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Abstract

In this thesis, a method to retrieve the rheological parameters of power-law fluids is examined, for
the purpose of gaining more knowledge on the properties of fluids used in the Molten Salt Fast Re-
actor. The currently researched method to perform this rheological measurement is the ultrasonic
waveguide viscometer, in which a wave is sent through a steel waveguide, losing its energy along
the way due to viscous dissipation. By measuring the amplitude attenuation due to this energy
loss, the viscosity of fluids can be found. This thesis focuses on the question how the rheological
properties of power-law fluids can be accurately retrieved from the amplitude measurements in
the ultrasonic waveguide viscometer. The used research-method is the development of a numerical
model in Matlab to mimic this experiment. In this way, a data-set of the amplitude-profile on
the waveguide is obtained computationally. Subsequently, a method of data-processing that was
proposed to retrieve the rheological parameters from this data-set is researched. Through this
model, accuracy of the proposed methods are tested, as well as the influence of the rheological
properties on this accuracy.

In this thesis, a numerical model to simulate the velocity and amplitude profiles for Newtonian
and power-law fluids was developed successfully. In this process, a new method was introduced in
order to reduce calculation time and data storage. The viscosities for two Newtonian fluids were
retrieved successfully and accurately by using this method. Subsequently, the method was used for
power-law fluids. The results on this rheological model were twofold, namely for the power index
m and the consistency index Km. The results on the power index showed to be very accurate
for the three tested fluids. On the consistency index, a large deviation on the theoretical values
showed. Concluding, the proposed methods for the ultrasonic waveguide viscometer and method of
data-processing proved to be very suitable for power index measurements. However, measurements
on the consistency index asks for a more accurate or sensitive method.

For further research, it was recommended to examine the sensitivity of the consistency index with
respect to the power index. Some methods to do so were proposed. Furthermore, the influence
of m and Km on the required waveguide length is of interest. Gaining knowledge on these two
subjects will, expectantly, enable the ultrasonic waveguide experiment to be used for measurements
on power-law fluids. Lastly, the developed numerical model can be expanded for other complex
rheologies, such as Bingham or Casson fluids.
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Chapter 1

Introduction

Considering the rapid world energy consumption and the resulting fast-pace global warming, the
development of sustainable and clean energy sources is now crucial. One solution for this problem
lies in the technology of nuclear reactors as a sustainable energy provider. The generation of
nuclear energy is regarded to be very promising as no greenhouse gasses are emitted through the
process. Moreover, nuclear energy is more efficient and reliable than more conventional sources
like solar and wind energy. However, nuclear energy is prone to more popular criticism due to
safety considerations. The radioactive waste that is produced in nuclear reactors can cause great
damage to the environment, as horrifically demonstrated during nuclear accidents in Chernobyl
and Fukushima. These downsides were reason to set up The Generation IV International Forum
(GIF) in 2000, with the goal to develop efficient, clean, safe and economically competitive nuclear
reactors [1]. One type these generation-IV reactors is the Molten Salt Fast Reactor (MSFR),
which design promises to reach high safety and environmental standards. The SAMOFAR project
has been set up to perform research on the MFSR, with the goal to prove the innovative safety
concepts of the MSFR [2] and ultimately to design the reactor. The Reactor Institute Delft is
involved in the SAMOFAR project by researching the fundamental behaviour and properties of
the used salt. One of these properties is the viscosity of the fluid, which amongst others, is crucial
in the development in the MSFR. This thesis focuses on a method of determining the viscosity of
fluids showing complex behaviour, such like molten salts.

1.1 Molten Salt Fast Reactor
In figure 1.1 the design of the MSFR reactor core is shown. It consists of a single cylindrical vessel,
filled with a molten fuel salt. A ring of thorium-salt in the walls of the vessel acts as a breeding
blanket, transmuting non-fissile thorium-232 to fissile uranium-233 upon capturing a neutron [3].
This process heats up the fuel salt, which moves in upward direction through the central core
zone. At the top reach, the molten salt flows downwards through the heat exchangers, releasing
its thermal energy. Part of the molten salt exits the loop for reprocessing, such that multiple
fission products can be separated. In addition, soluble and gaseous fission products are removed
from the salt by injecting gas bubbles at the bottom of the core. Furthermore, a drainage pipe
and freeze-plug are shown at the bottom of the core. This freeze-plug is being cooled electrically,
ensuring that in the case of an accidental power-shut, the freeze-plug will melt and the molten salt
will drain to a fail-safe storage tank [2].

A favourable aspect of the MSFR is the twofold purpose of the molten salt, namely as both fuel
and coolant. This means that the conventionally used coolant being water is absent in the MSFR,
eliminating steam explosion accidents. Another safety-win lies in the fact no long-lived radioactive
waste is produced [4].

Currently, the MSFR is only being studied in computer models. In order to produce a working
and safe system, it is necessary to know how the system and its molten salt react in different
situations. As mentioned before, it is therefore crucial to measure the physical properties of the
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molten salt. One of these crucial properties is the rheological behaviour, providing understanding
on the fluid flow of the molten salt in the MSFR. For example, this is necessary to correctly model
and design the heat transfer and the flow inside the reactor core. Furthermore, knowledge on the
rheological behaviour enables the detailed design of emergency designs, such as the freeze-plug and
safety tanks [3].

Figure 1.1: Schematic drawing of Molten Salt Fast Reactor [2]

1.2 Determination viscous behaviour
The research performed at the Reactor Institute Delft on the MSFR-design focuses on thorium-cycle
in the reactor, which uses thorium in a fluoride salt with the composition LiF-ThF4-UF4-PuF3h as
a fuel. Currently, different types of methods are already available for measuring viscous behaviour
of molten salts. Significant research on viscometers was performed by Cohen and Jones [5] and
later by Cantor [6], both using a modified form of a rotational viscometer [7]. Another technique
of a torsional viscometer was developed by Chrenkova [8] and at the Kurchatov institute [9].

However, these two conventional methods mostly work with a larger amount of fluids, while this
is undesirable when working with the molten salt due to its high radioactivity. This complex
salt shows three other properties which add to the complexity of measuring its viscous behaviour.
Firstly, Thorium-salt has a high melting point, around 600 ◦C [10]. Moreover, previously per-
formed research on this salt [11] [12] predicts the effective viscosity of the salt to be relatively low,
approximately 3 mPas. Lastly, the salt is highly corrosive. All these properties together disable
the use of conventional viscometer set-ups.

The aforementioned issues require the design of a new measurement set-up. Some research proposes
the use of acoustics for determining the viscous behaviour at high temperatures, as firstly performed
in 1949 by Maston et al [13]. In this research, the use of a transducer is proposed, converting
an electrical signal to a mechanical displacement. In Mason’s research the transducer is in direct
contact with the fluid, which can not withstand the high corrosiveness of the molten salt. Moreover,
the Curie temperature of the piezoelements in the transducer is far below the melting point of the
used molten salt, causing it to demagnetise. A newer set-up was researched by Vogt, Lowe&Cawley
[14], in which the viscous behaviour was measured by ultrasonic guided waves. In this research,
a vertical cylindrical waveguide is partly immersed in the fluid, making that the transducer is
separated from the salt. From the attenuation of the reflected waves that travel through the
immersed waveguide, the viscous behaviour could be measured. This thesis is based on the lastly
described method.

Despite of the ultrasonic waveguide viscometer to overcome conventional experimental problems,
the technique does give rise some new complexities of its own. These complexities mostly emerge
in the data-processing of the amplitude measurements to the concluding rheological properties.
Some research has gone into this technique and data-processing to find the viscosity of Newtonian
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fluids [7] [3]. This proved to be quite successful, as in such Newtonian fluids the rheology is simple,
which makes that an analytical solution to the velocity profile in the fluid is available. In the case of
Newtonian fluids, the viscosity can be directly derived from the amplitude-attenuation. However,
in practise most fluids, such as molten salts, are suspected not to be Newtonian. That is, the fluid
movement under shear stress is more complex. This complexity makes that an analytical solution
to the amplitude-profile for these non-Newtonian fluids is more complex as well. Therefore, the
amplitude attenuation measured with the ultrasonic waveguide method does not straight-forwardly
provide the fluid’s rheological properties. Some assumptions have to be made in the measurements
of these fluids, which could simplify the determination of the rheological properties out of the
measured amplitude. Rohde [15] used some of these assumptions to derive an analytical model
and data-processing method for a specific type of non-Newtonian fluids, being power-law fluids.
Rohde’s approach is the starting point of the numerical model composed in this thesis.

1.3 Thesis outline
Considering the probable arising rheological problems in the viscous measurements for non-Newtonian
fluids, as described in the previous section, the research of the compatibility of the ultrasonic waveg-
uide viscometer for non-Newtonian fluids is of interest. This research focuses on power-law fluids,
a specific type of non-Newtonian fluid. This gives rise to the general research question:

• How can the rheological properties for power-law fluids be accurately retrieved from the
amplitude measurements in the ultrasonic waveguide viscometer?

Some experimental measurements with the ultrasonic viscometer set-up were performed on power-
law fluids at TU Delft. However, the set-up showed not to be sensitive enough to accurately
measure the small amplitude attenuation shown by power-law fluids. This gave rise to the interest
of simulating the experiment by computational means, from which more accurate data can be
retrieved. Rohde [15] proposed a method of retrieving the viscosity out of the amplitude data,
which can be tested by the computational method. This leads to the main research question of
this thesis:

• How can the analytically derived method by Rohde be used in the measurement of the
rheological properties of power-law fluids with the ultrasonic waveguide viscometer? And
what is influence of the rheological properties on the accuracy of this method?

To reach this goal, a numerical experiment to mimic the ultrasonic viscometer for power-law
fluids will be developed in Matlab. First the numerical model is developed for Newtonian fluids.
The velocity profile in the fluid is simulated by using the discretized Navier-Stokes equations.
Then, the viscous dissipation and resulting amplitude attenuation in a plate geometry will be
modelled, and the dynamic viscosity can be retrieved. These simulations are used to benchmark
our numerical model. Subsequently, the model is expanded for power-law fluids, using the solution
for the amplitude profile analytically derived by Rohde [15]. By linear data-fitting the effective
viscosity of the modelled power-law fluids can be retrieved. This method will be applied to a range
of power-law fluids for which rheological constants are known from earlier studies.

The resulting model of the numerical study can be used in further experimental research on the
ultrasonic viscometer, to directly perform the data-processing. Another application of the results
of this thesis is to optimize ultrasonic viscometer set-up.

Firstly, the theory background of the experiment is described in chapter 2. This chapter elaborates
on the phenomenon of shear stress and different rheologies, as well as on the set-up of the ultrasonic
waveguide viscometer and its energy balance. In chapter 3 the numerical method in described.
This consists of a derivation of the numerical governing equations, as well as a detailed description
of the composed Matlab-code. Subsequently, chapter 4 describes the results of the numerical
model, which include the velocity profiles, amplitude profiles and (effective) viscosity values for
some different fluids. This chapter also includes a discussion about the composed Matlab model
and its results. Lastly, chapter 5 gives the conclusions of this thesis and recommendations for
further research.
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Chapter 2

Theoretical background

In this chapter, the relevant theory for this research will be discussed. Firstly including the theory
behind shear stress and non-Newtonian fluids. After that, the ultrasonic waveguide set-up will be
introduced from which the analytical amplitude profile will be derived using an energy balance.

2.1 Shear stress and rheology
In figure 2.1 a stationairy laminar fluid flow in the x-direction is depicted. In this example, vx is
stationary and a function of the y-coordinate, vx = vx(y). The layer of fluid directly under the
plane y = y1 has a larger velocity than the layer directly above it. Therefore, one can imagine
the lower layer to exert a friction force on the above control volume dxdy. As the friction force
is proportional and parallel to the surface A it acts on, the force is not classified as pressure, but
rather a shear stress τyx [Pa] [16].

Figure 2.1: Control volume dxdy in a stationary, laminar fluid flow. Friction forces are exerted on
the control volume dxdy, the so-called shear stress τyx.

The description of the relation between shear stress and the local velocity gradient is called the
rheology [16]. Based on different rheological relations, all fluids can be categorized into Newtonian
and non-Newtonian fluids.

2.1.1 Newtonian fluids
The most simple rheological model is Newton’s law, in which the shear stress is proportional to the
velocity gradient [16]:

τyx = −µdvx
dy

, (2.1)
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with τyx the shear stress [Pa], µ the dynamic viscosity [Pas] and vx the velocity in x-direction
[ms−1]. Furthermore, dvx/dy is often referred to as the shear rate γ̇ [s−1].

Fluids that satisfy Newton’s law are called Newtonian fluids. Unfortunately only a small amount
of fluids (somewhat) satisfy this model. Examples of some Newtonian fluids are water, air and
some glycerol-mixtures.

2.1.2 Power-law fluids
Most fluids display non-Newtonian behaviour, that is the shear stress is not directly proportional
to the velocity gradient. Non-Newtonian fluids can be categorized into different rheologic models.
Perhaps the most common non-Newtonian fluid-model is given by the Ostwald-De Waele or the
power-law model [16]:

τyx = −Km

∣∣∣∣dvxdy
∣∣∣∣m−1 · dvxdy , (2.2)

in whichKm is called the consistency index [Pasm] andm the flow index [−]. These two parameters
will be referred to as the rheological parameters of a power-law fluid.

The parameter m subdivides fluids into pseudo-plastics or shear-thinning fluids when m < 1 and
dilatant or shear-thickening fluids when m > 1. Examples of shear-thinning fluids are apple sauce
and cream, tomato juice and cornstarch are shear-thickening fluids. Note that the extreme case
in which m = 1, the power-law model refers to Newtonian behaviour. For the case of m = 0,
the power-law model indicates plastic or solid behaviour [17]. A major drawback of the power-
law model is that it predicts an infinite viscosity (when m < 1) as the shear rate tends to zero.
However, the actual viscosity of power-law fluids has a finite and constant value at very low shear
rates [17].

Figure 2.2: Schematisation of shear stress-shear strain plot for Newtonian and Non-Newtonian
power-law fluids [18]

In the case of non-Newtonian fluids, one refers to the effective viscosity µeff rather than just the
viscosity. In figure 2.2 the shear stress as a function of the shear rate is plotted, in which the
effective viscosity is represented by the slope of the line. The varying slope illustrates that, in
contrast to the viscosity for Newtonian fluids, the effective viscosity for fluids with m 6= 1 is not
a constant but depends on the local shear rate. The dependence of the effective viscosity on the
shear rate can be observed from the formula of the effective viscosity for power-law fluids as well,
which is retrieved from equation 2.2 and given by:

µeff = Km ·
∣∣∣∣dvxdy

∣∣∣∣m−1. (2.3)
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2.2 Ultrasonic waveguide experiment
The basic idea of the ultrasonic waveguide viscometer is to generate sinusoidal shear waves by a
transducer and to lead these waves through a waveguide, illustrated in figure 2.3. In this case, the
waveguide is a stainless steel plate, through which the waves travel with velocity cs. At the plate’s
surface, the waves exert a shear stress on the immersion fluid, initiating a local velocity profile in
the fluid. In this way the shear wave loses energy at the guide’s surface, a process called viscous
dissipation. Due to the viscous dissipation, the returning waves have a reduced amplitude, which
is referred to as amplitude attenuation. The rate of energy energy loss in the shear wave, and thus
in its amplitude, is a measure of the viscosity of the surrounding fluid.

This section briefly describes the theory of shear waves. Subsequently, a derivation of the relation
between the amplitude attenuation and the fluid’s (effective) viscosity is proposed.

Figure 2.3: Schematic drawing of the waveguide with thickness h and width W , party immersed
in the molten salt over length l. A representation of the shear waves initiated by the transducer

with form u(z, t) is illustrated [15].

2.2.1 Shear waves
In general, two wave modes can be present in a plate: longitudinal and shear wave modes. These
modes all correspond to different polarization directions of a wave. With the coordinates of the
plate being defined in figure 2.3, longitudinal waves are polarized in the z-direction and shear waves
in the x-direction. In this set-up, shear waves are used as these modes are nondispersive and have
the advantage to attribute their amplitude attenuation merely to the viscous effect of the fluid [7].

2.2.2 Power loss due to viscous dissipation
In this section the energy balance of the waveguide will be constructed, from which a differential
equation for the amplitude can be stated. For Newtonian fluids the differential equation can be
solved analytically. An analytical solution will be derived for the power-law fluids, based on some
approximations. This section is based on an internal paper by Rohde [15].

The shear waves that are initiated at the top of the waveguide, and travel in the z-direction have
the form:

u(z, t) = A(z) sin (kz − ωt), (2.4)

in which A(z) is the amplitude along the length of the waveguide [m], k = 2π/λ the wavenumber
[m−1] and ω the angular frequency [s−1]. The local plate velocity in the x-direction can now be
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written as
vx(z, t) =

du(z, t)

dt
= −A(z)ω cos (kz − ωt) = B(z) cos (kz − ωt), (2.5)

in which B(z) = −ωA(z) is the velocity amplitude [ms−1].

The main interest is the loss of energy of the sinusoidal shear waves at the guide’s surface, for which
an mechanical energy balance of a fraction dz of the waveguide can be composed. It is assumed
that the energy loss at the sides of the plate, the two (y, z)-planes, can be neglected as h/W << 1.
Now the balance for wave energy is given as

hWdz
dew
dt

(z, t) = P (z, t)− P (z + dz, t) + ∆Pτ (z, t), (2.6)

in which ew is the wave energy density [Jm−3], P the wave power that is transmitted along the
waveguide in the z-direction [Js−1] and Pτ the energy lost by shear friction [Js−1]. The power
loss term is due to shear stress τ0 acting on the surface Wdz, on both sides of the plate. The loss
term can now be described as:

∆Pτ (z, t) = −2τ0(z, t) · vx(z, t) ·W · dz. (2.7)

For the purpose of measuring the viscosity, the time-averaged attenuation of the shear wave along
the direction of the shear wave is of interest. Therefore the energy equation 2.6 is integrated over
one period T . For the spatial power derivative the integration gives the following simplification:

1

T

∫
T

− 1

W

P (z + dz, t)− P (z, t)

dz
=

1

T

∫
T

− d

dz
P ′(z, t)dt = − d

dz

(
1

T

∫
T

P ′(z)

)
=

d

dz
P̃ ′(z). (2.8)

The time-averaged integration of the time-derivative of ew becomes zero:

1

T

∫
T

h
d

dt
ew(z, t)dt = 0. (2.9)

The zero-term can be explained by looking at this wave energy integration in the Eulerian frame,
instead of in the Langrangian frame. These frames indicate two different ways of looking at a fluid
motion. In a Eulerian frame, one focuses on a specific location in space through which the fluid
flows as time passes, whereas in a Langrangian frame the observer follows an individual fluid parcel
as it moves through space and time. The different frames can be easily visualized by respectively
sitting on a bank and watching a river flow by, or sitting on a boat and drifting down a river [19].
Notice that in this energy equation the Eulerian frame is regarded, as the passing wave is observed
from a volume element hWdz at the waveguide. In this volume element, all lost energy to viscous
dissipation is originating from the wave energy. That is, no accumulation of energy can take place
in the volume element, proving the statement in 2.9.

Substituting 2.7, 2.8 and 2.9 into 2.6 and rewriting yields the following energy equation:

d

dz
P̃ ′(z, t) = −2τ0(z, t)vx(y = 0, z, t). (2.10)

In the end, the amplitude attenuation is of interest. Therefore the energy equation is stated in
terms of B(z), by using the following description of P̃ ′(z) [15]:

P̃ ′(z) =
1

2
hρscsB(z)2, (2.11)

in which cs marks the wave velocity in the plate [ms−1], ρs the density of the waveguide’s material
[kgm−3] and h the thickness of the plate [m]. Now the final energy equation is obtained, in terms
of the velocity amplitude B(z):

B(z)
dB(z)

dz
= − 1

ρscsh

1

T

∫
T

2τ0(z, t)vx,0(z, t)dt. (2.12)

No further general description can be given for the remaining loss term, as it is dependent on the
rheology of the fluid. Therefore this loss term will be separately derived for two different rheologies,
being Newtonian fluids an power-law fluids.
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Analytical solution for Newtonian fluids

To further derive an analytical solution for the amplitude profile B(z), a description of the velocity
profile vx has to be found. The solution to Stoke’s second problem is used for this velocity profile.
This problem describes the motion of a in-compressible fluid caused by the sinusoidal oscillation of
an entire flat plate. For Newtonian fluids, Stoke’s second problem can be solved analytically [20],
giving the solution for the velocity profile in the fluid given in 2.13:

vx(y, z, t) = B(z)e−y/δ cos (ωt− y/δ), (2.13)

in which δ is the viscous skin depth (m), described as:

δ =

(
2µ

ωρf

)1/2

. (2.14)

However, in the set-up of the ultrasonic viscometer, Stoke’s second does not apply in principle,
as not the entire plate oscillates sinusoidally. That is, dvx/dz 6= 0 close to the plate’s surface.
However, as δ ∼ µm << λ ∼ mm, the velocity gradient in the z-direction has an insignificant
influence:

dvx
dy
≈ vx

δ
and

dvx
dz
≈ vx

λ
=⇒ dvx

dy
>>

dvx
dz

. (2.15)

Therefore it can be assumed that the solution for the velocity profile in a Newtonian fluid can
safely be approximated by equation 2.13. Using equation 2.13 and Newton’s law in equation 2.1,
it can be derived that the time-averaged term on the right side of 2.12 equals

− 1

T

∫
T

2τ0vx,0(z, t)dt = −µ
δ
B(z)2. (2.16)

The mechanical energy equation 2.12 can therefore be rewritten in terms of the amplitude B(z):

dB(z)

dz
= − µ

δρscsh
B(z), (2.17)

giving the analytical solution for the velocity amplitude B(z) for Newtonian fluids in terms of the
viscosity of the fluid:

B(z) = B0exp
(
− µ

δρscsh
· z
)

= B0exp(α · z), (2.18)

in which B0 [ms−1] represents the initial amplitude of the shear wave at z = 0.

Analytical solution for power-law fluids

For power-law fluids, an analytical solution for B(z) to equation 2.12 is of interest as well. Un-
fortunately, in contrast to Newtonian fluids, no analytical solution to Stoke’s second problem for
power-law fluids is available. To enable an approximation of vx in the fluid, an assumption based
on Ai&Vafai [17] is used. In this paper, Stoke’s second problem was numerically solved for power-
law fluids for different values of power index m. It was found that the flow behaviour index m is
of insignificant influence on the velocity gradient at the plate’s surface y = 0. Making that it can
be safely assumed that for power-law fluids γ̇0 = γ̇0,N . Using this assumption, the time-averaged
term on the right side of equation 2.12 for power-law fluids can be derived [15], giving:

− 1

T

∫
T

2τ0vx,0(z, t)dt = −Km

(B(z)
√

(2)

δ

)m
B(z)P3(m), (2.19)

in which the viscous skin depth is defined as δ = (2Km/ωρf )1/2, with K1 = µ, and P3(m) is a
polynomial approximation:

P3(m)− 0.00630863m3 + 0.0399466m2 − 0.129211m+ 0.448619. (2.20)

Substituting 2.14 and 2.19 into 2.12 and rearranging gives the final differential equation for ampli-
tude B(z) for power-law fluids:

dB(z)

dz
= −
√

2P3(m)

h

(
2ωmρmf K

2−m
m

ρ2sc
2
s

)1/2

B(z)m = αmB(z)m. (2.21)
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Solving this differential equation gives an approximation for the velocity amplitude B(z) for power-
law fluids, in terms of the rheological parameters Km and m:

B(z) =
(
B1−m

0 + (1−m)αmz
)1/1−m

(2.22)

2.2.3 Navier-Stokes equations
In order to avoid incorporating assumptions and approximations in the numerical computations
with respect to the velocity profile in the fluid, the Navier-Stokes equations are used. One form of
the set of Navier-Stokes equations describes the time-dependent three-dimensional flow of incom-
pressible fluids, given as [16]:

ρ
∂v

∂t
= −ρv · ∇v −∇ · τ −∇p+ ρg, (2.23)

in which ρ is the density of the fluid [kgm−3], v the velocity vector [ms−1], τ the shear stress
tensor [Pa], p the pressure [Pa] and g the gravity vector [ms−2].

In the set-up of the ultrasonic viscometer, the Navier-Stokes equations can be simplified. Many
terms cancel out when using the following principles specific to the situation described in figure
2.3:

1. no pressure gradient and gravity effects play a role in the fluid, thus ∇p ≈ 0 and g = 0;

2. the initiated wave has an amplitude in the x-direction, thus vy = vz = 0;

3. no convection occurs, hence v ·∇v;

4. all shear stresses are zero, except for τyx(y).

Using these four statements into equation 2.23 gives the following equation, specific for this ultra-
sonic waveguide experiment:

∂vx
∂t

= − 1

ρf

∂τyx
∂y

. (2.24)

Equation 2.24 gives the solution for the velocity profile in the fluid. At the boundary y = 0, velocity
profile in the fluid meets with the one in the plate. The latter being derived in the previous section.
The boundary condition for the velocity at y = 0 is given as:

vx(y = 0, z, t) = B(z) cos (kz − ωt). (2.25)

In the experimental method, the implementation of formula 2.24 in a numerical script will be
further discussed.
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Chapter 3

Numerical method

The method of research in this numerical study, is to develop a model that determines the rhe-
ological properties of a power-law fluid, based on its velocity profile in the fluid in concurrence
with the wave energy in the plate. Hence numerically mimicking measurements performed by the
ultrasonic waveguide experiment.

This numerical model is set up by firstly using a 1D-approach in which the velocity profile for vx(y)
in the y-plane is determined for one value of of z. From this, the shear stress τyx was calculated
using the rheology of the fluid. After this 1D-approach, this technique is extrapolated for a larger
range of z on the plate, giving data on the attenuation of the amplitude of the wave. The acquired
data on B(z) is then processed and fitted in order to find the rheological properties of the fluid.
This method of modelling is firstly performed for a Newtonian fluid, as a benchmark of the code.
After that, a power-law rheology is applied to the model.

Furthermore, new parameters X and IX are introduced to make the derivations more convenient
and the code faster. In section 3.1, X and IX are derived. In section 3.2 the non-dimensional
formulation of all relevant parameters is given. Next, all used differential equations are discretized
in section 3.3. In section 3.4 the techniques of data-processing and fitting for the sake of retrieving
the viscosity from the ’measured’ data is explained. Lastly, section 3.5 presents code by means of
two flow diagrams.

3.1 Introduction of X and IX

For further derivations, it is important to notice that B(z) can be treated as a scaling factor for vx
and τyx. For example, equation 2.5 shows that vx ∼ B(z) and similarly the power-law rheology in
equation 2.2 shows that τyx,PL ∼ B(z)m. It turns out to be convenient in the numerical calculations
to treat the amplitude B(z) this way. That is, to factor out B(z) of the velocity and shear stress,
which is done by introducing the quantity X(z, t) [kg · s(m−2) ·m(1−m)]:

X(z, t) =
1

B(z)m+1
· τ0(z, t)vx,0(z, t). (3.1)

Note that X(z, t) is expected to be a periodic function, as both vx and τyx are periodic as well.
Moreover, note that the z-dependence of X(z, t) resides in the shifting of the periodic function over
t, for different values of z. That is, this z-dependence is not referring to an amplitude reduction as
a function of z, as this reducing B(z) has just been factored out. The convenience of using X(z, t)
can be illustrated when being substituted in the differential energy equation 2.12:

B(z)
dB(z)

dz
= − 1

ρscsh

2

T

∫
T

B(z)m+1X(z, t)dt = − 1

ρscsh

2

T
B(z)m+1

∫
T

X(z, t)dt. (3.2)

Equation 3.2 shows that the out-factoring of B(z) by introducing X(z, t) results in an integral
which is independent of the amplitude. This simplifies further calculations, as the integral can be
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calculated for all values of z, independent of the amplitude attenuation. That is, the calculation of
vx and τyx does not require iteration for the reducing B(z) as a result of viscous dissipation. Note
that integrating X(z, t) over one period T gives the same value for every z, as this is a sinusoidal
function around 0. The quantity IX is introduced to represent the time-averaged integral of X:

IX(z) =
2

T

∫
T

X(z, t)dt. (3.3)

In this definition IX(z) = constant. In other words, Ix 6= f(z). This can be explained by the fact
that the z-dependence is only referring to a shift of the periodic signal over t at different values
of z. If the periodic X(z, t) is integrated over one period T , this will thus give the same value
regardless of what z-coordinate is given. Substituting IX into equation 3.2 and rearranging leaves
the final differential equation for the calculation of amplitude B(z):

dB(z)

dz
= −B(z)m · IX

ρscsh
. (3.4)

Using equation 3.4, IX can be calculated for one value of z (for example, z0) directly out of one
calculation of X(z = z0, t). In other words, no iteration for every ∆z is required in the calculation
of the power-loss term, reducing the complexity of the Matlab script and the calculation time.

3.2 Non-dimensional formulation
The technique of non-dimensionalization is often applied to differential equations. It refers to the
removal of physical dimensions in an equation, by introducing a suitable substitution of variables.
By applying a non-dimensional mathematical model, no physical quantities need to be assigned.
This approach is a simplification of great convenience, as one simulation will then be valid for many
types of fluids. Also, this non-dimensional approach increases the understanding of the physical
problem [21].

3.2.1 Derivation non-dimensional quantities
The following non-dimensional quantities are introduced, defined by Ai&Vafai [17] and D.Pritchard
[22]. Here â marks the non-dimensionalized variable a.

v̂x =
vx
v0
, (3.5) t̂ = ω · t, (3.6)

ŷ =
( ω

ν0v
m−1
0

) 1
m+1 · y, (3.7) ẑ =

z

ztot
, (3.8)

in which v0 [ms−1] is the reference velocity at y = 0, ω [s−1] the frequency of the vibration,
ν0 [m2s−1] the reference kinematic viscosity of a Newtonian fluid, m the flow index and ztot
[m] the total length of the waveguide. These four non-dimensional quantities are used to non-
dimensionalize the shear stress τyx and the parameter ÎX̂ .

Substituting v̂x and ŷ into the power-law rheology 2.2 gives

τyx,PL = −Km

(
ω

ν0v
m−1
0

)m/(m+1)

·
∣∣∣∣dv̂xdŷ

∣∣∣∣m−1 dv̂xdŷ , (3.9)

yielding the non-dimensionalized shear stress for power-law fluids τ̂yx,PL

τ̂yx,PL = Km
−1

(
ω

ν0v
m−1
o

)−m/(m+1)

v−m0 · τyx,PL. (3.10)
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For completeness, the non-dimensional parameter τ̂yx is written out for the special case of m = 1,
thus a Newtonian fluid. The substitutionK1 = µ was used, as well as ν0 = µ0/ρf . This substitution
turns out to be convenient, as for Newtonian fluids µ/µ0 = 1. Substituting into equation 3.10 gives

τ̂yx,N = µ−1
( ω
ν0

)−1/2
v−10 · τyx = (ων0)−

1
2 (v0ρf )−1 · τyx. (3.11)

In order to obtain ÎX̂ , B̂ and ẑ are substituted into equation 3.4:

v0B̂(ẑ)

dẑ
=

1

ρscsh
vm0 B̂(ẑ) · ÎX̂ . (3.12)

By doing some rearranging, ÎX̂ becomes1:

ÎX̂ =
1

ρscshztot
vm−10 · IX . (3.13)

3.2.2 Non-dimensional set of equations
This section gives all relevant equations stated in terms of the now derived non-dimensional quan-
tities. Substituting v̂x, t̂, τ̂yx and ŷ into the Navier-Stokes equation 2.24 gives the corresponding
non-dimensional equation:

∂v̂x

∂t̂
= −∂τ̂yx

∂ŷ
. (3.14)

The general non-dimensional formulation of the shear stress of a power-law fluid 2.2 as a function
of the power-index m is given in the following equation The convenience of the definition of ŷ in
3.7 is clearly demonstrated, as all constants cancel out:

τ̂yx,PL = −
∣∣∣∣dv̂xdŷ

∣∣∣∣m−1 dv̂xdŷ . (3.15)

For the special case of a Newtonian fluid m = 1, this equation reduces to:

τ̂yx,N = −dv̂x
dŷ

. (3.16)

Furthermore, X̂ and ÎX̂ are defined as follows:

X̂ =
1

B̂(ẑ)
· τ̂yx,0v̂x,0, (3.17)

ÎX̂ =
2

T̂

∫
T̂

X̂(ẑ, t̂)dt̂. (3.18)

Lastly, the non-dimensional formulation of the differential equation for amplitude attenuation 3.4
is defined as2:

B̂(ẑ)

dẑ
= −B̂(ẑ)m · ÎX̂ . (3.19)

3.3 Discrete formulation
The discretization of a function f(x) refers to the segmentation of the continuous function into data
points [xi, fi]. This process is illustrated in figure 3.1. Discretization is needed to be able to solve
differential equations numerically. Several methods are available for the numerical approximation
of differential equations. Some of those methods are defined as finite difference approximations,
such as the forward finite difference, the backward finite difference, the central finite difference and
the Crank-Nicolson schemes [24]. In this research, the forward finite difference and central finite
difference model are utilized.

1Many different derivations of the non-dimensional parameters can be composed. In appendix 6.1, an alternative
derivation is given.

2This non-dimensional formulation of B̂ is not completely in line with the definition of ÎX̂ . Appendix 6.1
elaborates on this finding.
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Figure 3.1: Illustration of the discretization of continuous function f(x) into a discrete data set of
points [xi, fi]. [23]

3.3.1 Discrete differentiation and integration
Generally, the most accurate first-order differential approach is the central linear approximation,
which for equidistant intervals hi = hi−1 = h is given by [23]:

f ′(xi) ≈
fi+1 − fi−1

2h
. (3.20)

Some calculations in this research requir the evaluation of a function f ′(x) in x = 0, for which
a central differential approach proves to be unsuitable. In those cases, a second order forward
difference approach was used [23]:

f ′(xi) ≈
−3fi + 4fi+1 − fi+2

2h
. (3.21)

The partial derivatives in time were discretized by a first order forward difference approximation.
This approximation is given by [23]:

f ′(tn) ≈ fn+1 − fn
∆t

. (3.22)

The time-averaged integral IX was approached numerically using the trapeziodal method. In this
approximation the interpolating function is a straight line between points (tn, fn) and (tn+1, fn+1),
making that the discrete integration of f(t) at the interval [a = tn=1, b = tn=Nt ]:∫ b

a

f(t)dt ≈
Nt∑
n=2

fn−1 + fn
2

∆t. (3.23)

3.3.2 Discrete set of equations
This section aims to determine discrete forms for the governing equations in the numerical model,
with the idea of replacing the derivatives in those equations by the defined approximations in
section 3.3.

This section describes the discretization for all dimensional governing equations (2.1, 2.2, 2.24,
3.3, 3.4). The corresponding non-dimensional equations - given in section 3.2.2 - were of course
discretized as well, in the exact same way. Furthermore, for convenience in writing, this section
uses v to refer to vx, as well as τ for τyx.

The finite difference approach involves both the time and spatial derivatives to be replaced by
finite differences. The following notation of the numerical approximation is used to do this:

ani,k ≈ a(yi, zk, tn), where tn = n∆t, yi = i∆y, zk = k∆z. (3.24)

Different schemes are available to approach the partial differential Navier-Stokes equation and
rheology equation. In this research an explicit approach was used, rather than an implicit one.
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Despite of the explicit scheme having the ability to become unstable, it is the easier to implement
in Matlab and the less numerically intensive [24].

The Navier-Stokes equation 2.24 is discretized by using a forward time central space (FCTS) [24].
That is, the equation is discretized in time by using the forward scheme in equation 3.22 and
discretized in space by using a central approach given in equation 3.20. Yielding the discrete
Navier-Stokes equation as follows:

vn+1
i,k = vni,k −

1

ρf

∆t

2∆y

(
τni+1,k − τni−1,k

)
. (3.25)

The availability of a boundary condition for vx(y = 0) at the plate’s surface enables the use of
this central approach. That is, equation 3.25 can be computed starting from yi=1. This is not the
case for the rheology equations 2.1 and 2.2, as no specific boundary condition for τyx(y = 0) is
available. In this case the forward approach has to be used. By doing so, the following discrete
shear-stress equations for power-law are retrieved:

τni,k = − Km

(2∆y)m
∣∣−3vni,k + 4vni+1,k − vi+2,k

∣∣m−1(− 3vni,k + 4vni+1,k − vni+2,k

)
(3.26)

In which the discrete shear-rate is defined as:

γ̇ni,k = (−3vni,k + 4vni+1,k − vni+2,k)/(2∆y) (3.27)

Note that for the case γ̇ni,k > 0, equation 3.26 simplifies to

τni,k = −Km

(
−3vni,k + 4vni+1,k − vni+2,k

2∆y

)m
= −Km

(
γ̇ni,k

)m
(3.28)

And similarly, for the case γ̇ni,k < 0

τni,k = Km

(
−
−3vni,k + 4vni+1,k − vni+2,k

2∆y

)m
= Km

(
− γ̇ni,k

)m
(3.29)

The constant integral IX 3.3 is described by using a the discrete approximation given in 3.23:

IX =
2

T

Nn−1∑
n=1

∆t

2

(
Xn
i=1,k +Xn+1

i=1,k

)
(3.30)

Lastly the differential equation describing the amplitude profile 3.4 is discretized using a first order
forward approach in z-space:

Bni=1,k+1 = (Bni=1,k)m − 1

ρscsh
2∆z ·Bni=1,k · IX (3.31)

3.4 Data-processing: determination of the rheological prop-
erties

When the numerical Matlab model has computed the amplitude profile B(z), the first part of the
computation is completed. At that point, the ultrasonic waveguide experiment has been mimicked
numerically. These computed data is expected to be much more accurate than those of a physical
measurement, due to the absence of, sometimes significant, experimental uncertainties.

In this section, the methods to retrieve the rheological properties m and Km from this computed
[z,B]-datasets are described. This thesis applies these methods to the computationally obtained
data-set, but note that these methods can applied to physically measured amplitude profiles as well.
The data-processing differs for Newtonian and power-law fluids, whose corresponding methods are
described in section 3.4.1 and 3.4.2, respectively.
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In this research, the viscosity of Newtonian fluids is computed by the numerical model first. By
performing these computations, the Matlab code can be benchmarked: if the correct viscosities are
retrieved it can be concluded that the velocity profiles and amplitude attenuation are calculated
correctly. The viscosity of two Newtonian fluids are computed by the numerical model - both
non-dimensional as dimensional, which is described in section 3.4.1. After this, the amplitude
computations were performed for power-law fluids. From this the rheological parameters m and
Km for power-law fluids could be retrieved. The method to do so is described in section 3.4.2.

3.4.1 Newtonian fluids
Note that the amplitude-profile for Newtonian fluids is expected to show an exponential decay,
as was shown in equation 2.18. Using the data-set [z,B] the amplitude-profile B(z) is fitted to
an exponential function C1 ∗ exp(C2 · z) using a Matlab fit-function, in which C2 = αfit. The
Matlab-fit of the exponent has standard confidence bounds of 95%. The fit was performed for
the both non-dimensional and dimensional amplitude profiles B̂(ẑ) and B(z).

Non-dimensional

From the non-dimensionally derived α̂fit, the viscosity µ can be calculated as follows:

µ = α̂2
fit · 2ρfν0. (3.32)

The derivation of equation 3.32 is given in appendix ??. Note that this method of finding µ is
inapplicable in physical experiments, as the values of ρf and ν0 are required to know beforehand.
Nevertheless, if the right values of µ are retrieved, this method can confirm the correctness of the
non-dimensional calculation of the velocity and amplitude profiles.

Dimensional

To retrieve the viscosity µ from the dimensional data, the attenuation constant αfit from the
exponential decay of the dimensional B(z) profile is used. The viscosity is found by using the
analytical solution to the ampltiude profile stated in equation 2.18 and the formulation of δ in
2.14, giving:

µ = α2
fit ·

2ρ2sc
2
sh

2

ωρf
. (3.33)

3.4.2 Power-law fluids
After the benchmark of the method for Newtonian fluids, the numerical model is used for the
calculation of the rheological properties Km and m of power-law fluids. This computation is
more complicated, as two constants have to be retrieved and thus fitted to the amplitude profile.
Moreover, the analytical solution for B(z) for power-law fluids in equation 2.22 is more complicated.

Rohde [15] proposed a method in his report in which m and Km can be found by fitting the
measured data set (z,B) to a linear function, obtained from equation 2.22

∆B∗ = Km ·∆z∗, (3.34)

in which
∆B∗(z) =

∣∣∣B(z)1−m −B1−m
0

∣∣∣2/(2−m)

, (3.35)

∆z∗ =
[2P3(m)

ρscsh
|1−m|(ωρf )1/2 · z

]2/(2−m)

. (3.36)

In this way only m needs to be varied to find the slope Km with the smallest fit error.

The fitting is performed by methods of a manual minimization problem. That is, ∆B∗(mfit) and
∆z∗(mfit) are calculated with the given data set of (z,B) for a range of mfit-values: mfit =
[0.1, 1.8], with ∆m = 1.7/400 = 0.00425. With mm being the index of mfit, thus mfit,mm =
mm∆m. The obtained data-sets for [∆B∗(z),∆z∗] for 400 different values of mfit is visualized in
figure 3.2, for the example of soybean oil.
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Figure 3.2: Plots of manipulated data-set [∆B∗,∆z∗] by means of equations 3.35 and 3.36 for
mfit = [0.1, 1.8]. Note that not all values mfit result in a linear function.

Out of all the different data-sets [∆B∗(z),∆z∗] for different values of mfit, the one that fits a
linear function the nearest is of interest. As this is the value of mfit that should correspond to the
measured fluid, according to the linear method in 3.34. As can be seen in figure ??, some calculated
data-sets [∆B∗(z),∆z∗] somewhat approach a linear function, but it can not be observed directly
which one does the most accurately. To find the best linear fit [∆z∗,∆B∗] is fitted to a linear
function for every value of mfit, by the polyfit1 function of Matlab. This fit plots a function
yfit = p1 ·∆z∗+p2 to the data-set. Thus a number of mm different fitted functions are calculated.
Out of this set of fits, the best linear fit to the measured data of B(z) was found by minimizing
the total error in yfit, being:

εyfit
(mfit) =

Nz∑
k=1

√(
yfit(z,mfit)−∆B∗(z,mfit)

)2
, (3.37)

such that m can be found at εyfit
(mfit) → 0 and the corresponding value of Km at the same

mfit-index for the slope p1(mm).

3.5 Matlab code
In this section, the Matlab code of this research is described in more detail. The used constants
and boundary conditions for the dimensional calculations are given in section 3.5.1. Also, the
stability conditions for the used intervals of variables y, t and z are discussed in 3.5.2. Lastly, the
complete Matlab model is described in the form of two flow diagrams in section 3.5.5.

3.5.1 Constants
Some constants require to be defined as they arise in the dimensional governing equations. In the
research of Rook [7] the ultrasonic waveguide experiment was physically performed. All relevant
constants were measured, which are given in table 3.1.

Different fluids were mimicked by the numerical model, whose rheological parameters are given in
table 3.2.

18



Quantity cs [ms−1] h [m] ρs [kgm−3] f [Hz] ztot [m] v0 [ms−1]
Value 3083 202·10−6 7876 3·10−3 203.5·10−3 80·10−3 · ω

Table 3.1: Experimental constants. In which cs is the wave velocity, h the thickness of the plate,
ρs the density of the stainless steel waveguide, f the frequency of the incident wave, ztot the total

length of the plate, v0 the initial shear wave speed (amplitude) [7] [15].

Fluid [kgm−3] Power index m [−] Consistency index Km [Pasm] Density ρf
Water 1 0.0001 997
Air 1 18.3·10−6 1.185

Tomato ketchup 0.3 6.47 1136
Soybean oil 0.51 2.18 930

Ethylene glycol 1.29 0.0011 1110

Table 3.2: Rheological constants for different fluids. The values for water and air where retrieved
from [25], ketchup from [26], soybean from [27] and ethylene glycol from [28]. Newtonian fluids

are marked by m = 1, for which K1 = µ.

3.5.2 Boundary conditions
The fluid surrounding the waveguide is at rest at t = 0s. At time t = 0+ the sinusoidal wave is
initiated at the top of the plate, and the plate’s transmits the motion into the fluid. The boundary
and initial conditions in discrete form are given by:

vn=1
i,k = 0 for yi > 0 (3.38)

vni=1,k = sin
(
kzk − tn

)
for tn > 0 (3.39)

vni,k → 0 for yi →∞ (3.40)

Bnk=1 = v0 (3.41)

Note that in equation 3.39, amplitude B(z) has been factored out. All calculations in the code of
vx(y) were performed with this unit amplitude, as was described in section 3.1.

3.5.3 Stability conditions
In the numerical model it is of great importance to implement the right ∆z, ∆y and ∆t. This is to
ensure the stability of the differential computational schemes, as well as to minimize uncertainties
in the calculations. Although smaller intervals mostly account for more accurate results, the limited
data storage and run-time of the script have to be be taken into consideration.

The FCTS scheme in equation 3.25 can produce unstable solutions that oscillate and grow if ∆t is
too large [24]. Stable solutions with the FTCS scheme are only obtained if3 [29]

1

ρf

∆t

∆y2
≤ 1

2
(3.42)

By trial-and-error, the maximum required ∆t was found at ∆t = 2π/8000ω. This time-step was
used in all calculations, on an interval of t = [0, 3π/ω]. No smaller ∆t was possible in these
calculations, as that would required the ∆y to be smaller as well, exceeding the maximum storage.

Concerning y, a rough indication of the necessary length of the y-interval was found in the report
of Ai&Vafai [17] to be ŷ = 5. Using the non-dimensional formulation in 3.7 for m = 1, this

3As a matter of fact, this stability was derived for Newtonian fluids only. This can be seen by substituting
discrete equation 3.26 for m = 1 into discrete NS-equation 3.25. Following this derivation, the stability criterion
∆t/ρf∆ym+1 < 1/2 should hold for power-law fluids. However, this criterion proved not to be accurate during the
velocity computations. Therefore the Newtonian stability criterion was used as a starting point, for which sometimes
some adjustments in ∆y had to be made. Some further mathematical research could go into this stability issue.
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corresponds to y ≈ 5 · 2.3079 · 10−7 [m] in dimensional y-space. No boundary condition was
assigned at vx(y → ∞), requiring to run the script for a long enough y for the velocity profile to
approach zero. This minimum run-length of y differs for different fluids with m and Km and thus
will be discussed in the individual calculations. ∆y was subsequently determined, based on the
stability condition in 3.42.

3.5.4 Visualisation numerical set-up
In order to further visualize the numerical set-up at the waveguide and in the fluid, the boundary
conditions and variable-indexing are schematically showed in figure 3.3.

Figure 3.3: Schematic drawing of waveguide in numerical set-up.

3.5.5 Flow-diagrams script
In this section, the composed Matlab code is depicted in detail by means of two flow diagrams.
Basically, these two flow diagrams give a summary of this chapter on the numerical method.

In the first flow diagram, the numerical model for the calculation of the amplitude attenuation in
the plate is illustrated. In short, the boundary conditions and experimental constants are inserted,
together with the specific rheological constants of the fluid, yielding an amplitude profile [z,B] in
the end of the calculations. This is the so-called ’measurement’.

In the second flow diagram, the retrievement of the rheological constants from the measurement
is depicted. As seen in previous sections, a different script has to be run for a fluid being a
Newtonian or power-law fluid. The retrieved data-set [z,B] from the first flow-diagram is used to
retrieve m and Km through methods of fitting. Note that this part of the code can be used in
further experimental research as well.

Note that the models are described in terms of dimensional quantities and equations, as the dimen-
sional space is most relevant for the (effective) viscosity determination. As described previously,
the non-dimensional model is used as well for benchmarking properties. The same numerical model
is used for all corresponding non-dimensional equations.

20



Start

3.39: B.C.
for vni=1,k

Fluid const. Km

and m table 3.2
Experimental
const. table 3.1

3.27: calc
shear-rate γ̇ni,k

γ̇ni,k > 0 ?

3.28: calc τni,k3.29: calc. τni,k

τyx(y, z, t)

i = Ny − 2 ?

3.25: calc. vni+1,k

vx(y, z, t)

i = Ny − 2 ?

n = Nt ?

X(y = 0, z, t) =
τ(y = 0, z, t) ·
v(y = 0, z, t)

3.30: calc. Ix

3.31: calc. Bk
(
z,B(z)

)

Stop

i = 1; n = 1

YesNo

i→ i+ 1

No Yes

i→ i+ 1

Yes: n→ n+ 1

No

Yes

No

Figure 3.4: Flow-diagram of composed Matlab-code to mimic the ultrasonic wave-guide experi-
ment, with the amplitude profile B(z) as the outcome.
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Chapter 4

Results and discussion

In this chapter, the results of the computational research are presented, accompanied by discussion
about these results. Firstly, the results of the computed velocity profiles of some Newtonian
and power-law fluids are given in section 4.1. Section 4.2 showcases the amplitude attenuation
due to viscous dissipation for different fluids, plotted both non-dimensionally and dimensionally.
Additionally, this section elaborates on the effective viscosity of different power-law fluids and its
effect on the minimally required length of the waveguide. In section 4.3 the resulting viscosities of
two Newtonian fluids which were computed by the Matlab script are shown. Lastly, section 4.4
presents and discusses the results on Km and m for different power-law fluids.

4.1 Velocity profiles
First, the results on the velocity profiles of Newtonian fluids will be presented as they served as
benchmarkes for the composed script. After this, the velocity profiles for power-law fluids are
shown.

Note that for all calculations the used dimensional time-variable for was t = [0, 3π/ω] and ∆t =
2π/8000ω as described in section 3.5.3. The corresponding non-dimensional time-variable was
t̂ = [0, 3π] with ∆t̂ = 2π/8000, based on the non-dimensional formulation in section 3.2.1. The
variable ∆y differed per calculation, as described in section 3.5.3.

4.1.1 Newtonian fluids
In figure 4.1, the computed non-dimensional velocity profile v̂x(ŷ, t̂) in the Newtonian fluid sur-
rounding the waveguide is depicted. For Newtonian fluids, ŷ = [0, 15] was found to be the minimal
length in order to allow v̂x(ŷ → ∞) = 0. Regarding the stability criterion in equation 3.42, this
required ∆ŷ = 0.1. The results of Ai&Vafai [17] were used to benchmark the computed velocity
profiles. In their paper, the non-dimensional velocity profile for different fluids for incident signal
v̂x(ŷ = 0) = sin (ωt̂) was numerically computed as well. As can be observed, the computed data
matches with the literature values, from which it can be concluded that the numerical model for
the velocity profile in this thesis is accurate.

Based on this verification, it can be safely assumed that the same numerical procedure can be
applied to the dimensional velocity profile. In figure 4.2 the results on the dimensional velocity
profile for two Newtonian fluids are depicted. The used y-values were y = [0, 15 · (ν0/ω)] with
∆y = 0.1 · (ν0/ω), based on the previously defined ŷ and the non-dimensional formulation in
equation 3.7. The dimensional plots show a greater viscous skin for air than for water, which is
due to the term µ/ρf (see equation 2.14).

Unfortunately, no literature data was found to benchmark the specific dimensional velocity profiles
for water and air. Nevertheless, the only manipulations regarding the Newtonian non-dimensional
velocity profile to obtaining the dimensional one, were to multiply with well-known constants (µ, ν0,
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ω). Therefore it can be safely concluded that this dimensional velocity profiles for the Newtonian
fluids are accurate and correct as well.
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Figure 4.1: Non-dimensional plot of the velocity profile v̂x as a function of ŷ, compared with the
literature values from Ai&Vafai [17], at different times t̂. Note that the literature values are only

given up to ŷ = 5
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Figure 4.2: Dimensional plots of velocity profile v̂x as a function of y, for different times t, for two
Newtonian fluids. With µwater = 0.0001, µair = 18.4e− 6 [Pas].

4.1.2 Power-law fluids
For power-law fluids, the non-dimensional velocity profile was computed with the script described
in the flow-chart (section 3.5.5), in which the influence of m was incorporated. The results for
the non-dimensional velocity profiles for theoretical power-law fluids with m = 0.5, m = 1 and
m = 1.5 are depicted in subplot 4.3(a). In subplot 4.3(b), (c) and (d), the results are compared to
the literature values from Ai&Vafai [17] for m = 0.5, m = 1 and m = 1.5, respectively.

It was found that the viscous skin depth δ was greater for the shear-thinning (m < 1) fluids than
for shear-thickening. Hence the ŷ-interval was enlarged to ŷ = [0, 40]. For stability purposes,
described in equation 3.42, ∆y was set at ŷ = 0.2.
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ŷ

d) m = 1.5

t̂ = π/2ω [s]

t̂ = π/ω [s]

t̂ = 3π/2ω [s]

t̂ = 2π/ω [s]
Ai&Vafai

Figure 4.3: Snapshot plots of the non-dimensional profile velocity profile v̂x for different
power-law fluids, as a function of ŷ. (a) depicts the computed profiles for m = 0.5, m = 1 and
m = 1.5. (b),(c) and (d) compare the computed velocity profiles with the corresponding

literature values from Ai&Vafai [17] Note that the literature values were only given up to ŷ = 5
.

Note that figure 4.3(c) is computed via the power-law script in which m = 1 is inserted, while
in the calculation for figure 4.2 the numerical model was simplified beforehand by using m = 1.
This was done to verify the numerical model for power-law fluids. This indeed indicates a correct
application of the script on power-law fluids, as the velocity profile in figure 4.3(c) is still the same
as the literature values from for m = 1.

Although the dimensionless velocity profiles for m = 0.5 and m = 1.5 show the same form as
the literature data from Ai& Vafai, it does not correspond exactly. A notable observation is that
the velocity profile for m = 0.5 deviates more from the literature values then for m = 1.5. This
can be explained by the presumption that the velocity gradients for shear-thinning fluids close to
the waveguide’s surface are very large compared to the ones for shear-thickening, making it more
assumable that numerical faults slip in.

A probable reason for the overall deviation of the computed results could be that Ai&Vafai use a
different non-dimensionalisation for ŷ than stated in this thesis (see equation 3.7). This makes that
the ŷ-axis could experience a scaling difference compared to the literature values. Unfortunately, it
is not straightforward to resolve this scaling problem. The re-scaling of the ŷ-axis of this research
would have to be performed with:

ŷliterature =
( ω
ν0

)(m−1)/(2m+2)

v
(m−1)/(m+1)
0 · ŷresearch (4.1)

Note that this is inconvenient for comparative research, as the ŷ-axis would be scaled differently
for different values of m. Another problem in this scaling lies in the fact that Ai&Vafai’s research
does not mention the used values for ν0, ω and v0. Lastly, it is even more inconvenient to adapt
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the definition of ŷ from Ai&Vafai, as this does not give the nicely stated non-dimensional equation
for τ̂ as described in equation 3.10, independent of all fluid constants. After all, it is assumed
that the deviation with respect to the literature values is predominantly caused by this difference
in non-dimensional formulation. Hence the velocity profile can be safely used in this research’
further calculations of the rheology, as long as the stated non-dimensional formulations are used
consequently. This assumption is based as well on the fact that the calculated velocity profile of the
Newtonian fluid matches perfectly with the literature values, indicating the numerical correctness
of the script.
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Figure 4.4: Dimensional plots of dimensional velocity profiles power-fluids as a function of y. For
the fluids (from left to right): ketchup, soybean oil, ethylene-glycol.

In figure 4.4 the results for the dimensional velocity profiles for three power-law fluids are given.
Next to the earlier observed influence of m, the consistency index Km affects the shape of the
velocity profile. For the non-dimensional velocity profiles it was found that the viscous skin depth
δ was greater for shear-thinning fluids. However, in dimensional space this is definitely not a rule
of thumb, as the viscous skin depth is obviously dependent on Km as well. Figure 4.4 gives an
illustration of this dependence. Ketchup has a smaller m than soybean oil, thus, based on the
non-dimensional research, is expected to have a larger viscous skin depth. However, as a result
of its larger Km the viscous skin depth shows to be smaller. It therefore is hypothesized that the
viscous skin depth increases with smaller m ánd smaller Km. This has to be further research, in
which ρf plays a role in the viscous skin depth as well.

4.2 Amplitude attenuation
With the results on the velocity profiles, the amplitude profile B(z) in the plate can be calcu-
lated. In this section the results on this amplitude attenuation for different fluids are shown, both
non-dimensionally and dimensionally. Additionally, the minimal required plate’s length in the
experimental set-up will be discussed.

The used value ∆z was different per fluid, as the required wave plate length zend varied heavily -
even up to a factor 1000. Nz = 1001 was used in all calculations, as this proved to give stable and
accurate results. The individual values of zend - and thus ∆z - can be retrieved from the given
plots in this section.

26



4.2.1 Newtonian fluids
The amplitude attenuation for two Newtonian fluids as a function of position at the plate z is
shown in figure 4.5. The amplitude curve B(z) shows an exponential decay, as was expected by
equation 2.18.
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Figure 4.5: Plots of dimensional amplitude profile B(z) for two Newtonian fluids, showing an
exponential amplitude attenuation. Note that the calculations have been performed for extreme
lengths. The total length of the waveguide in the experiment is much smaller, being z = 204 mm.

It can be observed that the amplitude-decay is steeper for water. This was expected, as water has a
larger dynamic viscosity and thus accounts for a larger amount of viscous dissipation, enlarging the
amplitude attenuation. Despite of water showing a steeper amplitude-decay, the exponential form
starts to show far above the total length of the waveguide, which is ztot = 204mm. Nonetheless
this proved not to be problematic in the experimental viscosity determination of Newtonian fluids,
as has been shown by Rook [7]. In his thesis it was proved that there is an unique exponent that
can be fitted to the typical exponential amplitude decay shown by a Newtonian fluid, even for
small immersion depths.

4.2.2 Power-law fluids
The results on the non-dimensional amplitude-profile for three different power-law fluids are given
in figure 4.6. Note that these non-dimensional calculations were independent of Km, as the non-
dimensional rheology was defined without Km in equation 3.15. This enabled the research of the
mere effect of the power index m on the steepness of decay. Note that the steepness of decay
serves as a measure for the minimum required plate length of the waveguide. It was found that the
amplitude-decay is overall steeper for smaller values of m (shear-thinning). At first sight this was
an unexpected result, as it was presumed to be the opposite, based on the notice that the effective
viscosity of a shear-thickening fluid increases while velocity gradients increase, thus accounting for
a higher amount of viscous dissipation. The contradictory findings can be explained by looking at
the (non-dimensional) effective viscosity of a shear-thinning and shear-thickening fluid. In figure
4.7 the dimensionless rheologies for fluids with m = 0.5,m = 1 and m = 1.5 are plotted. Note that
in this computational experiment, the shear-rate |dv̂/dŷ| stays below a critical value at which the
lines would cross. Thus in this specific experiment, the shear-stress of the shear-thinning fluid is
at all times higher than for the shear-thickening fluid at the same shear rates. The same finding is
illustrated in figure 4.8. In these plots the dimensionless shear-rate over time is compared to the
effective viscosity, for two fluids with m = 0.5 and m = 1.5. Note that this plot is in line with
figure 4.7, as it can be observed that the amplitude of the effective viscosity for shear-thinning
is higher than the amplitude for shear-thickening. This now concludes the cause for the steeper
amplitude-decay for shear-thinning fluids in this experiment, when leaving the influence of Km out
of notice.

In figure 4.9 the dimensional results for the amplitude-profile for three different power-law fluids
are depicted. It can be observed that the decay-length over z varies greatly for the different fluids.
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ẑ = z/ztot

0

0.2

0.4

0.6

0.8

1

B̂
=

B
/B

0

m = 0.51, Km = 2.18

0 2 4 6 8 10
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Figure 4.6: Plots of non-dimensional amplitude profile B̂(ẑ) for three different power-law fluids
(from left to right: ketchup, soybean oil, ethylene-glycol).
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dŷ

∣

∣

∣

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
im

en
si
o
n
le
ss

sh
ea
rs
tr
es
s
τ̂
y
x

Nondimensional rheology for three different fluids, at τ = π/2

m=1.5

m=0.5

m=1

Figure 4.7: Non-dimensional rheology plot for power-law fluids with m = 0.5, m = 1 and m = 1.5.

0 2 4 6 8 10

Nondimensional time t̂

0

0.5

1

1.5

∣ ∣ ∣

d
v̂
x

d
ŷ
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Figure 4.8: Plots of the non-dimensional shear-rate and effective viscosity at the plate’s surface ŷ,
for a shear-thinning (m = 0.5) and shear-thickening (m = 1.5) fluid. As an illustration for the
steeper amplitude decay for shear-thinning fluids. Note that the effective viscosity diagram for
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Figure 4.9: Plots of dimensional amplitude profile B(z) for three different power-law fluids (from
left to right: ketchup, soybean oil, ethylene-glycol). The total length of the waveguide in the

experiment is z = 204mm.

As these amplitude plots are calculated using a dimensional velocity model, Km plays a role in the
pace of decay. That is, a higher Km accounts for a higher shear-stress, a higher amount of viscous
dissipation and thus a steeper decay. As it was beyond the scope of this thesis, it is recommended
to research the effect of the consistency index Km on the required plate length in the experiment.

4.3 Viscosity of the Newtonian fluids
As by the methods described in sections 3.4.1 and 3.5.5, the viscosity of the Newtonian fluids can
be retrieved from the computed amplitude profile by performing an exponential fit. The resulting
viscosities for the two Newtonian fluids water and air are given in table 4.1.

Fluid µ, non-dimensional calc Deviation µ, dimensional calc Deviation
Water 0.0010 0% 0.0010 0%
Air 1.8921e-05 3.4% 1.9025e-05 4.0%

Table 4.1: Resulting viscosities µ [Pas] for two Newtonian fluids, compared to their literature
values (table 3.2). Viscosity-results were computed both non-dimensional and dimensional
methods using resp. 3.32 and 3.33. Calculated viscosities have a 95% confidence bound.

As can be observed from the table, the calculated viscosities are conform the theoretical values
within the 95% confidence bound. This makes that a final benchmark on the numerical model
is performed. Namely, it can be concluded that the calculation of velocity profile and amplitude
profile is correctly performed, and the methods can thus be expanded to power-law fluids.

4.4 K and m of the power-law fluids
For power-law fluids not one, but two parameters have to be measured in order to know the
effective viscosity of the fluid. This computation was only performed in dimensional space. As
by the methods described in sections 3.4.2 and 3.5.5, the rheological parameters m and Km can
be retrieved from a linear data-fit to the computed data-set [z,B]. The resulting rheological
parameters for three different power-law fluids are given in table 4.2. These results and errors ε on
m and Km are discussed in sections 4.4.1 and 4.4.2, respectively.

4.4.1 Discussion m-determination
As can be observed in table 4.2, the determination of m proves to be quite accurate with the used
linear method. The existing error εm originates from the grid-size of the mfit that is used to find
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Fluid Result m Lit. m Result Km Lit. Km

Tomato ketchup 0.2997 0.30 66.5368 6.47
Soybean oil 0.5080 0.51 33.238 2.18

Ethylene-glycol 1.2943 1.29 7.8003e-7 0.0011

Table 4.2: Resulting power indexes m [−] and consistency indexes Km [Pasm] for three
power-law fluids, compared to the inserted literature values.

the best linear fit to [∆B∗,∆z∗]. This linear fitting was performed by using an evenly spaced
vector mfit = [0.1, 1.8] with ∆m = 0.0043, hence ε(m) = 0.0043. Note that the errors in the
computed m-values for the three different values indeed lie in this margin.

A critical remark is to be expressed on an interesting phenomenon that occurred in the determina-
tion ofm. As described in the experimental method 3.4.2, m is found by performing a minimization
problem to εyfit

→ 0. Interestingly, it was observed that εyfit
approaches zero at two values of

mfit, instead of just at one. An illustration of this phenomenon is given in figure 4.10.
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Figure 4.10: Illustration of the two-minima-problem in the minimization of the fit-error εyfit
.

The plots show a snapshot of εyfit
as a function of mfit, for three different fluids (left to right:

ketchup, soybean oil and ethylene-glycol).

As can be observed, the faulty minimum appeared around m = 1 in all examined cases. From this
observation, it was hypothesized that for shear-thinning fluids the first dip in this plot indicates
the correct m-value, as for shear-thickening fluids the second dip marks the right m-value. The use
of this two-minima-hypothesis enabled the correct retrievement of m-values for the three tested
fluids. A possible cause of this phenomenon could lie in the used method of minimization, or in the
overall method of linear fitting. As this lies beyond the scope of this research, it is recommended
to perform further investigation on this phenomenon. It would be helpful to prove the hypothesis
of the first/second-dip-minimization for shear-thinning and -thickening fluids.

4.4.2 Discussion Km-sensitivity
Unfortunately, the resulting values for Km given in table 4.2 show a significant deviation from with
the inserted literature values. This was expected to be caused by the high sensitivity of Km for
small variations in mfit. Figure 4.11 illustrates this sensitivity, taking soybean oil as an example.
The error εKm in the resulting Km-value was expected to be indicated by the error in m. That is,
εKm

= Km,fit(m−εm)−Km,fit(m+εm), with εm = 0.0043 (as described in section 4.4.1). However,
figure 4.11 shows that the theoretical value of Km does not lie in the stated error-interval of the
fitted Km, for the example of soybean oil. This indicates the presence of other error and sensitivity
factors in the determination of Km.

Some ideas can be proposed to perform a sensitivity investigation in further research. Namely,
dKm/dm as a of function m and Km are of interest in this study, and can be used as a measure
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Figure 4.11: Snapshot of plot of the resulting consistency index Km,fit as a function of the fitted
value of mfit, for soybean oil with theoretical values m = 0.51 and Km = 2.18. Giving an

illustration of the sensitivity of Km with regard to the ’choice’ of mfit.

for sensitivity. In other words: what is the sensitivity dK/dm when Km is kept fixed, and m is
perturbed a little? And vice versa? This calculation of dKm/dm is proposed to be determined in
the following ways:

1. Simulate the velocity profile, amplitude-decay and resulting [Km,m]-fit for alternating m-
values, keeping Km fixed. Now the change in Km for these different values of m gives the
sensitivity with respect to m. And vice versa for Km. This has the advantage that the
simulation of the velocity profiles for different m-values is physically computed, and thus a
physically accurate computation is performed. However the error in the fit is incorporated
as well, which was seen in figure 4.11 to become quite large.

2. Plot the analytical derivative dK/dm (given in appendix ??) of equation 3.34. Using the
different data-set B(z), calculated by the simulation of the velocity profile for different com-
binations of Km and m. In this method, the computed dK/dm is independent of the errors
in the fit of Km and m.

Further computational research is required to investigate what method is most relevant and the
least prone to fitting errors. Based on some limited research, two hypothesises are stated:

• |dKm/dm| decreases exponentially with m. This would indicate the experimental method
of the rheology determination of power-law fluids to be more suitable for shear-thickening
fluids.

• |dm/dKm| is independent of Km. This would indicate the experimental method to have no
restrictions on the value of Km (plate-length considerations aside), as for every Km the value
of m could be retrieved without enlarging error.
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Chapter 5

Conclusions and recommendations

In this thesis, a method to measure the rheological properties of power-law fluids with the ultrasonic
viscometer was examined. In order to research this method accurately, a numerical model for the
calculation of the calculation of the velocity- and amplitude-profiles for both Newtonian and power-
law fluids was composed successfully. Based on these computations, the viscosity determination by
methods of an exponential data-fit was tested successfully for two Newtonian fluids, water and air.
This reaffirmed the ultrasonic waveguide experiment to be very applicable for Newtonian fluids. In
the data-processing of the amplitude-profile for power-law fluids, the linear fitting method proved
to be very accurate for the determination of power index m. The application of this method on the
tested fluids ketchup (m = 0.30), soybean oil (m = 0.51) and ethylene-glycol (m = 1.29) resulted,
respectively, the values m = 0.2997, m = 0.5080 and m = 1.2943, with εm = 0.0043. However, it
was found that the determination of Km was not accurate with this method, as an error of more
than 100% was found for all three tested power-law fluids.

Besides the main goal to determine the (effective) viscosity, much more insight was gained during
this research. A much more efficient way of numerically calculating the amplitude attenuation
by introducing X and IX was developed. Furthermore, it was found that the viscous skin depth
decreases with greater m and Km. An unexpected result was the finding that the decay-length of
amplitude B(z) increased with m. This was attempted to be explained by looking at the shear-
strain plot. This plot showed the velocity gradient in this particular set-up to stay smaller than a
critical value, making that the shear-rate is overall lower for shear-thickening fluids. Resulting in
the observation that the amplitude decay is less steep for higher m. For the experimental set-up,
this means that a longer waveguide would have to be used for shear-thickening fluids.

Some recommendations for further research on the obtained results were stated. Firstly this is
the dependence of the viscous skin depth, and the required plate length as a function of (m,Km).
This can be very useful for further development of the ultrasonic waveguide experiment set-up.
Additionally, to improve the data-processing methods, the introduced hypothesis two-minima-
problem needs to be studied, as well as the sensitivity dKm/dm as a function of mfit. Some ideas
for this data-processing and sensitivity research were proposed in this thesis. Lastly, the numerical
model could be further improved by studying the numerical stability criteria as a function of m.

This leads to the main conclusions of this thesis. That is, the proposed linear data-fitting method
proposed by Rohde [15] is indicated to be useful for the determination ofm. The method’s accuracy
has not yet shown to be high enough for the determination of Km in this research.

Lastly, a general recommendation for further research is to expand the composed numerical model
for complex rheologies other than the power-law rheology. The velocity- and amplitude-profiles can
be computed directly with the numerical model composed in this thesis. Another data-processing
method to retrieve the typical rheological parameters might have to be composed.
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Chapter 6

Appendix

6.1 Comments on non-dimensional derivations
All derivations on the non-dimensional quantities were performed with the aim of stating all gov-
erning equations in section 3.2.1 without constants. That is, in the ‘most non-dimensional way
possible’, which enables the comparison of all computed results in terms of merely m, without
interference of the Km-value.

However, this approach was not completely correct. The non-dimensional differential equation 3.19
was verified by simply stating the definitions of X̂ and ÎX̂ in equations 3.17 and 3.18, respectively.
However, this was frankly not a rightful derivation, as it is not in line with the proposed non-
dimensional quantities t̂, B̂, ŷ, ẑ and v̂x. By deriving ÎX̂ in the rightful way, through using
these aforementioned five non-dimensional quantities, a correct non-dimensional statement of the
differential equation for B̂(ẑ) can be found. Which derivation is given in this appendix. However,
this new formulation of the non-dimensional differential equation for B̂(ẑ) was not used in this
research, as its definition inconveniently includes both Km and m.

However, the newly derived correct formulation of the non-dimensional differential equation was
used in further viscosity calculations for Newtonian fluids. The derivation in this appendix gives
rise to a new formulation of ẑ, which then leads to a relation between α̂fit and µ.

Concluding, this appendix aims to point out the incongruity of the non-dimensional derivations
in this thesis. For the calculation of the amplitude profile B̂(ẑ), all non-dimensional quantities as
stated in the main report were used. However, for the retrievement of the viscosity for Newtonian
fluids, the derivation as given in this appendix was used, which is mainly based on a new formulation
for ÎX̂ and ẑ. Note that interestingly, despite of these two different non-dimensional methods being
used simultaneously, the non-dimensionally retrieved viscosity results were still very accurate (see
table 4.1).

6.1.1 Derivation non-dimensional differential amplitude equation
Substituting the non-dimensional formulations B̂, τ̂ and v̂ in the definition of X̂ (3.17) gives:

X̂ = K−1m

(
ω

ν0v
m−1
0

)−m/(m+1)

·X. (6.1)

Substituting equation 6.1 in the formulation for ÎX̂ in 3.18 gives:

ÎX̂ = K−1m

(
ω

ν0v
m−1
0

)−m/(m+1)

· IX . (6.2)

Note that the non-dimensional formulation of ÎX̂ in equation 6.2 is different than was stated in
equation 3.13. The formulation of ÎX̂ in 3.13 was just stated such that the simple differential
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equation 3.19 could be stated, without any constants. However, when substituting equation 6.2
equation 3.19, this gives:

dB̂(ẑ)

dẑ
= vm−10 ztot ·Km

(
ω

ν0v
m−1
0

)−m/(m+1)

· 1

ρscsh
ÎX̂B̂(ẑ)m = C(m) · ÎX̂B̂(ẑ). (6.3)

Equation 6.3 shows the correct non-dimensional amplitude equation when following the five stated
non-dimensional quantities. This is different with a factor C(m,Km) than the used differential
equation in this research, being 3.19. Meaning that this factor C(m) might have been ignored in
calculations. It was simply assumed that the factor was insignificant, as the amplitude attenuation
is relative in the end. However, this raises some questions, as it is not in line with the non-
dimensional quantities.

6.1.2 Derivation non-dimensional ẑ
The newly derived non-dimensional formulation in equation 6.3 can be used to derive another
formulation of ẑ, instead of ẑ = z/ztot. Assuming that a non-dimensional formulation of ẑ is not
given, this gives: 6.2 and B̂ = B/v0 into 3.4 gives:

dB̂(z)

dz
= vm−10 ·Km

(
ω

ν0v
m−1
0

)−m/(m+1)

· 1

ρscsh
ÎX̂B̂(z) = C(m) · ÎX̂B̂(z). (6.4)

From equation 6.4 a new definition of ẑ can be stated, being:

ẑ =
vm−10 K−1m
ρscsh

(
ω

ν0v
m−1
0

)−m/(m+1)

· z. (6.5)

This new definition of ẑ again raises questions about the computed non-dimensional amplitude
profiles for power-law fluids in this research, as the ẑ-axis would scale with different m according
to this derivation.

6.1.3 Derivation viscosity retrievement Newtonian fluids
However, for Newtonian fluids the new derivation of ẑ in equation 6.5 proves to be very useful. For
m = 1 equation 6.5 reduces to:

ẑ =
1

ρscshµ

(
ω

ν0

)−1/2
· z. (6.6)

Substituting equation 6.6 into the solution for B̂(ẑ) in equation 2.18 gives:

B(z) = B(z) exp{(−α · z)} = exp

{
(α · ρscsh

(ων0)1/2ρf
· ẑ
}

= exp
{

(−(2ν0ρf )−1/2µ1/2 · ẑ)
}
. (6.7)

Now it can be seen that a method of retrieving µ out of a non-dimensionally calculated amplitude-
profile is found, as:

α̂fit = −(2ν0ρf )−1/2µ1/2, (6.8)

which can be rewritten to
µ = α̂2

fit · 2ρfν0. (6.9)

Equation 6.9 was used in the calculation of the viscosity for Newtonian fluids out of the non-
dimensionally calculated amplitude profile. This calculation was very accurate, the viscosities for
water and air showed a deviation less than 5% (see table 4.1). This accuracy is very interesting,
as it is suggested that different non-dimensional formulations are used simultaneously.
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6.2 Derivative of Km

Rewriting equation 3.34 in terms of Km, and introducing Y (m) = Ya(m)/Yb(m) for convenience,
gives:

Km =

[ ∣∣B(z)1−m −B1−m
0

∣∣
2

hρscs
|1−m|P3(m)(ωρf )m/2 · z

]2/(2−m)

=

[
Ya(m)

Yb(m)

]2/(2−m)

= Y (m)2/(2−m). (6.10)

Deriving Km in equation 6.10 to m gives:

dKm

dm
=

2

(2−m)2
Y (m)−2/(m−2) ln (Y (m)) ·

dYa(m)
dm · Yb(m)− Ya(m) · dYb(m)

dm

Yb(m)2
, (6.11)

in which
dYa(m)

dm
=

(B(z)1−m −B1−m
0 ) · (B1−m

0 ln (B0)−B(z)1−m ln (B(z)))∣∣B(z)1−m −B1−m
0

∣∣ , (6.12)

dYb(m)

dm
=

2z(ωρf )m/2

hρscs
·
( m− 1

|1−m|
P3(m) +

1

2
|1−m|P3(m) ln (ωρf ) + |1−m| · dP3(m)

dm

)
. (6.13)

37


	Introduction
	Molten Salt Fast Reactor
	Determination viscous behaviour
	Thesis outline

	Theoretical background
	Shear stress and rheology
	Newtonian fluids
	Power-law fluids

	Ultrasonic waveguide experiment
	Shear waves
	Power loss due to viscous dissipation
	Navier-Stokes equations


	Numerical method
	Introduction of X and IX
	Non-dimensional formulation
	Derivation non-dimensional quantities
	Non-dimensional set of equations

	Discrete formulation
	Discrete differentiation and integration
	Discrete set of equations

	Data-processing: determination of the rheological properties
	Newtonian fluids
	Power-law fluids

	Matlab code
	Constants
	Boundary conditions
	Stability conditions
	Visualisation numerical set-up
	Flow-diagrams script


	Results and discussion
	Velocity profiles
	Newtonian fluids
	Power-law fluids

	Amplitude attenuation
	Newtonian fluids
	Power-law fluids

	Viscosity of the Newtonian fluids
	K and m of the power-law fluids
	Discussion m-determination
	Discussion Km-sensitivity 


	Conclusions and recommendations
	Appendix
	Comments on non-dimensional derivations
	Derivation non-dimensional differential amplitude equation
	Derivation non-dimensional 
	Derivation viscosity retrievement Newtonian fluids

	Derivative of Km


