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Nomenclature

Roman characters
𝐴 [m ] Channel flow area
𝐴 [m ] Wall cross-sectional area
𝐶 [m ] Precursor concentration
𝐷 [m] Hydraulic diameter
𝐸 [J] Energy per fission event
𝐻 [J kg ] Specific enthalpy
𝐾 Pressure loss coefficient
𝐿 [m] Length
𝑀 [g mol ] Molar mass
𝑁 [m ] Number density
𝑁 [mol ] Avogadro constant
𝑃 [m] Perimeter
𝑄 [J s ] Core heating power
𝑄 [J s ] Fuel-to-wall heat flow
ℛ Reactivity
𝑇 [K] Temperature
𝑉 [m ] Volume
𝑉 [m ] Fuel volume
𝑊 [kg s ] Mass flow rate

𝑐 [J kg K ] Fluid specific heat
𝑐 , [J kg K ] Wall material specific heat
𝑓 Darcy friction factor
𝑔 [ms ] Gravitational acceleration
ℎ [J kg ] Specific enthalpy
𝑛 [m ] Neutron concentration
𝑝 [N m ] Pressure
𝑡 [s] Time
𝑣 [ms ] Neutron velocity

Greek characters
Λ [s] Mean generation time
Σ [m ] Macroscopic neutronic cross-section for ther-

mal fission

𝛼 [m kg ] Density reactivity feedback coefficient
𝛽 Delayed neutron fraction
𝜀 Enrichment
𝜃 [K] Temperature perturbation
𝜆 Eigenvalue
𝜆 [J s m K ] Fluid thermal conductivity
𝜆 [s ] Precursor decay constant
𝜆 [J s m K ] Wall thermal conductivity
𝜇 [N s m ] Dynamic viscosity
𝜌 [kg m ] Density
𝜌 [kg m ] Wall material density
𝜎 [m ] Microscopic neutronic cross-section for ther-

mal fission
𝜏 [s] Fuel heat transfer time constant
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𝜐 [m kg ] Fluid specific volume

Dimensionless numbers
𝑁 Froude number
𝑁 Subcooling number
𝑁 Pseudo phase change number
𝑁𝑢 Nusselt number

Subscripts Value taken at:
0 Bottom core node
1 Top core node
𝐵 Buffer vessel node
𝐷 Downcomer node
𝐹 Fuel node
𝑅 Riser node
𝑝𝑐 Pseudo-critical point
𝑤 Wall node (low heating model)
𝑤, 0 Bottom wall node (high heating model)
𝑤, 1 Top wall node (high heating model)

Other
𝑋 Steady state value of variable
𝑋 Dimensionless variable
�̆� Perturbation

𝑁𝑢 [J . s . m . K . ] Adjusted Nusselt number

Common abbreviations
BWR Boiling Water Reactor
GIF Generation IV International Forum
HPLWR High Performance Light Water Reactor
NIST National Institute of Standards and Technol-

ogy
NSB Neutral Stability Boundary
PWR Pressurised Water Reactor
SCWR Supercritical Water Reactor





Abstract

The High Performance Light Water Reactor (HPLWR) is a European-designed reactor based on the
Supercritical-Water-Cooled Reactor (SCWR) concept, one of the six Generation IV reactor concepts.
The HPLWR is designed to be more efficient, more environmentally friendly, and more inherently safe
than pre-existing reactor designs based on light water. At Delft University of Technology, a natural
convection driven variant of the HPLWR is being researched. To ensure the viability of the design,
stability issues must be investigated first. A computational model exists for calculating the stability
of the natural circulation driven HPLWR. In this thesis, that model is extended with the inclusion of
neutronic-thermal-hydraulic coupling.

In the model, the reactor is simplified to a handful of nodes. For each node, conservation balances
are set up for mass, heat and momentum. The balance equations are linearised, and the system is
reduced to an eigenvalue problem. Steady-state conditions of the system are found using an iterative
process. The results are displayed as a map of stable and unstable regions on a nondimensional plane
of operating conditions.

The implementation of neutronic-thermal-hydraulic coupling is found to have a destabilising effect.
The destabilising effect diminishes for very large values of the fuel heat transfer model time constant;
beyond 𝜏 ≈ 100 s. A new unstable region is found adjacent to a region from previous results, with
similar characteristics. A parametric study is performed to investigate the influence of various design
parameters.

Frequency analysis shows that an instability domain previously thought only to contain Ledinegg
instabilities exhibits dynamic instabilities as well. Ledinegg instabilities are found in the same regions
as in previous investigations, but not in the newly found unstable area.

This thesis is a continuation of work by Krijger [1] and Lippens [2], who did previous work on the
computational model used.
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1
Introduction

1.1. Background
As the world’s wealth, population, and technological prowess have increased, so has the demand for the
power to sustain these trends. Accomodating this need is one of mankind’s biggest challenges of today.
Much of the world’s power, be it for heating, traffic, or industrial use, is produced by the combustion
of fossil fuels, which produces carbon dioxide (CO ). As CO is one of the leading causes of global
warming, methods of generating power without emitting it are increasingly becoming a necessity.

In 2009, over 400 nuclear power reactors, mostly Boiling Water Reactors (BWR) and Pressurised
Water Reactors (PWR) were in operation, producing electrical power for more than 1 billion people while
emitting no CO . This saves approximately 2.5 billion tons of CO per year, with an additional 8 billion
tons being emitted from other means of generating power. [3] This makes nuclear technology one of
the most promising methods of reducing our global CO emission. At Delft University of Technology,
the Nuclear Energy and Radiation Applications section conducts research on nuclear reactors for the
purpose of producing power.

The Generation IV International Forum (GIF), a research foundation with the aim of evaluating next-
generation nuclear reactor technologies, identified and selected six nuclear reactor types for further
development. These are intended to offer improved performance, better sustainability, and more
inherent safety. The selected designs are the Very-High-Temperature Reactor (VHTR), the Molten Salt
Reactor (MSR), the Sodium-cooled, Gas-cooled and Lead-cooled Fast Reactors (SFR, GFR and LFR
respectively), and the Supercritical-Water-cooled Reactor (SCWR). [4] These designs are known as the
Generation IV reactor types. Reactors currently in operation, such as the BWR and PWR systems, are
either Generation II or Generation III designs.

The focus of this thesis lies on the High Performance Light Water Reactor (HPLWR), a variant of the
SCWR, proposed by the GIF’s European partners. Like conventional BWR and PWR systems, all SCWRs
use light water as both coolant and moderator. Unlike these conventional counterparts, however,
the SCWR concepts all operate at pressures above the critical point of water. Water at temperatures
and pressures above this point (𝑇 = 373.9 ∘C, 𝑝 = 22.06MPa) is referred to as supercritical. The
use of supercritical water as a working fluid allows for a greater range of operating temperatures
than in BWR and PWR systems. In addition, SCWR systems can be much more efficient than their
previous generation counterparts, offering thermal efficiencies of 44% or higher, compared to 35%
for the current reactors. [5] Other benefits include the possibility for smaller reactor containments and
smaller turbine systems, lowering the overal cost of the reactor and thereby allowing for cheaper power
generation.

1.2. Overview of the High Performance Light Water Reactor
The HPLWR is one of the proposed designs for the SCWR concept. Unique to this design is the con-
figuration of the core, illustrated in figure 1.1. It features three-stage coolant heat-up, with mixing
chambers between the stages ensuring a homogeneous temperature distribution in the coolant. This
three pass design was first proposed by Schulenberg et al. [6], after finding that heating the fluid up
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2 1. Introduction

in one pass would cause the formation of so called hot spots – locally exceeding the temperature limits
of the core internals. Mixing the coolant in between the heating zones prevents it from forming hot
spots and damaging the core.

Figure 1.1: Diagram of the coolant flow in the three pass HPLWR
core. Mixing chambers are located between every heating stage.
[3]

The HPLWR is based on the SCWR concept,
an overview of which is shown in figure 1.2.
The coolant flows into the core at the bot-
tom of the reactor pressure vessel, where it
then undergoes the three-stage heating pro-
cess shown in figure 1.1. The coolant flows
upward through the evaporator stage, heat-
ing up to about 390 ∘C. Then, it flows down-
wards through the first and upwards again
through the second superheater stage, where
the coolant heats up to about 435 ∘C and 500 ∘C
respectively. During the heating process, the
coolant passes the supercritical point and ex-
pands significantly. In the natural convection
driven design, it then flows upwards through
a riser, placed atop the core, not displayed in
figure 1.2. The coolant is then led through the
turbine system, where the final product, elec-
trical power, is generated. As a final stage, a
condenser extracts excess heat, returning the
coolant to the desired inlet temperature before
sending it back into the core.

The HPLWR operates at a constant pressure of 25 MPa and at temperatures ranging from 280 ∘C at
the inlet to 500 ∘C at the outlet. This high outlet temperature is possible because it is no longer limited
by the vapour-liquid equilibrium, but instead by the material temperature limits. As the water reaches
the pseudo-critical temperature (𝑇 = 384.9 ∘C [1]), the specific heat capacity increases dramatically
(see section 1.3). This allows the coolant to carry much greater amounts of heat to the turbines for a
certain increase in temperature. As a result of the high outlet temperature, the thermal efficiency of
the HPLWR is estimated to be 45%. [3]

In line with the goals adopted by the GIF, the natural convection HPLWR also features improved
safety. In a conventional PWR or BWR, the coolant circulation is driven by pumps. Power outages or
other technical failures in such pumps can cause them to stop functioning, halting the flow of coolant
through the core. In the wrong circumstances, such a failure can result in a core meltdown, with
catastrophic consequences. To avoid these situations, ongoing research is being done into systems
that do not rely on pumps for the circulation of their coolant.

The HPLWR variant under investigation in this thesis is one of these systems, as it relies on natural
convection to drive the coolant circulation. With natural convection driving the coolant flow, the risk of
pump failure is eliminated, making the reactor extra safe in emergency situations. Of course, in case
of other control issues, pumps are still in place as a back-up device, but they are no longer necessary
during operation.

Natural convection arises as a result of extreme density differences within the loop. As is customary
for natural circulation driven systems, a riser is placed on top of the core, through which the coolant
travels after being heated. A downcomer beside the core allows cooler water to flow downwards.
In existing natural convection driven systems, such as the Economic Simplified Boiling Water Reactor
(ESBWR), the density difference between liquid water and steam is used to drive the circulation. The
colder water in the downcomer is much denser than the steam-water mixture in the riser, causing a
gravitational pressure drop. The riser enhances this effect. In the natural convection HPLWR, however,
no phase transition takes place. Instead, the design exploits the density difference between water
below and above the pseudo-critical point. As the temperature increases from 280 ∘C to 500 ∘C, the
density decreases from about 780 kg/m to about 90 kg/m (see figure 1.3). The supercritical water
in the riser is much less dense than the subcritical water in the downcomer, and the resulting pressure
drop is sufficient to support the circulation
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Figure 1.2: Schematic overview of the SCWR concept. In the natural convection driven HPLWR, a riser is present on top of the
core. (Not shown in figure) [5]
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Figure 1.3: Density of water at a pressure of 25 MPa. Between the operating temperatures of the HPLWR ( ∘ – ∘ ), the
density decreases from about 780 kg/m to about 90 kg/m [3]

Figure 1.4: Phase diagram of water. The dashed black line shows the operating range of the HPLWR, showing the phase change
from liquid to supercritical water as temperature rises. [1]
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Figure 1.5: Properties of water around the pseudo-critical point. The dashed black lines show the operating range of the
HPLWR. [7]

1.3. Supercritical water and the pseudo-critical point
Fluids can exist in various phases, a diagram of which has been provided in figure 1.4 for water. Besides
the commonly known solid, liquid, and vapour phases, many other phases exist. One of these is the
supercritical phase. Fluids are considered supercritical when both their temperature and their pressure
lie above the critical point, which for water lies at 𝑇 = 373.946 ∘C, 𝑝 = 22.0640MPa.

Figure 1.6: Properties of water at the pseudo-
critical point. [8]

Property Value

𝑇 384.9 ∘C
ℎ 2.1529 ⋅ 10 J/kg
𝜌 316.82 kg/m
𝜐 3.1564 ⋅ 10 m /kg
𝜇 4.2797 ⋅ 10 Pa⋅s

Several properties of water, such as the density, viscos-
ity, and specific heat capacity, exhibit highly non-linear be-
haviour around this point, as shown in figure 1.5. Most no-
tably, the density drops significantly, as figure 1.3 clearly
shows. For reasons that will become clear in chapter 2, the
pseudo-critical point is used as a reference point in this the-
sis. Table 1.6 lists various relevant properties of water at the
pseudo-critical point. As the water heats up even more, it
reaches the pseudo-critical point at 𝑇 = 384.9 ∘C. This point
is defined as the temperature at which water reaches its max-
imum specific heat capacity.

1.4. Stability
The stability of a system is determined by its response to a perturbation. If the system responds by
returning to the configuration it was in before the perturbation occurred, it is considered stable. On
the other hand, if the perturbation grows over time, the system is said to be unstable, which may have
undesirable effects. Figure 1.7 shows an example of the time development of perturbations in stable
and unstable systems. In 2009, Ortega Gómez [3] described various types of instabilities for SCWR
type systems. Dynamic instabilities were distinguished from static instabilities, as proposed by Bouré
et al. [9]. Static instabilities can be explained from the steady-state equations governing the system,
while dynamic instabilities follow from feedback mechanisms in the transient behaviour.

Van Bragt [10] showed that in natural circulation BWR systems, two types of dynamic instabilitie
were present. Both these types are generally caused by local density differences and are often referred
to as Density Wave Oscillations (DWO). While the BWR exhibits a phase change between liquid and
vapour that causes a large density difference within the loop, SCWR systems are considered single-
phase. However, since a similar density drop does occur in SCWRs, due to the coolant passing the
pseudo-critical point, it is presumed that similar DWO instabilities may be present within the supercritical
systems. One of the two identified types of instabilities is the Type-I dynamic instability, which oscillates
with low frequencies, and is caused by the gravitational pressure drop in the system. The other type
of instability is the Type-II dynamic instability, and is of higher frequency. The Type-II instability is
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Figure 1.7: Example of the time development of a stable oscillation, on the left, and an unstable oscillation, on the right. [7]

Figure 1.8: Mass flow rate to heating power characteristic of the HPLWR at a fixed inlet temperature. The dashed black lines
borders the Ledinegg unstable region.

instead caused by frictional pressure drops [10]. Krijger found the Type-II instabilities in the HPLWR
to have frequencies of around 0.1 Hz [1].

The static instabilities in two-phase flows were divided up into three different types by Bouré et.
al. [9]; fundamental static instabilities, fundamental relaxation instabilities, and compound relaxation
instabilities. Ledinegg instabilities are a type of fundamental static instability, and are the only static
instability analysed in this thesis. A Ledinegg instability occurs when the flow undergoes an abrupt,
large amplitude change to a new, stable operating condition [9]. In pump-driven systems, these
instabilities may occur when the pressure to mass flow rate characteristic of the pump intersects at
multiple points with the pressure characteristic of the water loop. In such cases, unstable mass flow
rates may suddenly change to another mass flow rate, which may or may not be stable [1, 3]. Since
the HPLWR is not driven by a pump but by natural convection, another means of determining Ledinegg
unstable conditions must be used. Krijger was able to develop a numerical method of finding Ledinegg
instabilities in his model of a supercritical water loop driven by natural convection. It makes use of a
property of the mass flow rate to heating power characteristic of the loop. As figure 1.8 shows, more
than one mass flow rate is possible for certain heating powers. Therefore, if the heating power is within
the range where multiple flow rates are possible, the flow rate may abruptly switch to one of the other
possible values — a Ledinegg instability.
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1.5. Literature research
The Nuclear Energy and Radiation Applications department of Delft University of Technology has been
active in the study of two-phase loops driven by natural circulation for many decades. Among others,
Van Bragt analysed the dynamics of BWRs in 1998. The analysis of single-phases systems, however,
has not been the subject of studies as much.

In 2004, Lomperski et al. [11] performed experimental research on supercritical CO . They used CO
because it reaches the supercritical state at lower temperature and pressure than water, while showing
similar supercritical characteristics. Lomperski et al. found no flow instabilities, in disagreement with
later findings by Chatoorgoon in 2005 [12] and Jain in 2008 [13], who both performed computational
analyses.

At Delft University of Technology, an experimental setup for the investigation of the stability char-
acteristics of supercritical fluid loops was built. The Delft Light Water Reactor Facility — DeLight —
used Freon R23 as its coolant, which, like CO , reaches supercriticality at lower temperature and pres-
sure than water. T’Joen and Rohde [14] performed experimental research on the DeLight facility in
2012, and Kam [15] and Spoelstra [7] analysed the setup numerically in 2011 and 2012 respectively.
The numerical research only partially agreed with the DeLight experiment. In 2013, Schenderling [16]
augmented Spoelstra’s numerical model with thermal inertia, uncovering the significance of the core
wall in the stability of the setup. Schenderling also found better agreement with the right hand side of
the NSB, showing the same upward trend in his results, as showin in figure 1.9.

Figure 1.9: Comparison of Spoelstra’s and Schenderling’s numerical results to the experimental results of T’Joen and Rohde. [16]

In 2009, Ortega Gómez [3] investigated the stability of the HPLWR core under forced circulation,
and found no Ledinegg instabilities, flow maldistributions or pressure drop oscillations at steady state
under normal operating conditions for the HPLWR. Density wave oscillations were shown to be the
most important type of instability present in the HPLWR.

In 2013, Krijger [1] performed a simpler numerical analysis on the natural circulation driven su-
percritical water loop, breaking the system down into two models with four or five nodes, based on
research done by Guido et al. [17]. His analysis did not take core wall thermal inertia or neutronic-
thermal-hydraulic coupling into account. Krijger derived heat, mass, and momentum balances for the
loop and investigated the stability by linearising these equations, reducing the complicated system to
an eigenvalue problem. Krijger established a reference case, and performed a ceteris paribus para-
metric study on various design decisions of the supercritical water loop. It was found that increasing
the length of the riser has a destabilising effect on the system, whereas increasing the volume of the
buffer vessel he included in the model improved the system’s stability. In 2014, Lippens elaborated
on Krijger’s work with the inclusion of core wall thermal inertia, also extending the reference case.
Lippens found that, while the inclusion of the thermal inertia effect improved stability, the stabilising
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effect is reduced as the wall cross-sectional area is increased. In addition, agreement with T’Joen’s
and Rohde’s experiments with Freon R23 improved. Figures 1.10 and 1.11 display stability maps from
Krijger’s and Lippens’ numerical models respectively.

Figure 1.10: Stability map of the reference case established by Krijger [1]. This model does not take into account core wall
thermal inertia or neutronic-thermal-hydraulic coupling.

Figure 1.11: Stability map of the reference case established by Lippens [2]. This model does not take into account neutronic-
thermal-hydraulic coupling, but does include core wall thermal inertia.

1.6. Thesis outline
This thesis further augments Lippens’ extension of Krijger’s work through the addition of neutronic-
thermal-hydraulic coupling and fuel rod heat transfer modelling. The research follows the same struc-
ture as Krijger’s and Lippens’ work.

In the following chapter, the entirety of the model used in this research will be explained. This
includes an overview of the general structure of the model, and several equations used to model
various coolant properties from the equation of state. The balance equations governing the system
will be presented, and subsequently made dimensionless and linearised. The addition of neutronic-
thermal-hydraulic coupling and fuel rod heat transfer is emphasised, while the equations that remain
unchanged from Lippens’ and Krijger’s formulations are not derived separately again. The unchanged
equations are presented in their final forms in Appendix B, but for their derivations, we refer the reader
to Krijger’s and Lippens’ original works.
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Chapter 3 covers the methods used to analyse the stability from the equations posited in chapter
2, presenting the problem as a generalised eigenvalue problem. Chapter 4 then presents the compu-
tational algorithm used to solve the eigenvalue problem, along with further methods for more in-depth
analysis of the system’s characteristics. These include a resonant frequency analysis and a parametric
ceteris paribus study.

Chapter 5 presents the results of the performed analysis. A reference case is first presented,
followed by a parametric study on the influence of the coefficients associated with the fuel heat transfer
model and the density reactivity feedback as well as the fuel enrichment. Ledinegg instabilities are also
briefly touched upon.

Finally, chapter 6 offers conclusions drawn from the stability analyses and some recommendations
for further research.





2
Mathematical Model

2.1. Overview
The model used for this thesis is an adaptation of the model used by Lippens [2], who in turn adapted
Krijger’s model [1]. The basis of the model was developed by Rohde, taking a simplified approach
as used by Guido et al. [17] for a boiling water channel. The model Krijger developed simulated
a supercritical water loop driven by natural convection, without the inclusion of core wall thermal
inertia or neutronic-thermal-hydraulic coupling. Lippens implemented core wall thermal inertia in his
adaptation. This thesis extends that model to include neutronics and thermal-hydraulic coupling as
well.

As with Guido’s model, this model simplifies the core significantly by reducing it to a single channel.
This channel has a specified and constant flow cross-sectional area 𝐴 and hydraulic diameter 𝐷 , and
these design parameters remain the same in the riser atop the core as well. After passing through the
riser, the coolant travels through a system of turbines and heat exchangers that cool the coolant down
to the specified inlet temperature. The entirety of the turbine and heat exchanger system is represented
by a single buffer vessel. After the coolant has passed through the buffer vessel, a downcomer leads
it back to the core. Whereas the downcomer in the HPLWR is annular, surrounding the core, it too
is simplified to a single channel with the same geometry as the riser and core. Since the riser and
downcomer are assumed to be perfectly isolated, the buffer vessel is the only part where heat leaves
the system.

The geometry of the channel is further shown in figure 2.1. The cladding that surrounds the fuel is
referred to as the channel wall, as was done by Lippens in his preceding work.

Figure 2.1: Top-down view of the channel geometry. The coolant
( ) flows around the fuel rod ( , and ). is the channel wall
– the cladding surrounding the fuel. The thin layer of gas ( )
present in fuel rods is neglected in this research. The fuel itself
is labeled . Not to scale.

The model represents each of these parts –
core, riser, buffer vessel and downcomer – as
nodes, with no further position-dependencies in-
side. Each node therefore can be characterised
by its respective state variables, which may
be time-dependent but not position-dependent.
Two more nodes that interact with the heat ex-
change to the coolant, but not the flow of the
coolant itself, are also included in the model.
These are the core wall node, in which the ther-
mal inertia is modelled, and the fuel node, which
accounts for heat transfer from the fuel to the
wall.

Because the physical properties of the coolant
behave in a highly non-linear fashion around the
pseudo-critical point, modelling the core as a sin-
gle node is no longer a good approximation if that
point is reached within the core. For that rea-
son, the core is split up into two nodes, with the

11
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Figure 2.2: Overview of the supercritical water loop model. The left figure shows the low-heating model, with the high-heating
model to the right. The coolant flows in the clockwise direction. Node labels: 0: Core node 0; 1: Core node 1; w0: Wall node
0; w1: Wall node 1; : Fuel; : Riser; : Buffer vessel; : Downcomer

boundary defined such that it lies at the position where the coolant reaches pseudo-critical enthalpy
(ℎ = 2.15⋅10 J/kg). The nodes therefore have variable lengths, that add up to the same core length
found in the single node model. If the pseudo-critical point is not reached in the core, the secondary
node is unnecessary and the single node model is used. The wall node is split up in the same fash-
ion, so that the lengths of the wall nodes equal the length of their corresponding core nodes. Heat
exchange through axial thermal conduction between the two wall nodes is also taken into account.
The fuel node is not split up into two parts. Whereas, realistically, the heat generation in the fuel is
definitely position dependent, this model is slightly simplified.

The model with a single core node is referred to as the low-heating model, as the coolant is not
heated enough to reach pseudo-critical enthalphy. The model in which the coolant does pass the
pseudo-critical point is called the high-heating model.

All these nodes put together – six or eight, depending on the model – represent the entire system.
They are denoted 0 and 1 for the core nodes, w0 and w1 for the corresponding wall nodes, 𝐹 for the
the fuel, 𝑅 for the riser, 𝐵 for the buffer vessel, and 𝐷 for the downcomer. The resulting models are
graphically represented in figure 2.2. Note that the mixing chambers present in the HPLWR design are
not included in the model. Since the state of the coolant is assumed to be position-independent – and
therefore perfectly homogeneous – no intermediate homogenisation is necessary.

2.2. Modelling of heat transfer and water properties
2.2.1. Equation of state
If pressure is constant, the equation of state allows us to write the specific volume of the coolant as
a direct function of the enthalphy. Because the system does exhibit slight pressure changes, due to
gravitational and frictional effects, a simplification is necessary. By neglecting the gravitational and
frictional pressure drops for the purpose of the equation of state, a constant system pressure of 25
MPa can be used. This simplification is important, because it allows us to exchange all densities and
specific volumes in the balances of sections 2.3 through 2.6 for the enthalpy, thereby eliminating some
variables.

Krijger [1] approximated the equation of state using a two-region approach, using pseudo-critical
enthalpy as a border between the two. At enthalpies below the pseudo-critical point, the density
is assumed to decrease linearly with enthalpy. Above the pseudo-critical point, the specific volume
is approximated as a linearly increasing function of enthalpy. Krijger found the gradients of these
linear functions to be 𝐶 = −4.7877 ⋅ 10 and 𝐶 = 0.80 ⋅ 10 respectively, leading to the following
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Figure 2.3: Approximation of density (left) and specific volume (right). [1] The red line represents data from NIST. [8]

approximation for the equation of state.

𝜐 = { ( ) (𝐻 < ℎ )
𝜐 + 𝐶 (𝐻 − ℎ ) (𝐻 ≥ ℎ ) (2.1)

The equation of state is graphically represented in figure 2.3.

2.2.2. Temperature and thermal conductivity
Lippens [2] added approximations for the temperature and thermal conductivity of the coolant as
functions of enthalpy. For the temperature approximation, a quadratic approximation was used in both
the low and high-enthalpy regions, because of the ease of linearising whilst maintaining the necessary
accuracy. Lippens paid specific attention to the continuity of both the approximation and its slope at
the pseudo-critical point. The approximation can be expressed by a single equation, shown graphically
in figure 2.4,

𝑇 = 𝛼 (𝐻 − ℎ ) + 1
𝑐 ,

(𝐻 − ℎ ) + 𝑇 (2.2)

in which the subscript 𝑖 takes a value of either 0 or 1, depending on the region in the enthalpy domain.
The coefficients of the quadratic term were found to be 𝛼 = −1.1 ⋅ 10 and 𝛼 = 1.0 ⋅ 10 in the
low and high-enthalpy regions respectively. The subscript 𝑝𝑐 denotes the value at the pseudo-critical
point. This equation can also be used to calculate the enthalpy at a given temperature.

The thermal conductivity is approximated by a linear function at low enthalpy, and by an exponential
function in the high-enthalpy region. Once again, Lippens paid specific attention to ensure that the
approximation and its slope are continuous at the pseudo-critical point. Additionally, the coefficients
of the linear part were chosen such that the approximation roughly equals the experimental data in a
large part of the low-enthalpy region, as shown in figure 2.5.

𝜆 = { −𝛽 𝐻 + 𝜆 , , (𝐻 < ℎ )
𝜆 𝑒 + 𝜆 , , (𝐻 ≥ ℎ ) (2.3)

This equation uses the following values for the constants, as determined by Lippens:
𝛽 = −3.2711 ⋅ 10 𝛽 = 1.3694 ⋅ 10

𝜆 , , = 1.0133 𝜆 , , = 7.0154 ⋅ 10 𝜆 = 4.5553
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Figure 2.4: Approximation of temperature. The red dotted line represents data from NIST [8]. Figure adapted from Lippens [2].

Figure 2.5: Approximation of thermal conductivity. The red dotted line represents data from NIST [8]. Figure adapted from
Lippens [2].
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2.2.3. Fuel rod heat transfer
The transfer of heat from the fuel to the coolant occurs by conduction through the fuel and the channel
wall. In many systems, including the HPLWR, a thin gas layer – the so-called gap – is present between
the fuel and the channel wall. The heat transfer can therefore be described by three different diffusion
equations, which results in a complicated heat transfer function. Taking into account thermal inertia
makes this system even more complex. Therefore, three assumptions have been made to simplify the
system.

Firstly, the gap has been neglected, for the sake of simplicity. In reality, this gap is a very poor
conductor, meaning the temperature of the fuel is higher than the model suggests.

The second assumption is that the heat transfer function, even though it concerns three different
materials, is essentially determined by one time constant. Van Bragt [10] made this assumption in his
BWR model, and it was used by Spoelstra [7] in his numerical analysis of the HPLWR. This assumption
allows us to write the heat transfer function as a first order process, as described in section 2.3.1.

The third assumption is that the heat transfer from the fuel happens entirely within the fuel, and
the thermal inertia happens entirely in the wall. This allows us to simplify the heat transfer and thermal
inertia to a series of processes instead of two parallel processes. We can justify this simplification by
constructing a heat balance across the border between fuel and wall and analysing the consequences.

𝜌 𝑐 , 𝑉
d𝑇
d𝑡 = −𝜌 𝑐 , 𝑉

d𝑇
d𝑡 + 𝑄 𝑉 (2.4)

The final term in this equation describes the heating in the fuel, with the other two terms describing
the time derivative of the energy content of the fuel and wall respectively. We can rewrite this equation
to obtain an expression for the change in temperature of the fuel in response to temperature changes
in the wall.

d𝑇
d𝑡 = −

𝜌 𝑐 , 𝑉
𝜌 𝑐 , 𝑉

d𝑇
d𝑡 +

1
𝜌 𝑐 ,

𝑄 (2.5)

Since the densities and heat capacities of the wall and fuel are very similar, but the fuel volume is
approximately ten times larger than that of the wall, this is approximately equal to

d𝑇
d𝑡 = −

1
10

d𝑇
d𝑡 +

1
𝜌 𝑐 ,

𝑄 (2.6)

showing that the fuel temperature is barely influenced by temperature changes in the wall. It is
therefore a reasonable assumption that the fuel heat transfer and wall thermal inertia are two uncoupled
processes.

2.3. Balances
Krijger derived a series of transport balance equations that together describe the behaviour of the
original 4 or 5-node model. Mass and heat transport balances were derived separately for each node,
while the momentum balance was integrated over the entire loop. Lippens subsequently augmented the
system with the core wall nodes, explicitly affecting heat transport but not the mass and momentum
balances. The mass and momentum balances derived by Krijger and the heat balances derived by
Lippens are summarised in Appendix B. By performing some substitutions and discarding variables that
do not aid in determining the solution, Krijger was able to reduce the system of equations to a form
with equally as many unknown variables. This allows for a unique solution to be found.

2.3.1. Low heating model
In Krijger’s model, the heat is supplied directly and constantly to the core. Lippens adjusted this model
for the inclusion of thermal inertia by instead supplying the heat directly and constantly to the wall,
which then fed the heat into the core by conduction. Lippens’ heat balance for the wall node reads:

Ew∶ 𝜌 𝑐 , 𝐴 𝐿 dd𝑡𝑇 = 𝑄 −
𝑁𝑢 𝜆
𝐷 𝑃 𝐿(𝑇 − 𝑇 ) (2.7)

Here, Ew signifies that this is an Energy balance, concerning the wall node, and that it is one of the
governing equations of the system.
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This balance is derived from the constant heating term 𝑄 adding energy to the wall and the remain-
ing term removing energy by heat transfer to the coolant. Since the heating is no longer constant in
the neutronics model, 𝑄 must be replaced by a term that accounts for heat transfer from the fuel to
the channel wall.

The heat transfer model used is that used by Spoelstra [7] in his numerical analysis of the HPLWR,
and can be summarised in one equation. Van Bragt [10] assumed that the transfer function is governed
by a single time constant, so that the response to a fluctuation in power of the heat flux to the channel
wall can be described as a first order process, with time constant 𝜏:

EF∶ 𝜏 𝜕𝜕𝑡
𝑄 (𝑡)
𝑄

+ 𝑄 (𝑡) − 𝑄
𝑄

= 𝑄(𝑡) − 𝑄
𝑄

(2.8)

Here, 𝑄 and 𝑄 indicate steady-state values of their respective variables. The time constant is ap-
proximated by 𝜏 = 2–6 s, as used by Spoelstra for the HPLWR, and originally found by Van der Hagen [18]
for the BWR. 𝑄 is the heat flux density from the fuel to the wall, which we multiply by the surface
area of the wall to obtain 𝑄 , the total heat flowing from the fuel to the wall.

We can then replace the variable 𝑄 from equation 2.7 with 𝑄 (𝑡) to simulate heat being fed to the
wall from the fuel. This results in the following equation for the heat balance of the wall node:

Ew∶ 𝜌 𝑐 , 𝐴 𝐿 dd𝑡𝑇 = 𝑄 −
𝑁𝑢 𝜆
𝐷 𝑃 𝐿(𝑇 − 𝑇 ) (2.9)

To complete this system, we need an expression for 𝑄(𝑡). This can be found by the introduction of
neutronics. The volumetric heat generation by nuclear fission is:

𝑄 (𝑡) = Σ 𝐸 𝑣 𝑛(𝑡) (2.10)

Obviously, to obtain the total heat production, we just need to multiply by the volume of the fuel:
𝑄(𝑡) = 𝑄 (𝑡)𝑉 . The macroscopic cross section for thermal fission, Σ , is the product of the microscopic
fission cross section, 𝜎 , and the number density of fissile U-235 in the UO fuel, 𝑁U-235. For U-235,
𝜎 = 582.6b. The number density is found as a function of the enrichment 𝜀:

𝑀U =
𝑀U-235𝑀U-238

𝜀𝑀U-238 + (1 − 𝜀)𝑀U-235
(2.11)

𝑀UO = 𝑀U +𝑀O (2.12)

𝑁U-235 =
𝜌UO U

UO
𝜀

𝑀U-235
𝑁 (2.13)

Σ = 𝑁U-235 ⋅ 𝜎 (2.14)

Here, 𝑁 is the Avogadro constant, 𝜌UO the density of UO , and 𝑀X the molar mass of X.
The neutron population 𝑛(𝑡) is time-dependent, and is modelled using the six-group point kinetics

equations:

n∶ d
d𝑡𝑛(𝑡) =

ℛ(𝑡) − 𝛽
Λ 𝑛(𝑡) +∑𝜆 𝐶 (𝑡) (2.15)

C ∶ d
d𝑡𝐶 (𝑡) =

𝛽
Λ 𝑛(𝑡) − 𝜆 𝐶 (𝑡), for 𝑖 = 1…6 (2.16)

Here, ℛ is the reactivity — the relative deviation from criticality, 𝛽 the delayed neutron fraction, Λ
the mean generation time, 𝜆 the precursor decay constant, and 𝐶 the precursor concentration. The
values for 𝛽 and 𝜆 used in this research can be found in appendix C. Equation 2.15 is not linear, and
will be linearised in section 2.6 to enable linear analysis. The reactivity is the source of neutronic-
thermal-hydraulic coupling, because it is proportional to the coolant density:

ℛ = 𝛼 (𝜌 (𝑡) − 𝜌 ) (2.17)
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In this equation, 𝜌 is the steady-state average coolant density in the core. The density reactivity
feedback coefficient is defined as 𝛼 = ℛ . Schlagenhaufer et al. [19] found a relation for 𝛼 for the
HPLWR:

𝛼 = −1.424 ⋅ 10 𝜌 (𝑡) + 4.236 ⋅ 10 (2.18)

In this thesis, the value of 𝜌 was not treated as time-dependent, but instead a constant value was
assigned at the start of each calculation. This was done because the fluctuations in coolant density are
small enough not to affect the reactivity coefficient significantly, and assuming constant density greatly
simplifies the calculations. In addition, treating 𝜌 as time-dependent introduces second-order effects,
which would be lost in linearisation. Therefore, this simplification does not greatly affect the accuracy
of the model. For the sake of readability, equations 2.18 and 2.17 are not yet substituted into equation
2.15.

2.3.2. High heating model
In the high heating model, the wall is split up into two nodes. Including heat exchange between the
wall nodes, Lippens’ balances read:

Ew0∶ 𝜌 𝑐 , 𝐴
d
d𝑡𝐿 𝑇 , = 𝑄

𝐿
𝐿 −

𝑁𝑢 𝜆
𝐷 𝑃 𝐿 (𝑇 , − 𝑇 )

+ 2𝜆𝐿 𝐴 (𝑇 , − 𝑇 , ) (2.19)

Ew1∶ 𝜌 𝑐 , 𝐴
d
d𝑡𝐿 𝑇 , = 𝑄

𝐿
𝐿 −

𝑁𝑢 𝜆
𝐷 𝑃 𝐿 (𝑇 , − 𝑇 )

− 2𝜆𝐿 𝐴 (𝑇 , − 𝑇 , ) (2.20)

As in the low heating model, we can simply replace 𝑄 by 𝑄 to obtain the new balances. The
balance for the fuel does not change.

In the high heating model, the density of the coolant in node 0 is no longer time-dependent.
It instead has a constant average density of 𝜌 = (𝜌 + 𝜌 ). The density in node 1 is still time-
dependent. This requires us to model the density reactivity feedback slightly differently from the low
heating model. The average core density is an average of the densities of the two nodes, weighted
by their respective lengths. Using the average core density instead of 𝜌 in equation 2.17 leads to the
following derivation for the reactivity:

𝜌 (𝑡) = 1
𝐿(𝐿 𝜌 + 𝐿 𝜌 (𝑡)) (2.21)

ℛ = 𝛼 (𝜌 (𝑡) − 𝜌 )

= 𝛼 (1𝐿(𝐿 𝜌 + 𝐿 𝜌 (𝑡)) − 1𝐿(𝐿 𝜌 + 𝐿 𝜌 ))

= 𝛼 (𝐿𝐿 (𝜌 (𝑡) − 𝜌 )) (2.22)

We then isolate the factor and include it in equation 2.25 instead, to more clearly show the depen-
dence of the neutron concentration on the length of the individual core nodes.

The reactivity and reactivity coefficient are now dependent only on 𝜌 , and once again are not
substituted into equation 2.25. The six precursor equations C and the fuel heat transfer equation EF
remain unchanged from the low heating model. This leads to the following equations for the high
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heating model:

Ew0∶ 𝜌 𝑐 , 𝐴
d
d𝑡𝐿 𝑇 , = 𝑄

𝐿
𝐿 −

𝑁𝑢 𝜆
𝐷 𝑃 𝐿 (𝑇 , − 𝑇 )

+ 2𝜆𝐿 𝐴 (𝑇 , − 𝑇 , ) (2.23)

Ew1∶ 𝜌 𝑐 , 𝐴
d
d𝑡𝐿 𝑇 , = 𝑄

𝐿
𝐿 −

𝑁𝑢 𝜆
𝐷 𝑃 𝐿 (𝑇 , − 𝑇 )

− 2𝜆𝐿 𝐴 (𝑇 , − 𝑇 , ) (2.24)

n∶ d
d𝑡𝑛(𝑡) =

ℛ(𝑡) − 𝛽
Λ 𝑛(𝑡) +∑𝜆 𝐶 (𝑡) (2.25)

ℛ = 𝛼 (𝜌 (𝑡) − 𝜌 ) (2.26)

𝛼 = −1.424 ⋅ 10 𝜌 (𝑡) + 4.236 ⋅ 10 (2.27)

Along with the balances derived by Krijger and Lippens, shown in Appendix B, these balances
describe the behaviour of the supercritical water loop model.

2.4. Dimensionless variables
In order to analyse the behaviour of the system in such a way that it is easy to compare it to other
system configurations, the entire system of equations is made dimensionless. Krijger and Lippens each
introduced dimensionless variables in order to construct the dimensionless balances. For a certain
parameter 𝑋, its steady-state equivalent is denoted 𝑋, a perturbation as �̆�, and the dimensionless
variable 𝑋. The dimensionless variables adopted from Krijger and Lippens are shown in table 2.1. To
ease linearisation, Lippens also introduced the adjusted Nusselt number:

𝑁𝑢 = 𝑁𝑢𝜆 . (2.28)

This change requires a frequently occuring factor, 𝑁𝑢𝜆 , to be replaced by the relation 𝑁𝑢𝜆 = 𝑁𝑢𝜆 . .
Because the adjusted Nusselt number is no longer dimensionless, its dimensionless version is also

introduced and included in table 2.1. Several new dimensionless variables were also introduced. These
are displayed in table 2.2.

Table 2.1: Dimensionless variables adopted from Krijger (left
column) and Lippens (right column).

𝐿 = Length, steady
state

𝑇 = ( , ) 𝑇 Temperature

̆𝑙 = ̆ Length,
perturbation

�̆� = ( , ) �̆� Temperature,
perturbation

𝑡 = Time 𝛼 ( , ) 𝛼
Quadratic tempera-
ture approximation
coefficient

𝑊 = = 1 Mass flow, steady
state 𝑐 , = ,

,
Specific heat ca-
pacity

�̆� = ̆ Mass flow,
perturbation

𝑃 =
Contact perimeter
between channel
and wall

𝐻 = Specific enthalpy,
steady state

𝜆 =
,

Wall thermal con-
ductivity

ℎ̆ = ̆ Specific enthalpy,
perturbation

𝐴 = Wall cross-sectional
area



2.4. Dimensionless variables 19

Table 2.1: (continued)

𝜌 = 𝜌 𝜐 Density, steady
state 𝜆 =

,
Coolant fluid ther-
mal conductivity

�̆� = �̆� 𝜐 Density,
perturbation 𝛽 =

,

Coolant thermal
conductivity linear
approximation
coefficient

𝐷 = Hydraulic diameter 𝛽 = 𝛽
Coolant thermal
conductivity expo-
nential approxima-
tion coefficient

𝑉 = Buffer vessel vol-
ume, steady state

𝑁𝑢 = ̂
.
,

Adjusted Nusselt
number

Table 2.2: New dimensionless variables, introduced by the current
author.

𝑛 = 𝑛𝐴𝐿 Neutron concentra-
tion, steady state 𝐶 = 𝐶 𝐴𝐿

Precursor con-
centration, steady
state

�̆� = �̆�𝐴𝐿 Neutron concentra-
tion, perturbation �̆� = �̆� 𝐴𝐿

Precursor con-
centration,
perturbation

𝑄 = Channel wall heat
flux, steady state

𝜆 = 𝜆 Decay constant

�̆� = ̆ Channel wall heat
flux, perturbation

Λ = Λ Neutron generation
time

𝛼 = 𝛼 𝜌
Density reactivity
feedback coeffi-
cient

Σ = Σ 𝐿 Macroscopic neu-
tron cross section

𝑣 = 𝑣 Neutron velocity 𝐸 = 𝐸 Energy released
per fission event

𝜏 = 𝜏 Fuel heat transfer
time constant

𝑉 = Fuel volume
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2.5. Dimensionless balances
All new balances and equations need to be made dimensionless, and will be displayed in the following
two sections for the low and high heating models respectively. The dimensionless balances derived
by Krijger and Lippens can be found in Appendices B.3 and B.4. Any balance not mentioned in the
following two sections is unchanged from Lippens’ thesis and is adopted as such. Since Lippens adopted
several balances from Krijger’s thesis without modification, many balances in this thesis do not differ
from those derived by Krijger.

2.5.1. Low heating model
The dimensionless balances for the low heating model are presented in this section. They are obtained
simply by substituting variables by their dimensionless counterparts. In addition, the temperature 𝑇 in
the Ew balance is substituted by the quadratic approximation of section 2.2.2. (See Lippens [2]). The
expression for 𝑄(𝑡), equation 2.10, is also substituted into the EF balance. This results in the following
dimensionless balance equations:

Ew∶ 𝜌 𝑐 , 𝐴
d
d𝑡𝑇 = 𝑄 − 𝑁𝑢 𝜆 .

𝑃
𝐷 (𝑇 − 𝑇 ⋯

⋯− 𝛼 (𝐻 − ℎ ) − 1
𝑐 ,

(𝐻 − ℎ )) (2.29)

EF∶ 𝜏 𝜕𝜕𝑡𝑄 = Σ 𝐸 𝑉 𝑣 𝑛 − 𝑄 (2.30)

n∶ d
d𝑡𝑛 =

ℛ − 𝛽
Λ 𝑛 +∑𝜆 𝐶 (2.31)

C ∶ d
d𝑡𝐶 = 𝛽

Λ 𝑛 − 𝜆 𝐶 (2.32)

2.5.2. High heating model
The same process as applied in the previous section is used for the high heating model. Once again,
the equations C and EF do not differ from those of the low heating model. The resulting dimensionless
equations are as follows:

Ew0∶ 𝜌 𝑐 , 𝐴 (1 − 𝐿 ) d
d𝑡𝑇 , − 𝜌 𝑐 , 𝐴 𝑇 ,

d
d𝑡𝐿 = 𝑄 − 𝐿 ⋯

⋯−𝑁𝑢 𝜆 .
𝑃 (1 − 𝐿 )

𝐷 (𝑇 , − 𝑇 − 𝛼 (𝐻 − ℎ ) ⋯

⋯ − 1
𝑐 ,

(𝐻 − ℎ )) + 2𝜆 𝐴 (𝑇 , − 𝑇 , ) (2.33)

Ew1∶ 𝜌 𝑐 , 𝐴 𝐿 d
d𝑡𝑇 , + 𝜌 𝑐 , 𝐴 𝑇 ,

d
d𝑡𝐿 = 𝑄 + 𝐿 ⋯

⋯−𝑁𝑢 𝜆 .
𝑃 𝐿
𝐷 (𝑇 , − 𝑇 − 𝛼 (𝐻 − ℎ ) ⋯

⋯ − 1
𝑐 ,

(𝐻 − ℎ )) − 2𝜆 𝐴 (𝑇 , − 𝑇 , ) (2.34)

n∶ d
d𝑡𝑛 =

𝐿 ℛ − 𝛽
Λ 𝑛 +∑𝜆 𝐶 (2.35)
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2.6. Linearised balances
2.6.1. Linearisation
In this thesis, the model is solved using linear methods. In order to use linear solving techniques, the
model equations must first be linearised. This is done by expressing each time-dependent variable as
the sum of its steady-state value and a small perturbation:

𝑋 = 𝑋 + �̆� (2.36)

Products of perturbations with eachother or with time derivatives of other perturbations are then
discarded, leaving only linear terms. Because we require the perturbations to be small, this simplifi-
cation does not drastically affect the accuracy of the model. After all, the products of perturbations
will be even smaller. Finally, the steady-state solutions are subtracted from both sides of the equa-
tions, leaving a system of 𝑛 first-order linear differential equations with 𝑛 variables. The following is
an example of this linearisation process:

𝑋𝑌 = (𝑋 + �̆�) (𝑌 + �̆�)
= 𝑋𝑌 + 𝑋�̆� + 𝑌�̆� + �̆��̆�
≈ 𝑋𝑌 + 𝑋�̆� + 𝑌�̆� (2.37)

The 𝑋𝑌 term is then subtracted. This method of linearisation also allows us to write equation 2.17
as

ℛ = 𝛼 �̆� (2.38)

and equation 2.8 as

𝜏 𝜕𝜕𝑡 �̆� − �̆� = �̆� (2.39)

Krijger and Lippens also provided linearisations of the properties modeled through the equation of
state through a first-order Taylor expansion. With 𝜌 linearised, we can easily substitute equation 2.38
into our n balance. The linearisations of all equations added or changed in this thesis are provided
in the following two sections for the low and high heating models respectively. In some of these
equations, the dimensionless pseudo phase change number appears, which will be further explained
in section 3.2. It is defined as

𝑁 ≡ 𝑄
𝑊ℎ

The balances that remain unchanged from Lippens’ work can be found in Appendices B.5 and B.6.

2.6.2. Low heating model
The linearised balances for the low heating model read:

Ew∶ 𝜌 𝑐 , 𝐴
d
d𝑡 �̆� = �̆� − 𝑁𝑢 𝜆

. 𝑃
𝐷 �̆� ⋯

⋯+ 12𝑁𝑢
𝑃
𝐷 (𝜆

.
(2𝛼 (𝐻 − ℎ ) + 1

𝑐 ,
) ⋯

⋯− 0.34𝜆
.
(𝑇 − 𝑇 )𝛽 )ℎ̆ (2.40)

EF∶ 𝜏 𝜕𝜕𝑡 �̆� = Σ 𝐸 𝑉 𝑣 �̆� − �̆� (2.41)

n∶ d
d𝑡 �̆� =

𝛼 𝑛𝐶 𝑁 ℎ 𝜐 ℎ̆ − 𝛽�̆�
Λ +∑𝜆 �̆� (2.42)

C ∶ d
d𝑡 �̆� = 𝛽

Λ �̆� − 𝜆 �̆� (2.43)
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2.6.3. High heating model
The linearised balances for the high heating model read:

Ew0∶ 𝜌 𝑐 , 𝐴 𝐿 d
d𝑡 �̆� , − 𝜌 𝑐 , 𝐴 𝑇 ,

d
d𝑡
̆𝑙 =

(1 − 𝐿 ) �̆� + (𝑁𝑢 𝜆
. 𝑃
𝐷 (𝑇 , − 𝑇 ) − 1) ̆𝑙 ⋯

⋯ − (𝑁𝑢 𝜆
. 𝑃 𝐿

𝐷 + 2𝜆 𝐴 ) �̆� , + 2𝜆 𝐴 �̆� , (2.44)

Ew1∶ 𝜌 𝑐 , 𝐴 𝐿 d
d𝑡 �̆� , + 𝜌 𝑐 , 𝐴 𝑇 ,

d
d𝑡
̆𝑙 =

𝐿 �̆� + (1 − 𝑁𝑢 𝜆
. 𝑃
𝐷 (𝑇 , − 𝑇 )) ̆𝑙 ⋯

⋯ + 𝑁𝑢
𝑃 𝐿
𝐷 ((2𝛼 (𝐻 − ℎ ) + 1

𝑐 ,
)𝜆

.
⋯

⋯+ 0.34 (𝑇 , − 𝑇 ) 𝜆
.
𝛽 𝜆 𝑒 ) ℎ̆ ⋯

⋯+ 2𝜆 𝐴 �̆� , − (𝑁𝑢 𝜆
. 𝑃 𝐿

𝐷 + 2𝜆 𝐴 ) �̆� , (2.45)

n∶ d
d𝑡 �̆� = −

𝐶 𝑁 ℎ 𝛼 𝐿 𝑛
𝜐 Λ𝑣

ℎ̆ − 𝛽Λ �̆� +∑𝜆 �̆� (2.46)



3
Method of Stability Investigation

To determine the stability of the system under certain operating conditions, a solution must be found
to the set of equations governing the system. The main reason for linearising these equations is the
ease of solving them. This chapter will describe how the solutions are found and what parts are of
interest. In addition, a way of determining and enforcing the operating conditions is presented.

3.1. Matrix equation
In chapter 2, we presented two different sets of equations for which solutions must be found. The
low heating model consists of 13 equations with 13 variables. In the high heating model, there are
16 equations with 16 variables. Since all equations are linear, first order differential equations, we can
write the sets of equations as:

𝐴 d
d𝑡 �⃗� = 𝐵�⃗� (3.1)

Here, �⃗� is a column vector containing the perturbed variables, 𝐵 is a matrix containing the coefficients
of the perturbed variables, and 𝐴 contains the coefficients of the perturbed variables’ time derivatives.
The matrices 𝐴 and 𝐵 are both square and equal in size; 13×13 in the low heating model and 16×16
in the high heating model. Because of their sizes, the matrices 𝐴 and 𝐵 are not displayed here, but
they can be found in Appendix A. Each linearised balance populates a row of the matrices, and each
column represents one of the perturbed variables.

The matrix equation has solutions of the form �⃗� = �⃗�𝑒 , in which the vector �⃗� contains the amplitude
and phase shift of the inital perturbation. The time-evolution of this solution depends on 𝜆. For
negative values of 𝜆, the perturbation will decay exponentially with time and die out. If 𝜆 is positive,
the perturbation will grow exponentially over time. Such exponential growth can cause perturbations
with large amplitudes in the system, potentially with dramatic consequences. These situations are
unstable.

It is evident, then, that 𝜆 is the only variable of interest for determining the stability. Since there is
no restriction that says otherwise, 𝜆 can be complex. The real part of 𝜆 determines the stability of the
system, whereas the imaginary part determines the oscillation frequency of the related perturbation.
Multiple instabilities may be present at any given time, but the instability with the largest real part of
𝜆 will dominate eventually. Therefore, it suffices to look at the imaginary part of the largest real 𝜆.

𝜆 can be decomposed as 𝜆 = 𝑎 + 𝜔𝑖, in which 𝑎 is the amplitude of the instability, and 𝜔 is its
resonance frequency.

To find 𝜆, equation 3.1 is rewritten by substituting the proposed solution into the equation and then
dividing by 𝑒 :

𝐴𝜆�⃗� = 𝐵�⃗� (3.2)

This equation cannot be solved by simply multiplying by 𝐴 , because 𝐴 is a singular matrix – it has
no inverse. We have encountered a generalised eigenvalue problem, which can be solved by finding
the solutions to det(𝐵 − 𝐴𝜆) = 0. These solutions are determined computationally, and chapter 4 will
expand on that further. The eigenvalues are computed for each operating point, resulting in a map of
stable and unstable regions.
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3.2. Operating points
To evaluate the stability characteristics of the system at every possible set of operating conditions,
we must make a convenient choice in how to define these conditions. Throughout literature, many
dimensionless numbers are used as measures for the heating power, inlet temperature and mean flow
rate, the three operating conditions considered. Krijger chose to use slightly modified versions of the
dimensionless numbers used by T’Joen and Rohde [14], which Lippens adopted for his analysis. The
same measures are used in this research as well.

Section 2.6 already briefly introduced the pseudo phase change number,

𝑁 ≡ 𝑄
𝑊ℎ

(3.3)

It is a measure of enthalpy increase in the core section. Since the HPLWR is driven by natural convection
instead of pumps, the mass flow 𝑊 is determined by the heating power 𝑄 and the inlet temperature.
The mass flow and heating power will both always be positive, so the pseudo phase change number
is too.

The subcooling number is a measure of inlet enthalpy and thereby inlet temperature. It is defined
as

𝑁 ≡ 1 − 𝐻ℎ (3.4)

As the temperature – and therefore the enthalpy – increases, the subcooling number decreases. Al-
though it is not necessarily the case, it is assumed that the inlet enthalpy does not exceed pseudo-
critical enthalpy. Therefore, the subcooling number cannot be negative. The subcooling number can
also never exceed unity, because enthalpy cannot take on negative values.



4
Computational Implementation

4.1. Considerations
The computational implementation of the problem described in the previous chapters is done by modi-
fying a MATLAB programme, developed by Krijger and Lippens. The basic structure of the programme
was written by Krijger, who developed it for evaluating the supercritical water loop; Lippens augmented
the code to account for core wall thermal inertia.

While writing the original code, Krijger made sure the code was comprehensible and easily readable.
Lippens endeavoured to maintain this readability, so that the code could be easily adapted for further
research. For this reason, the adjustibility of input parameters was also considered. Because the
computational power required to calculate the requested solutions is fairly minor, efficiency was not
greatly emphasised in the code. [1]

The modifications to the code done by this author account for neutronic-thermal-hydraulic coupling
as well as heat transfer from the fuel to the coolant. For this purpose, various new input parameters
are introduced, which describe the properties of the fuel as well as the neutronics. Examples are the
fuel heat transfer time constant, the fuel enrichment and the density reactivity feedback coefficient.
The coefficient matrices are extended to include the equations governing neutronics and fuel rod heat
transfer, and the calculations of dimensionless variables for these equations are added.

In both the low and high heating models, setting the density reactivity feedback coefficient 𝛼
to zero returns the model to the case evaluated by Lippens. This is the case, because for 𝛼 = 0,
equations 2.15 and 2.16 decouple from the rest of the system and no longer influence the dynamics
of the system. This case is used as a benchmark.

Further considerations are made to ensure the model adheres to certain constraints: The coolant
enthalpy may never exceed pseudo-critical enthalpy in the low heating model, the length of core node 1
– see figure 2.2 – must be greater than or equal to zero in the high heating model, and the steady state
mass flow must be real-valued. Lippens implemented various warnings in case these requirements are
violated.

The following section discusses further details on the algorithm.

4.2. Algorithm
4.2.1. Basic structure
The algorithm follows the same basic structure as Lippens’ and Krijger’s code, displayed graphically in
figure 4.1. First of all, the workspace is cleared. Then, a number of input parameters are specified.
These parameters describe the domain and resolution of the instability map and the accuracy of the
steady-state calculations, but also the geometry of the loop, the fluid properties of the coolant, and
the neutronic properties of the fuel. The ranges of 𝑁 and 𝑁 are divided into 𝑁 linearly spaced
points, and an 𝑁 × 𝑁 stability matrix of zeros is created. After the input parameters are specified, the
programme runs through two nested FOR-loops – one for every value of 𝑁 , the second for every
value of 𝑁 . Krijger showed that if 𝑁 ≤ 𝑁 , the high heating model is invalid, so the low heating
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model is used. The high heating model is used for 𝑁 ≥ 𝑁 . The programme uses an IF-statement
to distinguish between the two and loops the appropriate code for every point.

In these loops, the first step is the calculation of operational characteristics that are independent
of the flow. After this, a WHILE-loop is initiated to iteratively calculate the steady-state flow values
to the desired accuracy. Subsequently, all flow-dependent variables are calculated, and all values are
normalised – made dimensionless. This is enough information to build the coefficient matrices for the
eigenvalue problem, which can then be solved. It is determined whether the chosen point in the 𝑁
- 𝑁 plane is stable, and if so, a value of 1 is assigned to that point in the stability matrix. The
programme returns to the top of the FOR-loop and continues with the next point, until all points are
evaluated.

After all points are done, the instability matrix is complete and can be converted to a colour map. The
stable points are coloured blue, while the unstable points are displayed in red. Several modifications
to the code, discussed in section 4.3, allow for the output of resonance frequency maps, Ledinegg
instability maps, and neutral stability boundaries for easy comparison of different input parameters.

Figure 4.1: Flow chart of the general structure of the algorithm used to generate stability maps.

4.2.2. Determining steady-state values
Several steady-state variables can be calculated directly in the FOR-loops, without using iterative cal-
culations. In Krijger’s model, all operational characteristics except the Reynolds number and mass flow
rate were defined directly. In the model Lippens developed, direct definitions can only be used for the
inlet enthalpy and inlet specific volume. All other operational characteristics are heavily interdependent,
and must be evaluated iteratively.

The WHILE-loop, in which these iterative calculations are performed, is executed until the relative
difference in mass flow rates between the last two iterations is smaller than dwres, an input variable
used solely for this resolution. It allows the user to choose for either a more precise or a faster
calculation. For precise calculations, dwres = 10 is a suitable value; for faster calculations, dwres
= 10 still gives good results. If the input parameters are chosen such that the mass flow rate does
not converge, the loop terminates after reaching a fixed number of iterations, itlim, to be set by the
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user. If the iteration limit is exceeded, a warning is displayed. The default value is itlim = 1000.

4.2.3. Eigenvalue problem
Once the steady-state values have been determined, the coefficient matrices 𝐴 and 𝐵 can be built. The
matrix equation 3.1 governing the system is then solved by use of MATLAB’s eig function. To solve
a generalised eigenvalue problem where matrix 𝐴 is singular, it is necessary to use the QZ algorithm,
also known as the generalised Schur decomposition. The eig function employs this algorithm to solve
det(𝐵 − 𝐴𝜆) = 0 and returns the eigenvalues. [20]

A generalised eigenvalue problem with 𝑛 × 𝑛 matrices has up to 𝑛 eigenvalues associated with it,
but not necessarily that many. Koren [21] found that, despite this, MATLAB always returns exactly 𝑛
values. Some of these values will be infinite, and, as such, are not eigenvalues of the system. In the
stability analysis, these infinite eigenvalues are therefore disregarded.

MATLAB may also sometimes return extremely small eigenvalues, often smaller than 10 . These
are likely due to floating point rounding errors, and can therefore safely be disregarded as well.

After these values, that do not contribute, have been filtered out, the sign of the remaining eigen-
values is analysed. If any of the eigenvalues has a positive real part, the operating point in the 𝑁 -
𝑁 plane associated with it is considered dynamically unstable. If all eigenvalues have negative real
parts, the point is considered dynamically stable, and the point in the stability matrix is assigned a
value of 1.

4.3. Additional analyses
Krijger included in his code several additions that allow for investigation in more detail of the stability
characteristics. These modifications to the code are described in the following three sections.

4.3.1. Ledinegg instabilities

Figure 4.2: Mass flow rate versus heating power characteristic for
various subcooling numbers. Sign swaps are indicated by black
circles. The vertical red lines border the region in which multiple
mass flow rates are possible for a single heating power. This is the
Ledinegg unstable region. Figure adopted from Krijger [1].

In studying the mass flow rate versus heating
power characteristic, Krijger found that under
certain conditions, Ledinegg instabilities may
occur. As described in section 1.4, Ledinegg
instabilities may occur when the slope of this
characteristic swaps sign at least three times.
Figure 4.2 illustrates this. It shows that there
are values of the power for which more than a
single mass flow rate is possible. Krijger used
this definition to determine which points in the
instability map were Ledinegg unstable, and in-
cluded code to overlay a map of Ledinegg un-
stable points on the dynamic instability map.

4.3.2. Frequency analysis
For each point found to be dynamically unstable, the imaginary part is also analysed. The imaginary
part of the eigenvalue with the largest real part gives the resonance frequency of the system:

𝑓 = ℑ{𝜆}
Krijger’s code includes the display of maps containing this frequency information, shaded according
to the frequency. However, since, in these figures, dynamically unstable points with zero frequency
are indistinguishable from dynamically stable points, these frequency maps alone do not completely
represent the dynamic stability of the system.

4.3.3. Parametric study
To investigate the influence a certain parameter has on the stability of the system, Krijger implemented
code to display the neutral stability boundaries for various values of a parameter in a single figure. This
allows for easy comparison of the stability of the system under different circumstances. The neutral
stability boundaries are found in MATLAB by locating every element with value 1 that has at least one
neighbouring 0.





5
Results

In this chapter, the results of the stability analysis outlined in the previous chapters are presented.
Comparisons are made to the cases evaluated by Krijger and Lippens. First, a reference case is anal-
ysed. Then, a ceteris paribus parametric study is performed to identify the influence of the studied
parameters on the stability of the loop. Finally, Ledinegg instabilities are analysed.

All results are presented in the form of stability maps or NSBs on a nondimensional plane. They
include a diagonal black line marking the border between the use of the low heating and high heating
models, which lies at 𝑁 = 𝑁 . Because the approximations used in the model are not continuous
around the pseudo-critical point, the boundary often marks a sharp transition from stable to unstable
conditions.

5.1. Reference case
In his thesis, Krijger set up a reference case for his parametric study. The reference case was extended
by Lippens for his inclusion of the wall thermal inertia effects. In this thesis, the reference case is
further extended to also cover neutronics and fuel heat transfer. This extended case is referred to as the
reference case in this chapter. The reference cases established and evaluated by Krijger and Lippens are
referred to as the Krijger case and the Lippens case respectively. Many reference case parameters were
adopted from the HPLWR model by Ortega Gómez [3]. The fuel heat transfer time constant reference
value is 𝜏 = 6s. The fuel enrichment is taken as 𝜀 = 4%. The full list of parameters and their numerical
values can be found in appendix C. The stability map for the reference case is shown in figure 5.1.

Figure 5.1: Stability map for the reference case.

The reference case stability map
shows obvious similarities to the case
evaluated by Lippens: two unsta-
ble areas at the top center and
top right of the map. In fact, the
unstable area in the top-right cor-
ner remains entirely unaffected by
the introduction of neutronics and
fuel heat transfer. The inclusion of
neutronics and heat transfer in the
model appears to have a slight desta-
bilising effect, as evidenced by the
increased size of the unstable area
in the top center and the appearance
of an unstable area in the low heat-
ing regimen, to the top-left of the
𝑁 = 𝑁 -line.

When the density reactivity feedback coefficient 𝛼 is turned down to zero, no neutronics effects
take place. Therefore, one would expect the instability map to reflect the scenario analysed by Lippens.
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As figure 5.2 shows, this is indeed the case. Adjusting the wall cross-sectional area to zero as well
returns us to the Krijger case. This is shown in figure 5.3. These results show that the benchmark
posed in section 4.1 is adhered to.

Figure 5.2: Stability map for the case with density reactivity feedback disabled. The neutral stability boundary for the Lippens
case is overlaid in black.

Figure 5.3: Stability map for the case with density reactivity feedback and wall thermal inertia disabled. The neutral stability
boundary for the Krijger case is overlaid in black.

The effects of altering the density reactivity feedback are further investigated in the next section.

5.2. Parametric study
5.2.1. Fuel heat transfer time constant
The influence of the numerical value of the fuel heat transfer time constant is analysed through a
ceteris paribus parametric study. Besides values between 𝜏 = 2 s and 𝜏 = 6 s, as proposed by Van
der Hagen [18], more extreme values are studied as well. As figure 5.4 shows, increasing 𝜏 slightly
increases instability. The unstable area reaches slightly lower values of 𝑁 . The rightmost unstable
area is unaffected. While the destabilising effect of the fuel heat transfer model is no surprise, its
influence was expected to be limited to the rightmost unstable area. Because the fuel dynamics affect
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only the core, this should influence the higher-frequency Type-II instability domain. The area affected
was previously considered the Type-I domain. This means that either this division is incorrect, and
Type-II instabilities are present in the top-center area of the stability map as well, or the fuel dynamics
somehow influence Type-I instabilities.

Figure 5.4: Neutral stability boundaries for heat transfer time constants in the range proposed by Van der Hagen. The boundary
of the unstable area on the far right side remains the same independently of . The boxed area is magnified in figure 5.8.

Figure 5.5: Neutral stability boundaries for heat transfer time constants well above the proposed range. The boxed area is
magnified in figure 5.9.

In figure 5.5, higher values of 𝜏 are compared. Above 𝜏 = 6 s, the water loop becomes stable for
higher values of 𝑁 in the medium-𝑁 region, but the upward trend of the NSB for increasing 𝑁
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decreases. As 𝜏 is increased further, the dynamics of heat generation in the fuel take longer to affect
the temperature of the coolant, and so the effect of the fuel rod heat transfer model diminishes. At
large enough values of 𝜏, the model returns to the case with no reactivity feedback at all – Lippens’
case. Once again, the unstable area at the far right does not change depending on 𝜏. To further
analyse this behaviour, the resonance frequencies of the instabilities are studied.

Figure 5.6: Resonance frequency map for the reference case.

Figure 5.7: Resonance frequency map for s.

Lippens found the unstable area at medium 𝑁 (𝑁 ≈ 1) to have no dynamic instabilities, as
frequency maps showed no resonance frequencies in that region for his case. He posited that the area
was Ledinegg unstable. As figure 5.7 shows, in the case of extremely high 𝜏, this is still apparent.

Figure 5.6 shows that low-frequency instabilities have arisen in most of the medium-𝑁 region,
while a small area close to 𝑁 = 1,𝑁 = 1 still exhibits instabilities with no frequency. The dynamic
instabilities present have frequencies in the order of 0.01 Hz. This gives rise to the presumption that
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this area is dominated by Type-I instabilities. As Krijger and Lippens both found, the area to the right
is more likely to be Type-II unstable, as the instabilities in that region oscillate with higher frequencies.
However, since the influence of 𝜏 is contained to the core, varying this parameter is expected to affect
Type-II instabilities. As this appears not to be the case, there is perhaps still something to be learned
about the nature of these instabilities in natural circulation HPLWRs.

Figures 5.4 and 5.5 show that there are two distinct points in the range of 𝜏 where the behaviour
of the NSB as 𝜏 is increased changes. As 𝜏 is increased from zero, initially the NSB of the entire central
unstable region comes down. After a certain point, around 𝜏 = 6 s, the NSB no longer descends in
the region around 𝑁 ≈ 0.8 as 𝜏 is increased, but keeps coming down farther at higher 𝑁 . This
continues until 𝜏 ≈ 100 s, after which the unstable area starts shrinking again, until finally reaching
the case with no feedback present as 𝜏 approaches 10 s. To more accurately determine the values of
𝜏 at which these changes in behaviour occur, two more parametric studies are performed around the
approximated cutoff values.

Figures 5.8 and 5.9 show magnified portions of figures 5.4 and 5.5 respectively. The stability
boundary around 𝑁 ≈ 0.8 reaches the lowest point for 𝜏 ≈ 4.5 s. The lowest point near 𝑁 ≈ 1.5 is
reached when 𝜏 ≈ 100 s. Because these values cannot be obtained algebraically, but only through trial
and error, they are only approximations. Nevertheless, they give good indications of the time scales at
which these changes in behaviour take place.

Figure 5.8: Detail of NSBs for around the first cutoff point. Past . s, the unstable area starts receding at its low-
end.

Figure 5.9: Detail of NSBs for around the second cutoff point. Past ≈ s, the unstable area starts receding at the high-
end.
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Now that the effect of varying 𝜏 has been established, a final comparison can be made to confirm
that the model with extremely high 𝜏 is in fact identical to the model with no feedback implemented.
Figure 5.10 shows the NSB for a model with no feedback marked in red crosses. The reference case,
where 𝜏 = 6 s and 𝛼 = 𝛼 , , is included as a baseline. The blue line indicates the NSB for extremely
high 𝜏, with normal density reactivity feedback as in the reference case. The boundaries marked in
red and blue coincide, showing that the models are identical. That this should be the case can be
easily seen by looking at equation 2.41. For large enough 𝜏, the time-derivative of �̆� vanishes, so that
equation 2.40 reduces to the form derived by Lippens [2], with no reactivity feedback.

Figure 5.10: Neutral stability boundaries for the reference case and two separate ways of modelling a case without feedback;
reducing to zero and increasing to very large values.

5.2.2. Density reactivity feedback coefficient
A single parametric study on the behaviour of the system under changes of the density reactivity
feedback coefficient is conducted. Figure 5.11 shows the NSB for the cases with no feedback, the
reference case, and two cases with doubled and tripled feedback. Once again, the instability domain in
the high-𝑁 region is unaffected by the changes. The unstable areas at medium 𝑁 in both the low
and high heating sections of the stability map grow with increasing 𝛼 . This effect is far more evident
than that of varying 𝜏.

The sharp transition on the 𝑁 = 𝑁 -line is likely caused by the discontinuity of the approxima-
tions used in the model. For 𝛼 = 𝛼 , , the transition appears quite smooth, but higher values of 𝛼
break that illusion and show a sudden jump in the NSB.

The frequency map of the case with tripled feedback, in figure 5.12, shows that the frequency
of oscillation in these areas, while higher than in the reference case, is still much lower than that
of the far-right unstable area. The instabilities in the low heating section oscillate at frequencies of
approximately 0.035 Hz, while the frequencies in the high heating, medium-𝑁 -region vary between
10 and 0.03 Hz, indicating that they are likely to be of the same type.

The unstable area in the far right is unaffected by both variations in 𝜏 and 𝛼 , and Lippens was
also unable to influence that area through thermodynamic effects. Krijger’s parametric studies on
the geometry of the channel, however, did show noticeable influence on that area. This leads to
the possibility that the instabilities in that area are caused by flow geometry concerns, whereas the
influence of neutronics and thermodynamics is more likely confined to the affected area near 𝑁 = 1.
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Figure 5.11: Neutral stability boundaries for the parametric study on the density reactivity feedback coefficient, .

Figure 5.12: Resonance frequency map for , .
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5.2.3. Fuel enrichment
Since the fuel enrichment, 𝜀, is present in the balance equations governing the system (see equa-
tions 2.11 through 2.16), variations thereof should affect the stability of the system. As figure 5.13
shows, however, this does not seem to be the case.

Figure 5.13: Neutral stability boundaries for various fuel enrichments . All boundaries coincide — the enrichment appears to
have no effect on the stability.

It is unclear why the stability of the model seems unaffected by the fuel enrichment. Possible
explanations are that the enrichment does affect certain instabilities, but these are drowned out by
much larger instabilities also present, or that the nature of the model — looking at perturbations only,
and subtracting the steady state values from the balances — causes the enrichment to have no effect.

5.3. Ledinegg instabilities
Using Krijger’s code to search for Ledinegg instabilities results in a single Ledinegg unstable region in
the same location as found by Krijger and Lippens. This Ledinegg unstable area partially coincides
with dynamically unstable points. The presence of dynamic instabilities therefore does not preclude
the presence of static instabilities.

Figure 5.14 shows the Ledinegg map for the reference case superimposed on the stability map. The
newly arisen unstable area in the low heating section of the map does not appear Ledinegg unstable.
The Ledinegg unstable area shows obvious similarities to the cases investigated by Lippens and Krijger.
A comparison of the Ledinegg stability boundaries, shown in figure 5.15, shows that the Ledinegg
unstable area is indeed unchanged from Krijger’s work. Lippens also found the Ledinegg unstable area
to match up with Krijger’s.

It is not surprising that the neutronics and fuel heat transfer do not affect the Ledinegg instability
of the system. Since Ledinegg instabilities are static, not dynamic instabilities, their cause must be
found in the steady-state system. In the linearised model used in this research, the neutronics and fuel
heat transfer do not affect the steady state, and therefore should — and do — not affect the Ledinegg
instability.
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Figure 5.14: Ledinegg map for the reference case. The gray region marks the possibility of Ledinegg instabilities.

Figure 5.15: Ledinegg map for the reference case, with the Ledinegg stability boundary from Krijger’s case overlaid in yellow.
The Ledinegg unstable regions coincide entirely.





6
Conclusions and Discussion

6.1. Conclusions
The model developed by Krijger and augmented by Lippens has been successfully extended to also
include neutronics and fuel heat transfer. The reference case has also been extended to include these
effects. Instability characteristics have been calculated for the reference case, and parametric studies
have been performed on the heat transfer time constant, the density reactivity feedback coefficient,
and the enrichment. From the results, we can draw the following conclusions.

Introducing neutronics and fuel heat transfer to the system has a destabilising effect. Increasing
the fuel heat transfer time constant beyond 𝜏 ≈ 4.5 s, up to 𝜏 ≈ 100 s, improves stability at 𝑁 ≈ 0.8,
while making the system less stable at 𝑁 ≈ 1.5. Further increasing 𝜏 diminishes the destabilising
effect, until finally the effect of the neutronics disappears as 𝜏 approaches 10 s. This is expected, and
can be concluded from examining equations 2.41 and 2.40. 𝜏 is suspected to lie between 2 and 6 s,
around the peak of the destabilising effect near 𝑁 = 0.8.

The introduction of density reactivity feedback has a stronger destabilising effect than the fuel heat
transfer for the values investigated in this research. The feedback also gives rise to a new unstable
region in the low heating zone. No unstable areas were found in the low heating model in the reference
cases studied by Krijger and Lippens, but the extended model studied in this thesis shows that the low
heating model is not uniformly stable at reference case conditions. Increasing the magnitude of the
density reactivity feedback coefficient has a destabilising effect on the area near 𝑁 = 1, in agreement
with findings by Van Bragt for BWRs [10].

The Ledinegg unstable area remains unchanged from the case with no neutronics and fuel heat
transfer implemented. The newly arisen unstable area in the low heating region contains no Ledinegg
instabilities. It can be concluded that the neutronic-thermal-hydraulic coupling does not affect the
steady state. This is not surprising, since density reactivity feedback relies on changes in density,
of which there are none in a steady-state scenario. While Krijger and Lippens only found Ledinegg
instabilities where the resonance frequency maps showed no resonance, Ledinegg instabilities have
now arisen in unstable areas with nonzero resonance frequencies as well. Krijger already asserted that
his method for finding Ledinegg instabilities could not give a decisive answer about Ledinegg unstable
areas, and further improvements to the method do seem necessary.

The fuel enrichment appears not to affect the stability of the system.

6.2. Discussion and recommendations
The fact that the stability of the system does not seem to be affected by altering the fuel enrichment
parameter in the code calls for further investigation. If the independence on enrichment is caused by
the enrichment-based instabilities being drowned out by larger instabilities, it may not be possible to
further investigate the cause. The code could be altered to show which of the eigenvalues are resulting
in instabilities, but this might not provide conclusive evidence. Nevertheless, it may be worth looking
into. Knowing which eigenvalues are responsible for the destabilisation of the system may be invaluable
for a thorough understanding of the mechanics.
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40 6. Conclusions and Discussion

Additionally, the accuracy of the fuel rod heat transfer model may be greatly improved. In this
thesis, the fuel was treated as a single node. This means density reactivity feedback is considered
uniform throughout the fuel. In practice, the axial position of the fuel is very significant in determining
the feedback. The diffusion length of neutrons is in the order of only a few centimeters, and as such,
considering the core is several meters in length, feedback in the top and bottom of the core are entirely
different. While dividing the fuel up into two nodes, as is done with the core and wall for the low and
high heating models, will slightly improve the accuracy of the feedback calculations, the model will
remain far from the real case. Dividing the fuel and the core up into several shorter nodes, so that
density reactivity feedback and fuel heat transfer may be calculated separately in each of them, will
greatly increase the complexity of the model and detract from its computational speed.

A point of attention is the previously hypothesised divide between Type-I and Type-II unstable areas
in the stability maps. While the top-centre unstable area was thought to be Type-I-unstable, and the
far right unstable area Type-II, the introduction of neutronics has only affected the top-centre area.
Since neutronics, being a core effect, should influence only Type-II instabilities, these areas may have
been attributed the wrong kind of instability. Further investigation into the nature of the instabilities in
the two distinguishable areas is therefore advised.

Finally, the conclusions reached in this research are not discouraging for the development of the
natural circulation driven HPLWR. While the introduction of neutronics has increased instability of the
system, this was expected based on prior research on other natural circulation driven reactor types.
All in all, the natural circulation driven HPLWR seems a promising reactor design.



A
Coefficient Matrices

This appendix presents the coefficient matrices A and B that have been used in the stability analyses
in this work. Because of the large size of the matrices, they have been split up into parts.

A.1. Low heating model
Coefficient matrix A:
Columns 1 to 5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝐶 𝑁 ℎ 𝜐 𝐶 𝑁 ℎ 𝜐 𝐿 0 0 0
(𝐶 𝑁 ℎ 𝜐 𝐻 + 𝜌 𝐶 𝑁 ℎ 𝜐 𝐻 𝐿 0 0 0

0 𝐿 𝜌 + 𝐿 𝐶 𝑁 ℎ 𝜐 (𝐻 − 𝐻 ) 0 0 0
0 0 1 + 𝐿 + 𝑉 𝐿 0
0 0 0 0 𝜌 𝑐 , 𝐴
0 … 0

⋮ ⋱ ⋮

0 … 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Colums 6 to 13

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 … 0
0
0 ⋱ ⋮
0
0 … 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 𝜏

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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Coefficient matrix B:
Column 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

(̂ (( ( )
, )

. .
.
( ) ) )

( ( ) )

̂ (
.
( ( )

, ) .
.
( ) )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Columns 2, 3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

( ( ) ) ( ( ) ( ) )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Columns 4, 5, 6

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−1 0 0
−𝐻 𝑁𝑢 𝜆

.
0

𝐻 − 𝐻 0 0

−(( + 𝐾 ) 𝜐 + 𝜐 ) 0 0

0 −𝑁𝑢 𝜆
.

0
0 0 −
0 0
0 0
0 0
0 0
0 0
0 0
0 0 Σ 𝐸 𝑉 𝑣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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Columns 7 to 13

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 … 0
0
0 ⋱ ⋮
0 0
0 … 0 1
𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 0
−𝜆 0 0 0 0 0 0
0 −𝜆 0 0 0 0 0
0 0 −𝜆 0 0 0 0
0 0 0 −𝜆 0 0 0
0 0 0 0 −𝜆 0 0
0 0 0 0 0 −𝜆 0
0 0 0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

A.2. High heating model
Coefficient matrix A:
Columns 1 to 3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

( )

( )

( ) ( )

( ( ))

, ,

, ,

⋮ ⋮ ⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Columns 4 to 8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 … 0
0
0 ⋱ ⋮
0
0 … 0

1 − 𝐿 + 𝐿 + 𝑉 𝐿 𝐿 0 0
0 0 0 𝜌 𝑐 , 𝐴 𝐿 0
0 0 0 0 𝜌 𝑐 , 𝐴 𝐿
0 0 0 0 0
⋮ ⋮ ⋮
0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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Colums 9 to 16

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 … 0
0
0
0 ⋱ ⋮
0
0
0
0 … 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 𝜏

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Coefficient matrix B:
Column 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−
0

(𝑁𝑢 𝜆
.
(𝑇 , − 𝑇 ) − 𝑁𝑢 𝜆

.
(𝑇 , − 𝑇 ))

0
( − )+ −

𝑁𝑢 𝜆
.

(𝑇 , − 𝑇 ) − 1

1 − 𝑁𝑢 𝜆
.

(𝑇 , − 𝑇 )
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Column 2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

(̂ (( ( )
, )

. . ( , )
.

) )

( ( ) )

̂ (( ( )
, )

. . ( , )
.

)

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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Column 3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

( ( ) )

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Columns 4, 5

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1− 0

−1
0 1
𝐻 −𝐻
0 𝐻

−(( + 𝐾 ) 𝜐 ( + 𝐾 ) 𝜐 − 𝜐 ) −( + 𝐾 ) 𝜐
0 0
⋮ ⋮
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

Columns 6, 7, 8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0
0 0 0
−1 0 0
0 𝑁𝑢 𝜆

.
𝑁𝑢 𝜆

.

−𝐻 0 0

−( +𝐾 + )𝜐 0 0

0 −(𝑁𝑢 𝜆
.

+ 2𝜆 𝐴 ) 2𝜆 𝐴

0 2𝜆 𝐴 −(𝑁𝑢 𝜆
.

+ 2𝜆 𝐴 )
0 0 0
⋮ ⋮ ⋮
0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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Columns 9 to 16

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 … 0
0
0 ⋱ ⋮
0
0
0 0
0 … 0 1 − 𝐿
0 … 0 𝐿
− 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 0

−𝜆 0 0 0 0 0 0
0 −𝜆 0 0 0 0 0
0 0 −𝜆 0 0 0 0
0 0 0 −𝜆 0 0 0
0 0 0 0 −𝜆 0 0
0 0 0 0 0 −𝜆 0

Σ 𝐸 𝑉 𝑣 0 0 0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠



B
Balance equations (Krijger, 2013

and Lippens, 2014)

This thesis is based on research conducted by Krijger, in 2013, and Lippens, in 2014. They set up the
initial system of balances that was extended in this thesis. The balance equations that are unchanged
in this thesis are summarised in this appendix.

The underlined text shows which equation pertains to which node. M refers to a mass balance,
E to an energy balance, and I to the momentum balance. There is only a single momentum balance
for the entire loop, but the mass and energy balances are specified for each node individually. This is
indicated by the inclusion of a letter or digit specifying which node the equation governs. A key for
which character refers to which node is included in the nomenclature, under Subscripts.

As before, the dimensionless variant of variable 𝑋 is denoted 𝑋, the steady-state value 𝑋, and the
perturbation �̆�.

B.1. Transport balances – low heating model

∶ (B.1)

∶ (B.2)

∶ (B.3)

∶ , ( ) (B.4)

∶ (B.5)

∶ ⋯

⋯ ( ) ( ) ⋯

⋯ ( ) (B.6)
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B.2. Transport balances – high heating model

∶ (B.7)

∶ (B.8)

∶ (B.9)

∶ (B.10)

∶ ( , ) (B.11)

∶ ( , ) (B.12)

∶ (B.13)

∶ ⋯

⋯ ( ) ( ) ( ) ⋯

⋯ ( ) ⋯

⋯ (B.14)

B.3. Dimensionless balances – low heating model

∶ (B.15)

∶ ( )⋯

̂ . ( ( ) ⋯

⋯
,
( )) (B.16)

∶ ( ) (B.17)

∶

( ) ( ) ⋯

⋯ ( ) (B.18)
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B.4. Dimensionless balances – high heating model

∶ ( ) ( ) ( ) (B.19)

∶ ( ) ( ) (B.20)

∶ (B.21)

∶ ( ) ⋯

⋯ ̂ .
( )

( , ( ) ⋯

⋯
,
( ))⋯

⋯ ̂ . ( , ( ) ⋯

⋯
,
( )) (B.22)

∶ (B.23)

∶ ( ) ⋯

( ) ( ) ⋯

⋯ ( ) ( ) ⋯

⋯ (B.24)
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B.5. Linearised balances – low heating model

∶ ( ̆ ̆ ) ̆ ̆ (B.25)

∶ ( ) ̆ ̆

̆ ̆ ̂ . ̆ ⋯

⋯ (̂ (( ( )
,
)

.
⋯

⋯ .
.
( ) ) ) ̆ (B.26)

∶ ( ( )) ̆

̆ ̆ ̆ ̆ (B.27)

∶ ( ) ̆ ̆ ( ( ) ) ̆ ⋯

⋯ ( ( ) ) ̆ ⋯

⋯ ( ( ) ) ̆ ⋯

⋯( ( ) ( ) ) ̆ (B.28)
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B.6. Linearised balances – high heating model

∶ ( ) ̆ ( ) ̆ ̆ (B.29)

∶ ( ) ̆ ̆

̆ ̆ ̆ (B.30)

∶ ̆ ̆ ̆ (B.31)

∶ ( ) ̆ ( ) ̆

̆ ̆ ̂ . ̆ , ⋯

⋯ (̂ (( ( )
,
)

.
⋯

⋯ . ( , )
.

) ) ̆ ⋯

⋯ ̂ . ̆ , (̂
.
( , ) ⋯

⋯ ̂ .
( , )) ̆ (B.32)

∶ ( ) ̆ ̆ ̆ ̆ ̆ (B.33)

∶ ( ) ̆ ̆ ̆

( ( ) ) ̆ ⋯

⋯ (( ) ( ) ) ̆ ⋯

⋯ ( ) ̆ ( ( ) ⋯

⋯ ) ̆ ⋯

⋯ ( ) ̆ ( ( ) ⋯

⋯ ) ̆ (B.34)





C
Reference case parameters and

constants

Krijger [1] set up a reference case for the model used in this thesis as baseline for comparison.
Lippens [2] extended the reference case for the additions he made to the code. The reference case is
now also extended with parameters governing the neutronics of the system.

Table C.1: Design parameters for the reference case

Parameter Value
Volume buffer vessel 10 m
Riser length 4.2m
Core length 4.2m
Channel hydraulic diameter 5.6 ⋅ 10 m
Channel flow area 3.55 ⋅ 10 m
Wall cross-sectional area 3.55 ⋅ 10 m
Fuel volume per rod 1.48 ⋅ 10 m
Inlet pressure loss coefficient 1
Downcomer pressure loss coefficient 1
Riser pressure loss coefficient 20

Table C.2: Material, thermodynamic and neutronic properties for
the reference case

Property Value
Water specific enthalpy, pseudo-critical point 2.1529 ⋅ 10 J kg
Water specific volume, pseudo-critical point 3.1564 ⋅ 10 m kg
Water specific heat capacity, pseudo-critical point 7.6444 ⋅ 10 J kg K
Dynamic viscosity of water 4.2797 ⋅ 10 N s m
Fuel density 10.96 ⋅ 10 kg m
Wall density 7.850 ⋅ 10 kg m
Wall specific heat capacity 490 J kg K
Wall thermal conductivity 43 W m K
Fuel heat transfer time constant 6 s
Energy per fission event 2.81 ⋅ 10 J
Fuel enrichment 4% by mass
Neutron velocity 5.72958 ⋅ 10 m s
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Table C.3: Delayed neutron fractions and decay constants [22]

Fractions (%) Decay constants (s )
𝛽 0.026 𝜆 0.0127
𝛽 0.1459 𝜆 0.0317
𝛽 0.1288 𝜆 0.115
𝛽 0.2788 𝜆 0.311
𝛽 0.0877 𝜆 1.40
𝛽 0.0178 𝜆 3.87
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