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Abstract

A new self-learning Monte Carlo technique is presented that enhances source
convergence in loosely coupled systems. It uses correctons in combination with
an estimate of the neutron flux, resulting in a particle flux with little or no spatial
variation. The estimate is obtained in real time, i.e.: during the calculation.
Therefore, no prior Monte Carlo simulations or deterministic calculations are
necessary.

The method solves the source convergence problem for several simplified
systems of fuel assemblies for which a conventional calculation with neutrons
fails.
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Chapter 1

Introduction

In order to analyse engineering problems related to neutron transport, numerical
methods are needed. One of those is the Monte Carlo method, which is based
on approximating a deterministic quantity by performing random experiments.

In a Monte Carlo criticality calculation, one performs an iteration that must
converge after some amount of cycles. For some physical systems, this does not
happen. Also, accurate estimates of the neutron flux can sometimes be very
time-consuming.

Both of these problems could be solved by the correcton method. Unfortu-
nately, an estimate of the neutron flux is often needed in advance. This estimate
can be obtained from another (less extensive) Monte Carlo calculation, or by
using more conventional means.

This thesis explores the possibility of a ‘real time’ neutron flux estimation
during a correcton calculation. That is, the neutron flux estimate is adjusted
and refined during the calculation.

This thesis is submitted as a partial fulfilment of the bachelor of physics
education program of the technical university of Delft.

1.1 Setup of this thesis

This thesis should be readable to anyone with a Bachelor’s degree in physics,
while at the same time containing sufficient new or advanced material to keep
physicists in the relevant field interested. To facilitate this, two introductory
chapters have been added.

Chapter 2 deals with some basic, essential results from nuclear reactor
physics. Chapter 3 (especially sections 3.1 through 3.7) introduces the general
concept of the Monte Carlo method, its applicability to nuclear calculations and
some of the standard variance reduction methods, without containing any pre-
viously unknown material. Anyone already familiar with parts of it can simply
skim through the sections he or she already knows.

Appendix A contains a formal setup of probability theory and Markov chains,
which may be new to some.
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When introducing the Monte Carlo method in chapter 3, it would have been
easiest to simply start with a particle perspective of neutron transport. That
way, simulating neutrons would instantly seem intuitive and the mathematics
is almost unnecessary. (This is done in Hoogenboom et. al. [1].)

Instead, the neutron transport equation and the concept of reaction rate
densities from chapter 2 are taken as axioms from which a new formulation of
the neutron transport equation can be derived. Only then is the validity of the
Monte Carlo method for estimating quantities demonstrated.

There are two principle reasons for this choice of presenting the material.
First, chapter 3 is mostly aimed at physicist who are already quite familiar
with the neutron transport equation, but have no experience in Monte Carlo
calculations. Perhaps more importantly, the intuitive understanding of simu-
lated neutrons does not apply to the simulation technique using correctons that
is introduced in chapter 4. The slightly more abstract treatment in chapter 3
should make the validity of the correcton method obvious at first sight.

1.2 Acknowledgement

Ending on a more personal note, I would like to thank Bart Sjenitzer for letting
me use his omniscience in the field of Monte Carlo methods in nuclear computing
and introducing me to the world of Fortran, Linux, clusters and really just
computers in general. My gratitude also goes out to the folks at R3, TU Delft
and PNR in particular, for making my short stay at their department fun.
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Chapter 2

Introduction to Nuclear
Reactor Physics

2.1 Nuclear reactions

If an atomic nucleus collides with another nucleus or a subatomic particle, it
might produce particles that are different from the initial particles. Such an
event is referred to as a nuclear reaction. Compared to some charged sub-
atomic particles, neutrons can interact with nuclei relatively easily, since they
are not repulsed by the positive charge of the nucleus or the negative charge of
the electrons. Here the focus of the discussion will lie on the different types of
interaction neutrons can have with nuclei.

(Nuclear) fission is a nuclear reaction in which a large nucleus splits into
smaller parts. This is accompanied by a (large) release of energy and the pro-
duction of subatomic particles, such as neutrons and photons. In the event of
neutron capture, the neutron will be assimilated by the nucleus to form a
heavier nucleus. Sometimes the heavier nucleus is unstable, in which case it will
decay.

Fission and capture are both examples of absorption, meaning that the
neutron seizes to exist as an individual particle. Conversely, in a scattering
reaction the neutron remains an unbound particle, but it is forced to deviate
from a straight path by the nucleus. One can make a distinction between elastic
and inelastic scattering1, based on whether the kinetic energy of the neutron is
conserved. ([2], 12-16)

The number of neutrons in any macroscopic material is too large to keep
track of the individual particles. Therefore, statistics are used to describe the
behaviour of all neutrons combined. To quantify the probability of certain
nuclear interactions, consider the following scenario.

A beam of neutrons with the same speed, energy and direction has a uniform
intensity (I) and is incident normally upon the surface of a plane. On the plane,
a constant number of nuclei per area (NA) are located. Define the reaction
rate R〈j〉 as the amount of nuclear reactions of type 〈j〉 that take place per

1Actually one might argue that elastic scattering is not a nuclear reaction, since the none
of the particles changes. [3]
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unit of time per area. Since the nuclei are all on the same plane, they cannot
‘shield’ each other from being hit by a neutron. Therefore R〈j〉 will simply
be proportional to I and NA. The constant of proportionality is called the
microscopic cross section for reaction type 〈j〉, denoted by σ〈j〉:

R〈j〉 = σ〈j〉INA.

Obviously, the total probability of a nuclear reaction occurring is the sum over
all individual probabilities of a specific reaction. Therefore, the cross section
corresponding to any nuclear reaction equals the sum over all individual micro-
scopic cross sections. This quantity is referred to as the total microscopic cross
section, denoted by σT .

The concept of cross sections can be extended to three dimensions by consid-
ering an incident beam of neutrons on a three-dimensional object. Part of the
neutrons will collide with the first nuclei, whilst others will travel deeper into
the material. Suppose x is the distance the neutron beam has travelled in the
material. Then the intensity I of the beam is a function of x. The probability of
colliding with a nucleus at any point does not depend on the amount of nuclei
that have already been passed, so an exponential relationship between I and x
is to be expected.

The amount of neutrons that react in the region between x and x + dx is
σT IN , where N is the number of nuclei per unit volume. This implies that

dI(x) = −σTNI(x)dx. (2.1)

Solving Eq. (2.1) and setting I(x = 0) = I0 leads to

I = I(x) = I0 exp [−NσTx] .

The macroscopic cross section corresponding to a nuclear reaction of
type 〈j〉, denoted by Σ〈j〉, is now defined as

Σ〈j〉 ≡ Nσ〈j〉. (2.2)

If a material consists of more than one type of material, the effective cross
section is the weighted average of the cross sections of the different materials.

Note that Eq. (2.1) can be rewritten to find the relative decrease of intensity
over a distance dx: (

dI
I

)
dx

= −ΣT .

This means that ΣT can be interpreted as the probability per unit length that
a neutron will collide with a nucleus. The probability that a neutron will travel
a distance d without engaging in a nuclear reaction is therefore just

P [no interaction after travelling a distance d] = exp (−ΣT d) .

The probability density function for the distance travelled before undergoing a
reaction is

p(d) = ΣT exp (−ΣT d) , d > 0 (2.3)

and the average distance travelled before colliding is E [d] = 1/ΣT . ([2], 16-22)
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2.2 Neutron Transport

The neutron density N is defined by the relation

N(~r, t)d3r ≡ expected number of neutrons in volume d3r at ~r at time t.

This does not take into account the fact that neutrons are discrete particles.
Instead, the neutron density is, in general, a continuous function of position.
Also, the statistical nature of the problem at hand is ignored. In the following
discussion, the neutron density is assumed to be a deterministic function. In
reality, however, it is a stochastic variable. The goal in neutron transport theory
is to find the neutron density at any given position and time. ([2], 105)

Suppose a neutron has a (scalar) speed v. Since Σ〈j〉 is the probability the
neutron will engage in a reaction of type 〈j〉 with a nucleus per unit length the
neutron travels, the frequency at which a single neutron has such a reaction
is vΣT 〈j〉. (This is also called the reaction frequency.) The reaction rate
density F is the reaction frequency multiplied by the neutron density:

F〈j〉(~r, t) ≡ vΣ〈j〉N(~r, t). (2.4)

F〈j〉(~r, t)d
3r is the total frequency at which interactions of type 〈j〉 are occurring

at ~r in volume d3r at time t. ([2], 21, 105)
Apparently, the reaction rate depends on the product vN(~r, t). In fact, this

quantity has a name of its own: the (scalar) neutron flux, defined by

φ(~r, t) ≡ vN(~r, t). (2.5)

The name is a bit misleading, since it is entirely different from the usual ‘fluxes’
in electromagnetics or fluid mechanics. This flux is a scalar quantity and doesn’t
say anything about the direction in which the neutrons are moving.

The information about the direction of the neutron flow is contained in the
(unit) direction vector Ω̂. Instead of using the neutron speed, it is custom-
ary to specify the energy E, which relates to the speed in the classical way. By
distinguishing between neutrons with different energy and direction, one can de-
compose the neutron density into the angular neutron density n(~r, t, E, Ω̂).2

The interpretation is that n(~r, t, E, Ω̂)d3rdEdΩ̂ is the number of neutrons in
a volume d3r, in an energy range dE and in a solid angle dΩ̂ at ~r, E and Ω̂
respectively.

A systematic way to derive the equation that describes the angular neutron
density is to work out the balance equation for a volume of arbitrary shape.
Since this equation is valid for any arbitrary volume V in space, the usual
argument ∫

V
f(~r) = 0⇒ f(~r) = 0

can be used to derive a differential equation for the neutron density at any point.
All this is done in Duderstadt et al. ([2], 111-114). Here only the result is

2It suffices not to consider the complete quantum mechanical state (which would, amongst
others, include spin), but instead to treat the neutrons as classical particles.
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given, with some explanation of where the terms come from.

∂n

∂t
= − vΩ̂ · ∇n(~r,E, Ω̂, t)︸ ︷︷ ︸

[1]

− vΣTn(~r,E, Ω̂, t)︸ ︷︷ ︸
[2]

+

∫
(Ω̂′,E′)∈(<4π>,R+)

v′Σs(E
′ → E, Ω̂′ → Ω̂)n(~r,E′, Ω̂′, t) d(Ω̂′, E′)

︸ ︷︷ ︸
[3]

+ S(~r,E, Ω̂, t)︸ ︷︷ ︸
[4]

(2.6)

The terms represent respectively:

1. neutrons entering and leaving the point in space due to the neutron flux;

2. neutrons with E, Ω̂ entering a collision at ~r (they change their direction
and/or energy and thus no longer contribute to n(~r,E, Ω̂, t));

3. inscattering: neutrons that have a collision at ~r and change their di-
rection and energy to Ω̂ and E. Here Σs(E

′ → E, Ω̂′ → Ω̂) represents
the cross section that corresponds to the event that a neutron with Ω̂′, E′

scatters to Ω̂, E;

4. the source term. It represents all neutrons that come to life at time t and
position ~r with energy E and direction Ω̂. This includes both neutrons
that are created in a fission reaction and neutrons that are emitted by an
external source.

Not surprisingly, Eq. (2.6) is known as the neutron transport equation.
It is reminiscent of the Boltzmann equation. Unfortunately, it usually cannot
be solved analytically, so simplifications or numerical methods are necessary.

2.3 Criticality

In a fission reaction, new neutrons are created. In turn, some of these neutrons
may engage in a fission reaction, to create more neutrons. This way, a chain
reaction can occur. If a neutron generates, on average, more than one new
neutron, the total amount of neutrons will increase. If a neutron creates less
then one new neutron on average, the chain reaction will gradually die out. The
former case is referred to as supercritical, while the latter is subcritical. A
system is critical if the number of neutrons remains the same.

To quantify these ideas, the multiplication factor k is introduced:

k ≡ rate of neutron production

rate of neutron loss (due to leakage from the system and absorption)

To perform a direct calculation of k, one could try to approximate the neu-
tron transport Eq. (2.6) directly with a standard multigrid method. Needless to
say, this is computationally demanding. (There are seven independent variables
to be taken into account.) Also, the discretisation introduces a bias and the
method may turn out to be unstable.

8



Another approach would be to calculate the expected number of fission neu-
trons a neutrons creates in a system. That would include determining

• the probability that a neutron leaks out of the system before absorbing in
the system;

• the probability a neutron will be absorbed in the parts of the system where
fission can occur (the fuel), conditional on being absorbed in the system;

• the probability of fission, conditional on absorption in the fuel;

• the average amount of neutrons produced in a fission reaction.

This is not a trivial task and things get even more complicated when taken into
account the fact that neutrons may only fission at low energy, whilst they are
‘born’ at high energy. ([2], 74-86)

The numerical approach that will be used here is the source iteration
method (a variation on the power method) in combination with the Monte
Carlo method. This will be explained in sections 3.2 through 3.5.

9



Chapter 3

Monte Carlo Method for
Neutron Transport and
Criticality Calculations

3.1 Introduction to the Monte Carlo method

In general, the Monte Carlo method uses a stochastic process to solve a deter-
ministic problem.1 Basically, it can be summarised as follows. Suppose one
wants to approximate a variable x.2 Now the Monte Carlo Method usually
consists of the following steps.

1. Find some stochastic process that has realisations θi, with E [θi] = x.

This may already seem like an big limitation to the practical uses of the
Monte Carlo method. However, with some creativity a surprisingly large
variety of problems can be reduced to finding the expectation value of a
stochastic process. In fact, the Monte Carlo method has an amazingly
wide range of possible applications in engineering, science, finance, math-
ematics, biology and even game theory.

In sections 3.2 through 3.4 it will be shown that there is a very natu-
ral stochastic process that can be applied to approximate the Boltzmann
Equation.

2. Sample realisations of θi using the probability distribution of the previous
step.

Nowadays, this will usually be done using a computer and a random
number generating algorithm. The ability to generate large quantities
of pseudo-random numbers and the the enormous increase in computa-
tional power over the last decades have facilitated the usage of Monte
Carlo methods for many practical applications.

A very brief overview of random sampling from a probability density func-
tion can be found in appendices B.1 and B.2.

1ref. appendix A.1 for a review of probability theory
2Note that x can, in general, have any shape or form: real, complex, scalar, vector, ...
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3. Approximate x by using the Law of Large Numbers.

Somewhat heuristically, the Law of Large Numbers states that for an
infinite number of samples θ1, θ2, θ3, ..., the average value of the samples
converges almost surely to the expectation value. That is, if the θi are
independent, identically distributed (i.i.d.), then

P

[
lim
h→∞

1

h

h∑
i=1

θi = x

]
= 1 .

where P[−] is the probability operator (appendix A.1).

In reality, there will only be a finite number N ∈ N of samples. This is
where the approximation part of the Monte Carlo method comes in:

x ' 1

N

N∑
i=1

θi. (3.1)

The Law of Large Numbers guarantees stable long-term results for the Monte
Carlo method. However, it doesn’t state anything about the accuracy of formula
(3.1). To determine a confidence interval for x, the Central Limit Theorem
can be used. It states that, given a sequence {Qi} of N continuous i.i.d. random
variables, the distribution of

∑
iQi approaches a normal (Gaussian) distribution

for N →∞. More precisely,

P

[
√
N

(
−E [Q] +

1

N

N∑
k=1

Qk

)]
(u)

N→∞−→ N (0,Var(Q), u),

where

N (µ, σ2, x) =
1√

2πσ2
exp

(
− (x− µ)

2

2σ2

)
.

The distribution of the sum of a large sample of random variables can therefore
be approximated by a normal distribution. In general, this is a better approxi-
mation if N is large and if the Qj don’t have a very skewed probability density
function.

3.2 Rewriting the neutron transport equation

In this thesis all quantities will be considered to be time-independent. (This
is common in nuclear reactor analysis.) In a steady-state system, the angular
neutron density is constant in time, so the transport and production terms in
the neutron transport Eq. (2.6) must balance each other out.

To implement the Monte Carlo method in neutron transport calculations,
neutron transport must first be described in a different manner from section
2.2. To this end, some new quantities are introduced:

the state P ≡ (~r,E, Ω̂) : a short-hand notation for the position, energy and
direction;

the collision density ψ(P ) : the reaction rate density of collisions where the
neutron entering the collision has a state P ;
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the emission density χ(P ) : the reaction rate density of neutrons leaving a
collision or a source in a state P ;

the transition kernel T (~r ′ → ~r,E, Ω̂) , implicitly defined as∫
R3

T (~r ′ → ~r,E, Ω̂)χ(~r ′, E, Ω̂) d~r ′ = ψ(~r,E, Ω̂); (3.2)

the collision kernel C(~r,E′ → E, Ω̂′ → Ω̂) , implicitly defined as∫
4π

∫
R+

ψ(~r,E′, Ω̂′)C(~r,E′ → E, Ω̂′ → Ω̂) dE′dΩ′ = χ(~r,E, Ω̂)− S(~r,E, Ω̂).

(3.3)
Note that χ(~r,E, Ω̂) − S(~r,E, Ω̂) is the reaction rate density that corre-
sponds to particles leaving a collision.

For future reference, it is worth noting that by inserting equation (3.2) in
Eq. (3.3), χ(~r,E, Ω̂)− S(~r,E, Ω̂) can also be computed as

χ(P )− S(P ) =

∫
T (~r ′ → ~r,E′, Ω̂′) C(~r,E′ → E, Ω̂′ → Ω̂)χ(P ′) dP ′;

(3.4)

the K-transport kernel K(P ′ → P ) :

K(P ′ → P ) ≡ T (~r ′ → ~r,E′, Ω̂′) C(~r,E′ → E, Ω̂′ → Ω̂);

the L-transport kernel L(P ′ → P ) :

L(P ′ → P ) ≡ C(~r ′, E′ → E, Ω̂′ → Ω̂)T (~r ′ → ~r,E, Ω̂).

At the risk of being slightly pedantic, it must be emphasised that none of
the statements above require the existence of individual particles (neutrons) in
order to make sense. (All quantities take on a value in a continuous range of
real numbers.)

The goal of the following analyses is to derive a general expression for the
collision density in terms of the other quantities. Since it relates to the neutron
flux in a very simple manner via Eq. (2.4), finding the collision density is
equivalent to solving the neutron transport Eq. (2.6).

Substituting Eq. (3.3) in (3.2) results in

ψ(~r,E, Ω̂) =

∫
V

T (~r ′ → ~r,E, Ω̂) [ S(~r ′, E, Ω̂)

+

∫
4π

∫
R+

ψ(~r ′, E′, Ω̂′)C(~r ′, E′ → E, Ω̂′ → Ω̂) dE′dΩ′ ] dV ′.

Noting that T (~r ′ → ~r,E, Ω̂) is not a function of E′ or Ω̂′ and recalling the
definition of the L-transport kernel, this can be simplified to

ψ(P ) =

∫
V

T (~r ′ → ~r,E, Ω̂)S(~r ′, E, Ω̂) d~r +

∫
L(P ′ → P )ψ(P ′) dP ′. (3.5)
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The collision density can be decomposed into several components that cor-
respond to different amounts of collisions since emission from a source:

ψ(P ) =

∞∑
i=0

ψi(P ), (3.6)

where ψl(P ) is the reaction rate density for collisions in which the neutron
entering the collision has had l previous collisions. ([4], 11-12) The sum of the
(direct) contributions of the sources to ψ(P ) is simply ψ0(P ):

ψ0(P ) =

∫
V

T (~r ′ → ~r,E, Ω̂)S(~r ′, E, Ω̂) d~r ′. (3.7)

Of course, collisions corresponding to ψn+1(P ) are a result of collisions corre-
sponding to ψn(P ). This implies that ψn+1(P ) depends on ψn(P ) via Eq. (3.5),
where it should be noted that the source has no (direct) contribution to ψn(P )
for n ≥ 1.

ψn+1(P ) =

∫
(R,R+,〈4π〉)

ψn(P ′)L(P ′ → P ) dP ′ ∀ n ∈ N\{0}

By means of induction, a direct formula for ψk can now be found:

ψk(P ) =

∫
. . .

∫ (
ψ0(P0)

k−1∏
x=0

L(Px → Px+1)

)
k−1∏
y=0

dPy.

Finally, recalling Eq. (3.6),

ψ(P ) = ψ0(P ) +

∞∑
k=1

[∫
. . .

∫ (
ψ0(P0)

k−1∏
x=0

L(Px → Px+1)

)
k−1∏
y=0

dPy

]
, (3.8)

where ψ0(P ) is given by Eq. (3.7).

In and of itself, this is quite an achievement. For example, if S does not
depend on ψ (i.e.: if there is no fission and only an external source), a direct
computation of the collision density is now possible using equations (3.7) and
(3.8).

Note ψ, and thus the neutron flux, are only determined up to an integration
constant. In the rest of this thesis, two fluxes are considered equivalent if they
are a multiple of each other.

The problem, of course, is that conventional numerical methods for integrat-
ing over many dimensions are clumsy at best. Fortunately, it is in the evaluation
of such integrals in hyperspace that the Monte Carlo method thrives. To im-
plement a Monte Carlo analysis, a radically new interpretation of the transition
and collision kernels is necessary. (The reader is advised to review appendix A
at this point.)

First make a few observations:
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1. There are no negative angular neutron fluxes or reaction rates. Therefore,
T and C are always either positive or zero, and thus the same holds for
the K- and L-transport kernels.

2. Both the energies E and E′ and the directions Ω̂ and Ω̂′ in C(~r,E →
E′, Ω̂ → Ω̂′) will always lie in Ω̂, E-space. Also, ~r, ~r′ ∈ R3 in T (~r →
~r ′, E, Ω̂).

K and L can therefore both be viewed as functions that map a point in
P -space to another point in P -space.

3. Eq. (3.2) is linear. Specifically, it is additive: if ψ1 and ψ2 are solutions
to χ1 and χ2 respectively, then ψ1 + ψ2 will be the solution to χ1 + χ2.
Therefore, T is a function that maps a point from position space to another
point in position space.

Similarly, from its definition (3.3), it follows that C is an additive kernel
that maps a point from E, Ω̂-space to another point in E, Ω̂-space.

Therefore, both K and L are additive as well.

Next, define a probability space with the whole of P -space as its sample space.
It now becomes apparent that the statements above are equivalent to the Kol-
mogorov axioms from appendix A.1 if T and C (and thus K and L) are regarded
as (joint) probability density functions. A point in P -space satisfies Eq. (A.1)
and is thus a stochastic variable. The process (P0, P1, . . .) is therefore a time-
homogeneous Markov chain (appendix A.2).

This justifies the use of the Monte Carlo method to approximate ψ. That
is, if the source distribution is known, the collision density can be found by
sampling from the kernels in equations (3.7) and (3.8).

3.3 Source iteration

If the average number of new fission particles per collision reaction is known
and there are no external sources, then S can be found from ψ. The problem
is that S is, in turn, needed to approximate ψ. To solve this issue, the Markov
chain Monte Carlo method (a variation on the power method) is used. (Readers
unfamiliar with this are referred to appendix A.2.)

First, sample from a homogeneous source distribution S(0).3 Now use this
distribution to calculate a collision density ψ(1). Next, use ψ(1) to calculate a
new source distribution S(1), which is used to determine a collision density ψ(2),
and so on and so forth. Since S(n) depends solely on ψ(n), which depends solely
on S(n−1), the stochastic process (S(0), S(1), . . .) is a Markov chain.

If the system is critical and S(n) is the actual source, then S(n+1) = S(n).
Therefore, the real source distribution is the stationary distribution of the
Markov process. From equations (A.2) and (A.3) it follows that it must also
be the limiting distribution. The limiting distribution can be approximated by
S(I) for some large I.

Obviously, this will not work well if the system isn’t critical, but there’s a
method of solving this, as will be explained in section 3.5.

3Actually any distribution should do, though it seems best not to start with a point
source. [5]
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The process of simulating the Markov chain and letting it converge to S is
called source iteration or source convergence. Every step in the Markov
chain is called a cycle. To avoid the enormous computational effort of having
to perform the source iteration many times, many source distributions in the
set {S(m),m ≥ I} are used in a Monte Carlo calculation. These are referred to
as the inactive cycles. The rest of the cycles are called active.

3.4 Particle histories

3.4.1 Sampling from the kernels

χ(P ) can be written as a weighted linear combination of hyper-dimensional
Dirac delta functions δ(P ) in P -space. (χ(P ) ≡

∫
χ(P ′)δ(P ′ − P ) dP ′) Recall

that the equation that defines the transition kernel T is linear. Therefore,
in order to determine how to sample from the transition kernel, it suffices to
consider only the case that χ(~r,E, Ω̂) = δ(~r∗, E, Ω̂) for an arbitrary (~r∗, E, Ω̂).

The physical interpretation of this situation would be that there is a single
particle that leaves a collision or source (i.e.: start a flight path) in the state
(~r∗, E, Ω̂). ψ would then be the collision density resulting from a single neutron
that starts a flight path.

From Eq. (3.2), the collision density is

ψ(~r,E, Ω̂) = T (~r∗ → ~r,E, Ω̂) .

(The particle is ‘smeared out’ over P -space.)
Since the transition kernel T (~r∗ → ~r,E, Ω̂) can be interpreted as a probabil-

ity density function, it can be sampled by assigning probabilities to the event
of a single neutron starting a trajectory at (~r∗, E, Ω̂) to have its next collision
in d~r,dE,dΩ̂ at (~r,E, Ω̂).

In fact, by a similar reasoning, one can also simplify the interpretation of
the other kernels in section 3.2 considerably:

• C(~r,E′ → E, Ω̂′ → Ω̂)] is the probability density for a particle entering a
collision at ~r with energy E′ and direction Ω̂′ to have energy and direction
E, Ω̂ after the collision;

• K(P ′ → P ) is the probability density for a particle to go from P ′ to P
by first starting a trajectory from ~r ′ and then colliding at ~r to change its
energy and direction;

• L(P ′ → P ) is the probability density for a particle to go from P ′ to P
by first changing energy and direction in a collision at ~r ′ and starting a
flight path to the next collision at ~r.

Note that equations (3.7) and (3.8) are a direct result of equations (3.2)
and (3.3). Thus, they are equivalent to the neutron transport equation (2.6),
provided that the particle mentioned above has the same properties as a neu-
tron. In other words, generating the Markov chain (P1, P0, . . .). comes down to
generating the ‘life’ of a neutron from the time it comes into being till the time
it is absorbed or leaks out of the system. Such a ‘life’ of a particle is called a
history.
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3.4.2 Simulating neutrons

A simulated neutron will start travelling from its initial position in a random
direction. In this thesis, only neutrons that scatter isotropically are consid-
ered. (I.e.: all directions in which the neutron can travel after a collision are
equally probable.) In appendix B.3 it is explained how such a direction vector
is sampled.

After ‘choosing’ a direction, the neutron will start its trajectory, after which
it will either leak out of the system or enter a collision at some random distance
from the initial position. From Eq. (2.3) and appendix B.2, it follows that the
distance to the next collision in a homogeneous medium can be sampled by

d = − 1

ΣT
log (ρ) , (3.9)

where ρ is uniformly distributed from 0 to 1.
A neutron has no memory. In a medium with a piecewise constant total cross

section, the particle can thus be stopped when it enters a different segment. A
new random distance can then be sampled in the new segment.

In a medium with a continuously changing total cross section, a method
called hole tracking can be used. One simply adds a ‘dummy reaction’ with
a continuously changing woodcock cross section ΣWC , such that the total
cross section is constant. If a particle enters a woodcock collision, it starts a new
trajectory with the same energy and direction. Unfortunately, this method is
rather inefficient if ΣT has a great spatial variance, since in that case ΣWC/ΣT
can be far larger than zero.

If a neutron enters a collision, several different types of nuclear reactions
can occur. In this thesis, only three will be considered: capture, scattering and
fission reactions. The corresponding cross sections are respectively Σc, Σs and
Σf , so ΣT = Σc + Σs + Σf . For simplicity, all neutrons will be considered to
have the same energy, so all scattering is elastic. The probability for a reaction
of type 〈j〉 to occur, conditional on the event that a reaction occurs, is Σ〈j〉/ΣT .

In the event of absorption (fission or capture), the history ends. In case
a scattering reaction is selected, a new direction is sampled and the neutron
starts a new path. If a fission reaction occurs, an integer number of new fission
neutrons is sampled. The source S(x) consists of all fission neutrons that were
generated in cycle x.

In a typical calculation, the number of simulated histories is in the range
103− 105, whilst the total number of cycles has an order of magnitude of 102−
104.

3.5 Criticality calculation using the Monte Carlo
method

The criticality k can be estimated using the neutron histories. In principle, this
can be done by counting the number of neutrons in a cycle and divide it by the
number of neutrons in the previous cycle. The number of neutrons in cycle n
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should be about k times as big as the number of neutrons in cycle n− 1. [1]

k = E
[

fission neutrons generated in cycle j + 1

fission neutrons generated in cycle j

]
(3.10)

However, the number of simulated histories might grow exponentially or die
out if several cycles are generated. This will quickly turn into a serious problem
when simulating the Markov chain (S(0), S(1), . . .), so a ‘trick’ has to be applied
to ensure that the number of simulated neutrons is more or less the same for
every cycle.

To this end, modify Eq. (3.4):

χ(P ) =
1

k′
S(P ) +

∫
K(P ′ → P )χ(P ′) dP ′. (3.11)

This means that the number of neutrons that start a flight path at a source
is reduced by a factor (k′)−1. (To achieve this, the average number of new
neutrons in a fission reaction is multiplied by (k′)−1.) If k′ = k, the number
of neutrons that originate from fission sources is constant for every cycle. Eq.
(3.11) is therefore an eigenvalue equation. Solving it comprises finding the value
for k′ for which

∫
χ(P ) dP is constant for all cycles.

Since this is not a deterministic calculation, the number of neutrons that
are generated in a cycle might still be different from the expected number of
fission neutrons. To compensate for this, the average number of fission neutrons
generated per fission reaction in cycle j is multiplied by N?/Nj , where Nj is the
number of neutrons at the start of the cycle and N? is the nominal number of
neutrons. On average, N? histories are generated per cycle.

Summarising, in cycle j the average number of new neutrons simulated in the
event of fission should be ν? = ν/k′(N?/Nj), where ν is the (actual, physical)
average number of fission neutrons created in the event of fission. In the first
cycle, an initial guess of ν∗ = ν can be used.

Note that the estimator for k from formula (3.10) will no longer work. For-
tunately, this is easily solved by multiplying the estimator with k′(Nj/N

?).
For each cycle the value of k′ that is used in Eq. (3.11) is the estimate of

k that was calculated with Eq. (3.14) in the previous cycle. In theory, the
expectation value of k′ will converge to k after some amount of inactive cycles,
so the criticality can be estimated as the average value of k′ over all the active
cycles.

3.6 The scoring method

Several interesting quantities can be calculated by keeping track of how the
(simulated) neutrons behave. Specifically, one can keep scores during the sim-
ulation of the histories. To illustrate this concept, consider the problem of trying
to estimate the average flux in a volume.

From equations (2.5) and (2.4), the total reaction rate density (corresponding
to any collision) is ΣTφ. But this is just equal to the collision density, which can
easily be determined using the neutron histories. Simply determine the average
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number of times a neutron has a collision in the volume. To determine the flux,
note that φ = ψ/ΣT . Now the flux can be approximated with the estimator

φ̂ =
1

N∗V

∑
i

(
1

ΣT

)
ci

, (3.12)

where V is the size of the volume in which the flux is estimated and ci is the
ith collision. This means that each time a neutron enters a collision, a value of
1/ΣT is counted.4

In general, such a value is called a tally, whilst the sum of all tallies is
referred to as the score. Tallying is the process of counting (scoring) the
tallies. [1]

Sometimes there are several tallying methods to estimate the same quantity.
For example, Sjenitzer ([4], 15-17) derives the following estimator for the average
flux on a surface:

φ̂ =
1

N∗A

∑
j

(
1

|µ|

)
j

, (3.13)

where A is the area of the surface. The summation runs over all crossings j of
the surface at an angle µ with the normal vector.

3.7 Standard variance reduction methods

If the variance of the samples in a Monte Carlo calculation is high, an accurate
answer can only be achieved by generating a large amount of samples. This can
be very costly and make the calculation impractical. Therefore, various variance
reducing methods have been developed. They should reduce the time needed to
make an accurate guess of the final answer.

In this section some standard variance reducing methods will be discussed.
All of these have been incorporated in every calculation in this thesis.

Instead of sampling the reaction type in the event of a collision, the different
types of reactions can be made implicit in every collision.

For example, instead of determining whether a fission event took place and
sampling the number of fission neutrons from a predetermined distribution, new
neutrons are created after each collision. The average number of new neutrons
after any collision should be equal to ν?Σf/ΣT , since that’s the expectation
value for the number of fission neutrons, conditional on the event of a collision.

The final result of the Monte Carlo simulation will remain unbiased as
long as the average number of new fission neutrons created after a collision
is unchanged. Therefore, one can simply sample bν?Σf/ΣT c5 neutrons with
probability bν?Σf/ΣT c − ν? + 1 or bν?Σf/ΣT c + 1 neutrons with probability
ν? − bν?Σf/ΣT c.

Absorption can also be made implicit by gradually letting a neutron ‘die’
a little after each collision. To facilitate this, a weight factor is introduced.
A particle with weight w is considered to be wth of a particle. If it enters a

4In general, the cross sections may not be constant in space; it could be that ΣT is different
for each collision.

5Here b−c is the floor operator.
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collision, it will create w(ν?Σf/ΣT ) new neutrons on average after each collision.
All tallies should also be multiplied by the weight.

The probability a neutron will end its history conditional on the event of
a collision is Σa/ΣT .6 Thus, instead of sampling the event of absorption, the
weight of a neutron is reduced by a factor of 1− Σa/ΣT every time it leaves a
collision. The weight of a neutron that has just been born is usually unity.

Implicit absorption and implicit fission reduce variance, because the neutrons
behave more alike. Instead of letting the histories stop abruptly at arbitrary
points, weighting allows the particles to be ‘smeared out’. Instead of having
a few points with lots of fission neutrons, the new neutrons are more evenly
distributed.

Along the same line of reasoning, a better estimator for k can be derived.
If Σf is the cross section for fission reactions, then ‘physical’ neutrons (not the
simulated ones) will create νΣf/ΣT fission neutrons on average in an arbitrary
collision. Thus a new estimator for the criticality would be

k̂ =
E [number of new fission neutrons generated in cycle j]

neutrons started in cycle j

=
1

N∗

∑
i

(νΣf/ΣT )ci . (3.14)

The summation runs over all collisions ci in cycle j. This is just another ex-
ample of estimating a quantity with the scoring method. This time the tally is
νΣf/ΣT . (Again, it might have a different value for every collision.)

A problem with implicit absorption is that it may take a very long time to
simulate histories, since they are only stopped once a particle leaks out of the
system. Furthermore, a particle with a low weight will not contribute signifi-
cantly to the final result of the calculation, so it is a waste to spend a lot of
calculation time on it.

This can be solved in the following manner. Suppose the weight w? of the
particle drops below a predetermined limit wRR. It will then undergo Russian
roulette. The particle has a probability of survival of wsur and a probability
1 − wsur of getting killed (‘shot’), in which case the history is ended. If the
particle survives, the weight is set to a new value of w?/wsur. Russian roulette
is guaranteed not to introduce a bias, because the expectation value of the new
weight of the particle is equal to the old weight:

P [survival] (weight after survival) + P [getting shot] (weight after getting shot)

= (wsur) (w?/wsur) + (1− wsur) 0 = w?.

A higher value of wRR increases the variance, but reduces the computation
time.

3.8 Difficulties

There are still some difficulties in implementing the Monte Carlo method for
neutron transport. Some of them are listed here. They will be discussed in more
detail in later chapters.

6Remember that Σa is the absorption cross section, and that it includes both capture and
fission.
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1. Despite the efforts from the previous section, it may still take a large
computational effort to make a reasonably accurate estimate of the desired
quantity. This is especially true for estimating quantities in regions where
there is a low flux. Few simulated neutrons will travel there, so there will
be few tallies and thus a greater uncertainty is involved in estimating the
average.

2. A more fundamental problem arises from the fact that the source iteration
is performed only once and several sources in the source iteration are used.
Since the {S(m),m ≥ M} will, in general, be correlated, it is difficult to
determine the standard deviation of the estimations of the criticality in
the cycles. This makes it impossible to determine the error in the final
answer.

3. It is not easy to verify that the source distribution converges at the same
time the estimations of k do. Also, the power method does not guarantee
that the source distribution will converge to the flux at all if there are
local minima.

Consider a situation where there are two or more regions where fission
might occur that are separated by several mean free paths of the neutron
and all neutron start in just one of the regions. Physically, if some of the
neutrons cross over to another region, they might multiply there. However,
if the total number of simulated histories per cycle is kept approximately
constant at N∗. Therefore, it may well be that the neutrons that crossed
over die out after some cycles, since their total number is kept low.

Systems like these are called loosely coupled. Their most well-known
occurrence is in the storage of used-up fuel assemblies, where there is
usually some material in between the fuel assemblies.
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Chapter 4

The Correcton Method

Some of the difficulties with simulating neutrons (section 3.8) are a result of the
shape of the neutron density in a system. The idea of the correcton method
is to simulate other particles that have similar properties to neutrons and have
the same criticality, but that have a different flux shape.

4.1 Introduction and justification

To introduce the correcton method in the simplest possible framework, the
neutron transport Eq. (2.6) can be rewritten in a time-independent, mono-
energetic form with isotropic scattering. Define S(~r) as the source term for all
neutrons that come into being at ~r, regardless of their direction or energy. Since
S is no longer a function of time, this means that

S(~r) ≡
∫
S(~r, Ω̂) dΩ̂ ≡

∫ ∫
S(~r,E, Ω̂) dEdΩ̂ =

∫ ∫
S(~r,E, Ω̂, t) dEdΩ̂ .

Because of the fact that everything is considered to be mono-energetic and time-
independent, the neutron density can be written as n(~r, Ω̂). In combination with
isotropic scattering, this also implies that Σs(E

′ → E, Ω̂′ → Ω̂) is not a function
of E′ or E and is constant for all Ω̂′ and Ω̂. Note too that ∂n

∂t = 0.
Integrating over energy and direction and recalling the definition of the neu-

tron flux, the neutron transport equation can now be written as

Ω̂ · ~∇φ(~r, Ω̂) + ΣTφ(~r, Ω̂) =
Σs
4π

∫
φ(~r, Ω̂) dΩ̂ +

S(~r)

4π
. (4.1)

Since there is no external source, the source is just the fission reaction rate
and it can be written as S(~r) =

∫
νΣfφ(~r, Ω̂)dΩ̂. For a criticality calculation,

Eq. (4.1) is again transformed to an eigenequation by dividing the number of
neutrons that are born by k′:

Ω̂ · ~∇φ(~r, Ω̂) + ΣTφ(~r, Ω̂) =
Σs
4π

∫
φ(~r, Ω̂) dΩ̂ +

1

k′
νΣf
4π

∫
φ(~r, Ω̂)dΩ̂ , (4.2)

so the criticality is the eigenvalue of k′.
The next step is to decompose the scalar neutron flux:

φ(~r, Ω̂) = Υ(~r) C(~r, Ω̂), (4.3)
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where Υ is a function of position only. C(~r, Ω̂) can be considered a multiplicative
correction of Υ. After some manipulation (ref. [4], 25-26,41), substituting Eq.
(4.3) in Eq. (4.2) results in

Ω̂ · ~∇C(~r, Ω̂) +
[
ΣT + Ω̂ · ~∇ ln Υ(~r)

]
C(~r, Ω̂)

=
Σs
4π

∫
C(~r, Ω̂) dΩ̂ +

1

k′
νΣf
4π

∫
C(~r, Ω̂) dΩ̂ . (4.4)

Comparing this to the neutron transport equation (4.2), it is apparent that
the only difference is that φ is replaced by C and some value has been added
to the total cross section. Note however, that it is still an eigenequation, so
the criticality can still be calculated by solving the equation by means of the
Markov chain Monte Carlo (MCMC) power method.

Since φ can be estimated by simulating particles histories in a Monte Carlo
calculation, the same can be done for C. (Although it may seem very abstract
physically to simulate self-made particles, mathematically it isn’t any stranger
then simulating the neutron transport equation with neutrons.)

These new particles are called correctons. The only difference with neu-
trons they have an effective total cross section of

Σc
T = ΣT + Ω̂ · ~∇ ln Υ(~r) . (4.5)

Because their fission and scattering cross sections are the same as for neutrons,
their absorption cross section should be

Σc
a = Σa + Ω̂ · ~∇ ln Υ(~r) .1 (4.6)

Simulating correctons only requires a minor manipulation of the simulation
of neutrons. The only difference is that some of the cross sections depend on
the position and direction of the neutron. Therefore, the tallies and the num-
ber of new correctons in the event of implicit fission differ from those of neutrons.

From the previous discussion, it is still unclear why the correcton method
would provide better results than a regular simulation with neutrons. The main
advantage is that correctons can be steared by the choice of Υ.

For a particle that moves towards a greater value of φ̂(~r), Ω̂ · ~∇ ln φ̂(~r) is
positive. This means that the total cross section is greater, so the correcton
doesn’t travel very far. Conversely, if the particle is moving towards a position
where φ̂(~r) is smaller, Ω̂ · ~∇ ln φ̂(~r) will have a negative value and the correcton
will travel a bit further than a neutron would have done.

Sjenitzer [4] used this to do a more efficient calculation of the flux at a
large distance from a source, by choosing Υ in such a way that the correctons
were directed towards the region of interest. Huisman [8] extended this to three
dimensions.

1To avoid confusion, Σa and ΣT are still used to denote the cross sections for neutrons.
Correcton cross sections will be indicated by the superscript c.

22



4.2 The choice of Υ(~r)

4.2.1 Limitations

Equations (4.5) and (4.6) seem to put some restrictions on the choice of Υ(~r).
A negative total cross section not only has no physical interpretation, but (more
importantly) it also renders sampling a random distance with Eq. (3.9) impos-
sible. Therefore, Υ must be chosen in such a way that

min
(

ΣT + Ω̂ · ~∇ ln Υ(~r)
)
> 0 .

Recalling that
∣∣∣Ω̂∣∣∣ ≡ 1, it is obvious that arg min

Ω̂

(
Ω̂ · ~∇ ln Υ(~r)

)
= − ~∇ ln Υ(~r)

|~∇ ln Υ(~r)|
and thus the equation above simplifies to∣∣∣~∇ ln Υ(~r)

∣∣∣ < ΣT ∀ ~r . (4.7)

Note that this does not guarantee that Σc
a > Σf or even Σc

a > 0. However, it
is not so clear whether this is problematic when the method of implicit absorp-
tion from section (3.7) is used. A negative absorption cross section leads to an
increase in the weight of the particle if it enters a collision. This should not pose
a problem, since the effects of absorption are only implicitly present in the sec-
ond term on the rhs of Eq. (4.4). The production term (vΣf/4π)

∫
C(~r, Ω̂) dΩ̂

also remains unaffected if the absorption cross section drops below the fission
cross section.

Without mentioning it explicitly, Becker [6], Becker et al. [5] and Huisman
[8] have all used negative absorption cross sections without encountering any
difficulties.

Since the neutron flux is continuous, Eq. (4.3) implies that discontinuities
in Υ(~r) should be compensated by discontinuities in C(~r, Ω̂). These do not
naturally occur in the flux profile of correctons. Therefore, discontinuities will
have to be ‘artificially’ implemented in C. This can easily be done by changing
the weight of particles that cross some discontinuity in Υ.

Specifically, if a particle is in the state (~r, Ω̂), then

lim
ε↓0

φ
(
~r − εΩ̂, Ω̂

)
= lim

ε↓0
φ
(
~r + εΩ̂, Ω̂

)
implies

lim
ε↓0

C
(
~r + εΩ̂, Ω̂

)
C
(
~r − εΩ̂, Ω̂

) = lim
ε↓0

Υ
(
~r − εΩ̂, Ω̂

)
Υ
(
~r + εΩ̂, Ω̂

) (4.8)

and thus the weight of a correcton has to be multiplied by limε↓0
Υ(~r−εΩ̂,Ω̂)
Υ(~r+εΩ̂,Ω̂)

when crossing a discontinuity in Υ.
Note that this is invalid if Υ = 0, but equation (4.3) rules out this choice

anyway.
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4.2.2 Mathematical representation

In this thesis, the systems under consideration are rectangular parallelepipeds
that are subdivided by smaller cells that are also rectangular parallelepipeds.
The material properties are homogeneous within the cells. Υ(~r) is chosen to be
piecewise continuous, that is, it is continuous within the cells.

Let x̂, ŷ and ẑ be cartesian coordinates, so that ~r = [x, y, z]
T

. The index of
a cell is denoted by (i, j, k), meaning that it is the ith cell in the x-direction, the

jth cell in the y-direction and the kth cell in the z-direction. Let ~Oi,j,k be the
centre of the cell.

To avoid the necessity of using hole tracking, the cross sections have to
be constant for particles travelling through a cell. If Υi,j,k (~r) is the function
describing Υ (~r) in cell (i, j, k), it must be of the form

~∇ ln Υi,j,k(~r) = constant

⇒ ln Υi,j,k(~r) = ~βi,j,k · ~r +
(

ln(Ki,j,k)− ~βi,j,k · ~Oi,j,k
)

⇒ Υi,j,k(~r) = Ki,j,k exp
[
~βi,j,k ·

(
~r − ~Oi,j,k

)]
, (4.9)

for some parameters ~βi,j,k and Ki,j,k.
Eq. (4.7) now takes on the particularly simple form∣∣∣~βi,j,k∣∣∣ < (ΣT )i,j,k , (4.10)

where (ΣT )i,j,k is the total cross section in cell (i, j, k). Eq. (4.9) with |~βi,j,k| →
(ΣT )i,j,k is also the function that maximises the slope of Υ(~r) constraint by
(4.7). For some given total cross section ΣT in a material without fission, the
neutron flux has a maximum slope if ΣT = Σa, in which case the flux will
decrease exponentially and it can only just be described by Eq. (4.9).

4.3 Real time flux estimation

Suppose that Υ(~r) is a reasonably good estimate φ̂(~r) of the scalar neutron flux
φ(~r) ≡

∫
φ(~r,Ω) dΩ, meaning that it has more or less the same shape:

φ̂ (~r) ∝ φ (~r) .

According to Eq. (4.3), the correcton flux C should be roughly constant. This
may enhance the convergence of the correcton flux distribution, since the cor-
rectons do not have a tendency to pile up in some region.

The flux guess may be obtained from a cheap Monte Carlo calculation or
a deterministic calculation. To enhance the source convergence, it might even
suffice if the flux distribution is only qualitatively correct.

In this thesis, a real time flux estimation is proposed. The idea is to tally
the flux of the correctons during every cycle and use the results to make better
and better estimations of the neutron flux. These new estimations can then be
used to adjust Υ(~r) to make it a better representation of the neutron flux.

The two main difficulties are
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• determining a φ̂ (~r) from a simulation with correctons;

• adjusting the flux parameters Ki,j,k and ~βi,j,k to make Υ(~r) as close as
possible to the actual flux shape.

These are dealt with in sections 4.4 and 4.5 respectively.

Note that Υ is, in general, different for every cycle. Therefore, the particles
have to converge to a different flux distribution in every cycle. To solve this
problem, the weights of the particles at the beginning of their history can be
adjusted in order change the flux distribution they represent.

Specifically, if Υi is used to perform the calculations in cycle i and Ci = φ/Υi,
then the correcton flux in cycle j is a multiple of what it was in cycle j − 1:

Cj(~r,Ω)

Cj−1(~r,Ω)
=

φ(~r,Ω)/Υj(~r)

φ(~r,Ω)/Υj−1(~r)
=

Υj−1(~r)

Υj(~r)
(4.11)

Thus, the weight of a particle at ~r at the beginning of its history in cycle j must

be set to
Υj−1(~r)
Υj(~r)

.

4.4 Estimating the neutron flux from correcton
histories

The correcton flux can be obtained by tracking the positions of the correctons.
The neutron flux equals Υ multiplied by the correcton flux. Therefore, the
neutron flux can be found by counting every correcton at ~r as Υ(~r) particles.

Therefore, one can simply tally the neutron flux by using Eq. (3.12) or Eq.
(3.13) and multiplying every tally at ~r with Υ(~r).

In this thesis, in every calculation the neutron surface flux was estimated.
Compared to using average fluxes, this makes it easier to adjust the parameters
of Υ(~r) to the neutron flux shape if Υ(~r) is given by Eq. (4.9).

Suppose a correcton travelling in a direction Ω̂ has a weight w before it
crosses from one cell to another at ~r. Before it crossed the cell boundary, it was
counted as w limε↓0 Υ(~r − εΩ̂) neutrons. Since the correcton changes it weight,

it is still counted as
(
w

limε↓0 Υ(~r−εΩ̂)

limε↓0 Υ(~r+εΩ̂)

)
limε↓0 Υ(~r + εΩ̂) = w limε↓0 Υ(~r − εΩ̂)

neutrons after crossing the cell. (This is hardly surprising, since the neutron
flux is a continuous quantity.)

It seems best not to change the Υi,j,k in every cycle, but instead to let the
tallies accumulate over several cycles and only then to determine a new flux
estimate. There are two principle reasons for this. First, it is possible that not
all boundaries have been crossed by a particle after just one cycle. This means
that the estimate of the average correcton flux over some of the boundaries
might be zero, in which case none of the analyses in section 4.5 makes sense.

Secondly, there will be less statistical variation in the surface flux estimates.
Therefore, one would expect to see fewer cases where adjacent cells have a large
discontinuity in Υ (~r).

To ensure that the tallies in every cycle have approximately the same amount
of influence on the final estimate of the neutron flux, the sum of the flux esti-
mates over all boundaries should be normalised in every cycle.
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4.5 Estimating the flux parameters

Every cell has six boundaries, whilst there are only four degrees of freedom in
the parameters ~βi,j,k and Ki,j,k. In general, it is therefore impossible to satisfy
all boundary conditions. However, the correcton flux can still be made flatter,
and thus more stable, if only Υ has more or less the same shape as the neutron
flux.

Since ~∇ ln Υi,j,k(~r) depends solely on the ~βi,j,k, the Ki,j,k do not influence
the cross sections of the particles. However, the weight change of the particle is
effected by the choice of the Ki,j,k via Eq. (4.8).

If the weight multiplication is very large, some particles will have very high
weights. Big differences between the weights of the particles lead not only to a
higher variance in the calculation, but can also result in large concentrations of
new fission particles, which can destabilise the calculation.

Therefore, the task at hand is to choose the ~βi,j,k such that the correctons
are driven towards regions with a low neutron flux, whilst the Ki,j,k should be
adjusted to make the weight changes of the particles crossing cells borders are
as small as possible. Unfortunately, this is far from trivial.

4.5.1 Choosing ~βi,j,k

Suppose the lengths of the ribs of cell (i, j, k) in the x-, y- and z-direction are
2Ai,j,k, 2Bi,j,k and 2Ci,j,k respectively. The estimated average neutron fluxes at
the boundaries of the cell are presumed to be known and equal Fi±,j,k, Fi,j±,k
and Fi,j,k± for the boundaries ~r · x̂ = ~Oi,j,k · x̂±Ai,j,k , ~r · ŷ = ~Oi,j,k · ŷ±Bi,j,k
and ~r · ẑ = ~Oi,j,k · ẑ ± Ci,j,k respectively.2

One might choose the ~βi,j,k such that the multiplicative error between Υ
and and the neutron flux is equal for opposing boundaries, i.e.:

Υ( ~Oi,j,k · x̂+Ai,j,k, y, z)

Fi+,j,k
=

Υ( ~Oi,j,k · x̂−Ai,j,k, y, z)
Fi−,j,k

Υ(x, ~Oi,j,k · ŷ +Bi,j,k, z)

Fi,j+,k
=

Υ(x, ~Oi,j,k · ŷ −Bi,j,k, z)
Fi,j−,k

Υ(x, y, ~Oi,j,k · ẑ + Ci,j,k)

Fi,j,k+
=

Υ(x, y, ~Oi,j,k · ẑ − Ci,j,k)

Fi,j,k−
.

This leads to

~βi,j,k =

[
1

2Ai,j,k
ln

(
Fi+,j,k
Fi−,j,k

)
,

1

2Bi,j,k
ln

(
Fi,j+,k
Fi,j−,k

)
,

1

2Ci,j,k
ln

(
Fi,j,k+
Fi,j,k−

)]T
,

(4.12)
regardless of Ki,j,k. However, this does not guarantee that the restriction (4.10)
is met, so an adjustment is necessary. In an effort to maintain the shape of Υ
as much as possible, one may choose to multiply the ~βi,j,k with a factor that

2This isn’t a particularly elegant notation, since the same neutron flux can sometimes be
denoted in two different manners. (For example F2−,j,k ≡ F1+,j,k.) However, it is easy to
use.
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makes them satisfy Eq. (4.10):

~βi,j,k = min

(
(ΣT )i,j,k
`i,j,k

, 1

) ln

(
Fi+,j,k
Fi−,j,k

)
2Ai,j,k

,

ln

(
Fi,j+,k
Fi,j−,k

)
2Bi,j,k

,

ln

(
Fi,j,k+
Fi,j,k−

)
2Ci,j,k


T

,

(4.13)
where, for convenience, the definition

`i,j,k ≡

√√√√√√√
 ln

(
Fi+,j,k
Fi−,j,k

)
2Ai,j,k


2

+

 ln

(
Fi,j+,k
Fi,j−,k

)
2Bi,j,k


2

+

 ln

(
Fi,j,k+
Fi,j,k−

)
2Ci,j,k


2

has been used.
Note that the Fi±,j±,k± are usually different from one another, so none of the

cartesian components of ~βi,j,k are zero. So long as ~βi,j,k 6= ~0, the following anal-
yses in this chapter is not fundamentaly changed, although some mathematical
results are slightly different.

4.5.2 Adjusting the Ki,j,k

The Ki,j,k should be chosen such that the excesses of the weights of the par-
ticles are controlled, so a quantity of interest is the maximal multiplicative
weight change for a particle crossing from cell (a, b, c) to cell (d, e, f), denoted
by m(a, b, c→ d, e, f). One would like to find the Ki,j,k by solving

Ki,j,k = arg min
Ki,j,k

[
max

a,b,c,d,e,f
{m(a, b, c→ e, d, f)}

]
. (4.14)

Suppose a particle crosses from, say, cell (i, j, k) to cell (i + 1, j, k) at Y ≡(
~r − ~Oi,j,k

)
· ŷ =

(
~r − ~Oi+1,j,k

)
· ŷ and Z ≡

(
~r − ~Oi,j,k

)
· ẑ =

(
~r − ~Oi+1,j,k

)
· ẑ.

That is, the distance between the particle and the centres of the cells is Y in
the ŷ-direction and Z in the ẑ-direction. The weight is changed by a factor

Ki,j,k

Ki+1,j,k
exp

[
+
(
~βi,j,k · x̂

)
Ai,j,k +

(
~βi+1,j,k · x̂

)
Ai+1,j,k

+Y
(
~βi,j,k · −~βi+1,j,k

)
· ŷ + Z

(
~βi,j,k · −~βi+1,j,k

)
· ẑ

]
. (4.15)

Using Eq. (4.15) with |Y | ≤ Bi,j,k and |Z| ≤ Ci,j,k,

m(i, j, k → i+ 1, j, k) =
Ki,j,k

Ki+1,j,k
exp

[
+
(
~βi,j,k · x̂

)
Ai,j,k +

(
~βi+1,j,k · x̂

)
Ai+1,j,k

+Bi,j,k

∣∣∣(~βi,j,k − ~βi+1,j,k

)
· ŷ
∣∣∣+ Ci,j,k

∣∣∣(~βi,j,k − ~βi+1,j,k

)
· ẑ
∣∣∣ ] .

(4.16)
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Similarly, the maximal multiplicative weight change of a particle crossing the
same border in the other direction is

m(i+ 1, j, k → i, j, k) =
Ki+1,j,k

Ki,j,k
exp

[
−
(
~βi,j,k · x̂

)
Ai,j,k −

(
~βi+1,j,k · x̂

)
Ai+1,j,k

+Bi,j,k

∣∣∣(~βi+1,j,k − ~βi,j,k

)
· ŷ
∣∣∣+ Ci,j,k

∣∣∣(~βi+1,j,k − ~βi,j,k

)
· ẑ
∣∣∣ ] .

(4.17)

Therefore, minimising the maximum relative weight change of particles crossing
the boundary between cell (i, j, k) and cell (i+1, j, k) in any direction comprises
minimising

max

 Ki+1,j,k/Ki,j,k

exp
[(
Ai,j,k~βi,j,k +Ai+1,j,k

~βi+1,j,k

)
· x̂
] , exp

[(
Ai,j,k~βi,j,k +Ai+1,j,k

~βi+1,j,k

)
· x̂
]

Ki+1,j,k/Ki,j,k

 ,

which leads to

Ki+1,j,k

Ki,j,k
= exp

[(
Ai,j,k~βi,j,k +Ai+1,j,k

~βi+1,j,k

)
· x̂
]

. (4.18)

Thus, if all ~βi,j,k are (anti)parallel to x̂, then the solution to Eq. (4.14)
should satisfy Eq. (4.18). (The results are similar for particles crossing from
one cell to another in the y- or z-direction.)

Unfortunately, finding a closed-form solution to Eq. (4.14) is very difficult
for the general case. (In fact, it may well be impossible.)

Applying some physical insight, it seems reasonable that the estimate of the
average neutron flux at the boundaries of a cell should be equal to the average
value of Υ at the boundaries. Ki,j,k can then be adjusted to ensure that∫∫

all 6 surfaces

Υ(x, y, z) dY =
(
Fi+,j,k + Fi,j+,k + Fi,j,k+ + Fi−,j,k + Fi,j−,k + Fi,j,k−

)
(4.19)

The ‘x-boundaries’ of cell (i, j, k) (i.e.: the boundaries with normal vectors

that are (anti)parallel to x̂) are given by
(
~r − ~Oi,j,k

)
· x̂ = ±Ai,j,k and thus the

integrals of Υ over those surfaces are

~Oi,j,k·ẑ+Ci,j,k∫
z=~Oi,j,k·ẑ−Ci,j,k

~Oi,j,k·ŷ+Bi,j,k∫
y=~Oi,j,k·ŷ−Bi,j,k

dy dz Υi,j,k( ~Oi,j,k · x̂±Ai,j,k , y, z)

=
Ki,j,k

(
eBi,j,k(

~βi,j,k·ŷ) − e−Bi,j,k(
~βi,j,k·ŷ)

)(
eCi,j,k(

~βi,j,k·ẑ) − e−Ci,j,k(
~βi,j,k·ẑ)

)
e∓Ai,j,k(

~βi,j,k·x̂)
(
~βi,j,k · ŷ

)(
~βi,j,k · ẑ

) ,(4.20)

with similar expressions for the other boundaries of the cell. The integral of
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Υ(~r) over the total surface Y of the cell is thus∫∫
all 6 surfaces

Υ(x, y, z) dY

= κ Ki,j,k

·

[(
~βi,j,k · x̂

) eAi,j,k(
~βi,j,k·x̂) + e−Ai,j,k(

~βi,j,k·x̂)

eAi,j,k(
~βi,j,k·x̂) − e−Ai,j,k(

~βi,j,k·x̂)
(4.21)

+
(
~βi,j,k · ŷ

) eBi,j,k(
~βi,j,k·ŷ) + e−Bi,j,k(

~βi,j,k·ŷ)

eBi,j,k(
~βi,j,k·ŷ) − e−Bi,j,k(

~βi,j,k·ŷ)

+
(
~βi,j,k · ẑ

) eCi,j,k(
~βi,j,k·ẑ) + e−Ci,j,k(

~βi,j,k·ẑ)

eCi,j,k(
~βi,j,k·ẑ) − e−Ci,j,k(

~βi,j,k·ẑ)

]
,

where

κ ≡
(

eAi,j,k(
~βi,j,k·x̂) − e−Ai,j,k(

~βi,j,k·x̂)
)

·
(

eBi,j,k(
~βi,j,k·ŷ) − e−Bi,j,k(

~βi,j,k·ŷ)
)(

eCi,j,k(
~βi,j,k·ẑ) − e−Ci,j,k(

~βi,j,k·ẑ)
)

·
(
~βi,j,k · x̂

)−1 (
~βi,j,k · ŷ

)−1 (
~βi,j,k · ẑ

)−1

. (4.22)

For some given ~βi,j,k, Eq. (4.19) is solved for Ki,j,k by setting the rhs of 4.19
equal to the rhs of 4.21.
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Chapter 5

Numerical Examples

In this chapter, several statements that have been made throughout the previous
two chapters are put to the test. Criticality calculations have been performed
for different systems. The neutrons are considered to be mono-energetic and
there are no delayed neutrons. This makes the systems wildly unrealistic from
a physical point of view, but they serve to illustrate some of the points made in
the text.

First the theory from the previous chapters is put to the test for a simple
homogeneous rectangular parallelepiped, called system 1. Several simulations
should convince the reader of the robustness of the proposed correcton method.

Then, a more complicated system of loosely coupled fuel assemblies, called
system 2, is studied. It is shown how a conventional neutron calculation fails,
while the correcton method provides significantly better results.

Complete specifications of both systems can be found in appendix C.

In every calculation, all variance reducing techniques developed in section
3.7 have been used (including implicit fission and absorption, Russian roulette
and the criticality tally (3.14)). The parameters for Russian roulette are always
wRR = 0.1 and wsur = 0.5.

The total number of cycles is always denoted byM; the nominal number of
histories per cycle is N∗.

5.1 System 1: a homogeneous rectangular par-
allelepiped

5.1.1 Basic criticality calculation with neutrons

A basic criticality calculation with neutrons has been performed for system 1.
The number of cycles was M = 105 and the average number of simulated
histories per cycle was N∗ = 106.

Fig. 5.1 shows a typical realisation of the simulation. From the plot, it can
be seen how the criticality estimates converge to some value that is close to
1. In the first cycles the neutrons are still more or less uniformly distributed.
After the source converges, the particles are more concentrated in the centre
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Figure 5.1: criticality estimates during first cycles of neutron calculation for a
homogeneous rectangular parallelepiped (system 1)

of the rectangular parallelepiped, so less particles will leak out of the system.
Therefore, the criticality estimates are lower in the inactive cycles.

Suppose the first I = 100 cycles are taken to be the inactive cycles and the
values of the criticality are considered to be i.i.d. This results in a criticality
estimate of k = 1.00013526 with a standard deviation of 7.7 · 10−7.

5.1.1.1 Estimating the error of the final result

Fig. 5.2 shows the values of the criticality estimates during some of the active
cycles. Even with a Savitzky-Golay filter1 of order 10000, the estimates for
the criticality as a function of the cycle show a clear trending behaviour. In
other words, they are far from i.i.d. The positions of the particles in a cycle are
strongly positively correlated with the positions of the particles in the previous
cycles. Therefore, the estimates of k are positively correlated as well. This
renders it very difficult to estimate the error of such a calculation.

The same calculation with M = 103 and N∗ = 106 has been performed 33
times with 100 inactive cycles each time. This way, different final values of the
criticality were found. From this, it was determined that the standard deviation
of the final answer of a single calculation is 1.4 ·10−5. If, however, the criticality
estimates in the active cycles of a single calculation are considered to be i.i.d.,
the standard deviation in the final answer is estimated to be (8.1± 0.2) · 10−6,

1A Savitzky-Golay filter of order j is a generalised moving average filter, where the weight
coefficients are determined by a polynomial regression of order j. It should smooth a set
of data, but compared to a moving average filter it preserves trending behaviour and local
extrema better. (Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, 1996)
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Figure 5.2: criticality estimates k during active cycles of neutron calculation for
a homogeneous rectangular parallelepiped (system 1) (smoothed with Savitzky-
Golay filter of order 104)

which is 1.7 times lower.
In the following sections, the reported error is always based on the standard

deviation of the estimates of the criticality. The previous discussion suggests
that it should be of the same order of magnitude as the actual error. However,
due to positive correlation between the cycles, the true error is most likely larger.

5.1.2 Robustness tests for the correcton method

In this section, several extreme examples are used to test the robustness of the
correcton method.

In every case, the neutron flux tallies have been compared to the flux tallies
that were obtained from a calculation with neutrons. The results were all indis-
tinguishable. (The neutron flux in the x-, y- or z-direction have a typical cosine
shape. This is a well-known result from analytical deterministic methods. ([2],
209))

5.1.2.1 Criticality calculation with correctons for system 1

To facilitate a calculation with correctons, system 1 has been subdivided in two
cells: (1, 1, 1) and (2, 1, 1). They are separated by the plane x = 5 cm.

Two different simulations have been done with M = 18500 and N∗ = 106

each. In the first case, ~β1,1,1 = (ΣT ) x̂ and ~β2,1,1 = ~0. In the second calculation,
~β1,1,1 = − (ΣT ) x̂ and ~β2,1,1 = ~0. In both cases, the Ki,j,k have been calculated
with Eq. (4.18). In this particular case, the Ki,j,k can be chosen in such a way
that there is no discontinuity in Υ(~r).

Plots of the criticality estimates can be found in figures 5.3 and 5.4. In
both cases, the criticality converges to the same value as in section 5.1.1. The
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Figure 5.3: criticality estimates during inactive cycles of correcton calculation
for a homogeneous rectangular parallelepiped (system 1); ~β1,1,1 = (ΣT ) x̂ and
~β2,1,1 = ~0

number of inactive cycles is taken to be 50 in each. The estimates are k =
1.000154± 3.4 · 10−5 and k = 1.000121± 1.3 · 10−5 respectively.

Figures 5.5 and 5.6 show the source distribution of the correctons for ~β1,1,1 =

(ΣT ) x̂ and ~β1,1,1 = − (ΣT ) x̂ respectively. These plots have been obtained by
randomly selecting 1500 particles after each cycle and storing their positions
at the beginning of their history. The y-axis indicates the number of times
a particle was found in a certain region during any of the active cycles. (Note
that only the relative frequencies with which the particles are in certain positions
bear any real meaning.)

Since the fission cross section is constant in the medium, and since there is
no external source, the source distribution is proportional to the correcton flux
C. According to Eq. (4.3), C should be small in regions where Υ(~r) is very large
and vice versa. This is reflected in figures 5.5 and 5.6.

This calculation also confirms that there is no problem with negative ab-
sorption cross sections for correctons.

5.1.2.2 Correctons with a discontinuous Υ(~r) in system 1

In the previous calculations, the values for ~βi,j,k and Ki,j,k were chosen in such
a way that that was no discontinuity in Υ(~r). To test the validity of changing
the particle weights via Eq. (4.8), a calculation with a discontinuous Υ(~r) has
also been performed.

The medium in system 1 is subdivided in 24 cells (1, 1, 1), . . . , (1, 1, 24) that
are separated by the planes z = 1 cm, 2 cm, . . . , z = 23 cm. The parameters are
~β1,1,k = ~0 ∀ k = 1, . . . , 24 (so Υ1,1,k(~r) = K1,1,k), whilst the K1,1,k have been
randomly chosen from a uniform distribution from 1 to 11. M = 1.8 · 104 and
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Figure 5.4: criticality estimates during inactive cycles of correcton calculation
for a homogeneous rectangular parallelepiped (system 1); ~β1,1,1 = − (ΣT ) x̂ and
~β2,1,1 = ~0
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Figure 5.5: source distribution during active cycles of correcton calculation
for a homogeneous rectangular parallelepiped (system 1); ~β1,1,1 = (ΣT ) x̂ and
~β2,1,1 = ~0
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Figure 5.6: source distribution during active cycles of correcton calculation for
a homogeneous rectangular parallelepiped (system 1); ~β1,1,1 = − (ΣT ) x̂ and
~β2,1,1 = ~0

N∗ = 106.
The source distribution has been obtained in the same manner as in figures

5.5 and 5.6. The result is shown in Fig. 5.7.
The initial criticality estimates are displayed in Fig. 5.8. If there are 100

inactive cycles, the criticality is estimated to be k = 1.0001325±3.5 ·10−6. This
matches the estimates from the previous calculations, confirming the theoretical
foundation of using a discontinuous Υ(~r).

5.1.2.3 Correctons with a changing Υ(~r) in system 1

In a real time flux estimation, Υ(~r) may have to be adjusted during a cal-
culation. To test the method of adjusting the initial weight of the particles
at the beginning of their history (section 4.3; Eq. (4.11)), a calculation has
been performed where the value of Υ(~r) flips between Υ(1)(~r) in the odd cycles

and Υ(2)(~r) in the even cycles. They are characterised by (~β
(1)
i,j,k,K

(1)
i,j,k) and

(~β
(2)
i,j,k,K

(2)
i,j,k) respectively. At the beginning of each cycle, the total weight of

the particles is normalised to N∗.
The system has been divided in the same cells as in the previous section.

The parameters are

~β
(1)
1,1,k =


1
2 (ΣT ) ẑ , k = 1, . . . , 8
0 , k = 9, . . . , 16
− 1

2 (ΣT ) ẑ , k = 17, . . . , 24
(5.1)

and
~β

(2)
1,1,k = −~β(1)

1,1,k (5.2)
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Figure 5.7: source distribution during active cycles of correcton calculation for a
homogeneous rectangular parallelepiped (system 1) with a discontinuous, piece-
wise constant Υ(~r)
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Figure 5.8: criticality estimates during inactive cycles of correcton calculation
with a discontinuous, piece-wise constant Υ(~r)
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Figure 5.9: criticality estimates during inactive cycles of correcton calculation
for a homogeneous rectangular parallelepiped (system 1); the value of Υ(~r) is
different in the even and the odd cycles.

respectively. In each case, values of K
(1)
1,1,k and K

(2)
1,1,k satisfy an equation similar

to (4.18):

K1,1,k+1

K1,1,k
= exp

[(
C1,1,k

~β1,1,k + C1,1,k+1
~β1,1,k+1

)
· ẑ
]

,

where C1,1,k = 1
2 cm ∀ k. (In this particular case, there are no discontinuities

in Υ(~r) at all.)
Note how Υ(1)(~r) and Υ(2)(~r) have a radically different shape. To avoid a

very large variance amongst the initial weights of the particles in a cycle, the
maximal length of the ~β1,1,k is chosen to be 1

2ΣT .
In this calculation, M = 2 · 104 and N∗ = 106. The number of inactive

cycles is 200.
The criticality estimates during the initial cycles are shown in Fig. 5.9. A

line has been drawn through the odd and the even cycles. Note how they seem
to converge at the same time, although they seem to be biased in a different
direction during the initial cycles. Fig. 5.10 displays the criticality during some
of the active cycles. The estimates in the odd cycles appear to have a far greater
variance.

In each cycle, 500 particles were randomly selected and the positions and
weights at the beginning of their histories were stored. Figures 5.12(a) and
5.12(b) show the particle distribution at the beginning of the histories in the
active cycles for the odd and the even cycles. Figures 5.11(a) and 5.11(b) display
the cumulative weight of all the particles in all the active cycles at different z-
positions. That is, they display the shape of the source (which is also the shape
of the flux C).

Note the great similarities between figures 5.11(b) and 5.12(a) and between
figures 5.11(a) and 5.12(b). This is quite easily explained by the fact that the
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Figure 5.10: criticality estimates during some of the active cycles of correcton
calculation for a homogeneous rectangular parallelepiped (system 1); the value
of Υ(~r) is different in the even and the odd cycles.
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(a) odd cycles (b) even cycles

Figure 5.11: source distribution during a correcton calculation for a homoge-
neous rectangular parallelepiped (system 1); the value of Υ(~r) is given by (5.1)
in the odd cycles and by (5.2) in the even cycles
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Figure 5.12: particle distribution during a correcton calculation for a homoge-
neous rectangular parallelepiped (system 1); the value of Υ(~r) is given by (5.1)
in the odd cycles and by (5.2) in the even cycles

particle distribution in an odd cycle is the result of a source distribution in an
even cycle, and vice versa.

The difference in the variance of the criticality estimates can be accounted
for by comparing the particle distributions (figures 5.12(a) and 5.12(b)). In the
odd cycles, far more particles are situated near the edges of the medium and
leak out of the system.

The criticality estimates are k = 1.0001456 on average. The error can be
estimated based on the odd or the even cycles, leading to 4.8 ·10−5 and 5.8 ·10−6

respectively. This is consistent with the previously found values.
Note how the correctons have a completely different flux in every new cycle,

yet the source seems to converge in about the same amount of cycles as in a
neutron calculation. Apparently, the method of changing particle weights at the
beginning of their history is very robust.

5.1.3 Real time flux estimation

The real time flux estimation methods proposed in sections 4.3, 4.4 and 4.5 are
implemented for system 1. The system was divided into cubes with ribs of 1
cm, so there are 10 cells in the x-direction, 20 cells in the y-direction and 24
cells in the z-direction.

The neutron surface fluxes are determined in every cycle. In calculating the
parameters for Υ (~r) after cycle j, the average values of the surface fluxes over
the last min (j,H) cycles are used. If there is some surface for which there have
been no tallies in the last min (j,H) cycles, the calculation of Υ (~r) is skipped.

Using equations similar to 4.16, the value of max{m(a, b, c→ e, d, f)} is also
determined after every cycle and Υ(~r) is only altered if max{m} is below some
preset constant G.

At the beginning of every cycle, the total weight of the particles is normalised
to N∗.

The parameters are H = 20, G = 200,M = 2 · 104 and N∗ = 106. Fig. 5.13
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Figure 5.13: typical development of max{m} during some of the cycles of cor-
recton calculation with real time neutron flux estimation for a homogeneous
rectangular parallelepiped (system 1)

is a plot of the development of max{m} during some of the cycles. The value
doesn’t exceed 8.6 in any of the cycles. Υ (~r) is therefore changed in every cycle.

The criticality estimate is k = 1.000461± 1.7 · 10−5 with 100 inactive cycles.
In every cycle, 1500 particles were randomly selected and there position and

weight was stored. From this, the source distribution in the active cycles was
obtained. The source as a function of z only is shown in Fig. 5.14. The plots
are very similar when the source is taken as a function of x or y only.

It can be seen that the source (and thus the flux) is almost constant, but it
is a little greater near the edges of the medium. This probably indicates a very
slight error in determining the correct Ki,j,k. It could be that an Υ (~r) in the
form of Eq. (4.9) is less suitable to describe the neutron flux near the edges of
the system.

Remember that this does not pose a serious problem, since the choice of
Υ (~r) should not introduce a bias in the calculation (unless it is chosen in such
an unfortunate way that the source iteration becomes unstable).

5.2 System 2: homogenised, loosely coupled fuel
assemblies

5.2.1 Basic neutron calculation

A basic neutron calculation has also been performed for the second system.
There were M = 1.2 · 104 cycles and N∗ = 105 histories per cycle. A plot
of the criticality estimations is shown in Fig. 5.15. It seems to converge after
roughly 50 cycles. Fig. 5.16 shows how the criticality estimates are more or less
constant during the active cycles. If the number of inactive cycles is taken to
be 200, the average is k = 0.9283358 and the standard deviation of the average
of the criticality estimates is 8.8 · 10−6.

If, however, the source distribution plotted versus the cycles, it becomes
apparent that the source doesn’t converge at all. After each cycle, 500 particles
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Figure 5.14: source distribution during the active cycles of correcton calcu-
lation with real time neutron flux estimation for a homogeneous rectangular
parallelepiped (system 1)
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Figure 5.15: criticality estimates during inactive cycles of neutron calculation
for loosely coupled fuel assemblies (system 2)
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Figure 5.16: criticality estimates during some active cycles of neutron calcu-
lation for loosely coupled fuel assemblies (system 2) (smoothed with Savitzky-
Golay filter of order 103)

were randomly selected and their positions were stored. Fig. 5.17 shows the
number of particles in the different fuel assemblies versus the cycles. After
500 cycles, hardly any of the neutrons are present in the third and fourth fuel
assembly. Even after many thousands of cycles, the source distribution is still
altering in the other fuel assemblies.

The simulation has been repeated 6 times with M = 3 · 103 cycles. In each
case, fuel assemblies 3 and 4 were quickly left with almost no neutrons. In some
of the simulations, some of the other fuel assemblies emptied as well.

At first sight, it may seem strange that the neutrons have a tendency to pile
up in the outer parts of the system. This is explained by the fact that the outer
fuel assemblies (1,2,5 and 6) are surrounded by more concrete than the inner
ones. Concrete has a much higher value of Σs/Σa. Therefore, neutrons that
leak out of the fuel assembly have a higher probability of scattering back into
the fuel.

It is interesting how the criticality estimate was consistently approximately
k = 0.9283 throughout all realisations. Apparently it doesn’t matter where
the neutrons are in a criticality calculation. This is probably because the fuel
assemblies are all equally shaped.

5.2.2 Real time flux estimation

A calculation similar to the one of section 5.1.3 has been done for the loosely
coupled fuel assemblies of system 2. The number of cells in the x-, y- and
z-direction are 8, 5 and 3 respectively. They are bounded by the planes x =
0, 40, 70, 100, 115, 130, 160, 190, 230, y = 0, 40, 80, 120, 160, 200 and z = 0, 20, 100, 120
(all values in cm.). This means that the outer fuel pins (1,2,5 and 6) consist of
only one cell, whilst the inner fuel pins (3 and 4) consist of two equally shaped
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Figure 5.17: positions of 500 randomly selected particles at the beginning of
their history in loosely coupled fuel assemblies (system 2), versus some of the
active cycles (smoothed with moving average filter of order 80)
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Figure 5.18: total weight of 1500 randomly selected particles at the beginning
of their history versus some of the active cycles (smoothed with moving aver-
age filter of order 80) for the real time flux estimation of loosely coupled fuel
assemblies (system 2)

cells that are located at different x-positions.
This time, the parameters were H = 100, G = 200, M = 4 · 103 and

N∗ = 106. The calculation has been done three times; the results were very
similar in every respect.

The number of inactive cycles is 100; the criticality estimate is k = 0.928217±
2.8 · 10−5.

In every cycle, 1500 particles were randomly selected and their properties at
the beginning of their history were stored. The total weight of all particles in a
fuel assembly is plotted in Fig. 5.18.

Fig. 5.19 is a plot of max{m} versus the cycle.
Since all fuel assemblies are of the same size, Fig. 5.18 clearly shows that

the source, and thus also the flux, are far from homogeneous. However, there
is a definite improvement over the conventional neutron calculation (Fig. 5.17).
The inner fuel assemblies are not completely drained off particles and the outer
fuel assemblies have a (more or less) constant source term.

Apparently, the real time flux estimation compensates to a significant de-
gree for the destabilisation of the source convergence. This is quite a remarkable
achievement, considering the fact that the fuel assemblies are separated by ap-
proximately a hundred mean free paths of a neutron.

The most probable explanation for the spatial variance in the correcton
source is that there still aren’t enough particles that can travel from the outer
to the inner fuel assemblies to compensate for the difference in the multiplication
factor.2

2For an alternative explanation, observe that the total correcton source in a fuel assembly
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Figure 5.19: max{m} for all cycles of the real time flux estimation of loosely
coupled fuel assemblies (system 2)

5.2.2.1 Two-dimensional flux estimation

The problems with source convergence are a result of a lack of communication
between particles in the fuel pins in different x- and y-positions. In order for
the source to converge, there is no need to even out the flux distribution in the
z-direction.

Therefore, one might expect better results if ~βi,j,k · ẑ ≡ 0, since Eq. (4.10)

puts less of a restriction on ~βi,j,k · x̂ and ~βi,j,k · ŷ. The exact same calculation
as above has been performed with a slight modification of Eq. (4.13):

~βi,j,k = min

(
(ΣT )i,j,k
`∗i,j,k

, 1

) ln

(
Fi+,j,k
Fi−,j,k

)
2Ai,j,k

,

ln

(
Fi,j+,k
Fi,j−,k

)
2Bi,j,k

, 0


T

,

where

`∗i,j,k ≡

√√√√√√√
 ln

(
Fi+,j,k
Fi−,j,k

)
2Ai,j,k


2

+

 ln

(
Fi,j+,k
Fi,j−,k

)
2Bi,j,k


2

.

should be proportional to the total correcton flux, which is

∫∫
<4π>

 ∫∫∫
fuel assembly

C
(
~r, Ω̂

)
d~r

 dΩ̂ =

∫∫
<4π>

 ∫∫∫
fuel assembly

φ
(
~r, Ω̂

)
Υ (~r)

d~r

 dΩ̂ .

The exponential form of Υ (~r) is an extremely bad fit for the neutron flux within a fuel
assembly. Therefore, the fact that Ki,j,k was chosen to satisfy Eq. (4.19) is hardly a reason
to believe that the rhs of the equation above will be the same for every fuel assembly (especially
since the inner fuel assemblies consist of two cells, as opposed to the outer ones).
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The value of Ki,j,k can be adjusted in a similar manner to the one proposed
in section 4.5.2. (Some of the calculations need a slight adjustment, since not

all cartesian components of ~βi,j,k are nonzero.)
A test showed no significant difference with the three-dimensional case. In

this particular case, the fuel assemblies consist of only one cell in the z-direction,
so Fi,j,2+ ≈ Fi,j,2− and thus ~βi,j,2 · ẑ ≈ 0 anyway.

5.2.2.2 Choice of the cell sizes

The first thing to note about the choice of the cell sizes is that the calculation
time rapidly increases when more cells are used.

With other numerical methods that use grids in mind, it may seem tempting
to choose smaller cells in the regions where one would expect a large divergence
in the neutron flux (e.g. the boundary of a fuel assembly).

However, the tests from section 5.1.2 imply that this is not necessary to
ensure source convergence inside a fuel pin, where there are no gabs between
the regions where fission can occur. In systems like these, the problem is a lack
of particles that travel large distances. To solve this, there is no need to be
bothered by the flux distribution within a fuel assembly.

In fact, using smaller cells can easily lead to high discontinuities in Υ, com-
pletely destabilising the source convergence. This is mostly because far fewer
particles will cross a small surface of a cell, resulting in large statistical variances
in the estimation of the surface flux. This effect is even stronger if there are
small cells near the boundary of a fuel assembly, where the neutron flux is low
and its gradient is steep.

In the calculation above, the choice of cells can be adjusted to enhance the
convergence. Because the inner fuel assemblies have two cells in the x-direction
and the flux is higher in the centre, the correctons are pushed outward. The
same calculation has been repeated with only one cell in each of the inner fuel
assemblies.

A plot of the resulting total correcton sources in the fuel assemblies (similar
to Fig. 5.18) is shown in Fig. 5.20. After some cycles, the total source (and
thus the total flux) is equal for all fuel assemblies.

With 900 inactive cycles, the criticality is estimated to be k = 0.928401 ±
4.1 · 10−5.

A peculiar detail in the calculation is that the total correcton source in fuel
assembly 1 suddenly increases by a factor of 1.5 after cycle 5657. Possibly there
is a single particle that gained a very large weight. The particles gradually even
out again over the next 50 to 100 cycles.

5.3 Other tests

The correcton method has been tested for several systems with loosely coupled
fuel assemblies, similar to system 2. For example, in one test the concrete has
been made a good absorber, so it doesn’t scatter the particles back into the
fuel assemblies. In another simulation, there were more fuel assemblies with
less symmetry in the system. Several tests have also been done with a far lower
number of simulated histories per cycle (in the order of 104).
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Figure 5.20: source in different fuel assemblies for a new real time flux estimation
(smoothed with moving average filter of order 250); compare with Fig. 5.18

In every case, the correctons converged to a more or less uniform distribution.
The method seems to work well, so long as all the fuel assemblies and the spaces
in between consist of only one cell.
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Chapter 6

Conclusion

A self-learning correcton method has the potential of solving some of the source
convergence problems present in conventional Monte Carlo calculations. The
greatly reduced spatial variance of the particle distribution should also make
estimating the flux at different locations in a system simultaneously more effi-
cient.

Other advantages include:

• No prior calculations are necessary.

• It is often easy to verify that the source iteration has converged and isn’t
trapped in some local minimum. After convergence, the flux should have
hardly any spatial variation.

• As opposed to a (relatively) more conventional correcton calculation, very
little expertise or physical insight is needed. However, one still has to
choose the grid cells correctly.

When choosing the size of the grid cells, there are several issues to take into
account. Although it may seem counter-intuitive, the relative discontinuities in
Υ (~r) are smaller if larger cells are used. This is mostly because there are more
particles crossing a cell boundary, resulting in more accurate estimations of the
average flux over the boundary. As a general rule of thumb, one should not be
too bothered by the specific shape of the neutron flux within a fuel assembly.
The correctons only have to directed on a larger scale, in such a way that there
is as much interaction as possible between loosely coupled systems.

The choice of Ki,j,k from section 4.5.2 seems to work quite well. Fig. 5.19
seems to suggest that the discontinuities in the flux estimate are not particularly
troublesome. A noticeable deviation from a constant flux is visible in Fig. 5.14,
but since it is very small, it can simply be ignored.
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Chapter 7

Future work

The logical next step is to implement a real time flux estimation technique in a
commercial Monte Carlo code that either has problems with source convergence,
or where the flux has to be estimated in different regions of a system. (This has
never been done for the correcton method in general.) This will require several
generalisations, such as particles that can have any energy and delayed neutrons.

There are also some possible refinements to the methods described here,
some of which are listed below.

• The flux estimate during a calculation is based on tallies from some of the
last cycles, where each cycle has been given an equal weight. The source
might converge faster if they are weighted and tallies from later cycles are
given a greater weight.

• The correcton method in general remains untested for a more general
three-dimensional geometry, where not all cells are rectangular paral-
lelepipeds. This will probably make it more difficult to find a good way
to adjust the parameters of the neutron flux estimate.

• In this thesis, attention has only been paid to the maximal theoretically
possible weight change for a particle that crosses from one cell to an-
other. This is a rather crude measure. For example, the region with a
large relative discontinuity in Υ (~r) might well be quite small, thus hardly
endangering the stability of the calculation.

It might also be interesting to investigate how the correlation between es-
timates of quantities in different cycles is effected by the real time correcton
method. It could be that the positions of the particles are less positively cor-
related, especially if the neutron flux estimate is based only on the last cycle.
This could make it easier to determine the error in the final estimate of the
quantity.
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Appendix A

Notes on stochastics

A.1 Probability and random variables

Intuitively, a stochastic variable is a variable whose value cannot be determined
in advance. The mathematical formalisation of this concept requires the notion
of a probability space (O,H,P), which is defined by the following proper-
ties. (Kroese et. al. [9], 605-606)

1. O is the set of all possible values of the stochastic variable, called the
sample space.

2. H is the σ-field of all events. An event is a subset of O to which a
probability can be assigned. A σ-field H is a collection that satisfies the
following properties:

(a) H 6= ∅;
(b) A1, A2, . . . ∈ H ⇒ (A1 ∪A2 ∪ . . .) ∈ H;

(c) A ∈ H ⇒ Ac ∈ H.

3. P is a probability measure that assigns a number P(A) to every A ∈ H.
It must satisfy the Kolmogorov axioms1:

(a) nonnegativety: P(A) ≥ 0 ∀ A ∈ H;

(b) unit measure: P(O) = 1;

(c) sum rule: Ai ∩Aj = ∅ ∀ i, j ⇒ P
(⋃
x
Ax

)
=
∑
x
P(Ax).

P(A) is said to be the probability of A.

An event A happens almost surely if and only if P(A) = 1.2

1Sometimes the more intuitive Cox’s theorems are used instead, but they make argument
that transforms equation (3.8) in section 3.2 into a Markov process more difficult.

2This terminology is used when there are several theoretical outcomes, but only one of
them doesn’t have a vanishingly small probability. (For example, when tossing a coin 10100

times, there’s a probability of
(
1
2

)(10100)
that none of the tosses will be a tails. But when the

coin is tossed an infinite number of times, there will almost surely be a tails at least once.)
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Formally, a stochastic variable X that takes on values in some set E (called
the state space) is a function X : O → E such that

{X ∈ B} ≡ {γ ∈ O|X(γ) ∈ B} ∈ H ∀ B ∈ E , (A.1)

where E is a σ-field on E. If E is countable, then X is called discrete, otherwise
it’s called continuous. (Kroese et. al. [9], 607-609)

Somewhat heuristically, the probability distribution is a function that
describes the probability that X ∈ B for all B. If X and Y are stochastic
variables, the statement ‘X ∼ Y ’ denotes that X has the same probability
distribution as Y . If X is defined by (A.1) on a well-defined probability space,
then all the usual properties of its probability distribution will hold.

Define the probability operator P[−] as follows:

• If S is a statement, P[S] is the probability that S is true.

• If D is a discrete stochastic variable (that is, if E is countable), then
P[D](z) ≡ P[D = z].

• If C is a continuous stochastic variable in the hyperspace Rn, then P[C](z) ≡
V −1P[z ∈ V], where z ∈ Rn, V is some vanishingly small part of Rn about
z and V is the volume of V.

In the last case, P[C] is the probability density function of C. If X can
take on values in the uncountable set Rn, it is quite possible that P(X = α) =
0 ∀ α ∈ Rn, whilst not violating the unit measure Kolmogorov axiom. However,
the probability density will in general still be positive. From the Kolmogorov
axioms it follows that P[C] ∈ R+ and

∫
Rn

dz P[C](z) = 1.

A.2 Markov chains and MCMC

A set J is called an index set of A if there is a surjective function from J to
A. A stochastic process is a set of random variables {Xτ} on a probability
space (O,H,P) where τ is in any index set J . It is often helpful to view τ as
the time and Xτ as a random variable that is evolving through time.

A Markov process is a stochastic process that satisfies the Markov prop-
erty:

(Xt+s|Xu, u ≤ t) ∼ (Xt+s|Xu, u = t) ∀ s ≥ 0 .3

The Markov property is sometimes called ‘memorylessness’. In words, it can
be interpreted as a stochastic process for which, conditional on its ‘present’
state, the ‘past’ and the ‘future’ are independent.

In this thesis, only processes with the index set N are considered. Since the
index set is countable, the process is called a Markov chain. The state space
will be in Rn.

The transition kernel Ps is a function defined as

Ps(x,A) = P[Xt+s ∈ A|Xt = x] .

3Note this is a conditional probability density. (ref. Dekking et al. [7], chapter 3 or
Kroese et al. [9], pages 618-619))
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It is the probability that Xt will ‘evolve’ from x to some value in A in s time
steps. It can usually be written as

Ps(x,A) =

∫
A

ps(x, y) dy,

where ps(x, y) is the transition density. All Markov processes will be consid-
ered to be time-homogeneous, meaning that the transition kernel, and thus
the transition density, do not depend on the time. (Kroese et. al. [9], 628)

The product rule for probabilities leads directly to the Chapman-Kolmogorov
equations:

pa+b(x, y) =

∫
q∈E

pa(q, y) pb(x, q) dq .

Also, if f0 is the joint probability density function4 of some Markov chain
(R0, R1, . . . , Rn), then

fn(r0, r1, . . . , rn) = f0

n−1∏
i=1

p1(rn, rn+1) .

If certain requirements are met (Kroese et. al. [9], 630-635), there will be a
limiting distribution π such that

lim
t→∞

pt(x, y) = π(y) . (A.2)

Under certain conditions, existence of the limiting distribution implies its unique-
ness and it can be determined as the solution to the set of equations

π(y) =

∫
π(x)ps(x, y) dx ∀ s ∈ N , (A.3)∫

π(y) dy = 1 .

In other words, π is the stationary distribution of the Markov chain.

In a Monte Carlo calculation, it may often be difficult to sample from a
probability distribution f if it cannot be written in a closed form. Though it
may seem surprising, it is often still possible to find some time-homogeneous
Markov chain of which it is known that it has f as its stationary distribution.
The transition kernel of this Markov process for a unit time step is usually quite
simple to sample from.

The goal of the Markov chain Monte Carlo (MCMC) method is to
generate approximate samples from some stationary distribution π in Eq. (A.2).
This can be done using the power method. To this end, pick some starting
value X0 and use the unit time step transition kernels to generate a Markov
process {X0, X1, . . .}. The idea is that, for some M > 0, XM will have a similar
probability distribution as π. It can thus be used to draw an approximate
sample from π.

4ref. Dekking et al. [7], chapter 9

52



Appendix B

Sampling stochastic
variables

B.1 Pseudorandom numbers

A computer program performs a set of prescribed actions. It is incapable of
doing something at random. For Monte Carlo calculations however, it is nec-
essary to sample random variables. To facilitate this, modern programming
languages are equipped with an algorithm to sample pseudorandom numbers
from a uniform distribution from 0 to 1. The algorithm generates a sequence of
numbers that approximates the properties of random variables. The sequence
isn’t truly random, but is determined by a (small) set of variables (the seed)
that has to be specified. The seed should be chosen at random.

Since a computer can only store a finite amount of unique variables in the set
(0, 1), the sequence of pseudorandom numbers will be repetitive. The period
length is the largest number of samples that can be drawn from a pseudorandom
number generator without the guarantee that the sequence is repetitive.

For a more formal discussion of random number generation, the reader is
referred to Kroese, et al. [9], chapter 1. A few basic requirements for ran-
dom number generators are also stated there. Amongst others, they should
not return the values 0 or 1 and the stream of pseudorandom numbers should
be reproducible. Also, the period length should at least be of the order of
max(1050, 10N2), where N is the number of generated numbers. Most older
random number generators didn’t meet this last demand.

For the calculations in this thesis, the seed was sometimes chosen in such
a way that the results are reproducible. In other occasions it was based on
the CPU-time of the computer at the start of the calculation. The period after
which the pseudorandom sequence repeats itself is considered to be large enough
to avoid practical problems. The random number generator is assumed to work
perfectly.
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B.2 Sampling from a known probability density

A computer will usually only sample from a uniform distribution from 0 to 1.
The following procedure can be used to sample values of a random variable X
with an arbitrary probability density function f(z). (To see why this works, a
plot of a random cumulative probability density function should suffice. See,
for instance, Dekking et al. [7], pages 72-73.)

Determine

P [X < z] = F (z) ≡
∫ z

−∞
f(s)ds (B.1)

and note that F (z) is monotonically increasing function of z and 0 ≤ F ≤ 1.
Now define F−1 as the inverse of F .1 Suppose a uniformly distributed random
number ρ ∈ (0, 1) has been obtained. If the random variable k is defined by

k = F−1(ρ),

it has a probability density function of f .
For example, Eq. (3.9) can be found by taking f to be equal to the expo-

nential distribution of Eq. (2.3). Then, from Eq. (B.1), F (d) = 1− exp (−ΣT d)
and thus F−1(ρ) = − 1

ΣT
ln (1− ρ). Finally, observe that (1− ρ) ∼ ρ.

Discrete random variables can be viewed as continuous variables with a
probability density function that consists of a train of Dirac delta functions
δ. Specifically, if a stochastic variable Y has the possible values y1, y2, . . . , yN
with respective probabilities p1, p2, . . . , pN such that y1 < y2 < . . . < yN , then
it can be treated as a continuous stochastic variable with a probability density
function

P [Y ] (u) =

N∑
i=1

pi δ(u− yi).

Thus the cumulative probability density function is

P [Y < u] =

∫ u

−∞
P [Y ] (s) ds =

N∑
i=1

pi H(u− yi),

where H is the Heaviside function. The inverse can easily be determined graph-
ically and this leads to the result that Y can be sampled by

y1 +

N−1∑
i=1

(yi+1 − yi) H

ρ− i∑
j=1

pj

 .

(Again, ρ is a uniformly distributed stochastic variable.)
An application of this procedure would be to sample the amount of new

neutrons after a fission reaction.
One can also randomly select events by attributing a unique number to each

event and following the procedure for sampling discrete stochastic variables.

1F (z) may not be strictly monotonically increasing for all z. On those parts of the domain
where it isn’t, F−1(z) may not be unambiguously defined, but this is not a problem.
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Sometimes the methods described above can be very difficult or computa-
tionally expensive. Kroese et al. [9], 85-224, provides the most efficient algo-
rithms to sample from most well-known probability densities. They are usually
based on some specific characteristics of the distributions.

B.3 Sampling an isotropic direction vector

If a unit vector Ω̂ is placed at the origin, it will point to some point on the surface
of the unit sphere around the origin. If it has a random isotropic direction, the
probability that it will point to some part of the surface is proportional to the
area of that part of the surface. Define the Cartesian coordinates x, y and z and
Ωi ≡ Ω̂ · î ∀ i ∈ {x, y, z}. The probability that z < Ωz < z + dz is proportional
to the area of a unit sphere between z and z + dz.

This area can be calculated as the ‘rotational area’2 of the function y =√
1− z2 about the z-axis. In general, the length of a surjective function y = y(x)

between x and x+ dx is√
dx2 + dy2 =

√
1 + (y′(x))

2
dx .

Putting everything together,

P [z < Ωz < z + dz] =

(
2π ·
√

1− z2
)(√

1 +
(

d
dz

(√
1− z2

))2
dz

)
(total area of the unit sphere)

=
1

2
dz

for all z ∈ (−1, 1).
Using spherical coordinates and denoting the polar and azimuth angles by

ϑ and γ, any book on calculus will tell you that

(Ωx, Ωy, Ωz) = (sinϑ cosγ, sinϑ sinγ, cosϑ) . (B.2)

Therefore cosϑ can be sampled from a uniform distribution from −1 to 1. Be-
cause of symmetry, it is obvious that γ has a constant probability density func-
tion with a width of 2π.

Using Eq. (B.2) in combination with some trigonometric identities, the
cartesian components of an isotropic unit vector can now be sampled by

Ωx = 2
√
ζ1 (1− ζ1) cos(2πζ2),

Ωy = 2
√
ζ1 (1− ζ1) sin(2πζ2),

Ωz = 2ζ1 − 1,

where ζ1 and ζ2 are independent and uniformly distributed from 0 to 1.

2the area of the surface of the solid that is generated by revolving a function around an
axis
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Appendix C

System specifications

C.1 System 1: simple bar

This system consists of a homogeneous rectangular parallelepiped in an infinite
vacuum. If x, y and z are the cartesian coordinates, then the bar is bounded
by the planes x, y, z = 0 cm, x = 10 cm, y = 20 cm and z = 24 cm. The
macroscopic cross sections are ΣT = 1.0000 cm−1, Σa = 0.5882 cm−1 and
Σf = 0.2500 cm−1. The average number of new neutrons produced in a fission
reaction is ν = 2.5.

The system is very nearly critical.

C.2 System 2: fuel assembly # 1

The system consists of a rectangular parallelepiped medium surrounded by an
infinite vacuum. Denote the cartesian coordinates by x, y and z and take one
of the corners of the parallelepiped to be the origin. Define the length l ≡ 1 cm
and x∗ ≡ x/l, y∗ ≡ y/l and z∗ ≡ z/l.

The medium consists of three different materials: water, concrete and six
equally shaped fuel assemblies. Let F , W and C be the regions where there is
fuel, water or concrete respectively. The ith fuel assembly is in Fi.

The composition of the medium is given by

F1 ≡ {x, y, z ∈ R3| 040 < x∗ < 070 ∧ 040 < y∗ < 080 ∧ 020 < z∗ < 100} ;

F2 ≡ {x, y, z ∈ R3| 040 < x∗ < 070 ∧ 120 < y∗ < 160 ∧ 020 < z∗ < 100} ;

F3 ≡ {x, y, z ∈ R3| 100 < x∗ < 130 ∧ 040 < y∗ < 080 ∧ 020 < z∗ < 100} ;

F4 ≡ {x, y, z ∈ R3| 100 < x∗ < 130 ∧ 120 < y∗ < 160 ∧ 020 < z∗ < 100} ;

F5 ≡ {x, y, z ∈ R3| 160 < x∗ < 190 ∧ 040 < y∗ < 080 ∧ 020 < z∗ < 100} ;

F6 ≡ {x, y, z ∈ R3| 160 < x∗ < 190 ∧ 120 < y∗ < 160 ∧ 020 < z∗ < 100} ,

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 ,

W = {x∗, y∗, z∗ ∈ R3|40 < x∗ < 190 ∧ 40 < y∗ < 160 ∧ 20 < z∗ < 100} \ F
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and

C = {x∗, y∗, z∗ ∈ R3|0 < x∗ < 230 ∧ 0 < y∗ < 200 ∧ 0 < z∗ < 120} \ {F ∪W} .

Note how there is at least 30 centimetre of space between every fuel assembly.
The values of the cross sections and the average amount of new particles in

a fission reaction are tabulated below. The neutrons can have only one energy.
There are no delayed neutrons.

fuel water concrete
ΣT (cm−1) 1.150 3.000 0.350
Σa (cm−1) 0.025 0.300 0.0029
Σf (cm−1) 0.011 0.000 0.000
ν (−) 2.4545 0.000 0.000

Figure C.1: sketch of the cross section of system 2 at a plane perpendicular to
the z-axis anywhere in the region 20 cm < z < 100 cm
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