(Huisman [2016])

3.2 Geometry of the setup

As shown in figure 3-9, the DLDR has a length of 1600 mm and an inner diameter of 140 mm
(Pendse [2018]). The four tubes that together form the loop are of the same length l. The length
was 200 mm in the research of Dresen [2019] but is adjusted for placement inside the DLDR. The
loop has an inner diameter of r = 6 mm and a wall thickness of d = 2 mm. The inner radius of
node C is R = 8 mm. The outer radii and diameters are shown in table 2 and figure 3-10. The

1The heat conductivity of aluminium is significantly larger than that of water: λaluminium = 237W/(mK) >>
λwater = 0.596W/(mK) (Janssen and Warmoeskerken [1987]).
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inclination angle of nodes A and B with the horizontal axis is denoted by the quantity α in degrees.
This gives the following constraint for the length of the tube to fit inside the DLDR:

l =
Ddldr −R− 3r − 4d

1 + sinα
. (2)

Figure 3-9: Representation of the MPML setup in the DLDR.

radius diameter
r = 3 mm D
rout = 5 mm Dout

R = 8 mm DC

Rout = 10 mm DC,out

Table 2: Radii and diameters corresponding to the tube around node B and
the heat exchanger tube node C, as represented in figure 3-10 and 3-9. The
radii r, rout and diameters D, Dout are equal for all loop nodes j.

Figure 3-10: Cross-sectional area of the heat exchanger, that consists of nodes B and C.
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3.3 Material properties

Zircaloy

The loop itself is made of zircaloy (zirconium alloy), for which the choice is outlined by Dresen
[2019]. For the effective roughness, the general value for aluminium tubes is used since the zircaloy
value was not available. All properties are shown in table 3.

Coolant

Water functions as the coolant in the heat exchanger: the fluid in node C. Besides the properties
in table 3, the temperature dependent dynamic viscosity µ(T ) is given for the range 0 − 100◦C
(Dresen [2019]):

log
µ(T )

µ20
=
A(20− T )−B(T − 20)2

T + C
, (3)

in which A = 1.1709, B = 0.001827, C = 89.93 and the reference value at T = 20◦C is µ20 = 1.0020

mPas. The Prandtl number is found from Prw(T ) =
µw(T )·cp,w

λw
.

Uranyl nitrate solution

The uranyl nitrate solution contains low enrichment uranium, with an enrichment ε5 = 19.75%.
The molar mass of uranyl nitrate is 394.04 g/mol and the thermal diffusivity of the uranyl ni-
trate solution is found from a = λ

ρref ·cp . The dynamic viscosity of the solution depends on the

temperature and concentration (Grant et al. [1948]):

µ(cmol, T ) = µ(T ) · (1 +A ·
√
cmol +B · cmol), (4)

where cmol is the concentration [mol/L], µ(T ) is the dynamic viscosity of water as found from

equation (3) and A = 0.-1687, B=0.7904. The Prandtl number becomes Pr(T ) =
µ(cmol,T )·cp

λ .
Other properties are outlined in table 3.

DLDR water

The surrounding water in the DLDR is at 40◦C. Properties of the surroundings are found in the
table below.

3.4 Shielding

As shown in figure 3-11, the reactor core is placed close to the DLDR along with two air boxes. This
leaves little space for shielding of gamma radiation that has an energy up to 20 MeV. Therefore
the entire loop is assumed to be exposed to gamma radiation, contrary to the complete gamma-
shielding assumption of Dresen [2019].

The neutron flux, however, can be blocked with a cadmium layer. The orange line in figure 3-11
represents a shielding to block neutrons from all parts of the loop except the lower horizontal
part. Placement of this cadmium layer directly onto the DLDR would be disadvantageous since
that would shield neutron flux towards the fission part as well, decreasing the production rate in
equation (15). Placement directly onto the MPML would be disadvantageous for heat exchange
between the loop and the surrounding water. It is therefore suggested to be placed at a short
distance from the loop.
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Material Property Value Source

Zircaloy

Neutron cross section σf,5 583 barn Huisman [2016]
Specific heat capacity cp,t 285 J/(kgK)

Zir [2014]Thermal conductivity λt 21, 5 W/(mK)
Density ρt 6.55 · 103 kg/m3

Effective roughness ε 1.5 · 10−6 m Dresen [2019]

Coolant:
water properties
at 10◦C, 105 Pa

Density ρw 999.73 kg/m3

Janssen and Warmoeskerken [1987]
Specific heat capacity cp,w 4203 J/(kgK)
Thermal conductivity λw 0.574 W/(mK)
Thermal diffusivity aw 0.138 · 10−6 m2/s

Uranyl
nitrate
solution

Density ρref 1330.6 kg/m3

Huisman [2016]
Specific heat capacity cp 2905.5 J/(kgK)
Thermal conductivity( λ* 0.665 W/(mK)

Value of water Dresen [2019]
Thermal expansion coefficient β 5.23 ·10−4K−1

Surroundings:
water properties
at 40◦C, 105 Pa

Density ρs 992.95 kg/m3

Janssen and Warmoeskerken [1987]
Specific heat capacity cp,s 4183.3 J/(kgK)
Thermal conductivity λs 0.6274 W/(mK)
Thermal expansion coefficient βs 3.85 ·10−4K−1

Table 3: Material properties. *The property of water at 60◦C, 105Pa is used.

Figure 3-11: Cross-sectional representation of the reactor core, the DLDR and the MPML. The
orange line inside the DLDR represents a layer of cadmium shielding against neutrons.
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4 Theoretical Background

4.1 Governing equations

Transport phenomena processes are described by mass, heat and energy transfer. This transfer is
defined by a balance over a control volume. The total change of a quantity inside the volume is
given by the sum of the flow into the volume, the flow out of the volume and the production inside
the volume:

d

dt
= in− out + ’production’. (5)

The mass balance, internal energy balance and momentum balance define the transport phenomena
within a control volume. These are outlined below in their general form for fluid flow through a
tube and are evaluated for every node in section 5.

4.1.1 Mass balance

The general mass balance for fluid flow through a tube is given as follows:

dM

dt
= φm,in − φm,out, (6)

in which no production term is present since since mass is a conserved property.

As outlined in section 4.1.4, the transient term dM
dt vanishes in this research because the Boussinesq

approximation is applied. The mass flow φm,in = φm,out = φm given in [kg/s] is therefore constant.
Mass flow and volume flow φV [m3/s] of a fluid in a tube with cross-section A [m2], average speed
〈v〉 [m/s] and constant density ρ [kg/m3] are then given by:

φm = ρA〈v〉, φV =
φm
ρ
. (7)

4.1.2 Internal energy balance

The general internal energy balance for a reacting system with inflow and outflow of mass, that
produces heat over a control volume V , is given by (Van den Akker and Mudde [2014]):

dU

dt
= φm,in

(
u+

p

ρ

)
in

− φm, out
(
u+

p

ρ

)
uit

+ φq + Pu,

where U [J] denotes the total internal energy in the control volume, ρ is the density, p [Pa] is the
pressure, u [J/kg] is the specific internal energy, φm is the flow of mass, φq [J/s] is the net flow of
heat and Pu is the total production of internal energy.

In this research constant mass flow φm,in = φm,out = φm is assumed within every node. That
is because the density is assumed to be constant within a node, as outlined in section 5.2. The
balance becomes:

dU

dt
= φm

[
uin − uout −

∫ out

in

p · d
(

1

ρ

)]
+ φq + Pu.

With constant pressure and du = cV dT ≈ cP dT holding for fluids (Van den Akker and Mudde
[2014]), this simplifies to:

dU

dt
= φmcp (Tin − Tout) + φmp

(
1

ρ in

− 1

ρ out

)
+ φq + Pu.
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The left hand side can be rewritten firstly as a function of temperature and pressure and secondly
using the material derivative. The derivation as given by equation 1.59 of Rohde [2014] gives the
following result:

ρV cP
d

dt
(T ) = φmcp (Tin − Tout) + φmp

(
1

ρ in

− 1

ρ out

)
+ φq + Pu. (8)

4.1.3 Momentum balance

The one-dimensional general momentum balance for a medium that flows in the direction l̂ through
a volume V is given by (Van den Akker and Mudde [2014]):

d

dt

(
Mvl̂

)
=

d

dt

(
ρV vl̂

)
= φm,in · v̂l,in − φm,out · v̂l,out +

∑
Fl̂, (9)

in which vl̂ is the velocity and
∑
Fl̂ is the sum over the forces exerted on the flowing medium.

An important characteristic for flow in non-circular tubes is the hydraulic diameter, used for
calculations analogous to the diameter of a circular tube:

Dh =
4A

S
, (10)

in which A is the cross-sectional area of the flow and S the wetted perimeter. The latter is defined
as the perimeter of the cross-sectional area tangent to the fluid.

4.1.4 Modelling natural convection: the Boussinesq approximation

In the MPML a temperature gradient causes density differences inside the loop, which makes
natural convection the mechanism behind the flow. In computational fluid dynamics the Boussinesq
approximation is used to simplify the mass, energy and momentum balance for fluid flows driven
by buoyancy (Deen [1998]).2

The approximation is based on a description of the density as a transient density field, consisting
of on the one hand a reference density that only varies in space, and on the other hand a term
describing fluctuations in time for the different points in space (equation 5.5 in Rohde [2014]):

ρ(~r, t) = ρ0(~r) + ρ′(~r, t). (11)

Substituted into the momentum balance, the density change ρ′ caused by a temperature gradient
only significantly affects the gravitational term and has a negligible effect on all other terms in
the mass, energy and momentum balance (Rohde [2014]). The approximation consists of two
assumptions (Deen [1998]):

1. The effect of pressure variation on the density are assumed to be negligible and the density
change is a linear function of temperature change. Therefore the density is dependent on the
temperature according to the following equation of states:

ρ(T ) = ρ0 − ρ0β (T − T0) , β∆T � 1. (12)

β is the thermal expansion coefficient of the fluid, ∆T is the maximum temperature difference
in the system, and 0 denotes an arbitrary reference value for the temperature and density.
As denoted by Dresen [2019], the condition is satisfied in the MPML.

2. The variable density ρ(t) can be replaced everywhere by the constant value ρ0, except in the
gravitational term of the momentum balance.

2The Boussinesq approximation does not hold for gasses (Deen [1998])
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4.2 Heat generation

4.2.1 Nuclear fission

A section of the loop is exposed to a neutron flux. These neutrons interact with the dissolved
uranium in the form of nuclear fission. As outlined by Dresen [2019] the number of fission events
per second per cubic meter, also known as the reaction rate, is given by:

R′′′ =
σf,5 · ε5 · c ·NA · φn

M
, (13)

in which σf,5 is the fission cross-section in barn (= 10−28m2), ε5 the enrichment, c is the uranium
concentration [g/m3], NA is the number of Avogadro, φn [1/(m2s)] is the neutron flux and M
[g/mol] the molar mass of uranyl nitrate. In the HOR the average neutron flux directly in front
of the reactor is φn = 3.5 · 1016 m−2s−1.

The heat generated per second by this process is:

Q = V EfR
′′′, (14)

where Q [W ] is the energy production, V is the volume and Ef [J ] the thermal energy release per
fission event: 192 MeV.

To calculate the 99Molybdenum production rate, the reaction rate is multiplied by the characteristic
fission yield of 99Molybdenum, which is typically 6, 13%.

P ′′′Mo = γMo ·R′′′. (15)

The production rate P ′′′Mo is the number of 99Molybdenum elements produced per second per cubic
meter.

4.2.2 Gamma radiation

As a byproduct of the nuclear fission, a gamma radiation flux heats the loop material. The energy
production due to gamma radiation in a tube of radius r is given by (Dresen [2019]):

Pγ(r) = u · ρtube · Vt(r), (16)

where Pγ(r) is defined in [W ], Vt(r) and ρtube are the volume and density of the tube itself and u
W/kg is the heating power per unit mass of construction material, close to the reactor core. The
tube volume depends on the inner radius r, the tube thickness d and the length l:

Vt(r) = πl
(
(r + d)2 − r2

)
= πl

(
d2 + 2dr

)
. (17)

As depicted in figure 4-12 the heat generation directly in front of the core at x = 0.8m is u = 300
W/kg (Pendse [2018]).

4.3 Dimensionless numbers

Dimensionless numbers in general give the ratio between two physical phenomena of the same
physical unit. This ratio can be a characteristic of either a process or a material. The following
ratios are relevant for this research:
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Figure 4-12: Gamma heat deposition in construction material plotted against the position in the
DLDR (Pendse [2018]).

• The Reynolds number describes the ratio of viscous and inertia forces in a gas or fluid flow.
For high Reynolds numbers inertia forces dominate, causing the flow to be turbulent as
opposed to laminar.

Re =
inertia forces

viscous forces
=
ρ〈v〉L
µ

. (18)

〈v〉 [m/s] is the average flow speed, µ [kg/(ms)] is the dynamic viscosity and L [m] is the
characteristic linear dimension. For flow in a tube, this is equal to the hydraulic diameter
L = Dh.

• The Nusselt number describes the ratio of the conductive heat transfer and the total heat
transfer. It is used for heat transfer to flowing media. At Nusselt numbers of the order 1,
conductive heat transfer dominates.

NuL =
total heat transfer

conductive heat transfer
=
h · L
λ

, (19)

where h [W/(m2K)] is the heat transfer coefficient and λ [W/(mK)] the thermal conductivity.
For natural convection around horizontal and vertical cylinders, the spatial dimension is equal
to respectively the cylinder diameter L = D and cylinder length L = L. For flow in a tube
it is equal to the hydraulic diameter L = Dh.

• The Graetz number represents the ratio between convective and conductive heat transfer and
is also used for heat transfer to flowing media.

Gz =
conductive heat transfer

convective heat transfer
=

aL

v ·D2
h

, (20)

in which a [m2/s] is the thermal diffusivity, L [m] the length and v [m/s] is the velocity.

• The Prandtl number is the ratio between thermal and momentum diffusivity. In this list it
is the only material characteristic, contrary to flow characteristics.

Pr =
momentum diffusivity

thermal diffusivity
=
ν

a
. (21)
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• The Grashof number describes the ratio between the viscous force and the buoyancy force
caused by density differences in fluids or gasses in vertical direction. This density difference
induces a natural convection flow if the buoyancy is larger than the viscous force.

GrL =
buoyancy force

viscous force
=
gβ |Tw − T∞|L3

ν2
, (22)

in which g = 9.81 m2/s is the gravitational constant and β [K−1] is the thermal expansion
coefficient. Tw and T∞ are the heated material and surrounding temperatures. L is the
dimension in vertical direction. For horizontal and vertical cylinders respectively, it denotes
the cylinder diameter L = D and length L = L.

• The Rayleigh number translates the Grashof number into heat transfer: it is the ratio between
the diffusive and the natural convective heat transfer.

RaL =
natural convective heat transfer

diffusive heat transfer
= Gr · Pr =

gβ |Tw − T∞|L3

νa
, (23)

where Ra, Gr and Pr are rewritten using a = λ
ρcp

, ν = µ
ρ .

4.4 Friction

In the research loop, the flow is impacted by friction with the tube wall, which confines the flow
speed.3 Two common friction factors are used in transport phenomena: the Fanning and the Darcy
friction factor. These are related by a factor 4:

fD = 4 · fF . (24)

The Darcy friction factor in a pipe is given by the following relationship that holds for both laminar
and turbulent flow:

fD =
(
64
Re

)a [
0.75 ln

(
Re
5.37

)]2(a−1)b [
0.88 ln

(
6.82Dε

)]2(a−1)(1−b)
,

a = 1

1+( Re
2712 )

8.4 ,

b = 1

1+

(
Re

150D
ε

)1.8 ,
(25)

in which ε/D is the relative roughness of the pipe. The latter is defined as the effective roughness
ε [m] divided by the diameter D [m]. Re is the Reynolds number (Bellos et al. [2018]).

The frictional force in a tube exerted on the fluid is given by the following equations:

τf→w = fF ·
1

2
ρ〈v〉2, (26)

Ffr = τw→f · SL, (27)

in which τf→w [N/m2] is the shear stress exerted by the inner surface of the tube on the flowing
fluid and S is the wetted perimeter.

3Theoretically, this friction in a tube of length L also produces heat according to efr = 4fF · L
Dh
· 1
2
〈v〉2, where

efr is defined in [J/(kg · s)]. This heat generation is negligible, however: it showed no contribution to the results
and was therefore omitted from the model.
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4.5 Flow of heat

Flow of heat through various adjacent media is described by Newton’s law of cooling :

φq = UA∆T, (28)

in which A is the surface through which the heat flows and ∆T is the temperature difference
between the inner and outer medium. U [W/(m2K)] is the total heat transfer coefficient, given
the individual heat transfer coefficients of the adjacent media h1, h2, h3 etc.:

U =

(
1

h1
+

1

h2
+

1

h3
+ ...

)−1
. (29)

These individual heat transfer coefficients are either directly known or can be found by combining
the definition for the Nusselt number (equation (19)) with empirical Nusselt relations for different
situations.

Flow in a tube

Heat flows in and out of the MPML and the heat exchanger through tube walls. For flow in a
tube, the heat transfer coefficient between the tube wall and the flowing medium inside the tube
depends on the flow regime (Janssen and Warmoeskerken [1987]):

〈Nu〉 =


0.027 · Re0.8 · Pr0.33,

(
for Re > 104,Pr ≥ 0.7

)
1.62 ·Gz−

1
3 , ( for Gz < 0.05)

3.66. ( for Gz > 0.1)

(30)

Natural convection around cylinders

The MPML roughly consists of four tubes that are at a different temperature than the surrounding
water. Therefore, natural convection around these horizontal and vertical tubes is induced. The
heat producing cylinders cause natural convection around the cylinder if the Grashof number is
sufficiently large. The sign of the temperature difference between the cylinder and the water does
not affect the Grashof number. The sign does, however, indicate the direction of natural convection
and the direction of heat exchange between water and cylinder, as becomes clear from equation
(28). A horizontal cylinder warmer than the water, heats the surrounding water and thereby lowers
its density, causing convection in positive z-direction. A cold cylinder, however, extracts heat from
the water, which therefore starts flowing in negative z-direction. Similarly, a warm or cold vertical
cylinder induces the same flow directions albeit parallel to the cylinder instead of perpendicular.

As outlined by Akbari et al. [2019] and Ali and Sadek [2018], many different results for different
cylinder types and inclination angels and regimes have been obtained. With many different avail-
able correlations for heated horizontal cylinders, Fand et al. [1977] makes a comparison. It is for
instance pointed out that the Morgan correlation differs from many others, suggesting that Nusselt
is a function of the Rayleigh number only. In contrast, other correlations take the Prandtl number
into account in a separate term. The latter is shown to be more accurate.

One of the remaining options is the widely used and recommended correlation of Churchill and
Chu [1975], which is shown to work well for water but shows a larger deviation for other fluids and
gasses.4 This correlation is practical because it is valid for both the laminar and turbulent regime.

4For all the combined data found by Fand et al, including water and other fluids and gasses, the deviation from
experimental data is 12%.
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Moreover it is applicable to this experiment because water is used as a fluid around the cylinders.
The following relation is used to simulate natural convection around horizontal cylinders for the
laminar and turbulent regime (Churchill and Chu [1975]):

NuD =

0.6 +
0.387Ra

1/6
D(

1 + 0.5599/16

Pr

)8/27

2

, 10−5 < RaD < 1012. (31)

For natural convection around heated vertical cylinders, the correlation provided by Xian et al.
[2015] is used due to is practicality: it holds for both the laminar and turbulent regime.

log10

(
NuL
Ra

1/4
L

)
= 0.090− 0.449 log10

(
Ra

1/4
L · DL

)
+0.107

(
log10

(
Ra

1/4
L · DL

))2
+ 0.065

(
log10

(
Ra

1/4
L · DL

))3
,

(32)

holding for

108 < RaL < 1.45× 1014, 10 <
L

D
< 500, water as working fluid.

These two conditions are both met in this research. Although equation (32) is practical, it is not
(yet) widely used. To verify its accuracy, it is compared to the widely used correlation of Le Fevre
that only holds for the laminar regime. As discovered by Popiel [2008], the critical Grashof number
for the transition from laminar to turbulent is Grc = 4 · 109. This gives the upper bound for the
Le Fevre correlation (Popiel [2008]):

NuL =
4

3
Ra0.25L

[
7Pr

100 + 105Pr

]0.25
+

4

35

272 + 315Pr

64 + 63Pr

L

D
, 108 < GrL < 4 · 109. (33)

Conduction around a cylinder

Heat transfer between the loop and the surroundings is described by natural convection around
cylinders. An exception occurs when the temperature difference between the loop and the sur-
roundings is small. If the temperature difference does not cause a buoyancy force large enough to
conquer the viscous force, then natural convection does not occur. Heat transfer between a hori-
zontal cylinder and a stationary surrounding is described by conduction. Since this only occurs as
an exception, however, the derivation for the Nusselt relation is given in the appendix.

Heat exchanger

Flow of heat within a concentric tube heat exchanger differs from equation (28). It is given by
(Van den Akker and Mudde [2014]):

φq = UA
∆TL −∆T0

ln (∆TL/∆T0)
= UA

∆T0 −∆TL
ln (∆T0/∆TL)

= UA∆Tln, (34)

in which ∆T0 and ∆TL are the temperature differences between the inner and outer tube fluid at
the inlet and outlet of the heat exchanger with length L.

The heat resistance of the tube wall inside the heat exchanger is simulated as a thin wall. For a
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thin wall in cylindrical coordinates of thickness d and inner radius r, the heat transfer coefficient
is approximated by that for a one-dimensional wall:

h =
dtube
λtube

, (35)

where dtube [m] and λtube [W/(mK)] are the thickness and thermal conductivity of the tube wall.
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5 Mathematical model

In this section, the differential equations are derived that define the model mathematically.

5.1 Boussinesq approximation

In steady state conditions, the four loop nodes are at different temperatures and therefore have
different densities. The density field that describes the density throughout the loop ρ0(~r) only
varies in space. With ~r defining the grid points, namely the centers of the nodes, the density field
is given by5:

ρ0(~r) =


ρref,A
ρref,D
ρref,B
ρref,E

 , ~r =


rA
rD
rB
rE

 . (36)

Time dependent density variations are only taken into account in the gravitational term of the
momentum balance, while being omitted from all other terms in the momentum, energy and
mass balance. The above density field therefore describes the density for all other terms in both
stationary and transient simulations. Since the density differences are small, however, the reference
densities are approximated by one average reference density:

ρref,A = ρref,D = ρref,B = ρref,E = ρref,avg, (37)

which is assumed to be the density at 60◦C in this research. This value was chosen based on the
temperature profile resulting from the final simulation. As a result, the density becomes constant
in both space and time for all terms except for the gravitational term in the momentum balance.
From here on, ρref,avg is used as this reference density: assumption (36) is from here on applied.

5.2 Mass balance

The transient mass balance (equation (6)) can be rewritten using equation (7). The temperature
and density are assumed to be constant in space within a node. The mass balance over a loop
node j becomes:

Vj ·
dρref,j(t)

dt
= ρref,j(t) ·A · 〈vj,in(t)〉 − ρref,j(t) ·A · 〈vj,out(t)〉.

The second assumption of the Boussinesq approximation states that the transient term ρ′(~r, t)
should be neglected in the mass balance. The density is described by a reference density for the
node and the transient term vanishes:

0 = ρref,j ·A · 〈vj,in(t)〉 − ρref,j ·A · 〈vj,out(t)〉. (38)

Since the cross-sectional area is constant, it follows for every loop node j that the velocity is
constant within the node: 〈vj,in(t)〉 = 〈vj,out(t)〉 = 〈vj(t)〉. If the reference densities are different
for every node, the velocity also differs per node.

Applying assumption (37), however, implies that both the density and the cross-sectional area
are constant over the loop. It therefore follows that the velocity only varies in time: 〈vA(t)〉 =
〈vD(t)〉 = 〈vB(t)〉 = 〈vE(t)〉 = 〈v(t)〉.

5The grid point positions rA, rD, rB , rE are not to be confused with the radius r.
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5.3 Internal energy balance

In different nodes, the net flow of heat φq and the production of internal energy Pu vary. The
production of internal energy only takes place in node A in the form of heat generation due to
fission (denoted by Q). Contrary to the simulation of Dresen [2019], gamma heating is modelled
in the tube wall and is therefore omitted from the production term. The net flow can consist of
flow within the heat exchanger from node B to node C (denoted by φq,H), and flow towards or
from the tube wall adjacent the DLDR water (denoted by φq,D).

According to the Boussinesq approximation, the transient density term should be neglected in the
internal energy balance. Therefore the density is constant within a node and the pressure term
vanishes from equation (8). Combining the above information with the simplified internal energy
balance (equation (8)), the mass flow (equation (7)) and the equation of states (12) gives the
general internal energy balance for the nodes:

ρref,i · V cP d
dt (Ti,out) = ρref,i · πr2〈v(t)〉 · cp (Ti,in(t)− Ti,out(t)) + φq + Pu,

φq = φq,D + φq,H ,
Pu = Q.

(39)

where ρref,i = ρref,avg for the loop nodes j and ρref,i = ρref,C for node C. The velocity and
reference density are assumed to be constant in space over the loop by assumption (37). The
internal energy balances over the nodes in the direction of flow are given below: A,D,B,E and
the heat exchanger node C.

5.3.1 Internal energy balance node A

Node A is the only node in which heat production by fission is relevant. Moreover, heat generation
by friction occurs in every node. Filling in the temperatures the internal energy balance becomes:

ρref,avg · VjcP d
dt (TA(t)) = ρref,avg · πr2〈v(t)〉 · cp (TE(t)− TA(t)) + φq + Pu,

φq = φq,D,A = 2πrl · h1,A · (Tw,A(t)− TA(t)),
Pu = Q,

(40)

in which Vj = πr2l is the node volume that is equal for all loop nodes j. h1,A denotes the heat
transfer coefficient from the uranyl nitrate solution to the tube wall, which is found by combining
the definition for the Nusselt number (equation (19)) with the Nusselt relation for flow in a tube
(equation (30)).

5.3.2 Internal energy balance node D

In node D, only friction and heat exchange with the tube wall are relevant. The energy balance
becomes:

ρref,avg · VjcP d
dt (TD(t)) = ρref,avg · πr2〈v(t)〉 · cp (TA(t)− TD(t)) + φq + Pu,

φq = φq,D,D = 2πrl · h1,D · (Tw,D(t)− TD(t)),
Pu = 0.

(41)

5.3.3 Internal energy balance node B

In node B the only heat exchange is within the heat exchanger. This heat flow is negative because
heat is extracted towards the coolant and is given by equation (34). The internal energy balance
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becomes:

ρref,avg · VjcP d
dt (TB(t)) = ρref,avg · πr2〈v(t)〉 · cp (TD(t)− TB(t)) + φq + Pu,

φq = −φq,H = −UA∆Tln,
Pu = 0.

(42)

Here ∆Tln is given by equation (34) and the total heat transfer coefficient is given by

U =

(
1

h1,B
+
dW
λw

+
1

h1,C

)−1
, (43)

in which the three heat resistances account for respectively the uranyl nitrate solution in node B
as given by equation (30), the MPML tube material (equation (35)) and the coolant in node C
(equation (30)). The surface in the heat exchanger is given by A = 2πrl and the temperature
differences in equation (34) are ∆T0 = TB − Tin,C and ∆TL = TD − Tout,C .

5.3.4 Internal energy balance node E

The balance is analogous to that of node D:

ρref,avg · V cP d
dt (TE(t)) = ρref,avg · πr2〈v(t)〉 · cp (TB(t)− TE(t)) + φq + Pu,

φq = φq,D,E = 2πrl · h1,E · (Tw,E(t)− TE(t)),
Pu = 0.

(44)

5.3.5 Internal energy balance node C

The coolant is heated in two ways: by a positive heat flow from node B and by heat exchange with
the wall of node C. The energy balance becomes:

ρref,C · VC · cP,C d
dt (Tout,C(t)) = ρref,C · π(R2 − (r + d)2)〈vC〉 · cp,C (Tin,C − Tout,C(t))

+φq + Pu,

φq = φq,D,C + φq,H
= 2πRl · h1,C · (Tw,C(t)− Tin,C+Tout,C(t)

2 ) + UA∆Tln,

Pu = 0.

(45)

Note that Tin,C is constant, as it is a parameter and that the cross section used to calculate the
mass flow is equal to π(R2 − (r + d)2), as becomes clear from figure 3-10. The volume of node C
is given by:

VC = π(R2 − (r + d)2)l. (46)

h1,A denotes the heat transfer coefficient from the uranyl nitrate solution to the tube wall, which is
found by combining the definition for the Nusselt number (equation (19)) with the Nusselt relation
for flow in a tube (equation (30)), Here, the Reynolds number is computed using the hydraulic
diameter (equation (10)), which is rewritten as:

Dh =
4 · π(D2

C −D
2
out )

4

π (DC +Dout )
=
D2
C −D2

out

DC +Dout
=

(DC −Dout)(DC +Dout)

DC +Dout
= DC −Dout.
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5.3.6 Internal energy balances over the tube walls

Before deriving the internal energy balances over the tube walls, it is first shown that the heat
resistance of the tube wall is negligible. As shown in figure 2-6, this is denoted by h2 >> h1, h3.
Table 4 shows the different heat transfer coefficients for the cases that h1 and h3 are maximal
according to Dresen [2019]6 and for moderate conditions used in this research. For extreme and
moderate conditions respectively, it follows from table 4 that h2 > 5 · h1, h3 and h2 > 10 · h1, h3.

Conditions Heat transfer coefficient W/(m2K)
φm,C = 0.1(kg/s), T = 90◦C, Tout,C = 30◦C h1 6 · 102

h1,C 2 · 103

h3,hor 1.6 · 103

h3,ver 6
h2 = λt/d 1 · 104

φm,C = 0.01(kg/s) T = 50◦C, Tout,C = 15◦C h1 6 · 102

h1,C 9 · 102

h3,hor 1.0 · 103

h3,ver 6
h2 = λt/d 1 · 104

Table 4: Heat transfer coefficients for extreme and moderate conditions. It
follows that in both cases, h2 >> h1, h3

Since the heat transfer coefficient in the tube wall is at least a factor five larger than the heat
transfer coefficients outside the tube wall, a temperature difference between the inside and the
outside part of the tube wall is restored approximately instantly. Therefore the tube temperature
is assumed to be spatially constant in the radial direction. As a result, the tube wall temperature
is constant in space within a node, varying over time.

Since the tube is a solid material, the mass convection term vanishes from equation (8) and the
internal energy balance over the tube wall surrounding node A becomes:

ρt · Vt(r) · cP,t ddt (Tw,A(t)) = φq + Pu,

φq = 2πrl · h1,hor,A · (TA(t)− Tw,A(t))
−2π(r + d)l · h3,A · (Tw,A(t)− Ts),

Pu = Pgamma(r),

(47)

in which the two heat flow terms are derived from equation (28), h1 is given by equation (30)
and h3,hor,A is given by combining the Nusselt relation for natural convection around a horizontal
cylinder equation (31) with the Nusselt definition (equation (19)). The tube volume Vt(r) is given
by equation (17).

The internal energy balances over the walls surrounding nodes C,D and E are different in three
ways. Firstly, gamma-radiation may be shielded completely or partially. Therefore the gamma
radiation heat production is multiplied by a shielding transmission factor between 0 and 1, stf = 1

6Since Dresen [2019] φm,C = 0.7kg/s is not unattainable in practise, φm,C = 0.1kg/s is regarded as the most
extreme case.
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meaning that all gamma radiation is transmitted and thus no gamma shielding is present. Secondly,
the tube volume of the wall surrounding node C is larger since it has a larger radius R > r. This
also increases the gamma radiation heating. Thirdly, h3 may represent natural convection around
a horizontal cylinder (equation (31)) or vertical cylinder (equation (32)). The balances over the
walls surrounding nodes D,E and C respectively become:

ρt · Vt(r) · cP,t ddt (Tw,D(t)) = φq + Pu,

φq = 2πrl · h1,D · (TD(t)− Tw,D(t))
−2π(r + d)l · h3,ver,D · (Tw,D(t)− Ts),

Pu = stf · Pgamma(r).

(48)

ρt · Vt(r) · cP,t ddt (Tw,E(t)) = φq + Pu,

φq = 2πrl · h1,E · (TE(t)− Tw,E(t))
−2π(r + d)l · h3,ver,E · (Tw,E(t)− Ts),

Pu = stf · Pgamma(r).

(49)

ρt · Vt(R) · cP,t ddt (Tw,C(t)) = φq + Pu,

φq = 2πRl · h1,C · (Tin,C+Tout,C(t)
2 − Tw,C(t))

−2π(R+ d)l · h3,hor,C · (Tw,C(t)− Ts),

Pu = stf · Pgamma(R).

(50)

5.3.7 Negative velocities

In order to simulate a negative flow direction, a number of adjustments must be made to the
internal energy balances over the nodes.

• Temperatures in the convection term change: the node temperature should still be equal to
to outlet temperature, but the inlet temperature is now the temperature on the other side of
the node. The temperature difference in the energy balance for node A, for instance, changes
from (TE(t)− TA(t)) to (TD(t)− TA(t)).

• The velocity becomes the absolute value of the velocity, since the friction term should for
instance always be positive and the direction for convection is taken into account by the
temperature definitions. Other terms such as the Reynolds number also need a positive
velocity value.

• The heat exchanger becomes co-current. That gives ∆T0 = TE−Tin,C and ∆TL = TB−Tout,C
in equation (34).
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The balances for the nodes in the direction of the flow A,E,B,E and C become:

ρref,avg · VjcP d
dt (TA(t)) = ρref,avg · πr2|〈v(t)〉| · cp (TD(t)− TA(t)) + φq + Pu,

φq = φq,D,A = 2πrl · h1,A · (Tw,A(t)− TA(t)),
Pu = Q.

(51)

ρref,avg · V cP d
dt (TE(t)) = ρref,avg · πr2|〈v(t)〉| · cp (TA(t)− TE(t)) + φq + Pu,

φq = φq,D,E = 2πrl · h1,E · (Tw,E(t)− TE(t)),
Pu = 0.

(52)

ρref,avg · VjcP d
dt (TB(t)) = ρref,avg · πr2|〈v(t)〉| · cp (TE(t)− TB(t)) + φq + Pu,

φq = −φq,H = −UA∆Tln,
Pu = 0.

(53)

ρref,avg · VjcP d
dt (TD(t)) = ρref,avg · πr2|〈v(t)〉| · cp (TB(t)− TD(t)) + φq + Pu,

φq = φq,D,D = 2πrl · h1,D · (Tw,D(t)− TD(t)),
Pu = 0.

(54)

ρref,C · VC · cP,C d
dt (Tout,C(t)) = ρref,C · π(R2 − (r + d)2)〈vC〉 · cp,C (Tin,C − Tout,C(t))

+φq + Pu,
φq = φq,D,C + φq,H

= 2πRl · h1,C · (Tw,C(t)− Tin,C+Tout,C(t)
2 ) + UA∆Tln,

Pu = 0,

(55)

where ∆Tln is found from ∆T0 = TE −Tin,C and ∆TL = TB −Tout,C in equation (34). Besides, all
relations dependent on the velocity such as the Reynolds number (equation (18)) and the friction
factor (equation (25)) are found using the absolute value of the velocity.

5.4 Momentum balance

Combining equation (7) for flow of mass and equation (9) for the momentum balance leads to

the following momentum balance for a node j inside the loop. The direction l̂ is defined as the
anti-clockwise direction along the loop. The momentum balance for node j becomes:

ρref,j · Vj
d

dt
(〈vj(t)〉) = (ρref,j−1 − ρref,j) ·A · 〈vj(t)〉2 +

∑
Fl̂. (56)

There are three forces: the gravitational force, the friction force and pressure. Theoretically, the
velocity and these forces work in the ±x̂- and ±ẑ-direction. To simplify the notation, however, the
problem can be made one-dimensional. In order to find the integrated momentum balance over
the loop, all forces are summed in the direction of the loop, since it is a closed system. Therefore,
the forces and velocity are defined along the l̂-axis anti-clockwise along the loop, as depicted in
figure 5-13.

The friction force is given by equation (27) and works in the −l̂ direction in every node. The

gravitational force predominantly works in the vertical parts: in the −l̂ direction in node D and
in the +l̂ direction in node E. In the near-horizontal parts, the gravitational forces depend on the
inclination angle α. Note that the densities in the gravitational terms are the only time-dependent
densities, as prescribed by the Boussinesq approximation. The momentum balances for respectively
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Figure 5-13: The direction of all the forces contributing to the momentum balance.

nodes A,D,B and E become:

ρref,A · Vj ddt (〈vA(t)〉) = (ρref,E − ρref,A) ·A · 〈vA(t)〉2 − fD · 18ρref,A〈vA(t)〉2 · 2πrl
−πr2lg · ρ(TA(t)) · sinα+A (p4 − p1) ,

ρref,D · Vj ddt (〈vD(t)〉) = (ρref,A − ρref,D) ·A · 〈vD(t)〉2 − fD · 18ρref,D〈vD(t)〉2 · 2πrl
−πr2lg · ρ(TD(t)) +A (p1 − p2) ,

ρref,B · Vj ddt (〈vB(t)〉) = (ρref,D − ρref,B) ·A · 〈vB(t)〉2 − fD · 18ρref,B〈vB(t)〉2 · 2πrl
+πr2lg · ρ(TB(t)) · sinα+A (p2 − p3) ,

ρref,E · Vj ddt (〈vE(t)〉) = (ρref,B − ρref,E) ·A · 〈vE(t)〉2 − fD · 18ρref,E〈vE(t)〉2 · 2πrl
+πr2lg · ρ(TE(t)) +A (p3 − p4) ,

(57)

in which the temperature dependent densities ρ(Tj(t)) in the gravitational terms are found by the
equation of states from the Boussinesq approximation (equation (12)). Applying assumption (37),
an average reference density is applied for every node and the velocity thereby becomes constant
in space over the loop. The assumption causes a maximum error of 1.6% in the affected term, as
outlined in appendix B. The four balances become:

ρref,avg · Vj ddt (〈v(t)〉) = −fD · 18ρref,avg〈v(t)〉2 · 2πrl − πr2lg · ρ(TA(t)) · sinα
+A (p4 − p1) ,

ρref,avg · Vj ddt (〈v(t)〉) = −fD · 18ρref,avg〈v(t)〉2 · 2πrl − πr2lg · ρ(TD(t))
+A (p1 − p2) ,

ρref,avg · Vj ddt (〈v(t)〉) = −fD · 18ρref,avg〈v(t)〉2 · 2πrl + πr2lg · ρ(TB(t)) · sinα
+A (p2 − p3) ,

ρref,avg · Vj ddt (〈v(t)〉) = −fD · 18ρref,avg〈v(t)〉2 · 2πrl + πr2lg · ρ(TE(t))
+A (p3 − p4) .

(58)
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The integrated momentum balance over the loop can now be found by adding the above balances.
As a result, only frictional and gravitational terms remain on the right hand side. The cumulative
and frictional terms can be summed to two terms. The total momentum balance over the loop
reduces to:

4 · ρref,avg · Vj ddt (〈v〉(t)) = −fD · 12ρref,avg〈v(t)〉2 · 2πrl
+πr2lg · (ρ(TE(t))− ρ(TD(t)))
+πr2lg · (ρ(TB(t))− ρ(TA(t))) · sinα,

(59)

in which Vj is the volume of one node.

5.4.1 Negative velocities

For negative velocities, the sign of all buoyancy forces switch with respect to the velocity direction,
while the friction force remains in the negative flow direction. When calculating d

dt (〈v〉(t)), the
entire right hand side should then be multiplied by a minus sign, in order to obtain negative
velocity corrections. The momentum balance for negative velocities becomes:

−4 · ρref,avg · Vj ddt (〈v〉(t)) = −fD · 12ρref,avg|〈v(t)〉|2 · 2πrl
+πr2lg · (−ρ(TE(t)) + ρ(TD(t)))
+πr2lg · (−ρ(TB(t)) + ρ(TA(t))) · sinα.

(60)
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6 Numerical method

In this section, a method is outlined to solve the differential equations that were derived in section
5.

6.1 Solving ordinary differential equations

6.1.1 Ordinary differential equations

First order differential equations (ODE’s) are characterised by one independent variable, e.g. t,
and one or more dependent variables. They have the following form (Newman [2013]):

dr

dt
= f(r, t), (61)

where r = (x, y, . . .) and f(r, t) = (fx(r, t), fy(r, t), . . .) are vectors of respectively the dependent
variables and the corresponding (non-)linear functions. A first order one-variable ODE is for
instance given by:

dx

dt
= f(x, t), (62)

and a first order two-variable ODE by:

dx

dt
= fx(x, y, t),

dy

dt
= fy(x, y, t).

Higher order ODE’s have the same form, except that the derivative is of a higher order. The second
and third order ODE are for instance given by respectively:

d2x

dt2
= f

(
x,

dx

dt
, t

)
,

d3x

dt3
= f

(
x,

dx

dt
,

d2x

dt2
, t

)
.

These higher order ODE’s can be solved by writing them as a set of first order ODE’s. The second
order ODE can for instance be rewritten as follows:

dx

dt
= y,

dy

dt
= f(x, y, t).

6.1.2 Runge-Kutta method

The Runge-Kutta method is widely used for solving ODE’s. It covers a set of solution methods.
The different methods are called ’orders’ and indicate the accuracy of the method. Higher order
methods are more complex and more accurate: the m’th order Runge-Kutta method is accurate
to the order hm with h being the step size. The error is of the order O(hm+1) and is caused by
omitting all terms that are of the order O(hm+1) and higher. It is therefore called the truncation
error (Hoogstraten [1985]). When adding the errors over multiple steps, the Runge-Kutta method
is however only accurate to order O(hm−1) and carries an O(hm) error: the cumulative error over
all steps is one order worse in h than it is for each single step (Newman [2013]).

The fourth order has a high accuracy, is sufficiently simple to program and is therefore widely
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used. For an arbitrary number of dependent variables, performing one step of the fourth order
Runge-Kutta method is given by the following set of equations (Newman [2013]):

k1 = h · f(r, t),

k2 = h · f
(

r +
1

2
k1,t +

1

2
h

)
,

k3 = h · f
(

r +
1

2
k2, t+

1

2
h

)
,

k4 = h · f (r + k3, t+ h) ,

r(t+ h) = r(t) +
1

6
(k1 + 2k2 + 2k3 + k4) ,

(63)

in which r and f(r, t) are defined the same as in equation (61). Here, r(t) contains all variable
values at t = t, and r(t+ h) contains the values at the consecutive time step t = t+ h.

A disadvantage of this method, however, is that it is an explicit method which may become unstable
depending on, amongst others, the step size. To illustrate this, fourth order Runge-Kutta is applied
to solving a mass-spring system for varying step sizes in figure 6-14. Clearly the result is divergent
for a step size of 5 seconds and becomes stable and more accurate for smaller step sizes.

Figure 6-14: Mass-spring system solved using fourth order Runge-Kutta method for varying step
sizes. The calculation is unstable for a step size of 5 seconds.

6.1.3 Adaptive Runge-Kutta method

In this section the adaptive fourth order Runge-Kutta method is discussed. The concept of the
method is to adapt the step size in every iteration in such a way, that the step size is as large as
possible while still having the desired accuracy and stability. This reduces the calculation time
in many cases. The key of the method is as follows: every time step, we calculate the error in
performing a step with the old step size. From that error, the desired step size is found with which
the next time step is calculated.

Suppose an estimate x̂(t) of x(t) was accurately found by using a step size h, starting from x̂(t−h).
Before finding the next value x̂(t+h′), we want to find the new step size h′ that causes the desired
error ε′ by taking a step of size h′. In order to do so, we first calculate the error ε that is caused
by taking one step from x̂(t) with the old step size h. The new step size can then be found from
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the latter error ε and the desired accuracy per unit time, which is defined as the ratio between
desired error ε′ and the desired step size h′. It is simply the proportionality constant between the
step size and error that is maintained throughout the calculation:

δ =
ε′

h′
. (64)

The error ε caused by taking one step of size h from x(t) can be found by estimating x(t+ 2h) in
two ways: on the one hand by taking two steps of size h and on the other hand by taking one step
of size 2h starting from x(t). The estimates are denoted x1 and x2 respectively. The error of one
step h in the fourth order Runge-Kutta method is of order h5, so we define ε = c · h5, in which c
is a constant. Taking two steps gives an error 2 · c · h5. The estimate x1, the true value x(t+2h)
and the error are therefore related by:

x(t+ 2h) = x1 + 2 · c · h5,

and similarly for x2 in which one step of error c · (2h)5 is taken:

x(t+ 2h) = x2 + c · (2h)5.

The error ε = c · h5 that is caused by taking one step of size h follows:

ε =
1

30
(x1 − x2) . (65)

In order to find the new desired step size h′, the error ε should become equal to ε’:

ε′ = ch5
(
h′

h

)5

. (66)

By firstly calculating the estimates x1 and x2 using fourth order Runge-Kutta the new step size
can subsequently be found from combining equations (64), (65) and (66). These three equations
can be rewritten into one (Newman [2013]):

h′ = h

(
30hδ

|x1 − x2|

)1/4

. (67)

6.1.4 Multi-variable adaptive Runge-Kutta method

For a set of ODE’s in which there are various dependent variables x, y, ..., a choice has to be
made on how to calculate equation (67). One possibility is to use the most important dependent

variable. Another possibility is to combine them in a common error such as
√
ε2x + ε2y. An even

more accurate method is to ensure that the step size is always sufficiently small for the variable
that changes most rapidly. That can be achieved by finding equation (67) for all the dependent
variables and use the smallest step size h′ as the new step size. For a multiple-variable r = (x, y, . . .)
set of ODE’s, Equation (67) becomes:

h′ = h

(
30hδ

max(|x1 − x2| , |y1 − y2| , . . .)

)1/4

.

A problem occurs in the rare case that the estimates x1 and x2 are identical. To prevent an
inaccurately large step size increase, an upper bound of 2h is used as a rule of thumb:

h′ =

{
h
(

30hδ
max(|x1−x2|,|y1−y2|,...)

)1/4
h′ < 2h

2h h′ > 2h
(68)
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Compared to an ’ordinary’ fourth order Runge-Kutta method, there is another alteration: a while
loop is used instead of a for loop, because the time array is created as the step size is varied.

In total, performing one fourth order adaptive Runge-Kutta step consists of finding the estimates
x1, x2, y1, y2, ... using ordinary fourth order Runge-Kutta method and calculating the new step
size from equation (68).

The total error should then be equal to the accuracy per unit time δ multiplied by the calculated
time: a calculation over ∆t = 1000s with an accuracy per unit time δ = 10−4 ◦C/s is accurate to
0.1◦C. In this research simulations are performed for 1000 seconds with an accuracy per unit time
of at least 1 · 10−5 ◦C/s, which should make the accuracy of the total calculation 10−2◦C. Due to
this high accuracy, the total accuracy is hampered by approximation (37) and not by the Adaptive
Runge-Kutta method.

Since the above described method requires more calculations per time step, adapting the step
size is not helpful if the dependent variables keep fluctuating throughout time. Choosing a small,
non-adaptive step size is in that case more efficient. The adaptive method is however ideal for
a calculation that involves fluctuations in the start and becomes stationary after a while. This
becomes clear from a reduced calculation time when applying the method to these situations.

6.2 Exception handling

In order to maintain the boundary condition (1), an exception is raised if the boundary condition
is violated. Before handling the exception, it is important to understand from where the exception
originates.

As becomes clear from equation (63), the new value of Tout,C(t + h) is calculated as a linear

combination of multiplying the step size h with the differential equation
dTout,C
dt = ... . If the

coolant mass flow and therefore the coolant velocity 〈vC〉 is large, the following convective term
can become so large that the boundary condition is violated:

φm,C,in − φm,C,out
ρref,CV(R−r)cP,C

=
ρC(t)π(R2 − (r + d)2)〈vC〉cp,C (Tin,C − Tout,C(t))

ρref,CV(R−r)cP,C
.

The solution, therefore, is to lower the step size and try again.

The above exception is caught using a try-except-finally structure in Python: the code written in
the ’try’ part is tried. If an exception occurs, the code in the ’except’ block is executed. Lastly
the code in the ’finally’ block is executed, whether or not an exception has occurred. In the case
that this exception occurs, the step size is lowered by a factor 0,7 and the step is tried again.7

6.3 Flowchart and variable names

The flowchart of the final script is displayed in figure 6-15. In order to prevent double variable
names, the following ones are used in the simulation for the radii and variable vector:

• The inner radius r of the loop tubes is denoted by ”radius” in python.

• The inner radius R of the node C tube is denoted by ”Radius” in python.

7The factor 0.7 was chosen through trial and error.
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• The vector r containing all dependent variables is denoted by ”r” in python (equation (61)).

It is further noted that the initial condition for the velocity is set to 10−5 m/s instead of exactly
0 m/s, since a slightly positive value is necessary for calculating the Reynolds number in heat
transfer coefficients. Moreover, the angle α is denoted by ’angle’ in the Python script.
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Figure 6-15: Flowchart of the final script. It consists of a number of definitions, a while loop and
plotting figures.
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7 Evaluating and benchmarking Dresen [2019]

The stationary simulation provided by Dresen [2019] contains a few mistakes that were not noticed
before. The mistakes and their consequences are discussed below.

Moreover, the model of Dresen [2019] is used as a benchmark in two ways: firstly by deliberately
applying the mistakes to the model developed in this research and using the model of Dresen [2019]
as a benchmark. And secondly by improving the model of Dresen [2019] and using the corrected
Matlab script as a benchmark.

Improvements with respect to Dresen [2019]

• For the thermal conductivity of the tube material, Dresen [2019] used the thermal conductiv-
ity of water by assigning both properties the name λw for ’wall’ and ’water’. As the thermal
conductivity of water is more than 10 times smaller than that of zircaloy, the heat resistance
through the tube is simulated too largely.

• In the Reynolds number for node C, Dresen [2019] omits the dynamic viscosity, which de-
creases the Reynolds number with an order 10−4. Therefore the heat transfer coefficient in
node C decreases significantly.

• For the thermal diffusion coefficient of the uranyl nitrate solution, Dresen [2019] initially
assigns the correct value to the variable ’a’. The value is however overwritten by the larger
variable ’a’ in the friction factor. This has no dominant consequences, however, as the
thermal diffusion coefficient is only used for finding the heat transfer coefficient in a tube in
the laminar regime.

• Calculating the shear stress in order to find the friction force for a fluid in a tube, Dresen
[2019] uses τw→f = −fD · 12ρ〈v〉

2 instead of equation (26). This causes the friction force in
the momentum balance being a factor 4 too large, which results in lower velocity values.8

• Dresen [2019] calculates the volume of the concentric tube node C as VC = 3πr2l instead
of VC = πl(R2 − (r + d)2). Therefore the volume of node C is smaller in Dresen [2019]’s
simulation, which alters cooling slightly.

• Dresen [2019] uses slightly wrong values for λw, ρw, aw and cp,w by taking the values for
20◦C instead of 10◦C. This has no significant effect.

All in all, the decreased thermal conductivity of the tube material and the decreased Reynolds
number of the cooling water cause the heat flow to the cooler being simulated too small. This
lowered cooling power elevates temperatures in the loop, which explains why the unrealistically
high cooling water flow φm,C = 0.7kg/s was needed to keep temperatures below 90◦C. Moreover,
the velocity in the loop is simulated too small.

Benchmark 1: Dresen [2019] without improvements

To benchmark the simulation, the above mistakes are deliberately applied to the transient model
as developed in this thesis. Moreover, Tin,C is used instead of

Tin,C+Tout,C
2 in the heat exchanger.

8Moreover, equation (3.10) of Dresen [2019] seems wrong by a factor
√

2, compared to equation (3.9) of Dresen
[2019]. This was however corrected in his Matlab simulations.
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Furthermore, all extensions a-g as proposed in research question 1a-g are omitted from this bench-
mark, except that the model is transient instead of stationary. In other words, the model simulates
the MPML according to the same assumptions as Dresen [2019]. It is therefore a simplified version
of the model developed in this thesis:

(a) Omitting the two vertical nodes from the simulation, simulating 3 nodes instead of five.

(b) Simulating gamma radiation exposure in the fluid instead of in the tube wall.

(c) Simulating no heat exchange with the surrounding water.

(d) Setting the inclination angle of the near-horizontal nodes to α = 0◦.

(e) Simulating only positive flow directions.

(f) Omitting gamma radiation exposure in the non-fission nodes.

(g) Setting the length to l=0.20 m.

When comparing the results, the following temperature definitions of Dresen [2019] apply:

• TA and TB are named respectively T2 and T1.

• The bulk temperature TBulk is defined as the average of temperatures T2 and T1.

• The maximum bulk temperature is equal to T2 = TA.

• The maximum wall temperature is calculated from the bulk temperature as follows:

Tmax,wall = Pgamma(r)/(πDlh1) + TBulk.

As can be seen from the results in table 5, the steady state temperatures match with an error in
temperature less than 2 degrees.

Cooling condition Steady state values Dresen Current simulation Percentual deviation
φm,C = 0.5 (kg/s) Tmax,bulk (◦C) 103.66 104.56 0.86%

Tmax,wall (◦C) 105.82 107.09 1.19%
v (m/s) 0.02206 0.02286 3.50%

φm,C = 0.1 (kg/s) Tmax,bulk (◦C) 106.39 107.53 1.06%
Tmax,wall (◦C) 108.68 110.25 1.42%
v (m/s) 0.02235 0.02327 3.95%

φm,C = 0.01 (kg/s) Tmax,bulk (◦C) 114.98 116.02 0.90%
Tmax,wall (◦C) 117.75 119.22 1.23%
v (m/s) 0.02339 0.02443 4.26%

Table 5: The current ’wrong’ simulation compared to the simulation of Dresen
[2019] for different cooling flows and c = 300 g/L, Tin,C = 10◦C. The current
simulation deliberately contains all mistakes made by Dresen [2019].
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Benchmark 2: Dresen [2019] containing improvements

A second benchmark consists of correcting the Matlab file produced by Dresen [2019] and com-
paring the results to the current model. Again, all extensions from research question 1a-g as are
omitted from the benchmark.

As becomes clear from table 5, the steady state temperatures differ less than 0.5◦C. It is concluded
that the transient model without extensions correctly predicts the temperature and velocity profile
since the same results are predicted from a stationary calculation.

A striking difference with the simulation containing the mistakes of Dresen [2019], is the signifi-
cantly lower steady state temperatures: even for moderate cooling power the maximum tempera-
ture remains well below 90◦C.

Cooling condition Steady state values Dresen Current simulation Percentual deviation
φm,C = 0.5 (kg/s) Tmax,bulk (◦C) 45.00 45.19 0.42%

Tmax,wall (◦C) 46.47 46.55 0.17%
v (m/s) 0.03088 0.03010 -2.59%

φm,C = 0.1 (kg/s) Tmax,bulk (◦C) 51.71 51.71 0.00%
Tmax,wall (◦C) 53.44 53.26 -0.34%
v (m/s) 0.03270 0.03213 -1.78%

φm,C = 0.01 (kg/s) Tmax,bulk (◦C) 60.47 60.85 0.62%
Tmax,wall (◦C) 62.42 62.84 0.67%
v (m/s) 0.03452 0.03488 1.03%

Table 6: Comparing the current simulation to the corrected simulation of
Dresen [2019] for different cooling flows and c = 300 g/L, Tin,C = 10◦C. All
mistakes made in the simulation of Dresen [2019] were corrected.
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8 Results

The simplified transient simulation that is benchmarked in section 7, forms the basis for all ex-
tensions a-g. Following the research questions 1a-g in respective order, the model is gradually
extended cumulatively. The result of every research question is compared to the previous research
question, in order to see the individual effect of the extension of the research question. The com-
plete model containing all extensions is used to answer research questions 2a-d.

In order to see the effect of the first extension, the results of the simplified model are shown in
figure 8-16. The temperature profile is plotted against time, along with the velocity 〈v(t)〉 and
the step size h. The parameters were set to Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α =
0◦, l = 0.20 m and shielding transmission factor = 0. The simulation was started from isothermal
zero-velocity initial conditions.

From here on, the results are shown by plotting all the variables (the temperatures and the ve-
locity) against time. Moreover, the step size h is plotted against time. The figure captions will
consist of four parts:

• A description of the simulation

• An outline of the adaptive Runge-Kutta method: the number of steps, the execution time
and the accuracy per unit time δ (equation (64))

• An outline of the parameter values

• An outline of the steady state variable values and the maximum node temperature throughout
time Tmax,t
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Figure 8-16: Results from the simplified transient simulation as benchmarked in section 7. The
temperatures, velocity and step size h are plotted against time.

Adaptive RK 5534 steps, 5.51 seconds, δ1 = 10−13◦C/s, δ2 = 10−13 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 0◦, l = 0.20 m, stf = 0.
SS results TA = 61.73◦C, TB = 47.99◦C, Tnode=54.86◦C, Tout,C = 11.25◦C, v = 0.03526 m/s
Tmax,t 61.73◦C
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8.1 Optimizing the simulation

8.1.1 Question 1a

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Inclusion of the two vertical nodes in the simulation.

Simulating the fluid and heat fluxes in the vertical parts of the loop gives five temperature nodes
instead of three. The results are displayed in figure 8-17. The results are compared to the model
without extension 1a (figure 8-16).

Although steady state temperatures differ only by a negligible amount of 0.04 ◦C, the flow devel-
opment until t = 100 s differs markedly: the gravitational terms in the momentum balance causing
natural convection now depend on the densities of the vertical nodes D and E. As becomes clear
from the v, TD and TE diagrams below, it takes a period of 25 seconds until a temperature differ-
ence between these nodes has developed. During these 25 seconds the velocity remains zero and
heat accumulates in node A to a temperature of 107◦C. This causes the temperature in node A
to soar and in node B to plummet, until enough heat has entered node D to establish natural
convection.

After 25 seconds, node A has absorbed a lot of heat and node B has cooled down to a temperature
close to Tin,C = 10 ◦C. The flow slowly starts to develop, which leads to an extreme temperature
difference between nodes D and E because the warm fluid flows into node D and the cold fluid
into E. This becomes clear from the TD maximum and TE minimum at t = 35 s. These extreme
temperatures generate a peak in the velocity after which a steady state balance is accomplished.
Clearly, the temperature peak rises above 90◦C.

To conclude, inclusion of the two vertical nodes in the simulation unveils a temperature peak
Tmax >90◦C in the first hundred seconds when activating the setup from zero-velocity, isothermal
initial conditions. Should this simulation accurately represent reality, a uranyl nitrate concentra-
tion of 310 g/L is not feasible.
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Figure 8-17: The results for research question 1a: The first 200 seconds are shown for the simulation
extended to 5 nodes. When continuing the simulation to 1000 s, the following steady results are
obtained:

Adaptive RK 1071 steps, 1.75 seconds, δ1 = 10−8◦C/s, δ2 = 10−8 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 0◦, l = 0.20 m, stf = 0.

SS results
TA = 61.69◦C, TD = 61.69◦C, TB = 47.99◦C, TE = 47.99◦C,
Tout,C = 11.26◦C, v = 0.03536 m/s

Tmax,t 106.97◦C
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8.1.2 Question 1b

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Gamma radiation exposure in the tube wall instead of in the fluid.

The results are shown in figure 8-18 and are compared to the model without this extension (figure
8-17). Removing the gamma radiation exposure Pgamma from the internal energy balance in node
A and adding it to the internal energy balance over the tube wall surrounding node A, significantly
lowers the energy peak from Tmax = 107◦C to Tmax = 88.6◦C 9. Steady state temperatures, how-
ever, remain exactly the same. Clearly, adding Pgamma to the energy balance inside the node as
done by Dresen [2019] is an accurate approximation for steady state values, since it predicts the
same results. It does lead to an overestimated peak, however.

The lowered peak is manifested by a delay in gamma heating of node A: as becomes clear from
the (TA, t) and (Tw,A, t)-diagram in figure 8-18, both the tube wall and the fluid are heated. The
heat is distributed over the node and the wall. Therefore less heat accumulates in node A during
the first 25 seconds.

To conclude, feasibility predictions are improved by simulating gamma radiation exposure in the
tube wall instead of in the node, because the temperature peak is lowered. A concentration of 310
g/L is now anticipated to be feasible.

9This becomes clear from the (TA, t)-diagrams in figures 8-17 and 8-18, as well as from the TA and Tmax,t values
in the figure descriptions.
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Figure 8-18: The results for research question 1b: Simulating gamma radiation exposure in the
tube wall of node A instead of in the node itself.

Adaptive RK 416 steps, 1.23 seconds, δ1 = 10−6◦C/s, δ2 = 10−6 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 0◦, l = 0.20 m, stf = 0.

SS results
TA = 61.69◦C, TD = 61.69◦C, TB = 47.99◦C, TE = 47.99◦C,
Tout,C = 11.26◦C, v = 0.03536 m/s, Tw,A = 70.45◦C,
Tw,D = 61.69◦C, Tw,E = 47.99◦C, Tw,C = 10.63◦C.

Tmax,t 88.56◦C
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8.1.3 Question 1c

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Heat exchange with the surrounding water.

The results are shown in figure 8-19 and are compared below to the model without this extension
(figure 8-18). Simulating heat exchange with the surrounding water significantly improves feasibil-
ity predictions: the temperature peak in node A is reduced by 21◦C to only Tmax,t =67.2◦C, and
the maximum steady state temperature is diminished by 14◦C to TA,SS =47.4◦C.10

Since the coolant wall and node temperature are below the surrounding temperature Ts =40◦C,
these temperatures have increased by respectively 18 and 2.3◦C.11 The coolant itself remains at
low temperature due to its constantly renewed inlet flow, while the wall is constantly heated by
the surroundings.

All other temperatures were above 40◦C and therefore lost heat to the surrounding water because
of a negative temperature difference.

To conclude, feasibility predictions are further improved by simulating heat exchange with the
DLDR water, as the temperature peak and steady state temperatures significantly decrease.

10The temperature peak and maximum steady state temperature become clear from the (TA, t)-diagrams in figures
8-18 and 8-19, as well as from the TA and Tmax,t values in the figure descriptions.

11This becomes clear from the (Tout,C , t)-diagrams in figures 8-18 and 8-19.
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Figure 8-19: The results for research question 1c: Simulating heat exchange with the surrounding
DLDR water through natural convection.

Adaptive RK 336 steps, 1.1 seconds, δ1 = 10−5◦C/s, δ2 = 10−5 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 0◦, l = 0.20 m, stf = 0.

SS results
TA = 47.41◦C, TD = 45.15◦C, TB = 32.34◦C, TE = 34.69◦C,
Tout,C = 13.61◦C, v = 0.02084 m/s, Tw,A = 45.18◦C, Tw,D = 42.41◦C,
Tw,E = 37.52◦C, Tw,C = 28.39◦C

Tmax,t 67.18◦C

To benchmark the correlation by Xian et al. [2015] for natural convection around vertical
cylinders, it is replaced with that of Le Fevre (equation (33)) in figure 8-20. As becomes clear
from figures 8-19 and 8-20, the temperature peak is exactly the same. The maximum difference in
steady state temperatures is found in the wall temperatures of the vertical nodes. This temperature
difference is only 0.05◦C, however. The accuracy of the Xian et al. [2015] correlation is thus
confirmed, since equation (33) is a widely used and recommended correlation.
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Figure 8-20: Applying correlation (33) istead of (32) for natural convection around vertical cylin-
ders.

Adaptive RK 329 steps, 1.03 seconds, δ1 = 10−5◦C/s, δ2 = 10−5 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 0◦, l = 0.20 m, stf = 0.

SS results
TA = 47.46◦C, TD = 45.12◦C, TB = 32.29◦C, TE = 34.71◦C,
Tout,C = 13.61◦C, v = 0.02075 m/s, Tw,A = 45.19◦C,
Tw,D = 42.31◦C, Tw,E = 37.62◦C, Tw,C = 28.39◦C

Tmax,t 67.18◦C
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8.1.4 Question 1d

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? The inclination angle of the near-horizontal nodes.

As depicted in figure 8-22, simulating the near-horizontal nodes at a 2◦ angle lowers the tempera-
ture peak in node A by 12◦C to only Tmax,t =56.5◦C, while the maximum steady state temperature
is only reduced by 0.2◦C.12 The lowered peak is due to a quick flow development, as depicted in the
velocity diagram of figure figure 8-22. The flow develops immediately from t=0, which is 25 sec-
onds earlier than the horizontal case as clearly visible in figure 8-17. This is because a temperature
difference between the near-horizontal nodes now also causes a buoyancy force in the momentum
balance. As heat accumulates in node A and heat is extracted from node B from the start, natural
convection is induced from the beginning.

Steady state, however, this extra gravitational term is negligible compared to the gravitational
terms in the vertical parts. Long-term temperatures are therefore not significantly affected. As
depicted in figure 8-21, increasing the angle further to 45◦ lowers the temperature peak Tmax,t by
10◦C but has no significant effect on the steady state temperatures. Even though larger angles
seem advantageous, a larger angle allows for smaller side lengths of the loop (equation (2)). To
maximize the loop volume and thereby the production rate (equation (15)), a 2◦ angle suffices.

To conclude, feasibility predictions are further improved by simulating a 2◦ inclination angle as
the temperature peak is lowered.

Figure 8-21: The results for research question 1d: The maximum temperature throughout time,
the maximum steady state temperature and the final velocity are plotted against varying angles
from 0◦ to 44◦.

12The temperature peak and maximum steady state temperature become clear from the (TA, t)-diagrams in figures
8-19 and 8-23, as well as from the TA and Tmax,t values in the figure descriptions.
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Figure 8-22: The results for research question 1d: Simulating the near-horizontal nodes at a 2◦

angle. The first 200 seconds are shown to illustrate the effect on the temperature peak. When
continuing the simulation to 1000 s, the following steady results are obtained:

Adaptive RK 363 steps, 1.73 seconds, δ1 = 10−6◦C/s, δ2 = 10−6 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 2◦, l = 0.20 m, stf = 0.

SS results
TA = 47.22◦C, TD = 45.05◦C, TB = 32.53◦C, TE = 34.78◦C,
Tout,C = 13.61◦C, v = 0.02149 m/s, Tw,A = 45.14◦C, Tw,D = 42.39◦C,
Tw,E = 37.55◦C, Tw,C = 28.39◦C

Tmax,t 56.28◦C
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8.1.5 Question 1e

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Positive and negative flow directions.

Extending the simulation to both positive and negative velocities is useful to model the behaviour
close to zero-velocity. To test the behaviour of the simulation, the α =2◦ situation is simulated
using the new script that allows negative velocities, as depicted in figure 8-23. The result is exactly
equal to figure 8-22 and is therefore accurate for positive velocities.

Subsequently, it is interesting how the flow develops for an angle of α =-2◦. The results are dis-
played in figure 8-24. As becomes clear from comparing figures 8-23 and 8-24, the velocity sign
has switched and the peak and steady state temperatures differ at most 0.2◦C.13 The small differ-
ence in temperature can be explained by the fact that the heat exchanger becomes co-current for
negative velocities, as opposed to the counter-current heat exchanger that has a stronger cooling
power. Another difference is that the temperature profiles in nodes D and E have switched, witch
is because the two nodes have exchanged position before and after the cooler.

It is concluded that the model is accurate for both positive and negative velocities. Moreover, the
above proves that an inclination angle of α = ±2◦ forces the flow into either positive or negative
direction.

13The temperature peak and maximum steady state temperature become clear from the (TA, t)-diagrams in figures
8-23 and 8-24, as well as from the TA and Tmax,t values in the figure descriptions.
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Figure 8-23: The results for research question 1e: Using the script allowing for negative velocities,
simulating the α =2◦ situation.

Adaptive RK 363 steps, 1.45 seconds, δ1 = 10−6◦C/s, δ2 = 10−6 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 2◦, l = 0.20 m, stf = 0.

SS results
TA = 47.22◦C, TD = 45.05◦C, TB = 32.53◦C, TE = 34.78◦C,
Tout,C = 13.61◦C, v = 0.02149 m/s, Tw,A = 45.14◦C,
Tw,D = 42.39◦C, Tw,E = 37.55◦C, Tw,C = 28.39◦C

Tmax,t 56.28◦C
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Figure 8-24: The results for research question 1e: Using the script allowing for negative velocities,
simulating the α =-2◦ situation.

Adaptive RK 456 steps, 1.75 seconds, δ1 = 10−7◦C/s, δ2 = 10−7 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, angle = -2◦, l = 0.20 m, stf = 1.

SS results
TA = 47.36◦C, TD = 34.94◦C, TB = 32.76◦C, TE = 45.14◦C,
Tout,C = 13.6◦C, v = -0.02140 m/s, Tw,A = 45.17◦C,
Tw,D = 37.61◦C, Tw,E = 42.42◦C, Tw,C = 28.39◦C

Tmax,t 56.31◦C
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8.1.6 Question 1f

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Gamma radiation exposure in the non-fission nodes.

In figure 8-25, the maximum temperature in all nodes throughout time is plotted against varying
shielding transmission factors for the non-fission nodes C,D and E. The maximum node steady
state temperature is also plotted against varying shielding transmission factors. A transmission
factor of 0 means that shielding blocks all gamma-radiation in nodes C,D,E, in contrast to 1 when
nodes C,D and E are exposed to as much gamma radiation as node A.

Clearly, shielding of gamma radiation is not necessary to maintain safe temperatures T<90◦C: a
maximum temperature difference of 3.3◦C can be obtained from shielding. Cooling to the sur-
rounding water is fundamental to this result. As gamma radiation exposure rises, the majority of
the added heat leaks away to the surroundings.

The displayed profile in figure 8-25 can be understood from the two linear relations: the heat
production in the relevant tube walls is a linear function of the shielding transmission factor; the
heat flow from the wall to the node is linearly related to the wall temperature (equation (28)). As
the wall temperatures Tw,D(t), Tw,C(t) and Tw,E(t) increase linearly with the transmission factor,
so does the heat flow from the wall to the node.

To conclude, simulating gamma radiation in the non-fission nodes worsens the feasibility predic-
tion. The effect is small, however, due to a strong cooling power towards the surroundings and the
heat exchanger.

Figure 8-25: The results for research question 1f: The maximum temperature in all nodes through-
out time and the maximum steady state temperature plotted against varying shielding transmission
factors for nodes C,D,E. The other parameters were Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L,
α = 2◦, l = 0.20 m.
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8.1.7 Question 1g

Extending the simplified stationary simulation to a transient model, to what extent does incorpora-
tion of the following aspect affect the feasibility predictions for the 99Molybdenum Producing Mini
Loop? Adjusted size for placement inside the DLDR.

As becomes clear from the (Tmax,t, t)-diagram of figure 8-26, varying the tube length does not
bring temperatures above 65◦C: the feasibility at c = 310 g/L is not hampered. Since it follows
from equation (2) that l = 0.11m is the largest shape that fits inside the DLDR for an angle α =2◦,
this is chosen as the length for the design.

Figure 8-26: The results for research question 1g: Plotting steady state node temperatures, steady
state wall temperatures, maximum node temperature throughout time and velocity against varying
length for l >0.07m. The other parameters were Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α
= 2◦, shielding transmission factor = 1.
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8.1.8 Optimized model

Simulating 5 nodes, incorporating gamma radiation and heat exchange with the surrounding water
in the internal energy balance over the tube wall, and allowing for positive and negative velocities,
have further ameliorated feasibility predictions compared to the simplified model (figure 8-16).

To ensure a positive velocity while still maintaining a large volume fitting in the DLDR14, the
angle is set to α =2◦ and the length to l=0.11 m. Gamma radiation shielding is not necessary and
is even challenging to implement, as outlined in section 3.4. All shielding transmission factors are
therefore set to 1.

The results of the final model are shown in figure 8-27. The steady state values of this simulation
are used as initial conditions for emergency simulations in research questions 2a-d.

14An increasingly large angle restricts the MPML length l, as becomes clear from equation (2).
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Figure 8-27: Plotting temperature and velocity development for the optimized model including all
extensions from research question 1.

Adaptive RK 358 steps, 1.26 seconds, δ1 = 10−5◦C/s, δ2 = 10−5 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, α = 2◦, l = 0.11 m, stf = 1.

SS results
TA = 47.13◦C, TD = 46.9◦C, TB = 35.91◦C, TE = 38.84◦C,
Tout,C = 12.59◦C, v = 0.01758 m/s, Tw,A = 45.18◦C,
Tw,D = 46.54◦C, Tw,E = 43.53◦C, Tw,C = 28.96◦C.

Tmax,t 53.48◦C

8.2 Safety

8.2.1 Question 2a

Applying the extended simulation, how does the following emergency case affect the safety of the
MPML? A defect cooling pump causes the cooling to solely rely on heat flow to the surrounding
water.

To simulate the effects of a defect cooling pump, the steady state results of the optimized model
8-27 are used as initial conditions, while deactivating the cooling pump as outlined in section 1.5.
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Cooling solely relies on heat flow to the surrounding water now. As depicted in for instance the
(TA, t)- and (Tout,C , t)-diagrams of figure 8-28, temperatures increase from steady state conditions,
especially in node C. Due to heat exchange with the surrounding at Ts = 40◦C, however, the
wall of node C remains below 46◦C and node C does not become warmer than 83.1◦C. Since the
temperature difference between nodes D and E diminishes to 4◦C, natural convection becomes
weak and the velocity drops.

To conclude, the heat exchanger does surprisingly not seem to be necessary for safe steady state
operation since temperatures remain safely below 84◦C. The MPML remains safe.

Figure 8-28: The results for research question 2a: Simulating temperature and velocity development
starting from steady state conditions and defect cooling pump at t=0.

Adaptive RK N = 5000 steps, h=0.2 s, 3.57 seconds,
Parameters Tin,C = 10◦C, φm,C = 10−20 kg/s, c = 310 g/L, angle = 2◦, l = 0.11 m, stf = 1

SS results
TA = 57.97◦C, TD = 53.93◦C, TB = 51.91◦C, TE = 49.98◦C,
Tout,C = 83.76◦C, v = 0.0105 m/s, Tw,A = 47.16◦C,
Tw,D = 48.41◦C, Tw,E = 47.34◦C, Tw,C = 45.68◦C

Tmax,t 83.76◦C
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8.2.2 Question 2b

Applying the extended simulation, how does the following emergency case affect the safety of the
MPML? An empty DLDR causes the cooling to solely rely on the heat exchanger.

As becomes clear from the results in figure 8-29, temperatures remain safe in the emergency case
that an empty DLDR causes the cooling to solely rely on active cooling by the heat exchanger.

At t=0 the DLDR is considered empty. Firstly the three wall temperatures Tw,A, Tw,D and Tw,E
start rising since the walls keep being heated by gamma radiation while heat can no longer escape
to the surrounding water. Simultaneously, the corresponding node temperatures TA, TD and TE
absorb heat from the walls. A stationary situation is reached after 400 seconds.

Since the wall of node C was heated by the surrounding water for t <0, the temperatures Tw,C
and Tout,C start declining now that this source of heat has vanished. Shortly after, the node C
temperature Tout,C slightly increases again as the heat convection coming from node D grows.

Even though all the node temperatures remain safely below 90◦C, the wall temperature node D
becomes Tw,D = 87.71◦C. This poses no danger, however, since it is only the fluids that are required
to remain below 90◦C.

To conclude, heat exchange with the surrounding DLDR water is not needed for safe steady state
operation since temperatures remain safely below 81◦C. The MPML remains safe.

58



Figure 8-29: The results for research question 2b: Simulating the emergency case in which an
empty DLDR prevents heat exchange with the surroundings.

Adaptive RK 314 steps, 1.31 seconds, δ1 = 10−5◦C/s, δ2 = 10−5 m/s2

Parameters Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, angle = 2◦, l = 0.11 m, stf = 1

SS results
TA = 77.81◦C, TD = 80.58◦C, TB = 67.63◦C, TE = 70.4◦C,
Tout,C = 11.79◦C, v = 0.03596 m/s, Tw,A = 84.95◦C,
Tw,D = 87.71◦C, Tw,E = 77.53◦C, Tw,C = 15.83◦C

Tmax,t 80.58◦C

8.2.3 Question 2c

Applying the extended simulation, how does the following emergency case affect the safety of the
MPML? A defect cooling pump and an empty DLDR cause accumulation of heat in the loop.

In this section the very rare emergency scenario is simulated in which the DLDR is suddenly empty
and the cooling pump becomes defect simultaneously, starting from steady state flow (figure 8-27).
The results are shown in figure 8-30. As outlined in section 6 the adaptive method is only beneficial
if the system reaches a steady state equilibrium. That is not the case here. Therefore non-adaptive
Runge-Kutta is applied.
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The loop is no longer cooled, leading to accumulation of heat. As depicted in 8-30 the node that
firstly rises to the critical temperature 90◦C, is the uranyl nitrate solution in node A. Starting
from the instantaneous event at t = 0, a period of hundred seconds remains to block the neutron
and gamma flux or extract the uranyl nitrate solution out of the MPML.

To conclude, a defect cooling pump and an empty DLDR require a shut down within 100 seconds.
If this is feasible, then the safety of the setup remains intact.

Figure 8-30: The results for research question 2c: An empty DLDR and defect cooling pump cause
heat accumulation in the loop. The parameters were Tin,C = 10◦C, φm,C = 10−20 kg/s, c = 310
g/L, angle = 2◦, l = 0.11 m, shielding transmission factor = 1. Non-adaptive Runke Kutta method
is applied since the result does not become stationary.
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8.2.4 Question 2d

Applying the extended simulation, how does the following emergency case affect the safety of the
MPML? An increased neutron flux causes heat production by fission to rise.

In the emergency case that the reactor power increases, for instance by cold water flowing through
the reactor core, an increased neutron and gamma flux stimulate the heat production by fission
and gamma radiation. From 8-31 it is clear that temperatures remain safely below T < 90◦C,
even for the extremely unlikely case that the neutron and gamma flux would become six times
larger. The latter situation is physically not viable in the Hoger Onderwijs Reactor, which makes
an increased reactor power a harmless situation.

To conclude, an increased reactor power is no emergency case and does not affect the safety of the
MPML.

Figure 8-31: The results for research question 2d: Plotting steady state temperatures, maximum
node temperatures throughout time and velocity against the multiplication factor for increased
gamma and neutron flux. A factor of 2 denotes doubled heat production by fission and gamma
radiation. The parameters were Tin,C = 10◦C, φm,C = 0.01 kg/s, c = 310 g/L, angle = 2◦, l =
0.11 m, shielding transmission factor = 1.
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9 Conclusions

This research focused on correcting and extending the stationary simulation of Dresen [2019] in
order to investigate feasibility and safety aspects.

Before extending the simulation, the stationary model of Dresen [2019] was corrected. This sig-
nificantly improved feasibility predictions: allowing for a higher concentration 310 g/L instead of
236 g/L, while requiring a significantly lower cooling power. This result was confirmed by both
the corrected stationary Matlab simulation of Dresen [2019] and the transient Python simulation
of this research.

Extensions

Extending the benchmark to a simulation including the vertical nodes unveiled the appearance of
a temperature peak in the first 100 seconds. Starting from the benchmark and adding an extension
step by step, the effect of every extra extension on the steady state and peak temperature is shown
in table 7. It is concluded that extension a) is necessary to discover the temperature peak and
extensions b), c) and d) are necessary for lowering it. For steady state temperatures, the only
significant change was extension c). Extensions f) and g) only had a small effect on the feasibility
and e) confirmed that the inclination angle forces the flow into either positive or negative direction.

Research question Effect on peak temperature Effect on maximum SS temperature
a) Inclusion of the two vertical nodes in the simulation +45.3◦C 0.0◦C
b) Gamma radiation exposure in the tube wall -18.4◦C 0.0◦C
c) Heat exchange with surrounding water -21.4◦C -14.5◦C
d) The inclination angle α = 2◦ of the near-horizontal nodes -10.9◦C -0.2◦C
e) Positive and negative flow directions 0.0◦C ±0.2◦C
f) Gamma radiation exposure in the non-fission nodes +0.3◦C +3.3◦C
g) Shortening the length from l=0.20 m to l=0.11 m -3.1◦C -2.8◦C

Table 7: The effect of different extensions on the peak and maximum steady
state temperature.

Important to note, is that the extensions were added cumulatively, meaning that all extensions
a-d were for instance also incorporated in the simulation of question e. The results of table 7 are
therefore not absolute: without cooling towards the surrounding water, for instance, it follows from
question 2b) that removing the gamma shielding does lead to significantly higher temperatures.

Feasibility

The optimized model fits inside the DLDR with a length l = 0.11 m and an inclination angle of 2◦.
At c = 310 g/L, φm,C = 0.01 kg/s and Tin,C = 10◦ the maximum steady state temperature and
peak temperature are respectively 47.1◦C and 53.5◦C. Since 310 g/L is the maximum concentration
possible for effective 99Molybdenum extraction and T < 90◦C is the feasibility requirement, the
corrections and extensions have led to promising results.

Safety

Applying the optimized model to emergency cases showed that safe temperatures can be maintained
even in the extreme conditions of a defect cooling pump, an empty DLDR or an increased reactor
power. If the first two occur simultaneously, a period of 100 seconds is available to safely shut
down the system.
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10 Shortcomings and recommendations

Shortcomings

1. Heat exchange with the surrounding water is more complex than assumed here for four
reasons. Firstly, natural convection is simulated as though the loop is placed in a water pool
without the DLDR. In practise the natural convection flow within the DLDR could be more
complex, for instance by upward flow in the middle and downward flow along the sides of the
DLDR. And the heat flow out of the DLDR could cause an upward natural convection around
the DLDR. Secondly, figure 3-11 shows that the DLDR is surrounded by two boxes and the
reactor reactor core, which could decrease heat transfer to the pool. Thirdly, the DLDR fluid
flows slowly which increases cooling of the loop. Lastly, heating caused by neutron blocking is
not taken into account. As the shielding should not confine natural convection in the DLDR,
the shielding is applied close to the loop (figure 3-11). This could reduce cooling towards the
surroundings.

2. The corners of the loop have been omitted from the simulation. Including them in the
internal energy balance increases accuracy but does not lead to significant changes since the
heat production and heat exchange is small in these sections due to their small volume.
Including them in the momentum balance slightly increases friction, thereby lowering the
velocity. A slightly decreased velocity does not lead to significant temperature differences,
however, as depicted in figure 8-26.

3. Solving the wall temperature of node B would enable simulation of gamma exposure in this
node, as would it more accurately predict heat flow in the heat exchanger.

4. Natural convection around vertical cylinders is not taken into account for Gr < 108. Instead,
conduction is assumed in this range. If natural convection were included, however, cooling
towards the surroundings would slightly increase for small lengths l<7mm (figure 8-26).

To what extent do these shortcomings affect the results? Shortcoming 2) brings no significant
temperature changes and 3) should have no significant effect either, as gamma exposure to the
other nodes had no significant effect already. Shortcoming 4) makes the simulation a conservative
estimate of the temperatures for low Grashof numbers. If natural convection is included in this
region, temperatures would further decrease.

Shortcoming 1) could in the worst case scenario mean that the cooling towards the surroundings
is heavily overestimated. From research question 2b), however, it follows that heat exchange with
the DLDR water is not necessary for safe temperatures so the feasibility of c = 310 g/L remains
true even for this worst case. Emergency cases would be worsened, although not to an existential
threat: from question 2c) it follows that a short period is available to shut down the reactor if
the cooling pump should suddenly stop. A safe handling of emergency cases should therefore still
possible.

Recommendations

It is recommended to further optimize the current simulation and investigate various other aspects
of the loop. Optimizations include:

1. Improving upon the most important shortcomings by more accurately simulating the heat ex-
change with the surrounding water and by solving the wall temperature of node B throughout
time.
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2. Dividing the loop into more nodes. This would in the most simple form consist of adding a
temperature variable and an internal energy balance for every extra node. Doing so would
increase the accuracy of the assumption Tnode = Tout,node.

3. While the velocity is assumed to be the same for every node in this research, the fluid flow
is in practise expected to accelerate and decelerate in the vertical nodes. It is therefore
recommended to add a velocity variable and a transient momentum balance for every node.

4. Maximizing the volume: the length of the vertical and horizontal tubes was shortened from
0.2 to 0.11 m in this research. Increasing the horizontal tube length until the loop volume is
0.5L would maximize 99Molybdenum production.

In addition, examination of the following aspects is recommended:

1. The flowing DLDR water could function as a heat exchanger besides filtering contamination.
This heat exchange setup as designed by Pendse [2018] is displayed in figure 10-32.

2. Investigating the possibility for neutron exposure on a vertical node gives perspective for a
Multi-MPML setup. If possible, it would enable placement of multiple loops in a row.

3. Investigating the effect of placement farther from the reactor core additionally gives perspec-
tive for a larger setup. A lower neutron flux is expected to reduce the reaction rate.

4. Examining the pressure is necessary for safety, because a uranyl nitrate solution exposed
to radiation might trigger the formation of gasses such as NOx, NO, H2 and O2. Besides,
additional margin could be reached by elevating the pressure and thereby increasing the
boiling point of the aqueous solution.

5. Elgin [2014] derived that the uranyl nitrate concentration is limited by the extraction of
99Molybdenum: the maximum possible value is 310 g/L. Since temperatures remain be-
low 55◦C for this concentration, extraction of molybdenum is considered the limiting factor
for the uranyl nitrate concentration. Extraction of 99Molybdenum therefore needs further
exploration to investigate whether even higher concentrations are feasible.

6. As outlined by Pendse [2018], the neutron flux considered is based on Huisman [2016] and
does not consider any interaction of neutrons with water. The current MPML design suggests
roughly 90 mm of water between the reactor core and the loop. It is therefore recommended
to incorporate this interaction in order to more accurately predict the neutron flux and the
reaction rate.

Figure 10-32: The cooling system as designed by Pendse [2018].
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Appendices

A Conduction around a cylinder

Heat transfer between the loop and the surroundings is described by natural convection. An
exception occurs when the temperature difference between the loop and the surroundings is small.
If the temperature difference does not cause a buoyancy force large enough to conquer the viscous
force, then natural convection does not occur. Heat transfer between a cylinder and a stationary
surrounding is then described by conduction. The Nusselt number for this situation can be found
by recognizing and combining the following:

• Heat flow in radial direction is assumed to be constant, since the radius is small compared
to the length l >> r:

A · φ′′q = K, (69)

in which φ′′q [J/(m2s)] is the heat flux and A = 2πrl is the surface area between cylinder and
the water. K is a constant.

• Heat flux by conduction is described by Fourier’s law:

φ′′q = −λ∂T
∂r

, (70)

where λ [W/(mK)] is the thermal conductivity.

• At the outer radius of the cylinder, the temperature is equal to the wall temperature of the
cylinder. Far from the cylinder (for instance at a 10 meters distance), the temperature is
assumed to be equal to the water temperature of the pool.

r = Rout : T = Tw
r = 10m : T = 40◦C

• Heat flux is in general given by:
φ′′q = h∆T. (71)

Substituting equation (70) into (69), integrating and solving for the given boundary conditions
and comparing to equation (19) substituted into (71), gives Nu = 0.26.

B Consequences for the momentum balance

In this section, the effect of the assumption ρref,j = ρref,avg = (ρref,A + ρref,D + ρref,B + ρref,E) /4
is investigated.15

It is first noted that ρref,A = ρref,D = ρref,B = ρref,E is not only an assumption but is exactly
true if the simulation starts from isothermal initial conditions and the Boussinesq approximation
is applied.

The effect of the approximation is calculated for the case that the simulation is initiated from
non-isothermal conditions.

15’j’ denotes the nodes A,D,B and E and ρref,j = ρref,A = ρref,D = ρref,B = ρref,E .
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With a coolant temperature Tin,C = 30◦C and the maximum temperature Tmax = 90◦C as as-
sumed by Dresen [2019], steady state temperatures in nodes A,D,B and E could in a worst case
be respectively equal to 90, 70, 50 and 30◦C. This scenario is given the name ’I’ and is defined by
the following reference densities [kg/m3] (Janssen and Warmoeskerken [1987]):

ρ0,I(~r) =


965.34
977.93
988.07
995.68

 , ~r =


rA
rD
rB
rE

 .

The average reference density is now equal to ρref,avg = 981.76kg/m3. In order to investigate
the effect of the assumption on situation I, this average reference density ρref,avg = 981.76kg/m3

is used to approximate two other hypothetical situations named ’II’ and ’III’ that are defined by
their reference densities [kg/m3]:

ρ0,II(~r) =


965.34
965.34
965.34
965.34

 , ρ0,III(~r) =


995.68
995.68
995.68
995.68

 .

Neglecting the inclination angle, the total momentum balance over the loop (equation (60)) can
be rewritten as follows:

d

dt
(〈v〉(t)) =

g (ρE(t)− ρD(t))

4 · ρref
−
f · 12 〈v(t)〉2 · 2πrl

4 · πr2l
, (B.1)

in which only the first term is significantly affected by the choice of reference density. It is found
that the error in this term that is caused by using ρref,j = ρref,avg = 981.76kg/m3 to approximate
situations II and III are respectively 1.66% and 1.42% compared to using the true densities.

ρref,j = ρref,avg = 981.76kg/m3 is a better approximation for case I than for II and III, since
it is the average of the densities of case I. When approximating case I using ρref,j = ρref,avg =
981.76kg/m3, the error in the first term caused by this approximation is therefore even smaller
than 1.66%.

The simulation of this research resembles case I but has smaller temperature and density differences.
Therefore the error in the first term of equation (B.1) becomes even smaller for this research, and
the assumption is accurate to apply.
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C Python code

1 ### Applying Adaptive Runge -Kutta to the MPML

2 #Allowing for negative velocities

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import time

6 start_time = time.time()

7

8

9

10 ### Parameters

11 c = 310 #[g/L]

12 T_inC = 10

13 phi_mC = 0.01

14 l = 0.11

15 shielding_tf = 1

16 angle = 2

17

18

19

20 ### Material Properties

21 #Properties of uranyl nitrate solution

22 rho0 = 1330.6

23 cp = 2905.5

24 Lambda = 0.665

25 a = Lambda /(rho0*cp)

26 beta = 0.000523

27 M = 394.04

28 c_mol = c/M

29 def mu(T,c_mol):

30 mu0 = mu_w(T)

31 A= -0.1687

32 B=0.7904

33 return mu0 *(1+A*np.sqrt(c_mol)+B*c_mol)

34

35 def Pr(T,c_mol):

36 return mu(T,c_mol)*cp/Lambda

37

38 def rho(T):

39 rho_ref0 = 1330.6

40 T_ref0 = 60

41 return rho_ref0 - rho_ref0*beta*(T-T_ref0)

42

43 #Properties of zircaloy

44 rho_t = 6.55e3

45 eps = 1.5e-6 #effective (not relative) roughness

46 Lambda_t = 21.5

47 cp_t = 285

48

49 #Properties of the coolant water

50 rho_w = 999.73

51 cp_w = 4203

52 Lambda_w = 0.574

53 a_w = 0.138e-6

54 def mu_w(T):

55 A=1.1709

56 B=0.001827

57 C=89.93

58 mu_20 = 1.0020e-3

59 return mu_20 *10**((A*(20-T)-B*(T-20) **2)/(T+C))
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60 def Pr_w(T):

61 return mu_w(T)*cp_w/Lambda_w

62

63 #Properties of surrounding

64 T_s = 40

65 Lambda_s = 0.6274

66 rho_s = 992.95

67 cp_s = 4183.3

68 nu_s = mu_w(T_s)/rho_w

69 Pr_s = mu_w(T_s)*cp_s/Lambda_s

70 beta_s = 3.85e-4

71 g = 9.81

72

73

74

75 ### Design properties

76 #Properties of loop

77 d = 0.002 #wall thickness

78 radius = 0.003 #inner tube radius

79 D = 2* radius #inner tube diameter

80 D_out = 2* radius + 2*d #outer tube diameter

81 Radius = 0.008 #inner tube radius of node C

82 D_C = 2* Radius #inner tube diameter of node C

83 D_C_out = 2* Radius + 2*d #outer tube diameter of node C

84 D_h = D_C -D-2*d #wetted perimeter of node C

85

86 #Properties of the heat exchanger

87 A_C = np.pi*( Radius **2-( radius+d)**2) #crossectional area node C

88 V_C = A_C*l #volume of node C

89 v_C = phi_mC /(rho_w*A_C) #coolant velocity

90

91 #Node volume

92 V_j = np.pi*radius **2*l

93 def V_jt(radius):

94 return np.pi*l*(d**2+2*d*radius)

95

96

97

98 ### Functions

99 #Fission

100 Ef = 192*1.60217662e-13 #192 MeV to Joules

101 sigma = 583e-28 #583 barn

102 enr = 0.1975 #enrichment

103 N_A = 6.022 e23

104 phi_n = 3.5e16 #[1/(m^2 s)]

105 Q = V_j*Ef*sigma*enr*(c*1000)*N_A*phi_n/M #concentration *1000: g/L to g/m^3

106

107 #Gamma heating

108 u = 300 #300 W/kg tube material

109 def Pg(radius):

110 return u*rho_t*V_jt(radius)

111

112 #Heat transfer coefficient for flow in a circular tube

113 def h1(v,T_j):

114 T = T_j

115 Re = rho0*np.abs(v)*D/mu(T,c_mol)

116 Gz = a*l/(np.abs(v)*D**2)

117 if Re >1e4 and Pr(T,c_mol) >=0.7:

118 h1 = 0.027* Re **(0.8)*Pr(T,c_mol)**(0.33)*Lambda/D

119 elif Gz <= 0.05:

120 h1 = 1.62* Gz**( -1/3)*Lambda/D

121 elif Gz> 0.05: #Should be Gz >0.1
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122 h1 = 3.66* Lambda/D

123 else:

124 raise Exception("h1 out of range")

125 return h1

126

127 #Heat transfer coefficient for flow in a concentric tube: heat exchanger

128 def h1_C(T_oC):

129 T = (T_inC+T_oC)/2

130 Re = rho_w*v_C*D_h/mu_w(T)

131 Gz = a_w*l/(v_C*D_h **2)

132 if Re >1e4 and Pr_w(T) >=0.7:

133 h1_C = 0.027* Re **(0.8)*Pr_w(T)**(0.33)*Lambda_w/D_h

134 elif Gz <= 0.05:

135 h1_C = 1.62*Gz**( -1/3)*Lambda_w/D_h

136 elif Gz > 0.05:

137 h1_C = 3.66* Lambda_w/D_h

138 else:

139 raise Exception("h1_C out of range")

140 return h1_C

141

142 #Heat transfer coefficient for natural convection above a heated horizontal

cylinder

143 #Correlation from Churchill and Chu

144 def h3_hor(T_w_j ,D):

145 Gr = g*beta_s *(np.abs(T_w_j -T_s))*D**3/( nu_s **2)

146 Ra = Gr*Pr_s

147 h3hor = 1

148 if 1e-5 < Ra < 1e12:

149 h3hor = (0.6+ 0.387* Ra **(1/6) /( 1+ 0.559**(9/16)/Pr_s)**(8/27) )**2 *

Lambda_s/D

150 elif Ra == 0:

151 h3hor=0

152 else:

153 raise Exception("h3_hor out of range: T_w_j = {}, Gr = {}, Ra = {}".format(

T_w_j ,Gr,Ra))

154 return h3hor

155

156 #Heat transfer coefficient for natural convection around a heated vertical cylinder

157 #Correlation by Xian , Jiang and Yu

158 def h3_ver(T_w_j ,D):

159 Gr = g*beta_s *(np.abs(T_w_j -T_s))*l**3/( nu_s **2)

160 Ra = Gr*Pr_s

161 if Ra < 1e8: #conduction

162 Nu = 0.26

163 elif 1e8 < Ra < 1.45 e14: #laminar and turbulent natural convection

164 A = np.log10(Ra **(0.25)*D/l)

165 Nu = Ra **(0.25) * 10**(0.090 - 0.449*A + 0.107*A**2 + 0.065*A**3)

166 else:

167 raise Exception("h3_ver out of range , Gr = {}, Ra = {}".format(Gr ,Ra))

168 return Nu*Lambda_s/l

169

170 """

171 #Heat transfer coefficient for natural convection around a heated vertical cylinder

172 #Correlation by Le fevre

173 def h3_ver(T_w_j ,D):

174 DeltaT = np.abs(T_w_j -T_s)

175 Gr = g*beta_s *( DeltaT)*l**3/( nu_s **2)

176 Ra = Gr*Pr_s

177 if Gr < 1e8: #conduction

178 Nu = 0.26

179 elif 1e8 < Gr < 4e9: #laminar natural convection
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180 Nu = 4/3 * Ra **(0.25) * (7* Pr_s /(100+105* Pr_s))**0.25 + 4/35*(272+315* Pr_s)

/(64+63* Pr_s) * l/D

181 else:

182 raise Exception (" h3_ver out of range , Gr = {}, Ra = {}". format(Gr,Ra))

183 return Nu*Lambda_s/l

184 """

185

186 #Darcy -Weisbach friction factor for uranyl nitrate solution

187 def fr(v,T_j):

188 Re = rho0*np.abs(v)*D/mu(T_j ,c_mol)

189 if Re < 0:

190 raise Exception("Re <0 in friction factor")

191 A = 1/(1+( Re /2712) **(8.4))

192 B = 1/(1+( Re*eps /(150*D))**(1.8))

193 ffr = (64/Re)**A *(0.75* np.log(Re /5.37))**(2*B*(A-1)) *(0.88* np.log (6.82*D/eps)

)**( 2*(A-1)*(1-B))

194 return ffr

195

196 #Darcy -Weisbach friction factor for water

197 def fr_C(v_C ,T_oC):

198 T = (T_inC+T_oC)/2

199 Re = rho_w*v_C*D_h/mu_w(T)

200 A = 1/(1+( Re /2712) **(8.4))

201 B = 1/(1+( Re*eps /(150* D_h))**(1.8))

202 ffrC = (64/Re)**A *(0.75* np.log(Re /5.37))**(2*B*(A-1)) *(0.88* np.log (6.82* D_h/

eps))**( 2*(A-1)*(1-B))

203 return ffrC

204

205 #heat flow towards the Dldr from node j

206 def phi_qDj(v,h3_j ,T_j ,T_w_j):

207 h1_j = h1(v,T_j)

208 return 2*np.pi*radius*l*h1_j* ( T_w_j - T_j )

209

210 #heat flow towards from Dldr to node C

211 def phi_qDC(T_oC ,T_w_C):

212 T_Cavg = (T_inC + T_oC)/2

213 return 2*np.pi*Radius*l*h1_C(T_oC)* ( T_w_C - T_Cavg )

214

215 #heat flow from node B to C: heat exchanger

216 def phi_qH(T_B ,T_D ,T_oC ,T_E ,v):

217 if v >= 0:

218 if T_oC >T_D:

219 raise Exception("T_oC > T_D: value for phi_qH does not exist")

220 T_avg = (T_D + T_B)/2

221 U = 1/(1/h1(v,T_avg) + d/Lambda_t + 1/h1_C(T_oC))

222 A_H = 2*np.pi*radius*l #surface heat exchanger

223 phi_qH = U*A_H*(T_B -T_inC -T_D+T_oC)/np.log((T_B -T_inC)/(T_D -T_oC))

224 else:

225 if T_oC >T_B:

226 raise Exception("T_oC > T_B: value for phi_qH does not exist")

227 T_avg = (T_E + T_B)/2

228 U = 1/(1/h1(v,T_avg) + d/Lambda_t + 1/h1_C(T_oC))

229 A_H = 2*np.pi*radius*l

230 phi_qH = U*A_H*(T_E -T_inC -T_B+T_oC)/np.log((T_E -T_inC)/(T_B -T_oC))

231 return phi_qH

232

233

234

235 ###Set of ODE’s: f

236 def f(r,t):

237 ##Variables

238 T_A = r[0]
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239 T_D = r[1]

240 T_B = r[2]

241 T_E = r[3]

242 T_oC = r[4]

243 v = r[5]

244 T_w_A = r[6]

245 T_w_D = r[7]

246 T_w_E = r[8]

247 T_w_C = r[9]

248 ##Internal energy balance nodes j=A,D,B,E

249 h3_A = h3_hor(T_w_A ,D_out)

250 h3_D = h3_ver(T_w_D ,D_out)

251 h3_E = h3_ver(T_w_E ,D_out)

252 h3_C = h3_hor(T_w_C ,D_C_out)

253 if v>=0:

254 f_A = ( rho0*np.pi*radius **2*v*cp*(T_E -T_A) + Q + phi_qDj(v,h3_A ,T_A ,T_w_A)

)/ (V_j*cp*rho0)

255 f_D = ( rho0*np.pi*radius **2*v*cp*(T_A -T_D) + phi_qDj(v,h3_D ,T_D ,T_w_D) )/

(V_j*cp*rho0)

256 f_B = ( rho0*np.pi*radius **2*v*cp*(T_D -T_B) - phi_qH(T_B ,T_D ,T_oC ,T_E ,v) )/

(V_j*cp*rho0)

257 f_E = ( rho0*np.pi*radius **2*v*cp*(T_B -T_E) + phi_qDj(v,h3_E ,T_E ,T_w_E) )/

(V_j*cp*rho0)

258 ##Int EB node C

259 f_oC = (rho_w*np.pi*( Radius **2-( radius+d)**2)*v_C*cp_w*(T_inC -T_oC) +

phi_qH(T_B ,T_D ,T_oC ,T_E ,v) + phi_qDC(T_oC ,T_w_C)) /(rho_w*V_C*cp_w)

260 ##Momentum function

261 T_avg = (T_A + T_D + T_B + T_E)/4

262 f_v = ( np.pi*radius **2*l*g*(rho(T_E)-rho(T_D) + (rho(T_B)-rho(T_A))*np.sin

(np.deg2rad(angle)) ) - fr(v,T_avg)*1/2*v**2 *2*np.pi*radius*l*rho0 )/(4* rho0*

V_j)

263 ##Int EB tube walls for nodes A,D,E,C

264 f_Tw_A = ( 2*np.pi*radius*l*h1(v,T_A)*(T_A - T_w_A) - 2*np.pi*( radius+d)*l*

h3_A*(T_w_A - T_s) + Pg(radius) )/(rho_t*V_jt(radius)*cp_t)

265 f_Tw_D = ( 2*np.pi*radius*l*h1(v,T_A)*(T_D - T_w_D) - 2*np.pi*( radius+d)*l*

h3_D*(T_w_D - T_s) + shielding_tf*Pg(radius) )/(rho_t*V_jt(radius)*cp_t)

266 f_Tw_E = ( 2*np.pi*radius*l*h1(v,T_E)*(T_E - T_w_E) - 2*np.pi*( radius+d)*l*

h3_E*(T_w_E - T_s) + shielding_tf*Pg(radius) )/(rho_t*V_jt(radius)*cp_t)

267 f_Tw_C = ( 2*np.pi*Radius*l*h1_C(T_oC)*(( T_inC+T_oC)/2 - T_w_C) - 2*np.pi*(

Radius+d)*l*h3_C*(T_w_C - T_s) + shielding_tf*Pg(Radius) )/( rho_t*V_jt(Radius)*

cp_t)

268 else:

269 f_A = ( rho0*np.pi*radius **2*np.abs(v)*cp*(T_D -T_A) + Q + phi_qDj(v,h3_A ,

T_A ,T_w_A) )/ (V_j*cp*rho0)

270 f_E = ( rho0*np.pi*radius **2*np.abs(v)*cp*(T_A -T_E) + phi_qDj(v,h3_E ,T_E ,

T_w_E) )/ (V_j*cp*rho0)

271 f_B = ( rho0*np.pi*radius **2*np.abs(v)*cp*(T_E -T_B) - phi_qH(T_B ,T_D ,T_oC ,

T_E ,v) )/ (V_j*cp*rho0)

272 f_D = ( rho0*np.pi*radius **2*np.abs(v)*cp*(T_B -T_D) + phi_qDj(v,h3_D ,T_D ,

T_w_D) )/ (V_j*cp*rho0)

273 ##Int EB node C

274 f_oC = (rho_w*np.pi*( Radius **2-( radius+d)**2)*v_C*cp_w*(T_inC -T_oC) +

phi_qH(T_B ,T_D ,T_oC ,T_E ,v) + phi_qDC(T_oC ,T_w_C) ) /(rho_w*V_C*cp_w)

275 ##Momentum function

276 T_avg = (T_A + T_D + T_B + T_E)/4

277 f_v = -( np.pi*radius **2*l*g*(-rho(T_E)+rho(T_D) + (-rho(T_B)+rho(T_A))*np.

sin(np.deg2rad(angle)) ) - fr(v,T_avg)*1/2*np.abs(v)**2 *2*np.pi*radius*l*rho0

)/(4* rho0*V_j)

278 ##Int EB tube walls for nodes A,D,E,C

279 f_Tw_A = ( 2*np.pi*radius*l*h1(v,T_A)*(T_A - T_w_A) - 2*np.pi*( radius+d)*l*

h3_A*(T_w_A - T_s) + Pg(radius) )/(rho_t*V_jt(radius)*cp_t)
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280 f_Tw_D = ( 2*np.pi*radius*l*h1(v,T_A)*(T_D - T_w_D) - 2*np.pi*( radius+d)*l*

h3_D*(T_w_D - T_s) + shielding_tf*Pg(radius) )/(rho_t*V_jt(radius)*cp_t)

281 f_Tw_E = ( 2*np.pi*radius*l*h1(v,T_E)*(T_E - T_w_E) - 2*np.pi*( radius+d)*l*

h3_E*(T_w_E - T_s) + shielding_tf*Pg(radius) )/(rho_t*V_jt(radius)*cp_t)

282 f_Tw_C = ( 2*np.pi*Radius*l*h1_C(T_oC)*(( T_inC+T_oC)/2 - T_w_C) - 2*np.pi*(

Radius+d)*l*h3_C*(T_w_C - T_s) + shielding_tf*Pg(Radius) )/( rho_t*V_jt(Radius)*

cp_t)

283 return np.array([f_A ,f_D ,f_B ,f_E ,f_oC ,f_v ,f_Tw_A ,f_Tw_D ,f_Tw_E ,f_Tw_C],float)

284

285

286

287 ### Initiate time array , varriable arrays , initial conditions and accuracy per unit

time

288 #Time interval and initial step size hin

289 t_initial = 0.0;

290 t_final = 1000.0;

291 hin = 0.2

292 h=hin

293 t_adaptive = []

294 t_adaptive.append(t_initial)

295 N = 0

296

297 #required accuracy per unit time.

298 #note: higher delta is required for longer running time.

299 # running 0.001 degrees error per second gives 1 error per 1000 seconds

300 delta0 = delta1 = delta2 = delta3 = delta4 = 0.00001 #target accuracy in degrees

celcius per second

301 delta5 = 0.00001 #target accuracy in m/s per second

302

303 #Initializing xpoints , vpoints and r with initial values

304 T_Apoints = []

305 T_Dpoints = []

306 T_Bpoints = []

307 T_Epoints = []

308 T_oCpoints = []

309 vpoints = []

310 T_w_Apoints = []

311 T_w_Dpoints = []

312 T_w_Epoints = []

313 T_w_Cpoints = []

314

315 #Initializing hpoints (not part of vector r)

316 hpoints = []

317 h_break = 1e-20 #break if h is lower than this value

318

319 #initial conditions:

320 r = np.array ([40.0 ,40.0 ,40.0 ,40.0 ,15.0 ,1e-5 ,40.0 ,40.0 ,40.0 ,40.0] , float) #isothermal

initial conditions

321 #r = np.array ([46.13 , 46.90, 35.91, 38.84 , 12.59 , 0.01748 , 45.18 , 46.54, 43.53,

28.96 ],float) #steady state initial conditions

322

323 #Initializing empty errays (necessary for the check in the if statement)

324 k1 = k2 = k3 = k4 = q1 = q2 = q3 = q4 = w1 = w2 = w3 = w4 = ri = r1 = r2 = np.zeros

(len(r))

325

326

327

328 ### Performing Adaptive Runge -Kutta

329 while t_adaptive [-1] < t_final:

330 t = t_adaptive [-1]

331 T_Apoints.append(r[0])

332 T_Dpoints.append(r[1])
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333 T_Bpoints.append(r[2])

334 T_Epoints.append(r[3])

335 T_oCpoints.append(r[4])

336 vpoints.append(r[5])

337 T_w_Apoints.append(r[6])

338 T_w_Dpoints.append(r[7])

339 T_w_Epoints.append(r[8])

340 T_w_Cpoints.append(r[9])

341 r0 = r

342 try:

343 #perform one step of size h and calculate the new r values

344 k1 = h*f(r,t)

345 k2 = h*f(r+0.5*k1,t+0.5*h)

346 k3 = h*f(r+0.5*k2,t+0.5*h)

347 k4 = h*f(r+k3 ,t+h)

348 ri = r+(k1+2*k2+2*k3+k4)/6

349 if np.isnan(ri).any()==True:

350 raise Exception("ri contains non -numerical value")

351

352 #perform another step of size h and find our estimate r1 of r(t+2)

353 q1 = h*f(ri,t+h)

354 q2 = h*f(ri +0.5*q1 ,(t+h)+0.5*h)

355 q3 = h*f(ri +0.5*q2 ,(t+h)+0.5*h)

356 q4 = h*f(ri+q3 ,(t+h)+h)

357 r1 = ri + (q1+2*q2+2*q3+q4)/6

358 if np.isnan(r1).any()==True:

359 raise Exception("r1 second step contains non -numerical value")

360

361 #perform one step of size 2h and find our estimate r2 of r(t+2)

362 w1 = 2*h*f(r0 ,t)

363 w2 = 2*h*f(r0+0.5*w1,t+0.5*2*h)

364 w3 = 2*h*f(r0+0.5*w2,t+0.5*2*h)

365 w4 = 2*h*f(r0+w3,t+2*h)

366 r2 = r0 + (w1+2*w2+2*w3+w4)/6

367 if np.isnan(r2).any()==True:

368 raise Exception("r2 contains non -numerical value")

369

370 #calculate the new step size

371 ratio0 = 30*h*delta0 / np.abs(r1[0]-r2[0])

372 ratio1 = 30*h*delta1 / np.abs(r1[1]-r2[1])

373 ratio2 = 30*h*delta2 / np.abs(r1[2]-r2[2])

374 ratio3 = 30*h*delta3 / np.abs(r1[3]-r2[3])

375 ratio4 = 30*h*delta4 / np.abs(r1[4]-r2[4])

376 ratio5 = 30*h*delta5 / np.abs(r1[5]-r2[5])

377 ratio = min(ratio0 ,ratio1 ,ratio2 ,ratio3 ,ratio4 ,ratio5)

378 h_new = h*ratio **(1/4)

379 if h_new > 2*h:

380 h = 2*h

381 else:

382 h = h_new

383

384 #perform one step of size h_new

385 k1 = h*f(r,t)

386 k2 = h*f(r+0.5*k1 ,t+0.5*h)

387 k3 = h*f(r+0.5*k2 ,t+0.5*h)

388 k4 = h*f(r+k3 ,t+h)

389 r += (k1+2*k2+2*k3+k4)/6

390

391 except Exception as e:

392 ExceptionPresent = True

393 r = r0 #reset r

394 print("Exception was caught at t={}:".format(round(t,2)))
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395 print(e)

396 while True:

397 print("h = {}".format(h))

398 try:

399 h=0.7*h

400 k1 = h*f(r,t)

401 k2 = h*f(r+0.5*k1 ,t+0.5*h)

402 k3 = h*f(r+0.5*k2 ,t+0.5*h)

403 k4 = h*f(r+k3 ,t+h)

404 ri = r+(k1+2*k2+2*k3+k4)/6

405 #perform another step of size h and find our estimate r1 of r(t+2)

406 q1 = h*f(ri,t+h)

407 q2 = h*f(ri +0.5*q1 ,(t+h)+0.5*h)

408 q3 = h*f(ri +0.5*q2 ,(t+h)+0.5*h)

409 q4 = h*f(ri+q3 ,(t+h)+h)

410 r1 = ri + (q1+2*q2+2*q3+q4)/6

411 #perform one step of size 2h and find our estimate r2 of r(t+2)

412 w1 = 2*h*f(r0 ,t)

413 w2 = 2*h*f(r0+0.5*w1,t+0.5*2*h)

414 w3 = 2*h*f(r0+0.5*w2,t+0.5*2*h)

415 w4 = 2*h*f(r0+w3,t+2*h)

416 r2 = r0 + (w1+2*w2+2*w3+w4)/6

417

418 #calculate the new step size

419 ratio0 = 30*h*delta0 / np.abs(r1[0]-r2[0])

420 ratio1 = 30*h*delta1 / np.abs(r1[1]-r2[1])

421 ratio2 = 30*h*delta2 / np.abs(r1[2]-r2[2])

422 ratio3 = 30*h*delta3 / np.abs(r1[3]-r2[3])

423 ratio4 = 30*h*delta4 / np.abs(r1[4]-r2[4])

424 ratio5 = 30*h*delta5 / np.abs(r1[5]-r2[5])

425 ratio = min(ratio0 ,ratio1 ,ratio2 ,ratio3 ,ratio4 ,ratio5)

426 h_new = h*ratio **(1/4)

427

428 if h_new > h: #only allow h to become smaller now since we do not

want to undo the effect of h=0.7*h

429 h = h

430 else:

431 h = h_new

432

433 #perform one step of size h_new

434 k1 = h*f(r,t)

435 k2 = h*f(r+0.5*k1 ,t+0.5*h)

436 k3 = h*f(r+0.5*k2 ,t+0.5*h)

437 k4 = h*f(r+k3 ,t+h)

438 r += (k1+2*k2+2*k3+k4)/6

439

440 except:

441 h=h

442 finally:

443 if h<h_break:

444 break

445 if r[5] > 0 and \

446 r[4]+0.5* k1[4] <= r[1]+0.5* k1[1] and \

447 r[4]+0.5* k2[4] <= r[1]+0.5* k2[1] and \

448 r[4]+k3[4] <= r[1]+k3[1] and \

449 ri [4]+0.5* q1[4] <= ri [1]+0.5* q1[1] and \

450 ri [4]+0.5* q2[4] <= ri [1]+0.5* q2[1] and \

451 ri[4]+q3[4] <= ri[1]+q3[1] and \

452 r0 [4]+0.5* w1[4] <= r0 [1]+0.5* w1[1] and \

453 r0 [4]+0.5* w2[4] <= r0 [1]+0.5* w2[1] and \

454 r0[4]+w3[4] <= r0[1]+w3[1] and \

455 r[4] <= r[1] and \
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456 np.isnan ((k4,q4 ,w4)).any() == False:

457 break

458 if r[5] < 0 and \

459 r[4]+0.5* k1[4] <= r[2]+0.5* k1[2] and \

460 r[4]+0.5* k2[4] <= r[2]+0.5* k2[2] and \

461 r[4]+k3[4] <= r[2]+k3[2] and \

462 ri [4]+0.5* q1[4] <= ri [2]+0.5* q1[2] and \

463 ri [4]+0.5* q2[4] <= ri [2]+0.5* q2[2] and \

464 ri[4]+q3[4] <= ri[2]+q3[2] and \

465 r0 [4]+0.5* w1[4] <= r0 [2]+0.5* w1[2] and \

466 r0 [4]+0.5* w2[4] <= r0 [2]+0.5* w2[2] and \

467 r0[4]+w3[4] <= r0[2]+w3[2] and \

468 r[4] <= r[2] and \

469 np.isnan ((k4,q4 ,w4)).any() == False:

470 break

471 finally:

472 #append time array

473 t_adaptive.append(t + h)

474 hpoints.append(h)

475 #continue to next time step

476 N += 1

477 if h<h_break:

478 print("h<",h_break)

479 break

480

481

482

483 ###plot

484 #Create time array

485 t = t_adaptive [0: len(t_adaptive) -1]

486 #Create figure

487 fig = plt.figure(figsize =(20 ,12))

488 #fig1

489 ax1 = fig.add_subplot (4, 3, 1)

490 ax1.set_xlabel("t(s)")

491 ax1.set_ylabel("$T_A$ ($\degree$C)")
492 ax1.set_title("($T_A$ ,t)-diagram")
493 ax1.plot(t,T_Apoints ,’.’)

494 #fig2

495 ax2 = fig.add_subplot (4, 3, 2)

496 ax2.set_xlabel("t(s)")

497 ax2.set_ylabel("$T_D$ ($\degree$C)")
498 ax2.set_title("($T_D$ ,t)-diagram")
499 ax2.plot(t,T_Dpoints ,’.’)

500 #fig3

501 ax3 = fig.add_subplot (4, 3, 3)

502 ax3.set_xlabel("t(s)")

503 ax3.set_ylabel("$T_B$ ($\degree$C)")
504 ax3.set_title("($T_B$ ,t)-diagram (N={} steps)".format(N))

505 ax3.plot(t,T_Bpoints ,’.’)

506 #fig4

507 ax4 = fig.add_subplot (4, 3, 4)

508 ax4.set_xlabel("t(s)")

509 ax4.set_ylabel("$T_E$ ($\degree$C)")
510 ax4.set_title("($T_E$ ,t)-diagram")
511 ax4.plot(t,T_Epoints ,’.’)

512 #fig5

513 ax5 = fig.add_subplot (4, 3, 5)

514 ax5.set_xlabel("t(s)")

515 ax5.set_ylabel("$T_{oC}$ ($\degree$C)")
516 ax5.set_title("($T_{oC}$,t)-diagram")
517 ax5.plot(t,T_oCpoints ,’.’)
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518 #fig6

519 ax6 = fig.add_subplot (4, 3, 6)

520 ax6.set_xlabel("t(s)")

521 ax6.set_ylabel("v (m/s)")

522 ax6.set_title("(v,t)-diagram")

523 ax6.plot(t,vpoints ,’.’)

524 #fig7: step size throughout time

525 ax7 = fig.add_subplot (4, 3, 7)

526 ax7.set_xlabel("t(s)")

527 ax7.set_ylabel("h (s)")

528 ax7.set_title("(h,t)-diagram")

529 ax7.plot(t,hpoints ,’.’)

530 #fig8: wall temperature of node A

531 ax8 = fig.add_subplot (4, 3, 8)

532 ax8.set_xlabel("t(s)")

533 ax8.set_ylabel("$T_{w,A}$ ($\degree$C)")
534 ax8.set_title("($T_{w,A}$,t)-diagram")
535 ax8.plot(t,T_w_Apoints ,’.’)

536 #fig9: wall temperature of node D

537 ax9 = fig.add_subplot (4, 3, 9)

538 ax9.set_xlabel("t(s)")

539 ax9.set_ylabel("$T_{w,D}$ ($\degree$C)")
540 ax9.set_title("($T_{w,D}$,t)-diagram")
541 ax9.plot(t,T_w_Dpoints ,’.’)

542 #fig10: wall temperature of node E

543 ax10 = fig.add_subplot (4, 3, 10)

544 ax10.set_xlabel("t(s)")

545 ax10.set_ylabel("$T_{w,E}$ ($\degree$C)")
546 ax10.set_title("($T_{w,E}$,t)-diagram")
547 ax10.plot(t,T_w_Epoints ,’.’)

548 #fig11: wall temperature of node C

549 ax11 = fig.add_subplot (4, 3, 11)

550 ax11.set_xlabel("t(s)")

551 ax11.set_ylabel("$T_{w,C}$ ($\degree$C)")
552 ax11.set_title("($T_{w,C}$,t)-diagram")
553 ax11.plot(t,T_w_Cpoints ,’.’)

554

555 #adjust space between plots

556 plt.subplots_adjust(wspace =0.4, hspace =0.6)

557

558 ###Log

559 #find maximum bulk temperature

560 TmaxA = np.amax(T_Apoints)

561 TmaxD = np.amax(T_Dpoints)

562 TmaxB = np.amax(T_Bpoints)

563 TmaxE = np.amax(T_Epoints)

564 Tmax = max(TmaxA ,TmaxD ,TmaxB ,TmaxE)

565

566 #log information

567 print("The adaptive Runge -Kutta calculation was initiated with a step size {},

performed in {} steps and {} seconds , and using a target accuracy per unit time

of {}, {}, {}, {}, {} degrees per second , {} m/s per second. The cooling

conditions were T_inC = {} and phi_mC = {} kg/s and the concentration c = {} g/

L. The final values are T_A = {}, T_D = {}, T_B = {}, T_E = {}, T_oC = {}, v =

{} m/s. The maximum bulk temperature throughout time in all nodes was {}.".

format(hin ,N,round ((time.time() - start_time) ,2),delta0 ,delta1 ,delta2 ,delta3 ,

delta4 ,delta5 ,round(T_inC ,2), round(phi_mC ,2),c,round(T_Apoints [-1],2),round(

T_Dpoints [-1],2),round(T_Bpoints [-1],2),round(T_Epoints [-1],2),round(T_oCpoints

[-1],2),round(vpoints [-1],5),round(Tmax ,2)))

568 print("The final wall temperatures were T_w_A = {}, T_w_D = {}. T_w_E = {}, T_w_C =

{}".format(round(T_w_Apoints [-1],2),round(T_w_Dpoints [-1],2),round(T_w_Epoints

[-1],2),round(T_w_Cpoints [-1],2) ))
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569 print("The angle was {} degrees".format(angle))
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