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Abstract

In this thesis, a nondestructive method for measuring viscosity of a low viscous fluid, with shear
horizontal waves, is evaluated. This method is mainly used in high temperature, highly corrosive and
radioactive environments. The setup of this method consists of a metal waveguide partially immersed
in a fluid. Using a piezoelectric transducer, a non-dispersive shear horizontal wave is excited at the top
of the waveguide.

The main goal in this thesis, is to optimize the setup of this nondestructive viscometer with a finite
element software. The wave behavior, in an immersed waveguide, can be described with an acoustic
model. For an accurate acoustic model, the step size of the solver is optimized. Moreover, to find a
balance between computation time and accuracy, the size of the waveguide is minimized. The accuracy
of the model is studied by comparing the velocity of the wave inside the waveguide, found by the model,
to the theoretical wave velocity.

The optimal scaling factor, for the time step size of the solver, was found to be 0.08. For the plate
width, the optimal width product of the tungsten plate was found to be 2 MHz · 10 mm. The relative
error of the wave velocity, found by the model, had a value of 1.2%. It should be investigated if by
decreasing the width to length ratio, i.e. increasing the length of the plate, this error becomes smaller.

For future studies, it is recommended to investigate the effects of different plate widths on the
attenuation. Since the attenuation is obtained from the difference in signal strengths, between two
different immersion depth, the inaccuracy, introduced by a less optimal plate width, might vanish.
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Nomenclature

Roman letters

E Modulus of elasticity [Pa]
G Shear modulus [Pa]

k Wave number [rad m−1]

kF Wave number for longitudinal waves in fluids [rad m−1]

kL Wave number for longitudinal waves in solids [rad m−1]

kS Wave number for shear waves in solids [rad m−1]
M Size of the mesh elements [m]
N Amount of mesh elements per wavelength [ ]
p Pressure, the force applied per unit area [Pa]
T Stress tensor [Pa]

V0 Bulk velocity of longitudinal waves in fluids [m s−1]

VL Bulk velocity of longitudinal waves in solids [m s−1]

VS Bulk velocity of shear waves in solids [m s−1]

Vgroup Group velocity of ultrasonic waves [m s−1]

Greek letters

αLong Attenuation coefficient for longitudinal waves [dB m−1]

αSH Attenuation coefficient for shear horizontal waves [dB m−1]
εij Strain component resulting from stress [ ]

η Dynamic viscosity of the immersion fluid [Pa s]
λ Lamé’s first parameter [Pa]
λSH Wavelength of shear horizontal ultrasonic waves [m]
µ Lamé’s second parameter [Pa]
ν Poisson’s ratio [ ]

ρ Density of the surrounding solid [kg m−3 ]

ρ0 Density of the surrounding fluid [kg m−3 ]
σij Stress component acting on a plane [Pa]

υ Kinematic viscosity [m2 s−1]

χ Compressibility [Pa−1]

ω Angular frequency [rad s−1]

v



Chapter 1

Introduction

With the current trend of global warming, the need for low-carbon technologies has become more
prominent. The possibilities of a nuclear power plant to provide a low-carbon base load supply of
electricity, has attracted much interest in nuclear energy. However, after the nuclear disasters in
Fukushima and Chernobyl, the most common type of nuclear reactor, the pressurized water reactor,
has proven to be a potential radiological hazard. Contrary to the pressurized water reactor, the molten
salt fast reactor has the potential to offer safe and clean nuclear energy.

To prove nuclear energy can be inherently safe, the research group SAMOFAR (Safety Assessment
of the Molten Salt Fast Reactor) has been providing experimental and numerical studies for the safety
concepts of the MSFR [1]. This thesis is part of the SAMOFAR research project. For the safety
assessment of the MSFR, it is important to have detailed information on the physical properties of the
fuel salt.

1.1 Molten Salt Fast Reactor

The concept of the molten salt reactor date back to 1960, when it was first designed by the Oak Ridge
National Laboratory as a means to fuel an aircraft. The Molten Salt Fast Reactor (MSFR) is a generation
IV molten salt reactor with a liquid salt operating as fuel and coolant[2]. This reactor operates at ambient
pressure and temperatures of 750◦C[3]. The advantage of this low operating pressure is that the risk
of a leak or break is significantly reduced. Another advantage of the MSFR is the fact that harmful
isotopes are bound to the salt and therefore unable to become airborne in case of a leakage.

The main components of the MSFR are: the cylindrical vessel filled with liquid salt, the bubble
injection system, fertile blanket, pumps for circulation of the fuel salt, liquid gas separation and
sampling systems, external heat exchangers and a emergency storage tank. In figure 1.1, the schematic
representation of the main components in the fuel circuit of the MSFR can be seen.

The initial composition of the fuel molten salt, in the MSFR, consist of lithium, thorium, uranium
and plutonium fluorides (LiF-ThF4-UF4-PuF4). The fuel salt enters the cylindrical reactor vessel from
the bottom and is extracted at the top of the vessel. Here, the fuel salt is pumped into 16 loops of
external heat exchangers. In these external heat exchangers, the heat is transfered to a secondary
liquid-salt coolant [2].

To improve the breeding process in the reactor vessel, fertile blankets, comprising of thorium salts,
are implemented on to the core wall[4].

Since the fertile element thorium does not contain fissile isotopes, the reactor requires initial fissile
materials, such as uranium and plutonium to start[3]. To remove the fission products, neutral gas
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2 CHAPTER 1. INTRODUCTION

bubbles are injected into the core and later separated from the liquid. Another treatment to remove
fission products is the mini-batch on-site reprocessing. This process can also adjusts the fuel’s fissile
isotopes to fertile isotopes ratio, if needed[3]. These two types of treatments can be applied without
stopping te reactor[4].

At the bottom of the reactor vessel, a drain plug, leading to emergency storage tank, is present. This
drain plug is made from frozen salt. In case of overheating or electric power failure, the frozen plug
melts and the fuel salt is drained into the external sub critical storage tank. This tank is surrounded by
a large water pool, which acts as a thermal buffer for the fuel salt[3].

Figure 1.1: The schematic representation of the fuel circuit of the MSFR[3].

1.2 Importance of Measuring Viscosity

Since the fuel salt of the MSFR also operates as an coolant, it is important to know the efficiency of
the liquid salt as heat transfer medium. To understand the heat transfer of the fuel salt, it is necessary
to be able to accurately measure the viscosity. This thermodynamic property predicts the flow and the
turbulent heat transfer of the fuel through the reactor circuit[5]. Viscosity, together with the density,
determines the Reynolds number. This number predicts if the fluid flow will be laminar or turbulent.

Measuring the viscosity of liquid salt introduces many challenges. The first challenge is that fluoride
salts are low viscous fluids at high temperature [5]. Moreover, conventional instruments are unable to
withstand the corrosive, high temperature and radioactive environment of the liquid salts. Therefore, a
different method for measuring the viscosity is introduced: ultrasonic non-destructive testing (NDT).

Ultrasonic NDT is a method where the thermodynamic properties of a fluid can be evaluated without
causing damage to the equipment. This report focuses on the method of NDT using a waveguide and a
piezoelectric transducer. Using a waveguide allows the transducer to be protected from high temperature
and high corrosive environment. Moreover, using the right material for the waveguide, the waveguide
will also be able to withstand the radioactive environment.

The setup, of the ultrasonic NDT method, consists of a small metal plate partially immersed in a
fluid. The fluid is contained in a small vessel underneath the waveguide. By means of a piezoelectric
transducer a ultrasonic wave is excited on top of the metal plate.
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The setup of ultrasonic NDT method for measuring the viscosity, can be seen in the figure below.

Figure 1.2: The schematic set-up of the waveguide[6].

For measuring the viscosity of a fluid, the attenuation of the transmitted wave, inside the waveguide,
should be evaluated with non-dispersive waves[7]. The attenuation of a wave describes the loss or
absorption of the wave energy by the medium. The attenuation measured inside the partially immersed
waveguide, will contain information about the viscosity of the fluid. Since the first mode of shear
horizontal ultrasonic waves is non-dispersive, these waves are preferred for this research[8].

The propagation of waves though the waveguide in this setup can be described by an acoustic model.
A reliable acoustic model is an important tool for the optimization of this setup.

1.3 Goal

The goal of this research is to optimize the setup of the ultrasonic viscometer with a finite element
software. Previous studies have suggested that the dimension of the plate, immersion depth and the
frequency of the pulse, influence the attenuation of ultrasonic waves[8]. The aim of this research is
to investigate another possible influence on this attenuation; the volume of the fluid, surrounding the
partially immersed waveguide.

For this research an accurate model is needed. The accuracy of the model is mainly determined by
the mesh size and the time step size of the solver. For the mesh size, the results from a previous study
will be used[9]. To determine the optimal scaling factor for the time step size, the peak time for different
scaling factors are evaluated.

For the model, a tungsten waveguide is used. To find a balance between accuracy of the model and
computation time, the size of the plate is minimized. The accuracy of this minimized model is studied
by comparing the velocity of the wave, computed by the model, to the theoretical value.

To understand the wave propagation of ultrasonic waves, the theory of elasticity is described in
chapter 2. Moreover, the nondestructive method for measuring viscosity of a low viscous fluid is evaluated
in this chapter. In chapter 3 the experimental method is described. Chapter 4 will state the results of
the finite element software. Lastly, in chapter 5 the conclusion and recommendation are described.



Chapter 2

Theory

In this chapter the theory of elasticity is described to better understand the propagation of ultrasonic
waves through a medium.

Moreover, the method for measuring the viscosity with non-destructive testing is described.

2.1 Theory of Elasticity

The theory of elasticity is part of continuum mechanics, which describes the propagation of small stresses
and strains though a medium [10]. In this section, only isotropic media, such as metals, are considered.
A material is isotropic when it is uniform in all directions[11].

2.1.1 Stress Tensor

Stress can be described as the force between neighboring particles per unit area
[
N
m2

]
. There are two

types of stress component, which are dependent on the orientation of the normal vector. If the force
vector is normal to the surface, it is called normal stress. The other type of stress component, when the
force vector is perpendicular to the surface, is called shear stress [10].
Since stress is a function of the orientation of the normal vector, a tensor is needed to describe the stress
state of a solid. The stress tensor is written as follows

T =

σxx σxy σxz
σyx σyy σyz
σzx σxy σzz

 . (2.1)

The normal stress is given on the diagonal of the stress tensor, whereas the shear stress is stated on
the off-diagonal.

Newtons third law states that for every action, there is an equal and opposite reaction. Therefore,
the components acting on the same plane, such as σxy and σyx, are equal [12].

2.1.2 Strain Tensor

The amount of deformation resulting from stress is called strain, which can be in the form of stretch
or compression. Since strain is described as the total displacement of the medium with relation to the
initial position, this quantity is unit less. Strain resulting from normal stress is referred to as normal
strain. It can be written as

εii =
∂ui
∂i

, (2.2)

where u is the displacement over an axes and i can be the x, y or z-axis.

4



2.1. THEORY OF ELASTICITY 5

The displacement resulting from shear stress is referred to as shear strain. This strain is given by
the following expression

εij =
1

2
(
∂ui
∂j

+
∂uj

∂i
), (2.3)

where i 6= j.
Similar to stress, strain is written as a tensor.

ε =

εxx εxy εxz
εyx εyy εyz
εzx εxy εzz

 . (2.4)

2.1.3 Generalized Hooke’s Law

The linear relationship between stress and strain is described by Hooke’s law of elasticity. This law is
applicable for small stresses and strains [13].
The one-dimensional Hooke’s law is given by

ε =
σ

E
, (2.5)

where ε is the strain and σ the stress. The modulus of elasticity, E, is a property of isotropic materials,
also known as the Young’s modulus. This property describes the stiffness of an isotropic material
subjected to linear stress.
To extend Hooke’s law in three-dimensions, Poisson’s Ratio, ν, is introduced. This ratio is defined as
the ratio of transverse strain to longitudinal strain, which is applicable for isotropic materials[13].

Figure 2.1: Three cases of normal stresses and strains on a three-dimensional cube. (a) is the original
shape of the cube [14]

.
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In figure 2.1(b) a normal stress is applied on a three-dimensional cube in the x-direction. The stress
σxx, introduces strains in the x, y and z-direction. These strains can be written as

ε′xx =
σxx
E

, ε′yy = −νσxx
E

, ε′zz = −νσxx
E

. (2.6)

In figure 2.1(c) a normal stress is applied in the y-direction. The strains introduced can be written
as

ε′yy =
σyy

E
, ε′xx = −

νσyy

E
, ε′zz = −

νσyy

E
. (2.7)

In figure 2.1(d) a normal stress is applied in the z-direction. The strains introduced can be written
as

ε′zz =
σzz
E

, ε′xx = −νσzz
E

, ε′yy = −νσzz
E

. (2.8)

Combining these strains and applying superposition, the following relations are found.

εxx =
σxx
E
− νσzz

E
−
νσyy

E
,

εyy =
σyy

E
− νσxx

E
− νσzz

E
,

εzz =
σzz
E
− νσxx

E
−
νσyy

E
.

(2.9)

For the shear stresses and strains, the shear modulus, G, is introduced. This modulus is defined as

the ratio of shear stress to shear strain, which is also equal to G = E
2(1+ν)

[14]. The resulting relations

are as follows
εxy =

σxy

G
, εyz =

σyz

G
, εzx =

σzx
G

. (2.10)

Combining the equation in 2.9 and 2.10, the following matrix can be constructed.


εxx
εyy
εzz
εxy
εyz
εzx

 =



1
E

−ν
E

−ν
E 0 0 0

−ν
E

1
E

−ν
E 0 0 0

−ν
E

−ν
E

1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G




σxx
σyy
σzz
σxy
σyz
σzx

 (2.11)

The following expression is obtained when the matrix is inverted.
σxx
σyy
σzz
σxy
σyz
σzx

 =
E

(1− 2ν)(1 + ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0 1
2 − ν 0 0

0 0 0 0 1
2 − ν 0

0 0 0 0 0 1
2 − ν




εxx
εyy
εzz
εxy
εyz
εzx

 (2.12)

Hooke’s law can therefore be written in a generalized form

σij = 2µεij + λεiiδij , (2.13)

where µ and λ are Lamé parameters and i and j can be x, y or z [11]. Moreover, δij is zero if i 6=j.

Lamé parameters are defined as follows

µ = G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
. (2.14)
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2.2 Wave Propagation in Elastic Solids

2.2.1 Equations of Motion

The wave equations in isotropic media can be found by writing Newton’s law of motion in terms of stress
tensor and displacement, which is done in 2.15.

ρ
∂2ui
∂t2

=
∂Tij

∂xj
(2.15)

Here, ρ is the density of the solid.
Combining 2.15, 2.13, 2.3 and 2.2 the following equation can be found.

ρ
∂2ui
∂t2

=
∂

∂xj
(µ(

∂ui
∂xj

) +
∂uj

∂xi
) + λ

∂ui
∂xi

δij) (2.16)

This equation is rewritten in vectorial form in equation 2.17.

ρ
∂2~u

∂t2
= (λ+ µ)~∇(~∇ · ~u) + µ∇2~u (2.17)

Helmholtz identity states that a vector can be split into both curl of a vector, ~ψ, and the gradient of
a scalar, φ [13]. Therefore, ~u can be written as follows

~u = ~∇φ+ ~∇× ~ψ. (2.18)

The following rules for scalars and vectors are used

~∇× (~∇φ) = 0,

~∇ · (~∇× ~ψ) = 0.
(2.19)

By combining the equations 2.16, 2.18 and 2.19 the following equation is obtained

~∇(ρ
∂2φ

∂t2
− (λ+ 2µ)∇2φ) + ~∇× (ρ

∂2 ~ψ

∂t2
− µ∇2 ~ψ) = 0. (2.20)

This equation can be separated into a purely scalar equation and a purely vector equation.

ρ
∂2φ

∂t2
= (λ+ 2µ)∇2φ,

ρ
∂2 ~ψ

∂t2
= µ∇2 ~ψ.

(2.21)

The separated equations each describe the propagation of an independent mode. These modes include
longitudinal and shear waves. The characteristic of a longitudinal wave is that there is no change in the
angle of propagation, which applies to gradient of a scalar (φ). For a shear wave, there is no change

in volume, which corresponds with the curl of a vector (~ψ) [13]. Shear waves can be polarized in two
different direction: horizontal and vertical.
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In figure 2.2, the difference between shear waves and longitudinal waves are shown.

Figure 2.2: Left: the propagation of a longitudinal wave in one dimension. Right: The propagation of
a shear wave in one dimension[15]

Knowing that ~u has a longitudinal part (~uL) and a shear part (~uS), the equations in 2.21 can be
rewritten into the following form

∂2φ

∂t2
= V 2

L∇
2φ,

∂2 ~ψ

∂t2
= V 2

S∇
2 ~ψ,

(2.22)

with VL the bulk velocity of the longitudinal wave and VS the bulk velocity of the shear waves.
These parameters are defined as follows

V 2
L =

λ+ 2µ

ρ
, V 2

S =
µ

ρ
. (2.23)

Knowing ~ψ is a vector with the x, y and z-components, the wave equations in 2.22 can be extended
rewritten in the following form

1

V 2
L

∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
,

1

V 2
S

∂2ψx

∂t2
=
∂2ψx

∂x2
+
∂2ψx

∂y2
+
∂2ψx

∂z2
,

1

V 2
S

∂2ψy

∂t2
=
∂2ψy

∂x2
+
∂2ψy

∂y2
+
∂2ψy

∂z2
,

1

V 2
S

∂2ψz

∂t2
=
∂2ψz

∂x2
+
∂2ψz

∂y2
+
∂2ψz

∂z2
.

(2.24)

From equation 2.18, the following equations of the general wave motion can be found

ux =
∂φ

∂x
+
∂ψz
∂y
−
∂ψy

∂z
,

uy =
∂φ

∂y
+
∂ψx
∂z
− ∂ψz

∂x
,

uz =
∂φ

∂z
+
∂ψy

∂x
− ∂ψx

∂y
.

(2.25)
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2.3 Plane Waves

Plane waves are three dimensional waves with the normal vector parallel to the z-axis. The two waves
that propagate in an isotropic solid plate are Lamb waves and shear horizontal waves [16] .

2.3.1 Boundary Conditions

In the case of a traction free plate, with a finite thickness of z = ±h and invariance in the y-direction,
the following conditions apply[12]

∂

∂y
= 0,

∇ =
∂

∂x
î+

∂

∂z
k̂.

(2.26)

The invariance in the y-direction is the result of the plain strain conditions, which states that stresses
and strains only have non-zero components in a single plane [17]. Applying these conditions to the wave
motions in 2.25, the following expression is obtained

~u = (
∂φ

∂x
−
∂ψy

∂z
)̂i+ (

∂ψx
∂z
− ∂ψz

∂x
)ĵ + (

∂φ

∂z
+
∂ψy

∂x
)k̂. (2.27)

The x-component and the z-component of this wave motion vector depends on the longitudinal wave
motion, φ, and vertically polarized shear wave motion, ψy . The y-component in this vector describes
the horizontal polarized shear wave, which depends on ψz and ψx. Since the shear horizontal wave does
not depend on ψy or φ, it is completely decoupled from the lamb waves.

2.3.2 Lamb Waves

Lamb wave equations consist of two waves, the longitudinal wave and the vertically polarized shear
wave[16].
The boundary conditions for this wave are [18]

σzz = σxz = 0,

uy = 0,

∂

∂y
= 0.

(2.28)

These boundary conditions result in the reduction of the wave motion vector in 2.27. The components
for the wave motion of lamb waves are as follows

ux =
∂φ

∂x
−
∂ψy

∂z
,

uz =
∂φ

∂z
+
∂ψy

∂x
.

(2.29)

Lamb waves consist of waves standing in the z-direction and propagating in the x direction. Therefore,
the lamb waves are described by the following two-dimensional wave equations

1

V 2
L

∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂z2
,

1

V 2
S

∂2ψy

∂t2
=
∂2ψy

∂x2
+
∂2ψy

∂z2
.

(2.30)
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The resulting stress components from the plain strain can be obtained using 2.15 and 2.29.

σxx = λ

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂x2
−
∂2ψy

∂x∂z

)
,

σzz = λ

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂z2
+
∂2ψy

∂x∂z

)
,

σxz = µ

(
2
∂2φ

∂x∂z
+
∂2ψy

∂x2
−
∂2ψy

∂z2

)
.

(2.31)

The solution for the wave equation 2.30 will have the following form

φ = Φ(z)ej(kx−ωt),

ψy = Ψ(z)ej(kx−ωt).
(2.32)

where ω is the angular frequency and k the wavenumber. Combining equation 2.30 and 2.32 give the
following expressions

∂2Φ

∂z2
+ α2φ = 0,

∂2Ψ

∂z2
+ β2ψ = 0,

(2.33)

where α and β are defined as follows

α2 =
ω2

V 2
L

− k2, β2 =
ω2

V 2
S

− k2. (2.34)

Solving the equations in 2.33 give the following expressions

Φ(z) = Asin(αz) +Bcos(αz),

Ψ(z) = Csin(βz) +Dcos(βz).
(2.35)

There are two modes of wave propagation: the symmetric mode and the antisymmetric mode. The
displacement in the x-direction is symmetric, with regard to the z-axis, if the solution contains cosines
and the displacement in the z-direction is symmetric, with regard to the z-axis, if the solution contains
sines[12].

Therefore, the symmetric mode is given by the following system

Φ = Bcos(αz), Ψ = Csin(βz),

ux = ikBcos (αz)− βCcos (βz) ,

uz = Bαsin (αz) + Ciksin (βz) ,

σxx = −λ
(
k2 + α2

)
Bcos (αz) + 2µ

(
ikβCcos (βz)− k2Bcos (αz)

)
,

σzz = −λ
(
k2 + α2

)
Bcos (αz) + 2µ

(
ikβCcos (βz)− α2Bcos (αz)

)
,

σxz = −µ
[
2αikBsin (αz) +

(
k2 − β2

)
Csin (βz)

]
.

(2.36)
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The antisymmetric mode is given by the following system

Φ = Asin(αz), Ψ = Dcos(βz),

ux = ikAsin (αz) + βDsin (βz) ,

uz = αAcos (αz) + ikDcos (βz) ,

σxx = −λ
(
k2 + α2

)
Asin (αz)− 2µ

(
ikβDsin (βz) + k2Asin (αz)

)
,

σzz = −λ
(
k2 + α2

)
Asin (αz)− 2µ

(
ikβDsin (βz) + α2Asin (αz)

)
,

σxz = µ
[
2αikAcos (αz) +

(
β2 − k2

)
Dcos (βz)

]
.

(2.37)

Combining the boundary condition for stress in 2.28, the symmetric σzz and the symmetric σxz in
2.36, the following frequency equation can be formed(

k2 − β2
)2

cos (αh) sin (αh) + 4k2αβsin (αh) cos (βh) = 0. (2.38)

This can be rewritten in the following form

tan (βh)

tan (αh)
=
−4k2αβ(
k2 − β2

)2
. (2.39)

This equation is known as the Rayleigh-Lamb frequency equation for symmetric waves in a plate[12].
The Rayleigh-Lamb frequency equation for antisymmetric waves in a plate is given as follows

tan (βh)

tan (αh)
=
−
(
k2 − β2

)2

4k2αβ
. (2.40)

2.3.3 Shear Horizontal Waves

The second type of wave in a plane wave are shear waves polarized in the horizontal direction (SH-waves).
This wave propagates in the x-direction with a standing wave in the y-direction.

Since SH-waves only depend on the y-component, the wave motion vector in 2.27 can be reduced to
the following equation[17]

uy =
∂ψx
∂z
− ∂ψz

∂x
. (2.41)

The wave equation, for SH-waves, is as follows

1

V 2
S

∂2uy

∂t2
=
∂2uy

∂x2
+
∂2uy

∂z2
. (2.42)

The solution of the wave equation will have the following form

uy = h(z)ej(kx−ωt). (2.43)

Combining equation 2.43 and equation 2.42, the following expression can be found

∂2h(z)

∂z2
+ η2h(z) = 0, (2.44)

where η is defined as follows

η2 =
ω2

V 2
S

− k2. (2.45)
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Solving equation 2.44 gives

h(y) = C1cos(ηz) + C2sin(ηz). (2.46)

Therefore, equation 2.43 can be written as

uy = (C1cos(ηz) + C2sin(ηz))ej(kx−ωt). (2.47)

The boundary conditions of SH-waves at the surface z = ± h, are as follows [16]

σzz = σxz = σyz = 0,

∂uy

∂z
= 0.

(2.48)

Applying these conditions to 2.47 gives the following equation

C1cos(ηh) + C2sin(ηh) = 0,

C1cos(ηh)− C2sin(ηh) = 0.
(2.49)

Solving these equations leads to the following frequency equation

cos(ηh)sin(ηh) = 0. (2.50)

This equation satisfies equation 2.51 in case of symmetric modes

ηh = nπ, n = 0, 1, 2, ... (2.51)

For antisymmetric modes, equation 2.50 satisfies the following equation

ηh = (2n+ 1)
π

2
, n = 0, 1, 2, ... (2.52)

The dispersion relation for symmetric modes can therefore be rewritten as follows,

k2 =

(
ω2

V 2
S

)2

−
(nπ
h

)2
, (2.53)

where n is the mode index.
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2.4 Ultrasonic Non-Destructive Testing

Ultrasonic non-destructive testing (NDT) is a method where the thermodynamic properties of a fluid
can be evaluated without causing damage to the equipment. This report focuses on the method of NDT
using an immersed waveguide and a piezoelectric transducer. Using a waveguide allows the transducer
to be protected from high temperature and high corrosive environment.

For measuring the viscosity of a fluid, the attenuation of the transmitted wave, inside the waveguide,
should be evaluated with non-dispersive waves[7].

2.4.1 Attenuation

The attenuation of a wave describes the loss or absorption of the wave energy by the medium. For
longitudinal waves, the attenuation depends mainly on the viscosity and the thermodynamic properties
of the fluid. In contrary to solids, shear waves do not exist in fluids and gases, due to the absence of
shape elasticity[11]. Therefore, the attenuation for shear waves is mainly determined by leaking waves
at the surface of the solid and dissipation and scattering of the wave energy[19].

In Appendix A the behavior of longitudinal waves in a fluid is described. In equation A.12, the
attenuation for longitudinal wave is determined to have the following expression

αlong =
2υω2

3V 3
0

. (2.54)

where, υ is the kinematic viscosity of the fluid.

For shear waves the attenuation is acquired by dividing the energy leakage across the boundary of
the waveguide by the average power flow across the cross section of the waveguide [19].

In case of the shear horizontal waves, the energy leakage is defined as the integral of power flow over
unit width of the plate. Using the Pointing vector for finding the the average power flow, the following
equation for the attenuation (αSH ) can be found [19]

αSH = − 1

2h

(
ρ0ωη

ρG

)1
2
, (2.55)

where h is the width of the plate and η the dynamic viscosity of the fluid.
For ultrasonic NDT, high frequency signals with non-dispersive ultrasonic waves are needed. Dispersion

introduces multiple modes and attenuation[7]. For accurate evaluation of the viscosity, the attenuation
should primarily be introduced by the immersion fluid. Therefore, it is desirable to transmit a non-dispersive
signal into the waveguide[7].

2.4.2 Non-Dispersive SH0 Waves

A non-dispersive signal should have a constant wave velocity independent of frequency[8]. The wave
velocity can be found from the dispersion relation, where the angular frequency is dependent on the
wave number.

There are two kinds of wave velocities: phase velocity (Vphase) and group velocity (Vgroup). The

group velocity gives the velocity of the wave package, whereas the phase velocity gives the velocity of
an individual peak within the overall wave shape. In figure 2.3 the difference between the two velocities
can be seen.

The expression for the phase velocity and group velocity can be seen in the following equation

Vphase =
ω

k
, Vgroup =

∂ω

∂k
. (2.56)
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In figure 2.3, the green dot follows the overall shape of the function, which will give Vgroup, and the
red do follows a single phase, which will give Vphase.

Figure 2.3: An analytic envelope function over a signal. The green dot follows the overall shape of the
function and the red do follows a single phase.

To create a non-dispersive signal, the group velocity of shear horizontal waves will be evaluated.
Using the dispersion relation in equation 2.53 and equation 2.56, the group velocity of shear horizontal

waves can found

Vgroup = VS

√
1−

(
nVS
2fh

)2
, (2.57)

where f is the signal frequency, h is the thickness of the plate and n the mode of the wave. The
first mode of the shear horizontal waves, SH0 with n=0, is independent of frequency and therefore
non-dispersive.

From equation 2.57, the following dispersion curve can be obtained.

Figure 2.4: The group velocity, in m/s, for a tungsten plate plotted against the the frequency of the
pulse times the thickness of the plate in MHZ·mm
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Since non-dispersive wave modes are preferred for measurements, the other modes should be filtered
out using the cut-off frequency thickness (fh).

To exclude these other wave modes, using the thickness of the plate, equation 2.57 is used to define
the following cutoff frequency thickness product.

fh =
VS
2
MHz ·mm. (2.58)

The frequency used for non-destructive inspection, range from 1 MHz to 5 MHz [7].

The bulk shear velocity, given for the SH0 mode, only apply for infinite plates. For a plate with
finite width, the group velocity asymptotically approaches the shear bulk velocity above a certain critical
cut-off frequency width product (fw). If the frequency width product of a plate is smaller than the
critical fw, the signal will be dispersed [8]. To find this value, the peak time for different plate width
dimensions should be evaluated.



Chapter 3

Experimental Method

In this chapter the experimental method is described. In the first section, a detailed description of the
waveguide model is given. The model is build in the finite element software COMSOL[20].

The steps for finite element data post processing are stated in in the second section. Post processing
include: obtaining the group velocity and the attenuation.

3.1 The Wave Guide Model

The standard steps for modeling in COMSOL include: specifying definitions, geometry, materials,
physics, mesh, study and progress the results.

3.1.1 Geometry and Definitions

For the waveguide immersed in water, a workplace with a rectangle and a block are created with the
geometry toolbar. The rectangle will simulate the waveguide and the block will simulate the fluid. For
this model the plate is a 2D object, since 3D can be computationally expensive. In the figure below, the
resulting geometry can be seen.

Figure 3.1: The geometry created in COMSOL.

16
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To define the boundaries of the transducer, two points are made. The length between the points will
be the diameter of the transducer. In figure 3.2, the workspace with the two points is shown.

Figure 3.2: The 2D workspace created in COMSOL.

The dimensions of this geometry are given in the Parameters, which can be found in Appendix
A. The dimensions of the plate are smaller than the actual size of the wavelength. To minimize the
computation time, the dimensions are scaled down.

To organize the model, the function Explicit in the Definitions toolbar is used to define the fluid
domain and the solid boundary. Moreover, the input edge for the pulse is defined, which is the space
between the two points.

The materials used are chosen from the Build-In Materials available in COMSOL. For the liquid
domain, Water,liquid is chosen and for the solid domain: Tungsten. The metal Tungsten, also known
as Wolfram, is a commonly used material in high temperature and radioactive environments, due to its
high melting point and high density[21]. In table 3.1, the parameters, used in this model, for tungsten
are given.

Table 3.1: The material properties of Tungsten[20].

Parameters Values

Density (kg m−3) 17800
Lamé’s constant, λ (GPa) 179
Lamé’s constant, µ (GPa) 141
Poisson ratio, υ 0.28
Young’s modulus, E (GPa) 360

Thermal conductivity (W m−1 K−1) 175

VL (m s−1) 5089

VS (m s−1) 2814

In table 3.1, VL and VS are calculated using equation 2.23.
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3.1.2 Physics

The model uses ’Thermoviscous Acoustics, Transient’, ’Shell’ and the multiphysics ’Thermoviscous
Acoustic - Structure Boundary’ to model ultrasonic shear horizontal waves in a waveguide made from
Tungsten.

Thermoviscous acoustics is a computationally expensive interface and will take viscous and thermal
losses into account. For larger models, the Pressure Acoustics interface with the fluid model set to
Thermally conducting and viscous can be used to reduce computation time[22].

Since, thermoviscous acoustics is computationally expensive, the plate is modeled using the 2D shell
physics. The shell physics is for thin plates made from a material with significant bending stiffness[23],
which applies for the metal tungsten. This shell physics provides the ability to simulate a 3D plate with
a small thickness in 2D.

To simulate a acoustic pulse, the function Prescribed Displacement is used in the Physics toolbar.
In this research a sinus wave with 5 cycles, an amplitude of 0.1 V and a pulse frequency of 2MHz, is
implemented as input pulse. The resulting pulse can be seen in figure 3.3. To generate this input pulse,
the piecewise function in COMSOL is utilized.

Figure 3.3: A 5-cycle sin pulse with a pulse frequency of 2MHz and an amplitude of 0.1 V.

Since the desired wave for this experiment is the shear horizontal wave, the pulse is send into the
x-direction.
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3.1.3 Mesh

For the mesh size it is important to take the Nyquist criterion into account, which stated there should be
at least two mesh elements per wavelength. In previous research, the optimal amount of mesh elements
per wavelength was found to be eight[9]. Therefore, this is also the amount of mesh elements per
wavelength in this model.

Since the exited shear horizontal wave only causes displacement, for the plate, in the x-direction, it
is preferred to use square mesh elements. Therefore, for the 2D plate, the mapped mesh is used. For
the mapped mesh the distribution can be specified.

An example of a distribution, is the inverse Gaussian distribution. This distribution increases the
resolution of the model at the edges of the plate, which might be more beneficial for shear horizontal
wave measurements[24]. However, combining this distribution with the computationally expensive
’Thermoviscous Acoustics’ interface will increase the computation time significantly.

To minimize the computation time of this model, the mapped mesh is equally distributed over the
plate.

In the fluid domain, the free tetrahedral mesh is implemented. In figure 3.4 the resulting mesh is
shown.

Figure 3.4: The mesh used for the model.
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In figure 3.5, a zoomed in version of figure 3.4 can be seen.

Figure 3.5: The mesh used for the model.

The size of mesh elements is calculated with the following equation

M =
λSH
N

, (3.1)

where M is the mesh size, N is the amount of mesh elements per wavelength and λ the wavelength of
shear horizontal ultrasonic waves.

3.1.4 Study

For this simulation the Time Dependent study is chosen, which requires a start time, end time and step
size. The distance that the information travels within the time step must be smaller than the mesh
size, for the simulation to converge. This condition is also known as the Courant-Friedrichs-Lewy (CFL)
condition[25]. The time step is therefore calculated with the following equation

tstep = CFL
λSH
VSHN

=
CFL

f0N
, (3.2)

where CFL is the optimal scaling factor and f0 is the frequency of the excited pulse.
The CFL number is a positive, nonzero value, which should be less than 0.2[26].

When the simulation is started, the solver will automatically define the time steps taken by the
solver by interpolation. This works perfectly for predictable signals. However, for sudden changes in
the signal or oscillations, the automatic solver will end up under-sampling the solution. Therefore, it is
recommended to set Steps taken by Solver to Manual.

3.2 Post processing

To obtain the data after computing, a point evaluation is implemented. For this point, the second
Piola-Kircho stress tensor (component xz) is used to obtain the displacement, resulting from the shear
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horizontal wave.

3.2.1 Group Velocity and Attenuation

For calculating group velocity the following equation is used

Vgroup =
2L

∆t
, (3.3)

where L is the length of the plate and ∆t the time delay of the returning peak.
To efficiently calculate the time delay of the returning pulse, the cross correlation function can be

utilized. This function measures the similarities between two pulses. In figure 3.6, an example of an
input pulse and a returning pulse are shown.

Figure 3.6: The upper plot shows the input pulse of a 5-cycle sinusoidal wave and the lower plot the
returning pulse.

The cross correlation between the two pulses in figure 3.6, gives the following output in figure 3.7.

Figure 3.7: The cross correlation coefficient plotted against the time delay of the pulse.

The maximum of the cross correlation function returns the delay of the echo, also known as lag. In
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Matlab this delay is expressed in number of samples and can be expressed in time by dividing this delay
by the total number of samples.

When a shear horizontal wave is excited, it travels through the plate and is reflected back at the
solid-fluid surface. While traveling though the plate, the pulse losses energy due to the attenuation of
the waveguide itself and the attenuation introduced by the fluid.

A returning signal, or echo, in an immersed plate will have a slight delay compared to the echo in
the plate which is slightly less immersed. This delay will hold information about the attenuation of the
fluid in which the plate is immersed.

The amplitude of the returning signal in the waveguide, S(ω), is characterized by the following
exponential decrease

S(ω) = RS0(ω)e
−2xαfluide

−2xαwaveguide, (3.4)

where R is the reflection coefficient for the fluid-solid interface at the bottom of the waveguide, S0(ω)
the initial signal strength, x the immersion depth, αfluid is the total attenuation per meter introduced

by the fluid and αwaveguide is the total attenuation per meter introduced by the waveguide. The

expression for R can be found in appendix B.
By measuring the time delay and amplitude for two different immersion depths, the relationship

between attenuation and immersion depth can be found. The parameters such as R, αwaveguide and

S0, are identical for both measurements and will vanish by equating the identical parameters of the two
measurements. The following equation for the attenuation can be found [19]

αfluid = − 1

2 (x2 − x1)
ln

(
S2(ω)

S1(ω)

)
, for : x2 < x1, (3.5)

where αfluid is the attenuation, x2 and x1 are different immersion depths and S1 and S2 are the

different signal amplitude at the different immersion depths. For equation 3.5, the Fourier transform of
the amplitude is used to counter the effects of dispersion[19].

When using shear horizontal ultrasonic waves, the attenuation acquired with equation 3.5 can be
used in equation 2.55 to calculate the dynamic viscosity of the fluid.

For estimating the accuracy of the model the Matlab functions ’mean’ and ’std’ are used for calculating
the mean and standard deviation of a vector[27].



Chapter 4

Results and Discussion

In this chapter the results of the model are stated. At first, the optimal plate width dimension, for the
shear horizontal waves, is determined with the model.

Secondly, the model is optimized for the time step size of the solver. For both studies, the accuracy
of the model is studied by comparing the group velocity, calculated by the model, to the theoretical
group velocity of tungsten.

4.1 Plate Dimensions

For optimizing the plate width, the model is studied without the immersion fluid to minimize the
solving time. The plate has a length of 20 mm and a thickness of 0.1 mm and the material of the plate
is Tungsten. The transducer on top of the plate has a width of 4.8 mm and sends a 5-cycle sinus pulse
into the plate with an amplitude of 0.1 m and a frequency of 2 MHz. For the mesh, a size of 8 mesh
elements per wavelength is used. As discussed in the previous chapter, the optimal scaling factor (CFL
number) should be positive, nonzero and smaller than 0.2. For now, the CFL number is set to 0.1.

4.1.1 Parametric sweep

The cut-off frequency width is determined by a parameter sweep for the plate width values; 5 mm to 15
mm in steps of 1 mm.

The results of the parametric sweep can be seen in the figure below

Figure 4.1: The SH0 wave measured on top of the waveguide for different plate width’s. Displacement
field in the x-direction plotted again the time. Measured with a boundary point probe.

23
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In figure 4.1, there are three peaks that seem to change a lot for every different plate width, the first
of these three, around 15.2 µs, is evaluated. In figure 4.2, the echo of the pulse can be seen for different
plate width dimensions.

Figure 4.2: The SH0 wave measured on top of the waveguide for different plate width’s. Displacement
field in the x-direction plotted again the time. The evaluated peaks are marked with a circle.

In figure 4.1 and figure 4.2, it can be seen that for the width of 5 mm the returned signal is fully
dispersed. This is an indication that the critical cut-off frequency width is 12 MHz·mm, i.e., the plate
should be at least 6 mm for a pulse frequency of 2 MHz.

The wider the plate, the more the wave is distributed over the plate. Therefore, the amplitude
decreases as the plate width increases. To determine the optimal plate width, the peak time is evaluated.
The results can be found in the table below.

Table 4.1: The values of the width of the plate with the corresponding peak time of the returning shear
horizontal wave.

Width (mm) Peak Time (µs)

5 14.8940
6 15.0560
7 15.0940
8 15.1310
9 15.1560
10 15.1750
11 15.1810
12 15.1880
13 15.1750
14 15.1630
15 15.1630
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In figure 4.3, the values from table 4.1 are plotted.

Figure 4.3: The peak time of the returning shear horizontal wave plotted against the width of the plate.

In figure 4.3, the fitted line is the following power function

y(x) = axb + c (4.1)

where a = -109.9 ± 514.4 , b = -3.751 ± 2.626 and c = 15.18 ± 0.02. Since a plate width of 5 mm does
not give a reasonable solution for the returning echo, this data point is disregarded in the fitted line.

In figure 4.3, the optimal frequency width product lies around 20 MHz·mm. It can also be seen that
the peak times do not seem to stabilize for a single peak time but rather oscillate around 15.17 µs. The
cause of this oscillation can be either a natural phenomena or, more likely, a numerical problem in the
model. By increasing the resolution of the model, the numerical problems can be minimized. However,
increasing the resolution, will also increase the computation time. Since the oscillation is relatively
small, the contributing factors of this oscillation can be disregarded in this research.
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4.1.2 Accuracy

To study the accuracy of the results, the group velocity of the pulse, measured by the model, is compared
to the theoretical value. To obtain the group velocity, the time delay is calculated using the cross
correlation function.

The mean value of the time delay, for the width study, was calculated to be 14.13± 0.11 µs, where 0.11
is the standard deviation. For calculating this mean value, the data point at W = 5 mm is disregarded.

The values of the time delay, resulting from the cross correlation function, can be found in table 4.2.

Table 4.2: The value for the time delay for every plate width.

Width (mm) Time Delay (µs)

5 15.9937
6 14.1563
7 14.2062
8 14.2375
9 14.2625
10 14.2813
11 14.0500
12 14.0500
13 14.0375
14 14.0188
15 14.0250

With equation 3.3, the group velocity is calculated. The resulting values, for the group velocity, can
be seen in table 4.3.

The mean value for the group velocity is calculated to be equal to 2830 ± 21 m s−1, where ± 21 is
the standard deviation. For calculating this mean, the signal of W = 5 mm is disregarded, since this

signal is dispersed. The theoretical group velocity of tungsten, equal to 2814 m s−1, lies within this
range.

Table 4.3: The values of the group velocity for different width dimensions.

Width (mm) Vgroup (m s−1)

5 2501
6 2826
7 2816
8 2810
9 2805
10 2801
11 2847
12 2847
13 2850
14 2853
15 2852
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In table 4.3, the group velocity seems to stabilize for plate widths larger than 10 mm. The relative
error of the group velocity, for a plate width of 11 mm, compared to the theoretical value, has a value of
1.2%. There could be several reasons for this error: the physics chosen for the waveguide (’shell’) might
not be accurate or the plate might not be long enough. The longer plate, the less the measurements
are affected by the diffraction of the excited pulse. Moreover, the wider the plate compared to the
transducer, the more diffraction occurs. The optimal ratio between the plate width, transducer width
and plate length might be obtained from table 4.3.

In table 4.3, it can be seen that between the widths 10 mm and 11 mm , the group velocity makes a
sudden change. Since the plate length is 20 mm, the plate width becomes less than half the plate length
around 11 mm. Moreover, around 11 mm, the plate width is more than twice the size of the transducers
size. A plate with a width less than half the size of the length and a transducer width more than half
the size of the plate width, seem to be the optimal dimensions for a waveguide. However, more research
should be done to verify this statement.
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4.2 Time Step Size

To minimize the solving time, the optimal time step size is estimated using a model without the
immersion fluid. The dimensions (LxWxD) of the plate is 20mm x 11mm x 0.1mm and the material of
the plate is Tungsten. The width of 11mm is chosen as a result of the findings in the in the previous
section. Here, it was found that for a plate width larger than 10 mm, the group velocity stabilized.

The transducer on top of the plate has a width of 4.8 mm and sends a 5-cycle sinus pulse into the
plate with an amplitude of 0.1 m and a frequency of 2 MHz. The plate, with W = 11 mm, has therefore
a frequency width product of 22 MHz·mm. For the mesh, a size of 8 mesh elements per wavelength is
used.

4.2.1 Parametric Sweep

With an parametric sweep, the Courant–Friedrichs–Lewy number from equation 3.2 was varied from
0.02 to 0.2 with steps of 0.02. In the figure below, the acquired plot of the parametric sweep is shown.

Figure 4.4: The SH0 wave measured on top of the waveguide with a boundary point probe. Displacement
field in the x-direction plotted again the time.

In figure 4.4, it can be seen that the peak time’s around 16.2 µs, seem to change the most for the
different CFL numbers, compared to the other peaks.
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In figure 4.5, the peaks around 16.2 µs can be seen.

Figure 4.5: SH0 peaks of different CFL numbers .

The values of the peak time, for the different CFL number, of figure 4.5, are stated in the table 4.4.

Table 4.4: The results from the COMSOL model. The CFL numbers and the corresponding peak time’s.

CFL Peak Time (µs)

0.0200 16.1640
0.0400 16.1630
0.0600 16.1630
0.0800 16.1650
0.1000 16.1690
0.1200 16.1700
0.1400 16.1790
0.1600 16.1900
0.1800 16.2000
0.2000 16.2120
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In the figure below, the values from table 4.4 are plotted.

Figure 4.6: The Displacement in the x-direction plotted against the corresponding CFL numbers .

The fitted line is a power function as given in equation 4.1. Here, a = 7.643 ± 6.867, b = 3.117 ±
0.553 and c = 16.16 ± 0.01.

In figure 4.6, the values for the peak time asymptoticly approach a stable value around CFL = 0.08.
Therefore, the optimal CFL number seems to be around 0.08.

4.2.2 Accuracy

With the cross correlation function, the time delay of the returning pulse was evaluated. The resulting
values of the time delay, can be found in table 4.5. The mean value, of the data points given in table
4.5, was calculated to be 14.13 ± 0.13 µs, where 0.13 is the standard deviation.

Table 4.5: The values for the time delay for every CFL number.

CFL Time Delay (µs)

0.0200 14.0425
0.0400 14.0425
0.0600 14.0437
0.0800 14.0450
0.1000 14.0500
0.1200 14.0550
0.1400 14.0613
0.1600 14.3100
0.1800 14.3212
0.2000 14.3250
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For the parametric sweep of the CFL value, 10 data points were used. The mean group velocity, of

these 10 data points, is calculated to be equal to 2831 ± 26 m s−1, where ± 26 is the standard deviation.

The theoretical group velocity of 2814 ms−1, lies within this range.

Table 4.6: The values of the group velocity for different CFL numbers.

CFL Vgroup (m s−1)

0.0200 2849
0.0400 2849
0.0600 2848
0.0800 2848
0.1000 2847
0.1200 2846
0.1400 2845
0.1600 2795
0.1800 2793
0.2000 2792

The mean value of 2831 ± 26 m s−1 deviates 1.5% from literature value of 2790 ± 33 m s−1 [28].
The tungsten used in this literature has mostly the same material properties as the tungsten used by
the model, except for the density. The density in this literature study is 2 % higher than the density
used in the model. Since the group velocity is inversely proportional to the squire root of the density,

the expected group velocity should be 1.01% higher than 2790 m s−1. Therefore, the mean value of

the group velocity, found by the model, deviated 0.5% from the expected value of 2818 ± 33 m s−1,
estimated from the literature.
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Conclusion

The goal of this research is to optimize the setup of the ultrasonic viscometer with a finite element
software. For this optimization, the initial aim was to investigate the influence of the volume of the
fluid, in which the waveguide is immersed, on the attenuation.

For this research an accurate model was needed. To improve the accuracy of the model the optimal
time step size of the solver was investigated by evaluating the peak time of the returning pulse for
different CFL numbers.

To find a balance between accuracy of the model and computation time, the size of the plate was
minimized. The accuracy of the model was studied by comparing the group velocity of the ultrasonic
wave, computed by the model, to the theoretical value.

However, within the time frame of this research it was, unfortunately, not possible to investigate the
influence of the volume of the fluid on the attenuation. Since prior knowledge about the finite element
program COMSOL lacked, the research took longer than expected. Therefore, only the optimization of
the time step size of the solver and the optimal plate width were investigated.

For a pulse frequency of 2 MHz, the smallest possible width for the tungsten plate was found to be
6 mm. Therefore, the critical frequency width product was found to have a value of 12 MHz·mm.

An interesting finding was that for the values higher than this critical frequency width product, the
time delay of the returning pulse, asymptoticly approached a stable value around a plate width of 10
mm. Therefore, an optimal frequency width product was found: 20 MHz·mm. This optimal value could
be related to the size of the transducer. For a pulse frequency of 2 MHz, the optimal plate width was
more or less twice the size of the transducer. It should be investigated if this also applies to the real
transducer size. For this, a parametric sweep could be done over different dimensions for the width of
the plate, while using the real size of the transducer.

The group velocities, stabilized for plate widths larger than 10 mm. The relative error of the group
velocity, found by the model, had a value of 1.2% for a plate width of 11 mm. There are two possible
causes for this error: the physics in the model for the waveguide might be inaccurate or the length of the
plate is too small. A longer plate will be less affected by the diffraction of the exited pulse. The wider
the plate, compared to the transducer, the more diffraction occurs. There should be an optimal ratio
between the plate width, transducer width and plate length. It should be investigated if the relative
error becomes smaller with these optimal dimensions of the plate and transducer.

For the width study, the value of the group velocity is found to be 2830 ± 21 ms−1. The theoretical

value of 2814 ms−1 lies within this range.
The optimal CFL number was found to be 0.08. Moreover, the group velocity, for the CFL parametric

sweep, was found to be equal to 2831 ± 26 ms−1. The theoretical value lies within this range.

It is recommended for future studies to investigate if the attenuation is affected by the plate width.
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Since the attenuation is calculated by the difference in signal strengths, between two immersion depth,
the attenuation might not be affected by the inaccuracy of the model introduced by the plate width.
This plate width study should be done for plate width’s above the critical plate width of 6mm.

For a more accurate model, it is recommended to include the conversion of the electrical energy, of
the transducer, to the kinetic energy. In this model, the sinusoidal pulse of the transducer is directly set
as the displacement in the plate, without considering how much displacement a certain voltage would
introduce.



Appendix A

Wave Propagation in Fluid

In fluids, waves consist of alternative compressions and refractions[13]. Newtons law of motion can
therefore be expressed in pressure and displacement. The wave equation for an one-dimensional case
can be written as

∂p

∂x
= −ρ0

∂2u

∂2t
, (A.1)

where ρ0 is the density of the fluid.
The relation between pressure and the compression of fluids can be expressed as follows

p = − 1

χ

∂u

∂x
, (A.2)

where χ is the compressibility, which is defined as follows

χ = − 1

V
(
∂V

∂p
). (A.3)

Combining equation A.1 and equation A.2, gives the following expression

∂2u

∂2t
= V 2

0
∂2u

∂2x
, (A.4)

where V0 is defined as

V 2
0 =

1

χρ0
=
∂p

ρ
. (A.5)

For a three-dimensional case, equation A.4 can be generalized into the following forms

1

V 2
0

∂2~u

∂2t
= ∇2~u. (A.6)

In contrary to solids, fluids and gases do not have shear waves, due to the absence of shape
elasticity[11]. Therefore, the motion of wave, ~u can be expressed as follows

~u = ~∇ϕ, (A.7)

where ϕ has the following form

ϕ = Cej(kx−ωt). (A.8)

Wave equation A.6 applies for inviscid fluids. To find the wave propagation for fluids with viscosity,
the linearized Navier-Stokes equation is used[18].
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∂2~u

∂t2
= − 1

ρ0
~∇p+ υ∇2 ∂~u

∂t
+
υ

3
~∇(~∇ · ∂~u

∂t
) (A.9)

Here, υ is the kinematic viscosity[12].
Combining equations A.2, A.4, A.7 and A.9 gives the following expression

∂2ϕ

∂2t
− V 2

0 ∇
2ϕ− 4υ

3
∇2 ∂ϕ

∂t
= 0. (A.10)

Combining A.8 and A.10 the following dispersion relation can be found

ω2 − V 2
0 k

2 + j
4υ

3
ωk2 = 0, (A.11)

which can be solved for k.

k2 =
ω2

V 2
0 − j

4υ
3 ω

,

⇒ k ≈ ± ω

V0

[
1 + j

2υω

3V 2
0

] (A.12)

The imaginary part of equation A.12 is the absorption of acoustic wave energy by the medium,
also known as attenuation[13]. Since there are no shear waves in the fluid, this attenuation applies for
longitudinal waves.



Appendix B

Solid-Fluid Interface

Incident plane waves from a solid at the interface of a fluid will be partial reflected and partial transmitted
into the other media. The effects of a solid-fluid interface on a wave, can be described by the reflection
and transmission coefficient.

In figure B.1, the phase shift due to reflection and transmission at the fluid-solid interface can be seen.
The reflection and transmission coefficient from a fluid-solid interface will be the same for a solid-fluid
interface[13].

Figure B.1: Reflection and transmission at a fluid-solid interface[13].

As discussed, the displacement of waves in fluids and solids, in vectorial form, are expressed as

~u = ~∇φ+ ~∇× ~ψ,

~u = ~∇ϕ.
(B.1)
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The plane wave solutions for the fluid-solid interface have the following form

ϕi = expj
(
ωt− kF sinθix+ kF cosθiz

)
,

ϕr = Rexpj
(
ωt− kF sinθrx− kF cosθrz

)
,

φ = TLexpj
(
ωt− kLsinθLx+ kLcosθLz

)
,

ψ = TSexpj
(
ωt− kSsinθlSx+ kScosθSz

)
.

(B.2)

where kF is the longitudinal wavenumber in a fluid, kL the longitudinal wavenumber in a solid, kS
the shear wavenumber in a solid, R the reflection coefficient, TL the longitudinal transmission coefficient
and TS the shear transmission coefficient.

There are three important boundaries to consider for a fluid-solid interface. These boundaries include:
the continuity of normal velocities, the continuation of normal stress and the zero tangential stress in
fluids[13].

The boundary condition for the continuity of normal velocities can be expressed as follows

∂ϕ

∂z
=
∂φ

∂z
+
∂ψ

∂x
. (B.3)

The boundary conditions for the continuation of normal stress are given by

p = σxx,

⇒ V 2
0 ρ0∇

2ϕ = λ∇2φ+ 2µ

(
∂2φ

∂z2
+

∂2φ

∂x∂z

)
.

(B.4)

The zero tangential stress in fluids results into the following boundary conditions

σxz = 0,

∂2ψ

∂x2
+ 2

∂2φ

∂x∂z
− ∂2ψ

∂z2
= 0.

(B.5)

From these boundary conditions, Snell’s law can be obtained.

sinθi
V0

=
sinθr
V0

=
sinθL
VL

=
sinθS
VS

(B.6)

Here, θr is the angle of incidence, θi the angle of reflection, θL the angle of transmission for the
longitudinal waves and θs the angle of transmission for shear waves. Here, θi is equal to θr.

The following three equations can be obtained from the boundary conditions

kF cosθiR+ kLcosθLTL − kSsinθSTS = kF cosθi,

k2
Lsin2θLTL + k2

Scos2θSTS = 0,

ρ0R+ ρ

[
2
k2
L

k2
S

sin2θL − 1

]
TL − ρsin2θSTS = 0.

(B.7)

The solution of these equations are as follows

R =
ZLcos

22θS + ZSsin
22θS − Z1

ZLcos
22θ2 + ZSsin

22θS + Z1
,

TL =

(
ρ1
ρ2

)
2ZLcos2θS

ZLcos
22θ2 + ZSsin

22θS + Z1
,

TS = −
(
ρ1
ρ2

)
2ZScos2θS

ZLcos
22θ2 + ZSsin

22θS + Z1
,

(B.8)
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where Z1, ZL and ZS are defined as follows

Z1 =
ρ1V1
cosθi

,

ZL =
ρ2VL
cosθL

,

ZS =
ρ2VS
cosθS

.

(B.9)



Appendix C

COMSOL Parameters

In the following table, the parameters used in the COMSOL model are shown. The expressions showed
in the table do not apply for every study. In cases of parametric sweep, the parameters are stated in
the results and discussion under the corresponding subsection.

Table C.1: The parameters used in the COMSOL model.

Parameter Expression Description

f0 2[MHz] Signal frequency
T0 1/f0 Period of signal
V SH 2810 [m/s] Estimated shear velocity
t pulse N sin/f0 Pulse duration
t end L/V SH*2.5 End time for study
t step a/(f0*N) Time step
N 8 Number of mesh elements per wavelength
a 0.01 CFL number
mesh V SH/f0/N Mesh size
L 20[mm] Length plate
D 0.1[mm] Thickness plate
W 11[mm] Width plate
L w 10[mm] Length water vessel
W w 12[mm] Width water vessel
D w 2[mm] Thickness water vessel
Dis 8.5[mm] Immersion depth plate
N sin 5 Number of cycles of the sin pulse
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[2] Jérôme Serp, Michel Allibert, Ondřej Beneš, Sylvie Delpech, Olga Feynberg, Véronique Ghetta,
Daniel Heuer, David Holcomb, Victor Ignatiev, Jan Leen Kloosterman, Lelio Luzzi, Elsa
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