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Abstract

The field of microfluidics has grown rapidly over recent years. It is used in numerous fields, such as liquid-liquid
solvent extraction, bio-medicine, chemical synthesis and enhanced oil recovery. The small scale on which mi-
crofluidics operates makes it safe to work with and easy to control the flow. Inside microchannels, two fluids
can flow through the channel in dilerknt patterns. Flow patterns such as slug flow, droplet flow and parallel
flow can be observed. These flow patterns have diLerent interface areas and therefore di[erent heat and mass
transfer phenomena. For certain applications some flow patterns are therefore more desirable than others, thus
controlling the flow pattern inside a microfluidic device is beneficial in many applications. To control the desired
flow pattern, numerous parameters can be adjusted. Fluid properties such as density, viscosity and flow rate
and channel properties such as shape, geometries and material all aledt the flow pattern within the channel.
This research investigates whether the color-gradient Rothman-Keller Lattice Boltzmann model can simulate
two-phase flow through a T-shaped microchannel by analysing simulated flow patterns for dilerknt inlet flow
rates and comparing the results to findings in previous experimental research.

The color-gradient Rothman-Keller model is adopted from the Lattice Boltzmann method, a numerical
method in the field of Computational Fluid Dynamics (CFD). Using numerical methods instead of an exper-
imental setup saves time needed to conduct experiments and the costs that come with fabricating diLerknt
micro-channels. The Lattice Boltzmann method works by discretizing the Boltzmann equation to find a numer-
ical solution to that equation, which can then be used to determine macroscopic fluid properties such as density
and momentum through the Chapman-Enskog expansion.

The results of the numerical simulations of two-phase flow of water and toluene through a T-shaped channel
with a width of 400 m show that slug flow, droplet flow, slug-droplet flow and parallel flow patterns are ob-
served at diLerent inlet flow rates and flow rate ratios. Slug flow is observed for low inlet flow rates and ratios,
droplet flow is observed for medium inlet flow rates and ratios and slug-droplet and parallel flow are observed
for relatively high inlet flow rates and ratios.

When comparing these results to the experimental findings of Kashid et al, there are some key di [erences.
The rates at which these flow patterns were observed in the experimental research were an order of magnitude
higher than the flow rates used in this research. Kashid et al also found that a wide range of flow rates lead
to deformed interface flow, a type of flow not observed during simulations. The model used in this research
was also not able to simulate flow rate ratios lower than 5 and inlet flow rates higher than 0.03 m=s. The
results of the simulations therefore do not match the results of experimental research. This is mostly due to the
inaccurate way of incorporating surface tension and contact angle into the model.

For further research, di [erent boundary condition schemes for contact angle and surface tension need to be
imposed to improve the model’s accuracy. A finer computational domain is required so that higher inlet flow
rates can be simulated. More simulations need to be done to find the transition zones between certain flow
patterns.
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1 Introduction

1.1 Micro uidic ow

Throughout recent years, the research on micro uidic systems has grown rapidly. Micro uidics studies the
behavior of uids on the micro-scale. Using uids on the micro-scale has numerous advantages. The large
surface-to-volume ratio increases the speed of mass and heat transfer, both crucial in chemical processes. Due
to their small volume, micro uidic systems are safe, easy to control and only small samples are su cient for
usage [1]. Micro uidic systems are therefore used in a variety of elds, such as chemical synthesis, bio-medicine
and solvent extraction through gas-liquid and liquid-liquid extraction [2].

Flow behavior of one or multiple immiscible (non-mixing) uids through micro uidic devices has been the
subject of many previous studies. In the micro-scale, surface tension dominates gravity and inertia, allowing
two immiscible uids with di erent densities to ow side by side. Under laminar ow conditions, di erent ow
patterns can be observed. Common ow patterns for liquid-liquid two-phase ow are parallel ow, slug ow
and droplet ow, shown in Figure 1.

Figure 1: a) Slug ow, b) Slug and droplet ow, c) Droplet ow, d) Parallel ow [3]

Each ow has a dierent interface area, leading to di erent mass and heat transfer phenomena. For ex-
ample, a high surface to volume ratio, a trait of slug ow, leads to intensi ed heat transfer [3]. Therefore,
the performance of a micro uidic device for these transfer phenomena depends on the ow pattern inside the
channel of the device [2]. To control the desired ow and therefore the performance of a micro uidic device,
di erent parameters can be adjusted. These parameters can be divided into two groups. The rst group is uid
properties, such as ow velocity, uid density and uid viscosity. The second group is channel properties. This
group includes channel shape, dimensions and material. Three widely used channel shapes are the T-shaped
channel, the Y-shaped channel and the cross-shaped channel [2]. These geometries are shown in Figure 2a and
Figure 2b.

(b) Cross-shaped channel [4]

(@) a) T-shaped channel, b) Y-
shaped channel [2]

The e ect of these parameters on ow phenomena has been the topic of multiple studies before. Jahromi et
al [5] studied the ion-pair extraction-reaction in a Y-shaped channel. They observed di erent ow patterns by
changing the volumetric ow rates of two phases inside the Y-shaped channel, with low ow rates (1-5 I/min)
leading towards slug ow and high ow rates (40-50 I/min) leading to parallel ow. Darekar et al [3] studied



through experiments the liquid-liquid two-phase ow through a Y-shaped channel by changing the diameter of
the channel, ow rate, interfacial tension of the uids and the hydrophobicity of the channel wall. They also
found that lower ow rates of the two uids leads to slug ow, while higher ow rates lead to parallel ow. In
addition, they found that decreasing the diameter of the microchannel increases the tendency towards parallel
ow, while increasing the channel diameter increases the tendency towards slug ow. Zhao et al [6] studied
experimentally liquid-liquid two-phase mass transfer in a T-shaped channel by varying ow rate, inlet diameter,
inlet location and channel width and height. Due to their choice of channel material, they observed for an
opposed T-junction microchannel only di erent types of parallel ow and chaotic thin striations ow, with low
Reynolds numbers leading to parallel ow with a smooth or wavy interface and high Reynolds numbers leading
to chaotic thin striations ow. Kashid et al [7] studied the two-phase ow patterns in T-, Y- and concentric
microchannels for di erent inlet ow rates. They also found that low ow rates leads to slug ow in all channel
geometries, with the Y-channel and concentric channels leading towards parallel ow at slightly higher ow
rates than the T-shaped channel.

1.2 Computational Fluid Dynamics

One way to analyze the e ect of the outlined parameters on micro uidic ow is through numerical simulation.

The eld of Computational Fluid Dynamics (CFD) is used to nd solutions to these simulations. Using CFD

has numerous advantages over experimental research. No experimental set-up is needed, eliminating the costs
of materials and time used to produce the needed equipment and conduct the experiment.

There are numerous methods to solve multiphase ows, such as the phase eld (PF) method, the volume-of-
uid (VOF) method, the level-set (LS) method, the density functional method (DFM) and Lattice Boltzmann
(LB) methods. The PF method describes the interface as a transition layer where unstable mixtures are stabi-
lized. To ensure accuracy, this interface layer needs to be thin compared to other hydrodynamic length scales.
The VOF method tracks the volume of each uid in cells that belong to the interface. The VOF algorithms
consist of interface reconstruction, advection and surface tension. The LS method de nes the interface by a
level-set function and is used often due its simplicity. LB methods model phase segregation by inter-particle
interactions and therefore interface tracking is not always needed [8].

During this research, LB methods will be used to simulate multiphase ow through a micro-channel. Due
to their simplicity and e ciency, LB methods are widely used to simulate multiphase ows. LB methods allow
arti cial compressibility to solve the incrompressible Navier-Stokes equation and they do not require the solving
of the Poisson equation for pressure, a very computationally expensive process, both qualities contributing to
the simplicity of LB methods. There are already multiple LB methods available for simulating multiphase ow
[9]. This research will use the color-gradient Rothman-Keller model.

1.3 Thesis outline

The aim of this research is to analyze the ow patterns for liquid-liquid two phase ow of two immiscible uids
in a T-shaped microchannel in 2 dimensions using the color-gradient Rothman-Keller (RK) mutliphase model.
This gives rise to the following research questions:

" Is the color-gradient RK Model able to simulate multiphase ow through a T-shaped channel?

What model parameters in uence the accuracy, stability and type of ow pattern observed inside
the channel?

Is the model able to simulate the same ow patterns as found in previous experimental research for
certain uid and channel parameters?

To answer these questions, a suitable multiphase LB model within the LB method will be chosen that works
best with these parameters.

Chapter 2 of this thesis elaborates on the theoretical background of the research. Basic uid dynamics
and the Lattice Boltzmann methods will be discussed. Chapter 3 describes in depth the Lattice Boltzmann
method that will be used during this research. Chapter 4 will explain the results of the numerical simulations,
giving an overview of the di erent ow patterns observed under certain channel dimensions. Chapter 5 gives
the conclusion of this research. Lastly, chapter 6 gives recommendations for further research.



2 Theoretical Background

In this chapter, the theory needed to conduct this research is brie y explained. Section 2.1 focuses on uid

dynamics, explaining the governing equations, frequently used dimensionless numbers and the wetting phe-
nomenon. Section 2.2 looks at the common Lattice Boltzmann method, explaining how the method works and

how di erent LB models extend the common LB method.

2.1 Fluid dynamics

The eld of uid dynamics looks at the macroscopic phenomena of uid motion. The change of mass of a uid
element with xed volume V and density is given by the continuity equation [9]:

@
gt " (W=0 (1)
The momentum of this uid element can change due to 3 factors: the ow of momentum in and out of the
uid element, di erences in stressesp and external body forcesF. If we consider the density to be constant so
that the ow is incompressible, the momentum equation for a uid is given by the incompressible Navier-Stokes

equation [9]:

Du
— = + +
Dt rp u+F (2)
Here, u is the uid velocity, p is the pressure and is the shear viscosity of the uid. g—t is called the
material derivative and  the Laplace operator:
D_@
—_ = — 4
Dt - @t ur 3
= rr (4)

One could also look at the motion of uids on a microscopic level by tracking individual uid molecules,
governed by Newton's dynamics. In between the macro and micro scales lies the mesoscopic scale, the scale
at which Lattice Boltmann models operate. Fluid dynamics at this scale are described by kinetic theory. In
kinetic theory, 'families’ of molecules are tracked. Section 2.2.1 will elaborate more on this.

2.1.1 Dimensionless numbers

In uid dynamics, dimensionless numbers play a signi cant role. They indicate the interaction between forces
that a ect ow, such as buoyancy, gravitational, inertial, viscous and interfacial forces. On the microscale,
buoyancy and gravitational forces can be neglected, since the dimensionless numbers that demonstrate the ef-
fect of these forces, the Grashof number (buoyancy to viscous forces) and the Bond number (gravitational to
interfacial), scale with channel dimension to the third and second power respectively and are therefore very small
[4]. Frequently used dimensionless numbers in micro uidics are the Reynolds number and capillary number.

The Reynolds number is a measure of the ratio of inertial and viscous forces. It is used to describe if the
ow is turbulent (chaotic) or laminar (stream-lined), the rst associated with high and the latter with small
Reynolds numbers. The Reynolds number is given as:

Inertia _ Lu

= = — 5
V iscous ®)

Here, L is the characteristic length of the channel,u is the ow velocity and is the kinematic viscosity.
can be rewritten as = -, where is the dynamic viscosity and the density of the uid. With microchan-

nels being very small, the characteristic length of the channel is very small, resulting in fairly small Reynolds
numbers. This shows that viscous forces are more dominant in micro uidic ow than inertial forces. Therefore,
laminar ow is expected in microchannels.

The capillary number is the ratio between viscous and interfacial forces. It is given as:

V iscous u
= = 6
Interfacial (6)



Here, is the interfacial tension. The capillary number is completely controlled by uid properties and ow
rate, not by channel dimensions like the Reynolds number. It is used to describe uid phenomena like uid
formation and therefore uid ow patterns [4].

2.1.2 Wetting and contact angle

Wetting describes the behavior of uids on the interface between a uid and a solid. Fluids stick to solids
di erently through adhesive forces between uid particles and molecules in the solid surface and cohesive forces
between the uid molecules themselves. These forces di er for di erent uids, a property speci ed in the contact
angle. Some uids spread out over the solid, others do not stick to the solid at all. Contact angle of uid 1
that is sticking to a wall and surrounded by uid 2 is given as [10]:

cog )= = ()
12

Here, 1 is the surface tension between uid 1 and the solid wall, > is the surface tension between uid
2 and the solid wall and 15 is the surface tension between uid 1 and uid 2. Contact angle is visualised in
Figure 3.

Figure 3: Contact angle [10]

How uids interact with the solid wall of a channel a ects the type of ow inside the channel. When < 90,
a uid is called hydrophilic, meaning it wets the solid wall well. When > 90, a uid is called hydrophobic,
meaning a droplet tends to detach from the solid surface.

2.2 Lattice Boltzmann Method
2.2.1 Introduction

As stated in paragraph 2.1, Lattice Boltzmann models operate on the mesoscopic scale Fluid dynamics at this
scale are described by kinetic theory. In kinetic theory, 'families' of molecules are tracked. These families are
described by the particle distribution function f (x; ;t). Here, isthe microscopic particle velocity. Macroscopic
uid variables like density and momentum density u can be retrieved from the particle density function by
integrating over f :

z

(x;t)y=  f(x; ;t)d® (8)

z
u= f(x; td 9)

If a uid is left alone long enough, the particle distribution function will reach an equilibrium distribution
fe(x; ;t). To see howf evolves over time, the Boltzmann equation is used:
@f
—+ rf+Fr f=(f 10
ot () (10)
( f) is called the collision operator. This operator describes the local redistribution off due to collisions
with other particles. The collision operator used in most LB methods is called the BGK collision operator,
named after its inventors Bhatnagar, Gross and Krook. The BGK collision operator is given by:

()= ¢ te) (11)



is called the relaxation time, which is related to the kinematic viscosity of the uid. determines the
speed at which the distribution function goes to equilibrium.

Through the use of the Boltzmann equation, macroscopic variables can be retrieved from the particle dis-
tribution function to solve the Navier-Stokes equation through the Chapman-Enskog expansion [9].

Lattice Boltzmann methods come forth from the use of cellular automata [10]. Cellular automata works
through the discretization of space into individual cells, with each cell having a particular state. These states
are updated each time step through a set of conditions that take as input the states of neighboring cells. Lattice
Botlzmann methods expand on this model.

The rst step for using the Lattice Boltzmann method to solve the Boltzmann equation is discretising velocity
space, physical space and time to obtain the discrete distribution functionf; (x;t) [9]. The discrete distribution
function describes a probability density of particles with a certain velocity e; at position x and time t. These
velocities come from a discrete set of velocities, or velocity set, determined by the dimension used in the model.
The i-subscript in f;(x;t) and e; refer to the ith velocity in the velocity set. The discrete distribution functions
are de ned at lattice points x in space, positioned a distance X, or one lattice unit lu, apart. f; is also only
de ned at discretized times t, separated by a time t, or one time step ts.

Retrieving macroscopic uid variables is now done by summing the discrete distribution functions overi:
X
;)= fi(x;t) (12)
X
u(x;t) = efi(x;t) (13)
i
Discretising the Boltzmann equation gives the Lattice Boltzmann equation [10]:
filx+e tt+ t)=fi(x;t) }(fi(x;t) f29(x; 1) + Si(x;t) (14)

Here, S; is an added source term which di ers depending on the forcing term. The relaxation time is
related to the kinematic viscosity by:

=c( 05) t (15)

cs is called the sound speed, which also depends on which velocity set is usdd. is calculated as follows:

e u, (e w? (u
ct 2c 2c
Here, w; are weights, also given by the chosen velocity sets.

Gt =w 1+ (16)

These velocity sets are speci ed using BQm notation, where n stands for the desired space dimension of
the model andm stands for the number of velocities in the velocity set. As stated before, each velocity set has
a di erent set of weights w;, velocities e; and sound speed:2. The number of velocities in the set corresponds
to the number of neighboring lattice sites that each particle distribution at a certain lattice point has. This is
shown in Figure 4. Here, the most used velocity models D2Q7, D2Q9, D3Q15 and D3Q19, are given.



Figure 4: Discrete velocity models (a) D2Q7, (b) D2Q9, (c) D3Q15, (d) D3Q19 [10]

The weights w; and sound speect? of each model are given in Table 1.

Model Wi

D2Q7 $(=0), 5(@(=1,..,6)

D2Q9 | £(i=0), $(=123,4), 2% (i=56728)
D3Q15 | 2(i=0), $(=1,..,6), & (=7, .. 14)

D3Q19 | 1(i=0), £ (=1 ..,6), % (i=7,..18)

o] 2] o] A A5

Table 1: Weights and sound speeds of di erent velocity models [10]

Here, c is called the lattice speed given ax = —. Often, x and t are both 1, giving a lattice speed ofc
= 1. In this research, the D2Q9 model will be used. The velocity set for this model is given as follows:

[e.e.e.e,e_e_e,e,e]_CO:LO 1 0 1 1 1 1
0, %<1, <2,<3,%4,C5,C6, 7,8 — 0 0 1 0 1 1 1 1 1

2.2.2 Streaming and Colliding

To brie y summarize, the Lattice Boltzmann method nds a numerical solution to the Boltzmann equation by
simulating ‘families' of particles, discrete distribution functions, at di erent lattice points in space, separated
by 1 lu, at di erent points in time, separated by 1 ts. The ow of the uid is simulated through the stream and

collide steps between nodes[9].
Lets assumeS; = 0. The Lattice Boltzmann equation then becomes:
filx+e tt+ t)=fi(x;t) }(fi(x;t) f29(x;1)) (17)
This equation can be divided into 2 separate parts. The rst is the collision step, given by:
1 eq
()= fi(x;t) =(fi(x;t) 77 (x; 1) (18)
Here, f; is the distribution function after the collision step. Prior to the collision step, the macroscopic

variables and u are calculated and used to calculatef *® using equation 16. The collision step considers all
possible outcomes of a collision between two particles. It takes into account the relaxation time. As stated



in section 2.1, determines the speed at which the distribution function goes to equilibrium. If is big, it will
take longer to reach equilibrium, which means it is resisting ow. This can be shown through relation 15, which
states that a larger corresponds to a larger viscosity, a uid property which is a measure of how a uid resists
deformation. The collision step therefore takes in account the resistance of a uid to ow through its viscosity.
To improve the stability of the model, should be bigger and not be too close to 0.5 [9].

After the collision step, the post collision distribution function f; is streamed to the neighboring lattice
nodes. This is the second part, known as the streaming step, which is given by:

fix+e tt+ t)="1; (x;t) (19)

The streaming step is visualised by Figure 5.

Figure 5: Particles streaming from one node to neighboring nodes [9]

These steps are then repeated in the next time step. To ensure the model su ces for physical boundaries
such as channel walls and geometries, boundary conditions are imposed to the system. Paragraph 3.2 explains
the use of boundary conditions in this research.

These steps together create a loop, visualised in Figure 6.

Figure 6: Lattice Botlzmann Algorithm [9]

This is the framework for the common Lattice Boltzmann method. Dierent models within the Lattice
Boltzmann method build upon this framework to ensure that they are as accurate as possible to simulate the

type of ow requested.

2.2.3 Unit conversion

For a Lattice Boltzmann model to work, physical units have to be converted into dimensionless units, such as
lattice units and time steps. This is called the non-dimensionalisation of physical parameters [9]. This is done
with the use of chosen conversion factors and the law of similarity. All physical parameters, such as length,
time, density, viscosity, need to be converted into dimensionless Lattice Boltzmann (LB) units using conversion
factors. For example, a physical length is converted into a non-dimensional length as follows:



|

=C
Here, | is the physical length,| is the LB length and C; is the length conversion factor. The law of similarity

is useful to calculate LB parameters from other LB parameters. It states that dimensionless numbers calculated

using physical parameters are equal to the same dimensionless number calculated using LB parameters [9]. The

Reynolds number is used as an example:

| (20)

Re= — = (21)

In short, if one wishes to know for example the density after an amount of time steps, equation 12 is used
to calculate the LB density. Next the conversion factor C is used to calculate the physical density.

When LB models are discussed in this paper, all parameters in the equations are LB parameters, making
the obsolete. It will be speci ed otherwise.

2.2.4 Dierent Multiphase LB Models

Multiple multiphase LB Models have been developed and adjusted over recent years to simulate multiphase
ow. Popular models are the color-gradient model, which is based on the Rothman-Keller (RK) multiphase
lattice gas model, the multiphase Shan-Chen (SC) model and the free-energy (FE) model [10]. These 3 models
are brie y introduced.

Color-gradient RK model: In the color-gradient RK model, rst proposed by Rothman and Keller in 1988
[11], one uid is given a blue color and the other a red color. Each uid is represented by its own distribution
function. Next to the common collision term in the LB model, there is a second collision term added, together
with a re-coloring step. With the color-gradient model, surface tension and the viscosity ratio between the blue
and red uid can be adjusted independently. However, it is not able to handle high-density ratio simulations
[10].

Multiphase Shan-Chen model: In the Multiphase Shan-Chen model, proposed by X. Shan and H. Chen
in 1993 [12], a repulsive force acts as the interaction between particles, which leads to phase separation and
interface maintenance. It incorporates an attractive forcing term that introduces a non-ideal non-monotonic
equation of state instead of the ideal gas equation of state. Just like in the color-gradient model, each uid
component is represented by its own distribution function. It handles high-density ratios well, but the density
and viscosity ratios and surface tension cannot be adjusted independently [10].

Free-energy model: The free-energy model was proposed by Swift et al in 1996 [13]. Where the RK model
and the SC model are 'bottom-up' approaches, where microscopic interactions between uid elements are spec-
i ed, the FE model uses a 'top-down' approach. It starts with a macroscopic concept, the free energy of the
uids. From the free energies, the phase separation and surface tension can be derived [9]. The model is often
used for increased thermodynamic consistency. It is able to simulate high-density ratio cases, but it has to solve
the Poisson-equation, which decreases the simplicity of the model.

Huang et al [10] made a comparison of these models. While the multiphase SC model is very e cient, it
is less accurate. The RK and FE model are less e cient, but more accurate. In the RK and SC model, the
contact angle between a uid and a solid is obtained by specifying a 'wall density' for the wetting condition.
The FE model uses a density gradient to implement contact angle, which is less convenient.

In this research, the color-gradient RK model will be used. It allows surface tension and viscosity ratios to
be adjusted independently, which makes it easier to replicate set-ups used in experimental research so that the
results of the numerical simulations of this research can be compared to the results of previous experimental
research. Being able to specify a wall density makes it easier to implement a wetting condition to incorporate
contact angle into the model.

10



3 Color-Gradient Rothman-Keller Model

In this chapter, a detailed description of of the color-gradient Rothman-Keller model is given. Section 3.1

explains how to implement the model to use during simulations. Section 3.2 explains which boundary conditions
are used to simulate two-phase ow through the T-shaped microchannel. Section 3.3 explains the Python code
used to run the simulations in this research. Section 3.4 will discuss the initial model parameters and uids

used in this research.

3.1 Model outline

In the RK model, the two uids are given a color, blue and red, both represented by their own particle
distribution function f! and f? [10]. The total particle distribution function is given as:

X
fix;t)=  fFXx;t); k=1;2 (22)
k
The RK model adds an extra step to the streaming and collision step of the common LB method, the re-
coloring step. It also includes a second collision term, called the perturbation collision operator. This operator
implements surface tension into the model. The recoloring step encourages color separation at the interface
while still conserving mass and momentum [14]. It introduces a color gradient parametef that works normal
to the interface, adding populations normal to the interface and removing them parallel to the interface. The
RK model algorithm then works as follows.

First, the streaming step is given as:

fk(x+e tt+ t)=fx0) (23)

Here, fik" is the particle distribution function after the recoloring step. The velocity set from the D2Q9
model is used fore;. After the streaming step, the collision step is applied. As mentioned before, the RK model
adds a second collision term next to the LB BGK collision operator called the perturbation operator. The RK
collision step is given as:

fE Gt = TR oat+( D+ 9)? (24)

Here, ( ¥)! and ( K)? are the two collision terms. The rst term is the BGK operator for multiple uids,
given as:

(9= Lk FRe(xt) (25)

The equilibrium distribution function f°(x;t) of uid k is calculated as:

e u_ (e u? (u)?

flRe9xt)= « Ci+w + 2
i (X! ) k 1 Wl Cg 20451 2C§ ( 6)
Here, w; is again given by the D2Q9 velocity model. i is the density of uid k, calculated by summing over
fx
X
= ff (27)

X
= K (28)
k
X X
u= fXe, (29)
koo
The C; term in equation 26 is given by:
8
2 K i=0;
Ci=_ 5 i=1;2,3 4 (30)
© 1 i=5:6,7;8
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Here,  isthe parameter used to adjust the density of the uids. The density ratio of the two uids is given
as:

a1 o

2 1

The two uids have di erent relaxation times 1 and ,. At the interface, becomes a function of position
X. (x) is calculated using equations 32 and 33. First, the parameter (x) is de ned:

1(x)  2(x)
X)= ———== 32
B 00+ a0 2
(x) is used to construct a interpolation scheme for (x) so that the relaxation time transitions smoothly
over the interface between the uids:

(31

8
% 1, >
(x) = ol ) >0 (33)
3 0( ); 0
Co2 <
g1( ) and gz( ) are given by:
g )=si+s; +s3 % (34)
®()=ti+ty +t3 %
with 8
281= ty =222
Sy =215
Ss= (35)
%tzzztl 2]
. t3= to

The parameter a ects the interface thickness and is normally set to =0:98. The kinematic viscosities of
both uids can now be calculated:
k=c(k 05) t (36)

These are all the terms needed to calculate the rst collision term( ¥). To calculate the perturbation
collision term ( X)2, equation 37 is used:

Ac... (& f)?
K\2 _ k i
()= ?Jfl TP Bi (37)
Here, Ay is a parameter that a ects interfacial tension and B; is a correction term given as:
8
2 i=0;
Bi=_ % i=1;2,34; (38)
. 5 . F A W
Tog i=5;6,7;8
The parameter f is the color-gradient, which depends onx and t:
X X
fx;t)= e flix+e tt) fix+e tt) (39)

i j
With the collision step completed, the recoloring step is implemented. The recoloring step separates the two
uids. The recoloring step is given for both uids as:

= 2+ 22659 u=0)coy ) (40)

120 = 21, 259 u=0)coy i) (41)
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